Packet Loss Prevention Systems
for Failover Incident on
Network Infrastructure

by Samuel Samuel

Submission date: 03-Mar-2023 02:10PM (UTC+0700)

Submission ID: 2027800278

File name: Prosiding_Packet_Loss_Prevention_Systems_1.pdf (286.09K)
Word count: 3355

Character count: 16855

Packet Loss Prevention Systems
for Failover Incident on Network Infrastructure

Richard Dharmawan

Department of Computer Engineering
Universitas Multimedia Nusantara
Tangerang, Indonesia

richard.dharmawan(@student.umn.ac.id

1

Ab_\-!mc!—!here are many external factors that can cause a
link failure between network appliances. Thermal,
electrical/magnetic field or any harmful physical object is a
common example. On traditional layer 2 network appliances,
the failover mechanism decided internally by Spanning Tree
Protocol (STP) calculation. Unfortunately, in every occurrence
of failover, the communication will suffer from packet losses.
When detecting a link failure, layer 2 appliances will calculate
STP to decide which backup link to be selected and in that time
period all of the packets suppose to be forwarded in the link
will lose. On the other hand, OpenFlow capable network
appliances (Software Defined Networks) can be orchestrated
with a sensor to detect earlier any possible harmful external
factors before a link failure happen. This initiation research
only focuses to overcome an extreme thermal condition that
can cause a link failure. OpenFlow Switch connected to a
thermal sensor with a Raspberry Pi as a bridge. When the
sensor detects temperature beyond its limit, it will tell the
OpenFlow Switch to use a backup link immediately before the
link failure occurs. With this mechanism packet loss can be
prevented.

Keywords—failover, OpenFlow , packet loss, STP, thermal

censor

I. INTRODUCTION

In a redundant local network system (a system with many
path/link between endpoints), switches use STP to ensure the
logical topology has no loop which can trigger packet
flooding by disabling and enabling certain ports based on
protocol parameters. A system with an active STP will
automatically set the logical network topology to a tree-like
structure. Currently, most of the switches around the world
use Rapid STP (RSTP) to enable faster network convergence
and topology change time. If there is a downed link, the
system will use another link to transfer packets, also called as
failover. In order to do failover, the switches need to detect
the failing link and then do the failover. The downside of this
method is there is a time when this link cannot be used
anymore to transfer packets, but the switches have not
detected this failure and still sending a packet through that
port, therefore will cause packets to disappear on its way to
the other switch port. Temperature increase can be one of
many causes to link failure. Upon writing this paper, we
detect that when an ethernet cable (Cat5) has reached a high
enough temperature, it will cause the link between two
devices to be down, then use another link to communicate.
Some packet loss will arise if there are any data transfer
ongoing (the system is using RSTP).

OO0 XXX XS XX.00 ©20XX TEEE

San@l, M.T.L

Department of Computer Engineering
Universitas Multimedia Nusantara
Tangerang, Indonesia

samuel.hutagalung(@umn.ac.id

In modern networking, SDN has the ability to manage
network-based on many conditions that can be done
programmatically. This concept gives a separation of
network devices into a data plane (network router, switch)
that handle packet forwarding in a simplified manner and a
control plane (controller) which handle the decision making
[1]. This concept of SDN can help developers to manage IP
networks. Tt can also reduce jitter and provide consistent a
UDP packet receive order achieved by programming a
controller [2]. On the other hand, with ToT, we can connect
any electronic devices which can produce unlimited
implementation combinations starting from house
automation, smart resource management, to environmental
condition monitoring and control [3].

To provide failover improvements by traditional
networks, this paper consists of packet loss prevention
system design using SDN and in addition, a comparison
number of packet loss between this system and traditional
network system. In this system, there will be a collaboration
of programmatically managed network by SDN and sensor
data gathering by IoT which results in faster and dynamic
failover based on environmental conditions.

II. PACKET LOSS PREVENTION SYSTEM

Not like traditional network failover concept, this system
can detect if there are any dangerous conditions (in this case
fire) around available sensors and do failover immediately
after the sensor detects them. This system is to predict
incoming dangerous environmental conditions and do

failover based on that information. By predicting and doing
failover before link failure occurs, packet loss caused by link
failure detection can be eliminated. To speed up the
temperature rise, we burn a spot of the cable near a
temperature sensor.

CatS UTP
—— Jumper cable
----- Bridge conn

al w H
5
o

Fig. 1.

SDN topology

To be properly functioning, the system consists of three
main components, which is the topology itself as shown in
Fig. 1, the client application running in RPi, and server
application running in VM (also known as OFC, OpenFlow

Controller, controller, or server). The client application is a
Python program with a 1-Wire library and the server
application is also a Python program running Ryu
Framework [4] for OpenFlow communication. In addition,
we also made a corresponding traditional topology referring
to SDN topology. This topology only takes the bottom part
of SDN topology without OFS in it.

