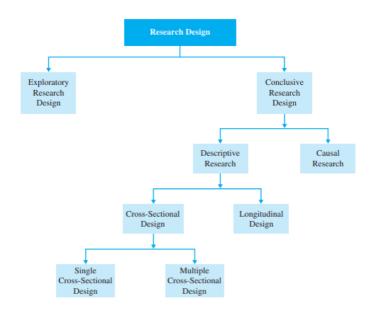
BAB III

METODOLOGI PENELITIAN

3.1 Gambaran Umum Objek Penelitian

Tiket.com merupakan salah satu penyedia jasa layanan pemesanan tiket perjalanan secara online yang berbasis di Indonesia. Tiket.com pertama kali didirikan pada tahun 2011 oleh Dimas Surya Yaputra, Wenas Agusetiawan, Natali Ardianto, dan Mikhael Gaery Undarsa. Aplikasi ini dibuat untuk memudahkan pemesanan tiket perjalanan dengan mudah yaitu melalui *booking online*. Layanan yang ditawarkan oleh tiket.com adalah tiket pesawat, tiket hotel, tiket kereta api, tiket event, dan tiket sewa mobil.

Sumber: Google


Gambar 3. 1 Logo aplikasi Tiket.com

3.2 Desain Penelitian

Research design adalah kerangka kerja atau blue print untuk melakukan proyek riset pemasaran. Hal ini dilakukan untuk memperoleh informasi yang digunakan untuk menyusun dan menyelesaikan masalah marketing research. Research design digunakan untuk melakukan dan memastikan bahwa project marketing research dilakukan secara efektif dan efisien. (Malhotra, 2010).

Menurut Malhotra (2010), Design penelitian dapat diklasifikasikan menjadi

dua yaitu Exploratory Research Design dan Conclusive Research Design.

Sumber: Malhotra (2010)

Gambar 3. 2 Research Design

	Exploratory	Conclusive
Objective	Untuk memberikan wawasan	Untuk menguji hipotesis
	dan pengertian	secara spesifik dan
		menguji hubungan
Characteristics	Informasi yang dibutuhkan	Informasi yang
	didefinisikan secara bebas.	dibutuhkan didefinisikan
	dengan jelas.	
	Proses penelitian fleksibel dan Proses penelitian	
	tidak terstruktur. dilakukan secara	

		dan terstruktur
	Sampel kecil dan bersifat tidak	Sampel besar dan
	representatif.	bersifat representatif
	Analisis data primer bersifat	Data analisis bersifat
	kualitatif.	kuantitatif.
Findings/Results	Tentative (dapat keduanya)	Conclusive
Outcome	Umumnya dilanjutkan dengan	Temuan digunakan
	penjelajahan lebih lanjut atau	sebagai input dalam
	penelitian konklusif	pengambilan keputusan

Sumber: Malhotra, 2010

Tabel 3. 1 Perbedaan Exploratory and Conclusive Research

1. Exploratory Research Design

Exploratory research design digunakan untuk merumuskan atau mendefinisikan masalah lebih akurat, mengidentifikasikan tindakan alternative yang dapat dibuat, pengembangan hipotesis dan memberikan wawasan dan pemahaman terhadap situasi tertentu. Penelitian exploratory sangat bermanfaat ketika peneliti tidak memiliki pemahaman yang cukup untuk menlanjutkan proyek penelitian karena exploratory research bersifat fleksibel. (Malhotra, 2010)

2. Conclusive Research Design

Penelitian *conclusive* bersifat lebih formal dan terstruktur dibandingkan dengan penelitian *exploratory* karena sampelnya lebih besar dan representative, data yang diperoleh berupa analisa kuantitatif. Penelitian *conclusive* terbagi

menjadi dua yaitu penelitian descriptive dan causal.

a. Descriptive Design

Tujuan utama dari penelitian deskriptif adalah untuk menggambarkan karakteristik kelompok, presentasi populasi, prediksi yang spesifik. *Descriptive Research* terbagi menjadi dua yaitu *cross- sectional* dan *longitudinal research*.

1. Cross sectional Designs

Merupakan jenis penelitian yang paling sering digunakan dalam *marketing research* yang melibatkan pengumpulan informasi dari populasi tertentu hanya sekali dapat berupa satu *sample* (*single cross-sectional*) atau beberapa *sample* (*multiple cross-sectional*).

2. Longitudinal Design

Merupakan jenis desain penelitian yang melibatkan sampel tetap dari elemen populasi yang diukur secara berulang pada variabel yang sama. Desain *longitudinal* berbeda dengan *cross- sectional* dari sampelnya, dimana desain *cross- sectional* memberikan pengukuran variable yang sama, sedangkan *longitudinal* menggambarkan situasi dan perubahan yang terjadi.

b. Clausal Design

Penelitian *causal* sama seperti penelitian deskriptif yang membutuhkan desain yang terstruktur dan terencana. *Causal research* digunakan untuk memahami variabel mana yang menjadi penyebab (variabel independent) dan variabel mana yang menjadi efek (variabel *dependent*) dari sebuah fenomena.

