CHAPTER III

RESEARCH METHODOLOGY

3.1 Research Paradigm

According to Etikan & Bala (2017), educational research can be seen through three different approaches: positivism, interpretivism, and critical theory, which will be explained in the following paragraphs.

Positivism understands that there is a cause-effect relationship between phenomena and can be predicted once it is established. Reality is context-free, and every researcher will reach the same conclusion at a different time and place working on the same phenomenon. In positivism, researchers study the phenomenon independently without affecting and disturb what is being observed. This type of paradigm is mostly adapted for quantitative research.

Interpretivism is the reaction given over the over-dominance of positivism. Interpretivism believes that truth and reality are not discovered but created. The target of interpretivism research is to understand how individuals interpretation about a social phenomenon they interact. The social phenomenon is needed to be understood through the perspective of participants rather than the researcher. Therefore, qualitative research is done over an extended period.

Critical theory is used not to explain or understand society's phenomenon but to change it. The methodology used is through dialogue where it requires interaction between researcher and respondent to engage with the subjects to bring out a change in their perspective on the social system. Thus, in this paradigm, qualitative data is resulted.

This research follows the positivism paradigm because the research is done using a quantitative method, and the researcher does not interfere with the research object. Thus, the research procedures can be seen in Figure 3.1.

Figure 3.1 Research Procedures

3.2 Research Object

The research was conducted on PT. Health Today Indonesia which is one of beverages ingredients manufacturing company in Indonesia. The company focuses on the Horeca market, which is hotels, restaurants, and cafes; thus, the market segmentation of PT. Health Today Indonesia is a B2B customer. The target of the respondents will be customers of PT. Health Today Indonesia and research were conducted by distributing questionnaires using Google Form from July 13^{th,} 2021, to August 5^{th,} 2021.

3.3 Population and Sample

According to Taherdoost (2016), researchers might find difficulties collecting research data from all cases; therefore, the sample needs to be taken. The population is defined as the whole set of cases where the sample is taken. Time and source limitation hinders the researcher from analyzing the entire population; thus, a sampling technique was done to determine the number of cases brought.

A sample is an individual from a larger population. It is specifically selected through the sampling process to represent the whole population. The sample size is affected by the population size and the variation of variables used in the research. The minimum sample size should safeguard that the output of the statistical method; for instance, PLS-SEM has adequate statistical power. Less sample size may not significantly affect the population, and the researcher may commit a Type II error (Fitri et al., 2015).

According to Fitri et al. (2015), there are two sampling methods: nonprobability sampling and probability sampling. Non-probability sampling is the procedure that does not bid a basis for any opinion that some elements will have a chance to present in the sample. Probability sampling, also known as random sampling, enables every single item to have an equal opportunity of presence in the sample. Types of sampling methods can be seen in Figure 3.2.

taken from the population based on availability, researcher's convenience, or selfselection. The advantages and disadvantages of availability sampling techniques can be seen in Table 3.1.

Table 3.1 Advantage	s and Disady	vantages of Availability Sampling		
Advantages		Disadvantages		
Simplest procedure		Less reliable		
Fewer resources (time, fund, personnel) needed Over representing the population element th				
		is accessible, articulate, and visible		
Less effort needed	Less effort needed Underrepresenting the population elemen			
		is not accessible, uncooperative, and hidden		
Less sampling skills needed		Underestimate the variability of the population		
Source: Daniel (2012)				

This research has three arrows pointing to repurchase intention, which is the dependent variable. According to Hair et al. (2014), for a 5% significance level and the value of R^2 at least 0.25, the minimum sample size needed will be 37 respondents. The guidance in determining the minimum sample size can be seen in Figure 3.3.

Maximum Number of Arrows Pointing at a Construct (Number of Independent Variables)	Significance Level											
		10	0%			5	%			1	%	
	Minimum R ²		Minimum R ²			Minimum R ²						
	0.10	0.25	0.50	0.75	0.10	0.25	0.50	0.75	0.10	0.25	0,50	0.75
2	72	26	11	7	90	33	14	8	130	47	19	10
3	83	30	13	8	103	37	16	9	145	53	22	12
4	92	34	15	9	113	41	18	11	158	58	24	14
5	99	37	17	10	122	45	20	12	169	62	26	15
6	106	40	18	12	130	48	21	13	179	66	28	16
7	112	42	20	13	137	51	23	14	188	69	30	18
8	118	45	21	14	144	54	24	15	196	73	32	19
9	124	47	22	15	150	56	26	16	204	76	34	20
10	129	49	24	16	156	59	27	18	212	79	35	21

Figure 3.3 Guidelines in Minimum Sample Size Determination Source: (Hair et al., 2014)

The population of this research will be all B2B customers from all industries, and the sample will be the customer of PT. Health Today Indonesia.