A. SDN Topology

This topology runs on the data-link layer of OS1 Model
with two PC (PC A and PC B), a VM as an OpenFlow
Controller (OFC) running inside PC A, two routers (R1 and
R2, both are MikroTik hAP Lite [5]) configured as an L2
switch, an Zodiac FX [6] (OFS), a Raspberry Pi 3B [7]
(RPi), and three different sensors (temperature, passive
infrared, vibration) placed near the main route cable.
Between R1 and OFS, the upper cable is used for main data
transfer and the lower cable is used for OpenFlow Protocol
(OFP) communication. Notice that there is one port with a
10.10.104 IP address on OFS e4 to specifically
communicate OFP with OFC. The connection between OFS
and R2 will be used to simulate a redundant link as this
connection can become the main route or backup/failover
route. The upper cable is used as the main route for data
transfer and the lower cable as a failover route. The failover
route will be used only if the main route is not currently
available. This paper will focus on using DS18B20
temperature sensor which can provide temperature value
every 0.7 seconds and has a maximum temperature reading
of 125 degrees Celcius [8, p. 20], but as we test the
component, it can endure up to 128 degrees Celcius before
the output went totally wrong. The other sensor can be
observed as a reference that we can read multiple sensor data
at one time and can be modified as the user wish.

B. Client Application

The main job of client application inside an RPi as seen
in Fig. 2, is to collect temperature data from sensor, filter,
and send it encrypted to the server application. There is also
some important variable in this application to indicate
whether the system is in danger or safe state. This variable
will be used to determine when to send sensor data in
addition to dangerous sensor data. The server application will
further process these data and make a decision whether to do
or not to do failover. First, the application will read all sensor
data every second (0.7 seconds from temperature sensor
minimum frequency + 0.3 seconds to make it round). This
interval is intended to be associated with IPERF which
provide output per second. The 0.3-second delay can be
modified later. When all sensor data has been read and
converted to bitmap, there is a filtering phase where only a
data meeting the certain requirement will be sent to the
server. The requirements are one of the following;

e The bitmap contains at least one of 1-bit wvalue,
indicating if there are any dangerous activity near the
cable, in this case, fire (temperature rise). For the
temperature part, the bit will have a I value if
temperature goes above 55 degree Celcius, five-
degree lower than a typical maximum operating
temperature [9, p. 5], [10] for safety reasons.

e The system is currently in danger state and has
proceeded through a safe state for five seconds. In

this application, safe means that the bitmap doesn’t
contain any 7 bit value in it.

e The system is currently in a safe state for five
seconds. If the system is always on safe state, then it
is guaranteed that the application will send sensor
data every five seconds.

Every data to be sent to the server will be encrypted first.
This application use RSA (can also be modified later) while
communicating with server and will always send sensor data
on an encrypted form via socket connection.

initialize sensor pins

read sensor
data

v v

initialize danger map sensor datato

flags binary

v

establish socket
commection with
SerVer

encrypl sensor data

end

Fig. 2. Flowchart of client application

C. Server Application

The server application is responsible for OFS behavior
management and shown in Fig. 3. This includes installing
default and basic flow, responding to packets sent from OFS,
and choose which route to use by the OFS necessarily. This
application also manages a list of the connected client(s) and
manage incoming client request.

K" (public key) and K (private key) is essential when it
comes to sensor data communication. When there is a client
requesting a socket connection, the application will add it to
a local list of the connected client. After a connection is
established, client requests for K* and the server replied with
its K'. Sensor data transfer can be done afterward. At this
time, server is ready to receive more connection from
different client.

The first thing to do when this application starts is
initialize its socket, generate the K' and K, then listen for
these events;

e Receive sensor data. The application receives
encrypted sensor data from the client. This will
trigger failover logic.

e Packet in from OFS. The OFS does not know where
to send the corresponding packet, thus sent to the
controller. This is meant to make OFS as a functional
learning L2 switch.

e OFS port status changes. Either one of OFS ports is
going up or down.

The application will respond to received sensor data by
decrypting it first, then determine whether to do failover or
not. If the data is considered dangerous (contains a 1-bit
value on it) the application will send a failover instruction in
the form of flow mod to OFS, commanding it to use failover
route as a communication route. Otherwise, if the data is
considered safe the application will send a flow mod to OFS,
commanding it to use the main route as a communication
route. When the application receives a packet in from OFS, it
will decapsulate the packet, collect sender and receiver
information from it, save the information locally, and send a
“basic” flow fBbd to OFS along with packet out so it can
forward next packet with the same source and destination
directly without sending the packet to controller first as
packet in. This is almost the same as filling MAC address
table in a traditional network system. To respond to OFS port
status change, the application will read incoming OFP port
status packet and access the information regarding which
port status changed. If the OFS has its port-2 down (port
used as the main route), then the application will give the
same failover instruction as described above and vice versa
with port-3 down. Note that before changing route, the
application will always check the current status of OFS port.
For example, if'a failover action is about to be executed, then
the application will check port-3 of the OFS. If it is currently
down then the failover action will not be executed. Similar
logic also applies when it comes to doing multiple
subsequent same actions. For example, if the system is
currently in failover state and receives an action to do
failover (which will result to the same state), then the
application will not do the second failover action nor sending
any flow Modo to OFS. These logics are implemented in
order to save processing power and network bandwidth.