Penelitian ini menggunakan design penelitian Conclusive Research Design

untuk menguji hubungan antar variable dan peneliti juga menggunakan jenis penelitian *Descriptive Research* yang digunakan untuk mengambil data dengan metode survey yang disebar untuk mendapatkan data secara spesifik. Penelitian ini juga menggunakan jenis penelitian *cross-sectional design* dengan tipe *single cross-sectional* yang dimana pengambilan data informasinya menggunakan kuisioner yang dilakukan satu kali saja.

3.3 Prosedur Penelitian

- Mengumpulkan literatur dan jurnal yang mendukung penelitian ini, kemudian dilanjutkan degan membuat model penelitian, hipotesis penelitian dan menyusun kerangka penelitian.
- Menyusun kuesioner berdasarkan measurement dari jurnal utama dan jurnal pendukung, kemudian dilanjutkan dengan membuat wording kuesioner
- 3. Menyebarkan kuesioner kepada 30 responder, kemudian melakukan pre-test untuk menilai kelayakan measurement item yang digunakan dengan mengukur validitas dan reliabilitas menggunakan aplikasi SPSS, jika hasilnya telah memenuhi syarat maka akan dilanjutkan ke tahap selanjutnya yaitu penyebaran kuesioner dengan jumlah yang lebih besar.
- 4. Data yang telah terkumpulkan kemudian diolah dengan menggunakan aplikasi LISREL 8.8 dengan mengukur Structural & Measurement Model
- Menganalisis hasil data, kemudian membuat kesimpulan dan saran berdasarkan hasil penelitian yang telah dilakukan.

3.4 Populasi dan Sample

3.4.1 Populasi

Populasi adalah kumpulan dari semua elemen dengan berbagai karakteristik umum yang bertujuan untuk keperluan masalah dari *marketing research*, populasi biasanya berupa angka dan populasi juga dapat diperoleh melalui pengambilan sample (Malhotra, 2010). Target populasi adalah kumpulan elemen yang memiliki informasi yang dicari oleh peneliti untuk membuat kesimpulan (Malhotra, 2010). Dalam penelitian ini, populasi yang digunakan peneliti adalah seluruh konsumen yang sudah mengunduh aplikasi Tiket.com tetapi tidak pernah melakukan pembelian di aplikasi Tiket.com.

3.4.2 Sample

Menurut Malhotra (2010), sample adalah sub kelompok dari populasi yang dipilih untuk berpartisipasi dalam sebuah penelitian, sample digunakan untuk mengambil kesimpulan dalam parameter populasi. Sample unit adalah elemen yang tersedia untuk diseleksi pada tahap pengambilan sampel (Malhotra, 2010). Dalam penelitian ini sample yang digunakan peneliti adalah pria dan wanita yang telah berusia 18 tahun keatas kemudian mengetahui aplikasi Tiket.com dan pernah mengoperasikan aplikasi Tiket.com.

3.4.3 Ukuran Sample

Pada penelitian ini, jumlah sampel ditentukan oleh banyaknya indikator pertanyaan pada kuesioner yang dihitung dengan menggunakan

rumus n x 5 sampai n x 10 (Joseph F. Hair, Black, Babin, & Anderson, 2014). Pada suatu penelitian, jumlah minimum sampel yang baik adalah 100 sampel. Penelitian ini terdapat indikator pertanyaan yang berjumlah 28 indikator, dengan menggunakan rumus n x 5 maka responder yang dibutuhkan yaitu 140 responder.

3.4.4 Sampling Technique

Menurut Malhotra (2010), terdapat dua teknik dalam pengambilan sampling, dua teknik sampling tersebut yaitu non-probability sampling technique dan probability sampling technique. Probability sampling adalah proses pengambilan sampel yang dimana setiap elemen dipilih secara kebetulan dan tidak perlu memiliki probabilitas yang sama. Sedangkan non-probability sampling adalah proses pengambilan sampel yang dinama setiap elemen dipilih menurut penilaian pribadi peneliti. Menurut Malhotra (2010), terdapat 4 teknik non-probability sampling, yaitu:

a. Convenience sampling

Convenience sampling merupakan proses pengambilan sampel yang berupaya memperoleh sampel elemen dengan nyaman dimana pengambilan sampel biasanya diambil berdasarkan tempat dan waktu yang tepat, sehingga metode ini relative menggunakan biaya yang rendah (Malhotra, 2010).

b. Judgmental sampling

Menurut Malhotra (2010), Judge mental sampling adalah bentuk convenience sampling yang dimana elemen populasi dipilih berdasarkan

penilaian peneliti karena peneliti meyakini bahwa mereka mewakili populasi yang sesuai atau jika tidak sesuai.