3.4 Variable Operationalization

Variables are involved during research. There are various types of variables, and researchers need to understand each variable's difference and the usage of specific variables on a framework. Variable operationalization is crucial because it helps the researcher define each variable as some variables may not easily measure and strengthen the hypothesis (Tariq, 2015).

According to Hair et al. (2014), there are two measurement models: exogenous latent variable and endogenous latent variable. Exogenous latent variable means the constructs that explaining other constructs. On the other hand, constructs that are being described are called endogenous latent variables. Table 3.2 shows the variable operationalization for this research.

		Table 3.2 Variable Operationalization				
No	Variable	Definition	Indicator	Code	Scale	
1	Customer	Customer	Sensory	CX1	Interval scale:	
	experience	experience is the	Emotional	CX2	(1): strongly	
		accumulation of	Behavioral	CX3	disagree	
		customer perception	Intellectual	CX4	(2): disagree	
		created during	Relational	CX5	(3): neutral	
		learning, acquiring,			(4): agree	
		using, maintaining,			(5): strongly agree	
		and disposing of a				
		product or service				
		directly or indirectly				
		(Jain et al., 2017).				
2	Customer	Loyalty means	Continual use	CL1	Interval scale:	
	Loyalty	regular purchasing	Product	CL2	(1): strongly	
		certain products and	development		disagree	
		services,	Price concern	CL3	(2): disagree	
		recommending to	Best product	CL4	(3): neutral	
		others, and being			(4): agree	
		immune to			(5): strongly agree	
		promotion from				
		similar and brands				
		from a competitor				
		(Huang et al., 2019).		aat		
3	Customer	Customer	Product	CSI	Interval scale:	
	Satisfaction	satisfaction is when	quality	000	(1): strongly	
		customer demand	Service	CS2	disagree	
		and goal have been	quality	002	(2): disagree	
		completed with a	workshop	C83	(3): neutral	
		nign-quality product	Tacilities	CC4	(4): agree (5) : at the plane (5)	
		or service. Customer	Sales PIC	C54	(3): strongly agree	
		A A				
			24			

No	Variable	Definition Indicator Code		Code	Scale
		satisfaction can be	Match	CS5	
		seen after the usage	expectation		
		of the product	Right decision	CS6	
	(Harahap, 2018)				
4	Repurchase	Repurchase	Satisfaction	RI1	Interval scale:
	Intention	intention is defined	Future order	RI2	(1): strongly
		as an individual's	Product	RI3	disagree
		judgment in	custom		(2): disagree
		obtaining a product	Recommend	RI4	(3): neutral
		or service again			(4): agree
	from the first time				(5): strongly agree
		(Anh et al., 2020).			

3.5 Data Collecting Technique

The primary data is collected by distributing questionnaires using Google Form. An Interval scale is applied to the questionnaire to evaluate whether the respondents agree or disagree with the statements. Five points scales are used which are: (1) strongly disagree; (2) disagree; (3) neutral; (4) agree; and (5) strongly agree. The value of interval scales can be evaluated using mathematical computation, including mean and standard deviation (Hair et al., 2014). Secondary data is collected through an interview with the sales manager of PT. Health Today Indonesia.

From the minimum sample size of 37, a pre-test will be conducted with 30 respondents to ensure the validity and reliability of the questions. Next, the questionnaire will be given to the remaining respondents for the main test.

3.6 Data Analysis Technique

3.6.1 Descriptive Analysis

Descriptive analysis is the first crucial step when conducting research and should be done prior calculating inferential statistical comparison. It is a part of good research practice and done to reduce the likelihood of presenting misleading results. The descriptive analysis result shows extensive data collection in a simple and organized manner, provides a foundation for statistical tests, describes the relationship between variables, and summarizes it (Kaur et al., 2018).

Investigating the Effect of Customer Experience On Repurchase Intention with Customer Loyalty, and Satisfaction as Mediating Variable in PT. Health Today Indonesia, Claudia Severesia, Universitas Multimedia Nusantara

25

According to Mishra et al. (2019), three major types of descriptive statistics will be explained further in Table 3.3.