O O C

establish socket listen for packetin,
connection with switch featuwes, port
client state change

! ! !

receive client respond to those
reguest event

i

reply dient request

®

Fig. 3. Flowchart of server application

initialize socket

penerate K
penerate K

‘ end

III. IMPROVEMENT OVER TRADITONAL NETWORK

To test both traditional and SDN topology, we use IPERF
[11] on both PCs. PC A is running as an IPERF client and
PC B as an IPERF server. Every single trial is done by
sending 150,000 UDP packets with the size of 8KiB per
packet over 100Mbps bandwidth configuration and
completed in 105.3 seconds. All packets are sent from

IPERF client to server. All output attached in this paper is
taken from IPERF server. For each topology, there are two
scenario to be done. The first one is a benchmark, intended to
provide an initial number of packet loss. The second is a link
burning scenario where we start to burn a point of ethernet
cable near the temperature sensor from the tenth seconds
until the end of the trial.

A. Svstem State

Under normal condition, the system uses the main route
as a communication route. In this state, all packets sent from
IPERF client will be forwarded through OFS e2. When using
the failover route, all packets sent from IPERF client will be
forwarded through OFS e3. The system will enter failover
state immediately after it detects any dangerous
environmental condition.

B. Iperf Monitoring

During IPERF data transfer, the tool provides detailed
information of total packet transferred, bandwidth, jitter, and
anumber of a lost packet every second. The average of a lost
packet per second is taken and displayed as a time series in
Fig 4.

Trials Average

mark Traditional - Link Buming
SDN ark SDN - Link Burning

600
2
2
4 300
=
= 200
= 100

time (s)

Fig. 4. Avemge iperf output on every trials

In traditional topology benchmark, the graph (red line) is
seemed to be flat all the time. This shows us that in normal
condition, the traditional topology system tends to rise a
minimal amount of packet loss. This is the best condition that
can be provided by traditional topology. When it comes to
link burning, there is some spike in the graph (yellow line).
These spikes happen when the main link between R1 and R2
fails and system begin to change switch connection to
failover link. The time when a link failure occurs in our
experiment can vary depending on how much fire burns the
cable at the time.

SDN - Link Burning (Temperature Monitor)

v " T ——Triald ——Trials ——TrialA)

Fig. 5. Temperature monitor of SDN topology link buming scenaro

Notice that in both SDN topology graph (blue and purple
line), there are a small number (an average of two percent
per second) of constant packet loss all the time indicated by a
slightly wavy graph compared to a flat one in traditional
topology. This is due to the OFS capability of forwarding
packet with the addition of communicating OpenFlow with
OFC. This number though, will not actually cause any
significant impact on real network performance. As seen in
the graph, link burning scenario of SDN topology has a
relatively same pattern as in the benchmark scenario of the
same topology. Fig. 5 shows us that the system should do
failover approximately at the eighteenth seconds, but as we
can see in Fig. 4 there is no noticeable rise of packet loss at
those specific ticks. Thus, we can assume that temperature
rise does not affect system performance at all.

C. Packet Loss Reduction

Table 1 shows the number of packet loss caused by
failover (link burning). Numbers that are included in
calculations are a number of packet loss when the system is
doing failover based from Fig. 4, e.g. the spiking part of
traditional link burning graph. In every trial we took one
second before and after the failover is executed to get the
exact number before the system goes stable again after the
failover. In the table, the packet loss percentage is calculated
by dividing the total of packet loss in each trial by 4,348 and
convert it to percent form (multiply by 100%). The value
4,348 is an average number of packet received by IPERF
server for three seconds. While mean is an average value of
packet loss percentage in each topology.