c. Quota sampling

Quota sampling memiliki dua tahapan sampling, tahap pertama bertujuan untuk memilih beberapa karakteristik dan memastikan bahwa komposisi sampel sama dengan komposisi populasi, tahap kedua sampel dipilih berdasarkan penilaian dan karakteristik (Malhotra, 2010).

d. Snowball sampling

Pengambilan sampel dari Snowball sampling berupa pemilihan secara acak dan berdasarkan referensi yang bertujuan meningkatkan kemungkinan untuk menemukan karakteristik yang diinginkan dalam populasi agar menghasilkan biaya yang murah. (Malhotra, 2010)

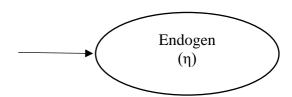

Pada penelitian ini, peneliti menggunakan non-probability sampling sebagai teknik pengambilan sample karena tidak semua data responder berpeluang untuk dijadikan sample. Selain itu peneliti juga menggunakan teknik *Judgemental sampling*, alasan peneliti menggunakan teknik tersebut karena peneliti telah membuat beberapa kriteria untuk menentukan sample.

3.5 Identifikasi Variabel Penelitian

3.5.1 Variabel Eksogen

Variabel eksogen merupakan *multi-item equivalent* dari variabel independent (Malhotra, 2010). Konstruksi endogen ditentukan oleh faktor-faktor diluar model sehingga tidak dapat dijelaskan oleh konstruksi atau variable lain dalam model. Pada

penelitian ini, terdapat variable eksogen yaitu *price benefit*, *service*benefit, trust in service, app interaction, dan staff interaction



Sumber: (Malhotra, 2010)

Gambar 3. 3 Variabel Eksogen

3.5.2 Variabel Endogen

Variabel endogen adalah *multi-item equivalent* dari variabel dependen. (Malhotra, 2010). Variable endogen dipengaruhi pada variable dalam model atau bergantung pada konstruksi lain. Pada penelitian ini, terdapat variable endogen yaitu *Perceived risk* dan *Usage intention*

Sumber: (Malhotra, 2010)

Gambar 3. 4 Variabel Endogen

3.5.3 Variabel Teramati

Variabel teramati merupakan variable yang dapat diukur langsung oleh peneliti. Variable teramati disebut juga sebagai variabel terukur, variabel manifest, indikator, atau item (Malhotra, 2010). Pada penelitian ini terdapat 28 pertanyaan sehingga variable teramati dalam penelitian ini adalah 28 indikator.

3.6 Operasionalisasi Variabel Penelitian

Untuk mendapatkan indikator pengukuran yang akurat, diperlukan definisi operasional untuk setiap variabelnya. Pada table 3.2 menggambarkan definisi operasional, *measurement* dan *scaling technique* pada setiap variable. Skala pengukuran yang peneliti gunakan adalah skala likert dengan skala 1 sampai 7 untuk seluruh variable.

Tabel 3. 2 Tabel Operasional

No	Variabel	Definisi	Kode	Measurement	Scaling
		Operasional			Technique
1.	Priced	Price benefit	PB1	1. Tiket.com	Likert 1-7
	Benefit	merupakan		menetapkan harga	
		pertukaran		yang sesuai dengan	
		kognitif		anggaran perjalanan	
		konsumen antara		saya (Ray &	
		manfaat yang		Bala,2020)	
		dirasakan dalam	PB2	2.Tiket.com	
		menggunakan		menawarkan tiket	
		sebuah aplikasi		(transportasi dan	
		dengan biaya		akomodasi) dengan	
		yang dikeluarkan		harga terjangkau (Ray	
		dalam		& Bala,2020)	
		menggunakannya	PB3	3. Tiket.com	
		(Venkatesh &		menawarkan manfaat	

		James Y. L.		yang sebanding dengan	
		Thong, 2012).		biaya yang dikeluarkan	
				(Ray & Bala,2020)	
			PB4	4. Dengan harga saat	
				ini, Tiket.com	
				memberikan value	
				yang baik (Hew, Lee,	
				Ooi, & Wei, 2015)	
2.	Service	Service benefit	SB1	1. Saya merasa aplikasi	Likert 1-7
	Benefit	merupakan		Tiket.com berguna	
		kecepatan,		untuk memesan	
		aksesibilitas, dan		kebutuhan perjalanan	
		ketersediaan		saya (memesan tiket	
		layanan, yang		transportasi dan	
		fleksibel yang		akomodasi) (Ray &	
		berhubungan		Bala, 2020).	
		dengan aspek	SB2	2. Tiket.com	
		waktu dan lokasi.		membantu menghemat	
		(Okazaki &		waktu saya dalam	
		Mendez, 2013)		memesan kebutuhan	
				perjalanan saya	
				(transportasi dan	
				akomodasi) (Ray &	
				akomodasi) (Ray &	