	Table 3.3 Types of Descriptive Analysis					
Types of Descriptive		Expla	nation	Data		
Analysis						
Measures o	f Freq	uency statist	ic is as simple as	- Frequency		
Frequency	cour	iting the app	pearance number	- Percent		
	of e	ach variable	e. It is essential			
	since	e it deals wi	ith the frequency			
	and	percentage.				
Measures o	f Cent	tral tenden	cy means the	- Mean (average)		
Central	mea	sures of the	central location	- Median (middle value when data sorted		
Tendency o	r used	to find out t	the representative	from smallest to most significant or		
Measures o	f valu	e of a set of	data. To compare	vice versa)		
the First Orde	r two	or more gro	oups of data, the	- Mode (data that has the most		
	expe	cted values of	of the distribution	frequency)		
	are c	ompared.				
Measures o	f This	measure sho	ows how the data	- Variance (square of standard deviation)		
Dispersion o	r is sp	read out in a	data set. It gives	- Standard Deviation (how data spread		
Variation	the	idea of	homogeneity or	out from the mean value)		
	hete	rogeneity of	the data.	- The standard error (approximate		
				difference between sample mean and		
				population mean)		
				- Quartile (three-point that divide the		
				data into four equal groups)		
				- Interquartile Range (measures of		
				variability, the difference between third		
				and first quartile)		
				- Percentile Range (99 points that divide		
data into 100 identical groups)						
				- Coefficient of Variation (ratio of		
				standard deviation to the average value)		
			Source: Mishra	a et al., (2019)		

3.6.2 Pre-Test Data Analysis

3.6.2.1 Validity Test

According to Taherdoost (2016b), a validity test means how well the data collected covers the area of the research. Types of validity, including criterion, face, content, and construct validity, can be seen in Figure 3.4.

Figure 3.4 Subtypes of Validity Test

Criterion validity or concrete validity measures one measure's ability to predict the outcome for another measure. This kind of test is beneficial to predict the performance or behavior in other time situations (past, present, future). There are three types of criterion validity which are predictive validity, concurrent validity, and postdictive validity. Predictive validity is referred to when the test can predict what it is supposed to predict accurately. A long-term validity study is needed to establish predictive validity directly. Concurrent validity is defined as the evidence collected from the research to defend the use of a test in predicting another outcome. Postdictive validity has the criterion in the past (Taherdoost, 2016b).

Face validity is the degree where measures appear to be connected to a specific construct. It evaluates the questionnaire regarding appearance, style and formatting, feasibility, readability, and language. It is a subjective test on the items in the instrument whether the content is relevant, reasonable, obvious, and clear. A dichotomous scale, which is a "Yes" or "No" question, is used (Taherdoost, 2016b).

Content validity measures how an instrument echoes the content universe and what instrument needs to be generalized. Additionally, it involves evaluating the new instrument to ensure that items are essential and remove unnecessary items. Experts conduct the test to facilitate the validation; however, this limitation might interfere because the experts are staying in other countries (Taherdoost, 2016b).

Construct validity is done when there is a causal relationship between the constructs. Two components of construct validity are discriminant variability, which shows no relationship between constructs, and convergent validity, which states that measures have a relationship (Taherdoost, 2016b).

The Pearson correlation method is commonly used for validity tests. The value of Pearson correlation lies within the range of -1 (total negative correlation) to 1 (total positive correlation), where 0 means no correlation. For instance, a correlation of two variables (variable X and variable Y) was calculated at 0.7. It means both variables show a significant and positive relationship; therefore, if variable X increase as well as variable Y. On the other hand, a negative correlation shows the opposite relationship, which means that when variable X increases, variable Y will decrease (Nettleton, 2014). Obilor & Amadi (2018) added correlation coefficient is considered very low (x < 0.4), moderate (0.4 < x < 0.6), and high (x > 0.6).

According to Fisla (2019), the validity test can also be determined using the Confirmatory Factor Analysis (CFA) model. This factor is used to test the multidimensional form of a theoretical construct, and CFA will determine whether the indicators are valid to measure a latent construct. The validity test of the CFA model will observe the convergent validity or loading factor of each indicator. The recommended loading factor value is higher than 0.5.

3.6.2.2 Reliability Test

According to Taherdoost (2016b), the reliability test is related to repeatability, which means the test will be reliable if the repeat measurements result in the same results. A reliability test is crucial for research because it is attributed to the consistency of the instrument. Cronbach Alpha coefficient is one of the common methods used to analyze reliability. Four levels of reliability which are low reliability (x < 0.50); moderate reliability (0.5 < x < 0.70); high reliability (0.70 < x < 0.90); and excellent reliability (x > 0.90). However, it is suggested that reliability should be at least 0.60.

