CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

Based on the research and test that have been carried out, it can be concluded:

- This virtual reality-based application for colour blind detection has been successfully designed and built using Unity Game Engine alongside Google Cardboard SDK.
- 2. Evaluation of the user experience using Hedonic-Motivation System Adoption Model (HMSAM) modelling was used to evaluate the joy, control, and perceived ease of use of the application with score percentages of 87.87%, 80.83%, and 84.58% for joy, control, and perceived ease of use.

The confusion matrix result also shows that both tests within the game have a 90% accuracy in detecting colour blindness.

5.2 Recommendation

Some recommendation that can be considered for further research are as follows:

- Colour blind detection game can be implemented on various other platforms such as PC and Tablet.
- 2. Implementation of grid snapping for the D15 Farnsworth-Munsell test would make the user experience and control much smoother.

- 3. When using headset motion-sickness sensitive participants might feel nausea and/or dizziness, this can happen especially if the rendering is heavy. A new method for faster rendering such as converting to a lower poly but preserving the texture could be proposed to avoid this problem.
- 4. After conducting the test, it was found that majority of users would skip the how to play option and would prefer a Non-Player Character (NPC) to guide the user throughout the game.
- 5. Since the field of view of a virtual-reality game is limited, it would be nice to add a different camera view option for the D15 Farnsworth test, such as a bird's eye view so players can get a view of the whole arrangement easily.