				Bala,2020)	
			SB3	3. Tiket.com	
				memudahkan saya	
				ketika memesan	
				kebutuhan perjalanan	
				saya (transportasi dan	
				akomodasi) (Ray &	
				Bala,2020)	
			SB4	4. Tiket.com	
				menawarkan saya	
				banyak pilihan layanan	
				ketika memesan	
				kebutuhan perjalanan	
				saya (transportasi dan	
				akomodasi) (Ray &	
				Bala,2020)	
3.	Trust in	Trust-in-service	TS1	1. Saya akan merasa	Likert 1-7
	Service	mengacu pada		aman jika memesan	
		kepercayaan atau		tiket melalui Tiket.com	
		keyakinan yang		(Ray & Bala,2020)	
		dimiliki	TS2	2. Saya menikmati	
		pengguna dalam		proses pemesanan	
		suatu layanan		kebutuhan perjalanan	

	(Ray & Bala,		saya jika memesan	
	2020).		melalui tiket.com (Ray	
			& Bala,2020)	
		TS3	3. Saya merasa	
			tiket.com merupakan	
			aplikasi pemesanan	
			tiket yang terpercaya	
			(Ray & Bala,2020)	
		TS4	4. Saya merasa tenang	
			jika melakukan	
			pemesanan tiket	
			melalui Tiket.com	
			(Ray & Bala,2020)	
4. Perceived	Perceived Risk	PR1	1. Kebutuhan	Likert 1-7
Risk	adalah risiko		perjalanan yang	
	yang dirasakan		dipesan melalui	
	seseorang saat /		tiket.com memiliki	
	sebelum		standar kualitas yang	
	menggunakan		kurang diterima (Ray	
	layanan. (Ray &		& Bala,2020)	
	Bala, User	PR2	2. Saya merasa akan	
	generated content		ditipu jika memesan	
	for exploring		kebutuhan perjalanan	

		factors affecting		di tiket.com (Ray &	
		intention to use,		Bala,2020)	
		2020)	PR3	3. Saya merasa	
				tiket.com akan	
				melakukan kecurangan	
				(Ray & Bala,2020)	
			PR4	4. Saya merasa data	
				pribadi saya akan	
				hilang atau	
				disalahgunakan oleh	
				tiket.com (Ray &	
				Bala,2020)	
5.	App	App Interaction	AI1	1. Aplikasi tiket.com	Likert 1-7
	Interaction	mengacu pada		mudah digunakan (Ray	
		sejauh mana		& Bala,2020)	
		pengguna	AI2	2. Aplikasi tiket.com	
		percaya bahwa		sesuai dengan	
		menggunakan		teknologi yang biasa	
		suatu teknologi		saya gunakan (Ray &	
		tertentu akan		Bala,2020)	
		terbebas dari	AI3	3. Interaksi dengan	
		usaha. (Davis,		aplikasi tiket.com	
		1989)		mudah dipahami (Ray	

				& Bala,2020)	
			AI4	4. Belajar	
				menggunakan aplikasi	
				tiket.com cukup mudah	
				(Ray & Bala,2020)	
6.	Staff	Staff interaction	SI1	1. Tingkat pelayanan	Likert 1-7
	Interaction	merupakan		yang diberikan	
		penilaian sejauh		tiket.com lebih dari	
		mana layanan		yang saya harapkan	
		yang diberikan		(Ray & Bala,2020)	
		sesuai dengan	SI2	2. Tiket.com memiliki	
		harapan		kualitas pelayanan	
		pelanggan (Chen,		yang konsisten (Ray &	
		2012)		Bala,2020)	
			SI3	3. Tiket.com memiliki	
				customer service yang	
				baik (Ray &	
				Bala,2020)	
			SI4	4. Team customer	
				service dari tiket.com	
				memberikan respon	
				yang cepat (Ray &	
				Bala,2020)	

ikasi
anan
nan
l
ngan
ukan
ıhan
eng,
anan
nan
akan
saya
elian

		kebutuhan perjalanan	
		di tiket.com cukup	
		tinggi (Jeng, 2019)	

3.7 Teknis Pengolahan Analisis Data

3.7.1 Metode Analisi Data Pre-test Menggunakan Faktor Analisis

Faktor analisis merupakan prosedur terutama yang digunakan untuk mereduksi dan memperingkas data (Malhotra, 2010). Analisis faktor digunakan untuk mengetahui tingkat validitas dan reliabilitas indikator pertanyaan. Peneliti menggunakan *software* SPSS versi 25 dalam penelitian ini untuk mengolah data *pre-test*.