TABLE L PACKET Loss CAUSED BY FAILOVER
Topo. Traditional SDN
Trial 1 2 3 4 5 1 2 3 4 5

1* second |3 3 0 0 0 44 13 4 42 I3

2" second [1218 [369 [2650 [1123 1654 [2 |43 [45 |44 |44

3" second [0 o o o 0 |92 |42 |43 |3 41

% Loss |28.08 [8.560 |60.95]|25.83|38.04|2.00]2.00]2.09 |2.02)2.02

Mean 32.29070837 2028518859

Packet loss reduction from traditional topology to SDN
topology is shown in Table 2. All values are displayed in
percent form. For the benchmark scenario, the values are
calculated by dividing the total of the lost packet with a total
number of actual packet received by IPERF server which is
153,599 and nwltiplies it by 100%. For link burning
scenario, the number is taken from average in the previous
table. From these data, we can calculate the increase of
packet loss when it comes to link burning by subtracting a
number of packet loss on link burning scenario with its initial
condition (benchmark). Finally, we can calculate the number
of packet loss reduction that can be achieved by SDN
topology over traditional topology from the difference of
packet loss increase in both topology.

As we can sce from the table, the number of packet loss
in traditional topology caused by the failover in traditional
topology succeeded in reaching 32.29%. This is a significant
increase in value and can atfect network performance. On the
other hand, SDN topology results in 2.02% packet loss,
which is almost the same as a benchmark value. This value
strengthens our assumptions that packet loss caused by
failover in case of temperature rise does not give any
significant effect on our system. Thus, we got a 32.24%
packet loss reduction, which means almost all packet loss
produced by traditional topology system can be eliminated.

TABLE IL PACKET LOSS REDUCTION
. o Loss Increase | Loss Reduction
Scenario Loss (%) (%) (%)
Trad, | 0.010416734 | -
Benchmark =g\ 087383381 | -
Link Trad, | 32.29070837 | 32.28029164

3224

Burning SDN

2.023&8859 -0.058864522

IV. CONCLUSION

In this paper, we introduce a new concept of executing
failover by approaching both technologies owned by SDN
and IoT. In this concept, failover action not only can be
exccuted faster but also provide a lossless packet
transmission when it comes to dangerous environmental
conditions. The observed data show us that any packet loss
caused by RSTP failover in traditional network system can
be eliminated in SDN system, thus improving system
reliability and performance on the specified condition.

REFERENCES

[11 K.S. Sahoo, B. Sahoo, and A. Panda, “A secured SDN framework for
oT,” in 2045 [nternational Conference on Man and Machine
Interfucing (MAMI), 2015, pp. 14

[2] S.Samuel and C. Eko Samudera, “Rancang Bangun Mekanisme Load
Sharing Pada Link Aggregation Menggunakan Software Defined
Newworking,” J. ULTIMA Compui., vol. 9, Jun. 2017.

[3] P.Suresh, I. V. Daniel, V. Parthasarathy, and R. H. Aswathy, “A state
of the art review on the Intemet of Things (loT) history, technology
and fields of deployment.” pp. -8, Nov. 2014.

[4] Ryu SDN Framework Community, *Ryu SDN Framework.” [Online].
Available: https: /fosrg github.io/ryu/. [Accessed: 27-May-2019].

[5] MikroTik, “MikroTik Routers and Wireless - Products: hAP lite”
[Online]. Available: https://mikrotik.com/product/RB9%4 [-2nD.
[Accessed: 14-Tul-2019].

[6] Northbound Networks, “Zodiac FX OpenFlow Switch Hardware.”
[Online]. Available: https://northboundnetworks.com/products/
zodiac-fx. [Accessed: 14-Jul-2019].

[7] Raspberry Pi Foundation, *Buy a Raspbemry Pi 3 Model B.” [Online].
Available: https://'www.raspberrypi.org. [Accessed: 14-Jul-2019].

[8] Maxim Integrated, “DS18B20 - Programmable Resolution |-Wire
Digital Thermometer.” Sep-201 8.

[9] Farnell, *Cat5 Cable.” 04-Jul-2011.

[10] Draka, “SuperCat 5 24 Cate.” 16-Mar-2012.

[11] iperf, “iPerf - The TCP, UDP and SCTP network bandwidth
measurement tool.” [Online]. Available: https:/iperf.fi/. [Accessed:
27-May-2019].

Packet Loss Prevention Systems for Failover Incident on

Network Infrastructure

ORIGINALITY REPORT

4., A, o To

SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS

PRIMARY SOURCES

www.semanticscholar.org

Internet Source

3%

Vania, Kanisius Karyono, |. Hargyo Tri
Nugroho. "Smart dog feeder design using
wireless communication, MQTT and Android
client", 2016 International Conference on
Computer, Control, Informatics and its
Applications (IC3INA), 2016

Publication

<1%

WWW.coursehero.com

Internet Source

<1%

Submitted to Academic Library Consortium
Student Paper

<1%

F. Bendaida. "A Nonlocal Model for
Reconstructing Images Corrupted by Cauchy

Noise", Moroccan Journal of Pure and Applied
Analysis, 2023

Publication

<1%

publikationen.uni-tuebingen.de

Internet Source

<1%

Exclude quotes On Exclude matches <7 words

Exclude bibliography On

