PEMOGRAMAN UNTUK PENGAMBILAN DAN PENEMPATAN 3 OBJEK BERBEDA PADA LENGAN ROBOT ABB IRB 6700

LAPORAN MAGANG

Jimmy Lie 00000037042

PROGRAM STUDI TEKNIK ELEKTRO FAKULTAS TEKNIK DAN INFORMATIKA UNIVERSITAS MULTIMEDIA NUSANTARA TANGERANG

2023

PEMOGRAMAN UNTUK PENGAMBILAN DAN PENEMPATAN 3 OBJEK BERBEDA PADA LENGAN ROBOT ABB IRB 6700

LAPORAN MAGANG

Diajukan Sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Teknik (S. T.)

> Jimmy Lie 00000037042

PROGRAM STUDI TEKNIK ELEKTRO FAKULTAS TEKNIK & INFORMATIKA UNIVERSITAS MULTIMEDIA NUSANTARA TANGERANG 2023

HALAMAN PERNYATAAN TIDAK PLAGIAT

Dengan ini saya,

Nama	: Jimmy Lie
Nomor Induk Mahasiswa	: 00000037042
Program studi	: Teknik Elektro

Laporan Magang dengan judul:

"Pemograman untuk Pengambilan dan Penempatan 3 Objek Berbeda pada Lengan Robot ABB IRB 6700"

merupakan hasil karya saya sendiri bukan plagiat dari karya ilmiah yang ditulis oleh orang lain, dan semua sumber baik yang dikutip maupun dirujuk telah saya nyatakan dengan benar serta dicantumkan di Daftar Pustaka.

Jika di kemudian hari terbukti ditemukan kecurangan/ penyimpangan, baik dalam pelaksanaan maupun dalam penulisan laporan magang, saya bersedia menerima konsekuensi dinyatakan TIDAK LULUS untuk laporan magang yang telah saya tempuh.

HALAMAN PENGESAHAN

Laporan Magang dengan judul

"Pemograman untuk Pengambilan dan Penempatan 3 Objek Berbeda pada Lengan Robot ABB IRB 6700"

Oleh

Nama: Jimmy LieNIM: 00000037042Program Studi: Teknik ElektroFakultas: Teknik dan Informatika

Telah diujikan pada hari Kamis, 26 Januari 2023 Pukul 10.00 s/d 11.00 dan dinyatakan LULUS Dengan susunan penguji sebagai berikut.

Pembimbing

Dr. Ir. Prianggada Indra Tanaya, MME (078748)

Penguji

M.B. Nugraha, S/T., M.T. (063831)

Ketua Program Studi Teknik Elektro

Ahmad Syahril Muharom, S.Pd., M.T. (051317)

HALAMAN PERSETUJUAN PUBLIKASI KARYA ILMIAH **UNTUK KEPENTINGAN AKADEMIS**

Sebagai sivitas akademik Universitas Multimedia Nusantara, saya yang bertandatangan di bawah ini:

Nama	: Jimmy Lie
NIM	: 00000037042
Program Studi	: Teknik Elektro
Fakultas	: Teknik dan Informatika
Jenis Karya	: Laporan Magang

Demi pengembangan ilmu pengetahuan, menyetujui untuk memberikan kepada Universitas Multimedia Nusantara Hak Bebas Royalti Nonekslusif (Non-exclusive Royalty-Free Right) atas karya ilmiah saya yang berjudul:

"Pemograman untuk Pengambilan dan Penempatan 3 Objek Berbeda pada Lengan Robot ABB IRB 6700"

Beserta perangkat yang ada (jika diperlukan). Dengan Hak Bebas Royalty Non eksklusif ini Universitas Multimedia Nusantara berhak menyimpan, mengalih media / format-kan, mengelola dalam bentuk pangkalan data (database), merawat, dan mempublikasikan tugas akhir saya selama tetap mencantumkan nama saya sebagai penulis / pencipta dan sebagai pemilik Hak Cipta. Demikian pernyataan ini saya buat dengan sebenarnya.