3.7.2 Uji Validitas

Validitas merupakan tingkatan sejauh mana sebuah measurement yang diteliti dapat mencerminkan objek yang sedang diteliti (Malhotra, 2010). Validitas yang sempurna mensyaratkan bahwa tidak ada kesalahan pengukuran pada setiap variable. Pada tabel 3.3 menunjukan bahwa terdapat beberapa syarat dalam faktor analisis.

Tabel 3. 3 Uji Validitas

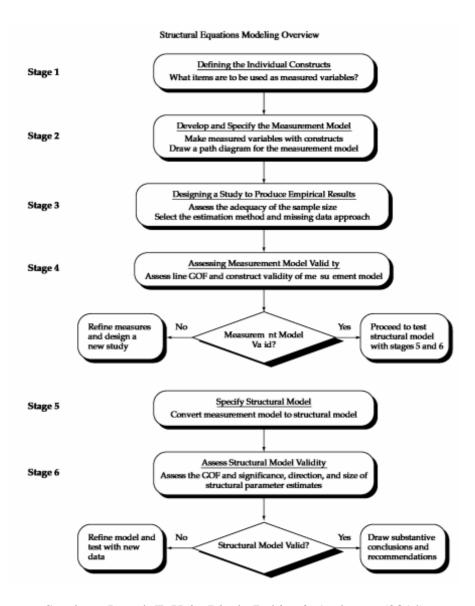
No	Ukuran Validitas	Nilai Disyaratkan
1.	Kaiser-Meyer-Olkin	Nilai KMO ≥ 0,5 menunjukan
	Measure of Sampling	bahwa faktor analisis telah
	Adequency (KMO)	sesuai, sedangkan jika nilai
	Merupakan indeks yang	KMO ≤ 0,5 menunjukan

	digunakan untuk menguji	bahwa analisis faktor tidak
	kecocokan faktor analisis	sesuai (Malhotra, 2010)
	(Malhotra, 2010)	
2.	Barlett's Test of Sphericity	Uji nilai signifikan ≤ 0.05
	Merupakan uji statistic yang	menunjukan bahwa terdapat
	digunakan untuk menguji	hubungan signifikan antara
	hipotesis	variable dengan indikatornya
	(Malhotra, 2010)	(Joseph F. Hair, Black, Babin,
		& Anderson, 2014)
3.	Anti Image Matrics	Mengacu pada Measure of
	Merupakan matriks korelasi	Sampling Adequacy (MSA),
	parsial antar variable yang	dengan kriteria sebagai
	digunakan untuk memprediksi	berikut:
	hubungan antar varabel	• MSA=1, menunjukkan
	(Joseph F. Hair, Black, Babin,	bahwa variable tidak
	& Anderson, 2014)	memiliki kesalahan
		• MSA ≥ 0.50,
		menunjukkan bahwa
		variabel masih dapat
		diprediksi dan dapat
		dianalisis lebih lanjut
		• MSA ≤ 0.50,
		menunjukkan bahwa

		variabel tidak dapat		
		dianalisis dan perlu		
		dilakukan analisis		
		ulang		
		(Joseph F. Hair, Black, Babin,		
		& Anderson, 2014)		
4.	Factor Loading atau	Indicator yang menunjukkan		
	component matrix	Factor loading valid jika nilai		
	Merupakan korelasi suatu	dari factor loading diatas 0.50		
	indicator dengan faktor yang	(Joseph F. Hair, Black, Babin,		
	terbentuk yang bertujuan untuk	& Anderson, 2014)		
	menentukan validitas setiap			
	indicator dalam membangun			
	setiap variable (Joseph F. Hair,			
	Black, Babin, & Anderson,			
	2014).			

3.7.3 Uji Reliabilitas

Reliabilitas mengacu pada sejauh mana sebuah skala pengukuran menghasilkan hasil yang konsisten jika dilakukan pengukuran berulang kali. (Malhotra, 2010). Reliability dilakukan dengan melihat hubungan antara skor yang diperoleh dari skala yang berbeda. Jika menunjukan hasil yang konsisten maka dapat dikatakan reliabel (Malhotra, 2010). Alat ukur yang


digunakan untuk mengukur reliabilitas atau korelasi jawaban adalah Cronbach's alpha dengan nilai minimumnya yaitu ≥ 0.6 .

3.8 Metode Analisis Data Dengan Structural Equationn Model (SEM)

Dalam melakukan pengolahan data, penelitian ini menggunakan teknik Structural Equation Modelling (SEM). Menurut Malhotra (2010), Structural Equation Modelling (SEM) merupakan prosedur estimasi serangkaian hubungan dependant antara sekumpulan konsep atau konstruksi yang direpresentasi oleh beberapa variabel terukur dan dimasukkan ke dalam model terintegrasi. Menurut Joseph F. Hair, Black, Babin, & Anderson (2014), Structural Equation Modelling (SEM) merupakan teknik statistic multivariate yang menjelaskan hubungan beberapa variable. SEM terdiri dari 2 model yaitu measurement model dan structural model. Measurement model menggambarkan bagaimana variabel yang diamati (diukur) mewakili konstruk, sedangkan Structural model menggambarkan hubungan antar konstruk (Malhotra, 2010).