3.6.3 Main Test Data Analysis

According to Kante et al. (2018), Structural Equation Modelling (SEM) is a statistical technique used to analyze the causal relationship based on statistical data and qualitative causal assumptions. By utilizing SEM, the researcher can answer a set of interrelated research problems in single, systematic, and comprehensive analysis by simultaneously analyzing the connection and relationship between multiple dependent and independent constructs.

According to Utomo & Budiastuti (2019), SEM analysis is a second generation multivariate analysis that allows some assessments including multiple independent and dependent construct, multi-step paths, and mediating and moderating effect. SEM can also observe a high complexity latent variables and examine a non-normally distributed data.

There are two types of SEM: Partial Least Squares (PLS) and Covariance Based (CB). CB-SEM requires confirmatory research and sound theory-based, while PLS-SEM doesn't. One of the advantages of PLS is PLS can be used for small sample size research, and it is recommended in marketing-based research Kante et al., (2018).

The structural equation model consists of two models: the inner model and the outer model. The inner structural model discusses the relationship between latent variables, while the outer model measures latent variables Kante et al., (2018). The illustration of the inner model and outer model can be seen in Figure 3.5.

UNIVERSITAS MULTIMEDIA NUSANTARA

Figure 3.5 Inner Model vs. Outer Model in SEM Diagram Source: Kante et al., (2018)

3.6.3.1 Measurement Model Analysis (Outer Model Analysis)

According to Kante et al. (2018), measurement model analysis considers the nature of the relationship between construct and measures. Formative and reflective models are two types of measurement models accepted for specifying the relationship between latent construct and observed causally related variables.

The reflective model is identified by the direction of the arrow, which is from the construct to the indicators. It is assessed on their loadings which shows a simple correlation between the indicator and the construct. In contrast, indicators are not reflecting the underlying construct in formative measures, but they are combined without any assumption regarding their intercorrelation. The causality direction moves from the indicators to the construct Kante et al., (2018).

Current research adapts the reflective measurement model, and the summary of assessment on the reflective model can be seen in Table 3.4.

Table 3.4 Summary of Assessment on Measurement Model							
Type of Assessment	Criterion	Description					
		The sum of an LV's factor loadings					
Internal consistency reliability	Composite Reliability > 0.6	is measured relative to the sum of the factor loadings and error variance. The value lies between 0 (completely unreliable) and 1					
NU	SAN ⁻	(perfectly reliable).					

Investigating the Effect of Customer Experience On Repurchase Intention with Customer Loyalty, and Satisfaction as Mediating Variable in PT. Health Today Indonesia, Claudia Severesia, Universitas Multimedia Nusantara

	Cronbach's Alpha > 0.6	Measurement of the degree to which MVs load simultaneously when LV increases.		
Convergent validity	Average Variance Extracted (AVE value) > 0.5	Measurement on the degree to which individual items reflecting a construct converge compared to items measuring different constructs.		
	Cross-loadings	The loadings of each indicator on a construct should be higher than the cross-loading on another construct.		
Discriminant validity	Fornell-Larcker	An LV needs to share more variance with its assigned indicators. The AVE of each LV should be higher than the LV's highest squared correlation with other LV		
	Heterotrait – Menotrait Ration (HTMT) < 1	The ratio between the average correlation indicator across construct is divided by the average correlation of indicators within the same construct.		
Source: Kante et al., (2018)				

3.6.3.2 Structural Model Analysis (Inner Model Analysis)

After the outer model analysis was done, the next step was to evaluate the inner model to evaluate the hypothesized relationship. Some assessments for a structural model are summarised in Table 3.5, and the proposed research framework plotted using SmartPLS v.3.3.3 can be seen in Figure 3.6.

Table 3.5	Table 3.5 Summary of Assessment on Structural Model					
Type of Assessment	Criterion	Description				
	Coefficient of Determination	R ² measures the model's				
	$(R^2) > 0.100$	predictive power. It is				
		calculated as the squared				
		correlation between a specific				
		endogenous construct's actual				
		and predictive value				
	Path Coefficient	Path coefficient measures the				
	- Path coefficient standardized	hypothesized relationship				
Model Validity	value between -1 to $+1$.	among the constructs.				
woder validity	- Critical t-value for two-tailed	P-value asses the significance				
	tests:	level on the probability of				
	a. 1.65 (significance level	obtaining t value at least as				
<u> </u>	10%)	extreme as the one observed				
	b. 1.96 (significance level	actually. It can be said to be				
	5%)	the probability of error in				
	c. 2.58 (significance level	rejecting the true null				
	1%)	hypothesis.				
	- P value					
	31					

