UMN Knowledge Center

Implementasi Metode K-Means Clustering Dalam Mengelompokkan Emosi Senang, Marah, Dan Netral Berdasarkan Vokal Manusia

Rianto, Aurelia (2017) Implementasi Metode K-Means Clustering Dalam Mengelompokkan Emosi Senang, Marah, Dan Netral Berdasarkan Vokal Manusia. Bachelor Thesis thesis, Universitas Multimedia Nusantara.

[img]
Preview
Text
Skripsi - Aurelia Rianto - 13110110071.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (4MB) | Preview

Abstract

Pengenalan emosi merupakan komponen penting di dalam komputasi afektif yang merupakan teknologi dalam mengindentifikasi emosi manusia pada komputer. Emosi dapat dikenali dengan menggunakan sinyal suara manusia. Pemodelan neural network dan SVM pernah digunakan untuk mengklasifikasikan sinyal suara manusia ke dalam emosi senang, sedih, dan netral, tetapi hanya mampu mengklasifikasikan emosi ke dalam kategori emosional dan non-emosional. Pemodelan SVM ini dapat menghasilkan data yang overlapping. Dalam pembangunan sistem, emosi sedih diubah menjadi emosi marah karena emosi sedih dan netral memiliki motion capture yang hampir sama, tetapi emosi marah memiliki perbedaan motion capture yang cukup signifikan dari emosi netral. K-Means clustering merupakan metode yang dapat digunakan untuk mengelompokkan objek berdasarkan karakteristiknya tanpa adanya data yang overlapping. Penentuan emosi dalam sebuah cluster dilakukan dengan menggunakan mayoritas emosi untuk setiap cluster. Pembangunan sistem dalam mengimplementasikan K-Means clustering untuk mengelompokkan emosi menggunakan bahasa pemrograman C# dan Python. Berdasarkan uji coba yang dilakukan dan perhitungan akurasi, penggunaan K-Means clustering dalam mengelompokkan emosi memiliki persentase keakuratan sistem sebesar 56.19%.

Item Type: Thesis (Bachelor Thesis)
Uncontrolled Keywords: K-Means, clustering, emosi, marah, senang, netral.
Subjects: T Technology
Z Bibliography. Library Science. Information Resources > ZA Information resources > ZA4050 Electronic information resources > ZA4150-4380 Computer network resources
Divisions: Fakultas Teknik Informatika > Program Studi Informatika
Depositing User: mr admin umn
Date Deposited: 24 Jan 2019 01:54
Last Modified: 24 Jan 2019 01:54
URI: http://kc.umn.ac.id/id/eprint/4819

Actions (login required)

View Item View Item