3.8.1 Tahapan Prosedur Structural Equationn Model

Pada gambar 3.3 menunjukan bahwa, terdapat 6 tahapan dalam menggunakan teknik penelitian *Structural Equationn Model* (Joseph F. Hair, Black, Babin, & Anderson, 2014).

Sumber: Joseph F. Hair, Black, Babin, & Anderson (2014)

Gambar 3. 5 Tahapan Structural Equationn Model (SEM)

3.8.2 Uji Kecocokan Keseluruhan Model (Goodness of Fit)

Goodness of fit menunjukkan seberapa baik model penelitian yang ditentukan sesuai dengan data yang diamati atau sampel (Malhotra, 2010). Menurut Joseph F. Hair, Black, Babin, & Anderson (2014), GOF dibagi menjadi tiga bagian yaitu *Absolute fit measure, Incremental fit measure, Parsimonious fit measure*.

- a. Absolute fit measure digunakan untuk mengukur seberapa baik model yang digunakan cocok dengan data pengamatan.
- b. Incremental fit measure digunakan untuk mengevaluasi kecocokan model yang ditentukan sesuai dengan data sampel relatif terhadap beberapa model alternatif yang diperlakukan sebagai model dasar.
- c. Parsimonious fit measure digunakan untuk menilai model yang paling sesuai dengan melihat tingkat kompleksitasnya.

FIT	Cutoff Values For GOF Index						
INDICES	N< 250			N>250			
INDICES	m≤ 12	12 <m<30< th=""><th>m>30</th><th>m≤ 12</th><th>12<m<30< th=""><th>m>30</th></m<30<></th></m<30<>	m>30	m≤ 12	12 <m<30< th=""><th>m>30</th></m<30<>	m>30	
Absolute Fit Indices							
χ2	Insignificant	Significant	Significant	Insignificant	Significant	Significant	
	p-values	p-values	p-values	p-values even	p-values	p-values	
	expected	even with	expected	with good fit	expected	expected	
		good fit					
RMSEA	RMSEA<0.0	RMSEA<	RMSEA<	RMSEA<0.07	RMSEA<	RMSEA<0	
	8	0.08	0.08		0.07	.07	
	CFI≥0.97	CFI≥0.95	CFI≥0.92	CFI≥0.97	CFI≥0.97	CFI≥0.97	
SRMR	Biased	.08 or less	Less than	Biased	08 or less	.08 or less	
	upward, use	(with CFI	.09 (with	upward; use	(with CFI	(with CFI	
	other indices	of .95 or	CFI above	other indices	above .92)	above .92)	
		higher)	.92)				
		Incre	mental Fit Inc	dices			
RNI	May not			CFI \geq 0.95. not	CFI >	CFI >	
	diagnose	CFI ≥ 0.95	CFI > 0.92	used with N >	0.92. not	0.90. not	
	misspecifi			1,000	used with	used with	
	cation well				N > 1,000	N > 1,00	
CFI or TLI	CFI≥0.97	CFI≥0.95	CFI≥0.92	CFI≥0.95	CFI≥0.92	CFI≥0.90	
Parsimonius Fit Indices							
PNFI	0≤NFI≤1, relatively high values represent relatively better fit						

Sumber: Joseph F. Hair, Black, Babin, & Anderson (2014)

Gambar 3. 6 Ukuran Goodness of Fit

3.8.3 Kecocokan Model Pengukuran (Measurement Model Fit)

Measurement model merupakan sebuah metode yang digunakan dalam sebuah penelitian untuk menilai dan menverifikasi validitas dan

reliabilitas setiap indikator dalam sebuah penelitian (Malhotra, 2010).

1. Evaluasi terhadap validitas

Suatu variabel boleh dikatakan valid terhadap suatu konstruk atau variabel latennya jika memiliki Standardized Loading Factor (SLF) \geq 0.50 dan t-value \geq 1.65 (Joseph F. Hair, Black, Babin, & Anderson, 2014).