Investigating the Effect of Customer Experience On Repurchase Intention with Customer Loyalty, and Satisfaction as Mediating Variable in PT. Health Today Indonesia, Claudia Severesia, Universitas Multimedia Nusantara

3.6.3.3 Mediation Effect Analysis

The mediation effect occurs when a third construct intervenes between two other related constructs. The direct effect shows the relationship of two constructs with a single arrow. On the other hand, the indirect effect involves a relationship with at least one intervening construct. The indirect effect is a sequence of two or

Investigating the Effect of Customer Experience On Repurchase Intention with Customer Loyalty, and Satisfaction as Mediating Variable in PT. Health Today Indonesia, Claudia Severesia, Universitas Multimedia Nusantara

32

more direct effects represented with multiple arrows and characterized as mediating effects. The function of mediation is to explain the existence and relationship between an exogenous and endogenous construct. The mediating effect involves a direct and indirect relationship between the constructs. A relationship between two variables linked with a single arrow is defined as direct effects. On the other hand, the indirect effect occurs when one other variable intervenes or is involved (Hair et al., 2014).

According to Hair et al. (2014), three types of mediation are complementary mediation, competitive mediation, and in-direct only mediation. Complementary mediation has both indirect and direct effect are significant and pointing the same direction. Competitive mediation has both indirect and direct effect are significant but pointing the opposite direction. While indirect-only mediation shows, only the indirect effect is significant. To decide whether the model has full, partial, or no mediation, the analysis can be done through the decision tree in Figure 3.7.

3.7 Pre-Test Data Analysis Result

There are 30 data collected for the pre-test, and the data are analyzed using

SPSS Statistics Version 22.

3.7.1 Validity Test

The validity test is done to know whether the questions are straightforward and the respondents understand the questions given. The valid result shows that the questionnaire is valid as a measurement tool (Fisla, 2019). Pearson correlation value and Confirmatory Factor Analysis (CFA) are used and based on the theory mentioned previously by Fisla (2019), this study will use both 0.5 as the standard for validity test. The result of the questionnaire validity test can be seen in Table 3.6.

	Table 3.6 Pre-test Result on Questionnaire Validity						
No	Variable	Pearson Correlation	Loading Factor	Summary			
1	CX1	0.803	0.845	Valid			
	CX2	0.708	0.761	Valid			
	CX3	0.881	0.895	Valid			
	CX4	0.689	0.698	Valid			
	CX5	0.797	0.708	Valid			
	CL1	0.674	0.672	Valid			
2	CL2	0.847	0.863	Valid			
2	CL3	0.901	0.884	Valid			
	CL4	0.926	0.932	Valid			
	CS1	0.757	0.777	Valid			
	CS2	0.725	0.745	Valid			
2	CS3	0.718	0.648	Valid			
3	CS4	0.652	0.666	Valid			
	CS5	0.878	0.903	Valid			
	CS6	0.878	0.879	Valid			
	RI1	0.947	0.954	Valid			
4	RI2	0.914	0.929	Valid			
4	RI3	0.896	0.872	Valid			
	RI4	0.904	0.910	Valid			

From Table 3.6, both Pearson correlation and loading factor value show a value bigger than 0.5. It means the questionnaire is valid and can be used as a measurement tool for current research.

3.7.2 Reliability Test

Cronbach's Alpha method is used to determine the reliability of a measurement tool. For this research, moderate reliability is enough to determine the consistency of the questionnaire; therefore, the Cronbach's Alpha coefficient bigger than 0.5 is preferred. The result of questionnaire reliability can be seen in Table 3.7.

According to the data in Table 3.7, the Cronbach's Alpha coefficient of all variables is bigger than 0.5. It means that the test is reliable.

Table 3.7 Pre-test Result on Questionnaire Reliability					
No	Variable	Cronbach's Alpha	Summary		
1	CX	0.853	Reliable		
2	CV	0.848	Reliable		
3	CL	0.717	Reliable		
4	CS	0.799	Reliable		
5	RI		Reliable		

In conclusion, the pre-test validity and reliability results are shown in Tables 3.6, and 3.7 which show that the questionnaire is valid and reliable to be used as a measurement tool for this research. Therefore, the questionnaire can continue to be distributed to the remaining respondent for the main test.