> Tangerang, 9 Januari 2023 Yang menyatakan,

(Jimmy Lie)

KATA PENGANTAR

Puji Syukur atas berkat dan rahmat kepada Tuhan Yang Maha Esa, atas selesainya penulisan laporan magang ini dengan judul "Pemograman untuk Pengambilan dan Penempatan 3 Objek Berbeda pada Lengan Robot ABB IRB 6700" dilakukan untuk memenuhi salah satu syarat untuk mencapai gelar Sarjana Teknik Jurusan Teknik Elektro pada Fakultas Teknik dan Informatika Universitas Multimedia Nusantara. Saya menyadari bahwa, tanpa bantuan dan bimbingan dari berbagai pihak, dari masa perkuliahan sampai pada penyusunan laporan magang ini, sangatlah sulit bagi saya untuk menyelesaikan laporan magang ini. Oleh karena itu, saya mengucapkan terima kasih kepada:

- 1. Dr. Ninok Leksono, M.A., selaku Rektor Universitas Multimedia Nusantara.
- 2. Dr. Eng. Niki Prastomo, S.T., M.Sc., selaku Dekan Fakultas Teknik dan Informatika Universitas Multimedia Nusantara.
- 3. Ahmad Syahril Muharom, S.Pd., M.T., selaku Ketua Program Studi Teknik Elektro Universitas Multimedia Nusantara.
- 4. Dr. Ir. Prianggada Indra Tanaya, MME, sebagai Pembimbing yang telah banyak meluangkan waktu untuk memberikan bimbingan, arahan dan motivasi atas terselesainya tesis ini.
- 5. Franky Sugiarto, sebagai Pembimbing Lapangan yang telah memberikan bimbingan, arahan, dan motivasi atas terselesainya laporan magang.
- 6. Kepada PT LG Electronics Indonesia Tangerang beserta rekan rekan kerja bagian *Production Maintenance* (PM) yang telah memberikan tempat, arahan, dan pembelajaran selama 5 bulan ini.
- 7. Keluarga yang telah memberikan bantuan dukungan material dan moral, sehingga penulis dapat menyelesaikan laporan magang ini.

Semoga laporan magang ini bermanfaat, baik sebagai sumber informasi maupun sumber inspirasi, bagi para pembaca.

Tangerang, 9 Januari 2023

(Jimmy Lie)

PEMOGRAMAN UNTUK PENGAMBILAN DAN PENEMPATAN 3 OBJEK BERBEDA PADA LENGAN ROBOT ABB IRB 6700

(Jimmy Lie)

ABSTRAK

PT LG Electronics Indonesia Tangerang yang berada di daerah Legok merupakan perusahaan yang berfokus dalam memproduksi kulkas. Kegiatan produksi sudah menerapkan konsep semi-automated dengan penggunaan PLC Mitsubishi untuk sistem kendalinya. Adanya penerapan sistem otomasi ini menjadi salah satu alasan pemilihan PT LG Electronics Indonesia Tangerang sebagai tempat magang. Alasan lainnya adalah jarak yang tidak jauh dengan tempat tinggal dan cukup dikenal di kalangan masyarakat. Di PT LG Electronics Indonesia Tangerang, magang dilakukan dari 11 Juli sampai 10 Desember. Selama proses magang, ada perencanaan proyek yang ingin dihasilkan, yaitu memprogram lengan robot ABB IRB 6700 untuk memindahkan tiga objek berbeda. Objek dapat diletakkan pada sisi atas atau bawah dari meja dua tingkat sesuai dengan perintah yang diberikan. Perintah didapat dari input HMI komputer yang sudah terkoneksikan dengan PLC Mistubishi tipe Q06H. Lengan robot juga terkoneksi dengan PLC yang sama dan memanfaatkan output sebagai perintah pergerakannya. Kendala yang dihadapi dalam pengerjaan proyek adalah FlexPendant untuk menggerakkan lengan robot suatu waktu mengalami error yang membuat lengan robot tidak dapat digerakkan, serta pelepasan dan pemasangan kembali vacuum dapat merubah posisi pengambilan dan penempatan tiga objek. Solusi yang dilakukan adalah melakukan restart berulang kali pada FlexPendant dan modifikasi ulang posisi yang mengalami perubahan yang signifikan.

Kata kunci: PT LG Electronics Indonesia Tangerang, *Semi-automated*, Lengan Robot, PLC, HMI Komputer, FlexPendant

PICK AND PLACE PROGRAMMING OF 3 DIFFERENT OBJECTS ON ABB IRB 6700 ROBOTIC ARMS (Jimmy Lie)

ABSTRACT

PT LG Electronics Indonesia Tangerang, which is located in the Legok area, is a company that focuses on producing refrigerators. Production activities have implemented the semi-automated concept with the use of Mitsubishi PLC for the control system. Another reason is that it is not far from where I live and is well known among the public. Internship at the company is held from July 11 to December 10. During the internship process, programming the ABB IRB 6700 robot arm to move three different objects will be implemented. *Objects can be placed on the top or bottom of the two-level table according* to the command given. Commands are obtained from the computer HMI input that is connected to the Mitsubishi PLC type Q06H. The robot arm is also connected to the same PLC and uses the output as a movement command. The obstacle faced is that the FlexPendant to move the robot arm has an error at one time which makes the robot arm unable to move, and removing and reassembling the vacuum could change the position of taking and placing the three objects. The solution is to restart the FlexPendant repeatedly and modify the position that has experienced significant changes.