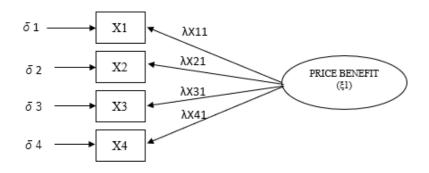
2. Evaluasi terhadap reliabilitas

Reliabilitas merupakan konsistensi suatu pengukuran yang menunjukkan bahwa sebuah indikator mempunyai konsistensi yang tinggi dalam mengukur konstruk latennya (Joseph F. Hair, Black, Babin, & Anderson, 2014). Untuk mengukur reliabilitas dapat menggunakan rumus *construct reliability* dan *variance extracted*, yaitu:

$$CR = \frac{(\Sigma SLF)^2}{(\Sigma SLF)^2 + (\Sigma error)}$$

$$VE = \frac{\Sigma SLF^2}{\Sigma SLF^2 + (\Sigma error)}$$

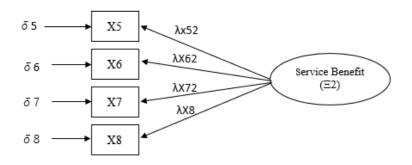
Suatu indikator dapat dikatakan memiliki reliabilitas yang baik jika nilai dari $CR \geq 0.70$ dan $VE \geq 0.50$ (Joseph F. Hair, Black, Babin, & Anderson, 2014)


Pada penelitian ini terdapat 7 *measurement model*, berdasarkan variabel yang akan diteliti:

1. Price Benefit

Pada penelitian ini, peneliti membagi measurement model

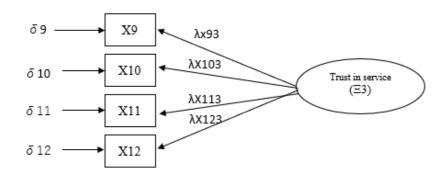
menjadi empat indikator yang merupakan *First Order Confimartory*Factor Analysis (1st CFA) dan mewakili satu variable latent yaitu


Price benefit. Variabel latent ξ1 mewakili Price benefit.

Gambar 3. 7 Measurement Model Variabel Price benefit

2. Service Benefit

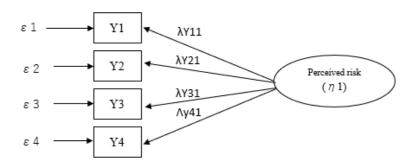
Pada penelitian ini, peneliti membagi *measurement model* menjadi empat indikator yang merupakan *First Order Confimartory Factor Analysis* (1st CFA) dan mewakili satu variable latent yaitu *Service benefit*. Variabel latent ξ2 mewakili *Service benefit*.



Gambar 3. 8 Measurement Model Variabel Service benefit

3. Trust in Service

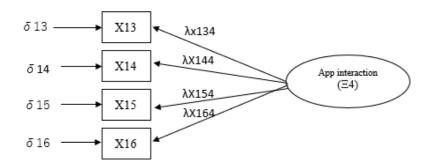
Pada penelitian ini, peneliti membagi *measurement model* menjadi empat indikator yang merupakan *First Order Confimartory Factor Analysis* (1st CFA) dan mewakili satu variable latent yaitu


Trust in Service. Variabel latent ξ3 mewakili Trust in Service

Gambar 3. 9 Measurement Model Variabel Trust in service

4. Perceived risk

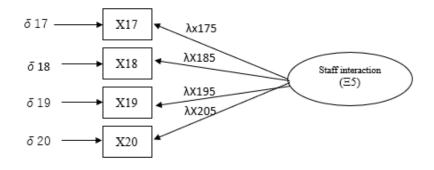
Pada penelitian ini, peneliti membagi *measurement model* menjadi empat indikator yang merupakan *First Order Confimartory Factor Analysis* (1st CFA) dan mewakili satu variable latent yaitu *Perceived risk.* Variabel latent η 1 mewakili *Perceived risk.*



Gambar 3. 10 Measurement Model Variabel Perceived risk

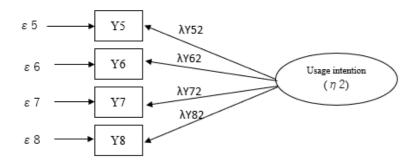
5. App Interaction

Pada penelitian ini, peneliti membagi *measurement model* menjadi empat indikator yang merupakan *First Order Confimartory Factor Analysis* (1st CFA) dan mewakili satu variable latent yaitu


App Interaction. Variabel latent ξ4 mewakili *App Interaction*

Gambar 3. 11 Measurement Model Variabel App interaction

6. Staff Interaction


Pada penelitian ini, peneliti membagi *measurement model* menjadi empat indikator yang merupakan *First Order Confimartory Factor Analysis* (1st CFA) dan mewakili satu variable latent yaitu *Staff Interaction*. Variabel latent ξ5 mewakili *Staff Interaction*.

Gambar 3. 12 Measurement Model Variabel Staff interaction

7. Usage Intention

Pada penelitian ini, peneliti membagi *measurement model* menjadi empat indikator yang merupakan *First Order Confimartory Factor Analysis* (1st CFA) dan mewakili satu variable latent yaitu *Usage Intention*. Variabel latent η 2 mewakili *Usage Intention*.

Gambar 3. 13 Measurement Model Variabel Usage intention

3.8.4 Kecocokan Model Struktural (Structural Model Fit)

Struktural Equation Model digunakan untuk meguji hubungan struktural antar variable dari suatu hipotesis pada model penelitian (Joseph F. Hair, Black, Babin, & Anderson, 2014). Struktural Equation Model sering disebut juga sebagai latent variable relationship dan memiliki persamaan umum sebagai berikut:

$$\eta = \gamma \xi + \zeta$$

$$\eta = \beta \eta + \Gamma \xi + \zeta$$

Struktural model merupakan kumpulan satu atau lebih hubungan dependen yang menghubungkan suatu construct dengan construct yang lain dalam suatu model hipotesis. Model structural mewakili keterkaitan variable antar konstruk. *Overall fit* pada structural model dapat diuji melalui kriteria yang sama dengan measurement model, yaitu:

- 1. Nilai *Chi-Square* (χ 2) untuk *degree of freedom*
- 2. Satu absolute fit index (GFI, RMSEA, SRMR)
- 3. Satu incremental fit index (CFI, TLI)
- 4. Satu goodness of fit index (GFI, CFI, TLI)

5. Satu *badness of fit index* (RMSEA, SRMR)

Setelah melakukan analisis model structural, maka akan dilanjutkan dengan melakukan uji hipotesis. Uji hipotesis merupakan proses menentukan apakah hipotesis merupakan pertanyaan yang masuk akal berdasarkan bukti sampel dan teori probabilitas (Lind, G.Marchal, & Wathen, 2018). Dalam melakukan uji hipotesis terdapat 6 langkah prosedur, yaitu:

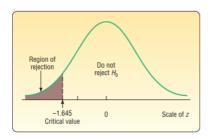
1. State The Null Hypothesis (H0) and Alternative Hypothesis (H1)

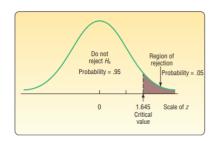
Langkah pertama yang harus dilakukan adalah menentukan H0 (*null hypothesis*) yang merupakan pernyataan mengenai nilai parameter populasi yang dikembangkan untuk tujuan penelitian. *Alternative Hypothesis* (H1) merupakan pernyataan yang diterima jika data sampel menunjukan bukti yang cukup bahwa H0 salah.

2. Select a Level of Significance

Setelah menyusun H0 dan H1, maka dilanjutkan dengan menentukan *Level of Significance* yang merupakan kemungkinan untuk menolak H0 jika terbukti benar. Pada penelitian ini, tingkat *level of significance* yang digunakan adalah $\alpha = 0.05$ atau 5% dari keseluruhan hasil uji penelitian. *Level of Significance* memiliki 2 *type error*, yaitu:

- a) Type I error (α), menolak null hypotheses (H0) jika benar.
- b) Type II error (β) , menerima null hypotheses (H0) jika salah.


3. Select the Test Statistic


Test Statistic merupakan nilai yang ditentukan melalui informasi

sampel yang digunakan untuk menentukan apakah hipotesis nol akan ditolak. Untuk melihat *t-value* diterima atau ditolak dapat dilihat dari hasil *t-value* dengan *critical value*. Jika hasil *t-value* menunjukkan lebih besar dari *critical value* makan H0 akan ditolak, begitu juga sebaliknya.

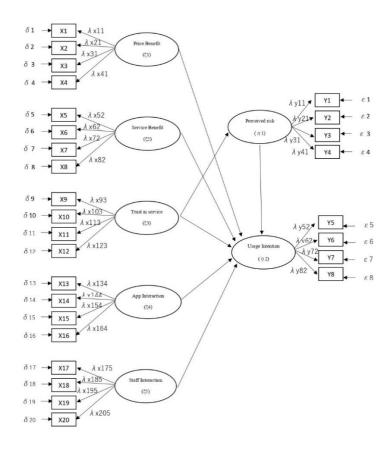
4. Formulate the Decision Rule

Decision rules merupakan pernyataan dari kondisi spesifik di mana hipotesis nol ditolak atau tidak ditolak. Penelitian ini menggunakan *one tailed test* untuk mengetahui pengaruh positif dengan nilai *critical value* ≥ 1.65 dan untuk mengetahui penaruh negatif dengan nilai critical value ≤ -1.65 .

Sumber: (Lind, G.Marchal, & Wathen, 2018)

Gambar 3. 14 One Tailed Test

5. Make a Decision


Pada tahapan ini merupakan pengambilan keputusan, peneliti menghitung nilai uji statistic kemudian membandingkannya dengan *critical value* dan membuat keputusan apakah H0 ditolak atau diterima.

6. *Interpret the result*

Tahapan terakhir dalam menguji hipotesis adalah mengiterpretasikan hasil, pada tahapan ini diminta untuk membuat

kesimpulan dari hasil uji hipotesis yang telah dilakukan.

Pada penelitian ini, analisis struktural model menggunakan keseluruhan model penelitian yang digambarkan pada Gambar dibawah ini:

Gambar 3. 15 Structural Model Path Diagram