Keywords: PT LG Electronics Indonesia Tangerang, Semi-automated, Robot Arm, PLC, Computer HMI, FlexPendant

DAFTAR ISI

HALAM	AN PERNYATAAN TIDAK PLAGIAT	2
HALAM	AN PENGESAHAN	3
HALAM AKADE	IAN PERSETUJUAN PUBLIKASI KARYA ILMIAH UNTUK KE MIS	P ENTINGAN 4
КАТА Р	ENGANTAR	5
ABSTRA	АК	6
ABSTRA	<i>CT</i>	7
DAFTA	R ISI	8
DAFTA	R TABEL	9
DAFTA	R GAMBAR	10
DAFTA	R LAMPIRAN	13
BABI P	ENDAHULUAN	14
1.1.	Latar Belakang	14
1.2.	Maksud dan Tujuan Kerja Magang	16
1.3.	Waktu dan Prosedur Pelaksanaan Kerja Magang	16
1.3.1.	Waktu Pelaksanaan Kerja Magang	16
1.3.2.	Prosedur Pelaksanaan Kerja Magang	17
BAB II	GAMBARAN UMUM PERUSAHAAN	19
2.1	Sejarah Singkat Perusahaan	19
2.1.	1 Visi	20
2.1.	2 Misi	21
2.1.	3 Janji Quality	21
2.2	Struktur Organisasi Perusahaan	22
BAB III	PELAKSANAAN KERJA MAGANG	24
3.1	Kedudukan dan Koordinasi	24
3.2	Tugas dan Uraian Kerja Magang	24
3.2.1	Tugas yang Dilakukan	25
3.2.2	Uraian Kerja Magang	25
3.3	Kendala yang Ditemukan	27
3.4	Solusi atas Kendala yang Ditemukan	
BAB IV	SIMPULAN DAN SARAN	79
4.1	Simpulan	
4.2	Saran	80
DAFTA	R PUSTAKA	81
LAMPII	RAN	83

DAFTAR TABEL

Tabel 1.1 Waktu Pelaksanaan Magang di PT LG Electronics Indonesia 17

DAFTAR GAMBAR

Gambar 1.1 Logo LG Electronics
Gambar 1.2 Struktur Organisasi Bagian Maintenance di PT LG Electronics
Indonesia Tangerang
Gambar 1.3 Struktur Organisasi Bagian MNFG Engineering di PT LG Electronics
Indonesia Tangerang
Gambar 1.4 Struktur Organisasi Bagian UT & Purchase di PT LG Electronics
Indonesia Tangerang
Gambar 1.5 Anatomi Lengan Robot ABB IRB 6700 27
Gambar 1.6 Tampilan Awal dari RobotStudio 29
Gambar 1.7 Tampilan Tipe Lengan Robot ABB di RobotStudio (IRB 6700) 30
Gambar 1.8 Tampilan Pemilihan Spesifikasi Lengan Robot ABB IRB 6700 di
RobotStudio
Gambar 1.9 Tampilan <i>Equipment</i> di RobotStudio
Gambar 2.0 Tampilan untuk Menghubungkan "myTool" ke Lengan Robot di
RobotStudio
Gambar 2.1 Tampilan Lengan Robot IRB 6700 Setelah Dihubungkan dengan
"myTool" di RobotStudio 32
Gambar 2.2 Proses Inisialisasi Sistem di RobotStudio 33
Gambar 2.3 Proses Inisialisasi Sistem Selesai
Gambar 2.4 Pilihan untuk Membuat Objek di Robot 33
Gambar 2.5 Bentuk Objek yang Tersedia di RobotStudio 34
Gambar 2.6 Tampilan Pengaturan Ukuran dan Posisi Objek di RobotStudio 34
Gambar 2.7 Tiga Objek Visible di RobotStudio 35
Gambar 2.8 Tiga Objek Invisible Sisi Atas dan Sisi Bawah di RobotStudio 35
Gambar 2.9 Pemilihan Target di RobotStudio 36
Gambar 3.0 Set as Active MyTool di RobotStudio
Gambar 3.1 Pilihan Teach Target untuk Menjadikan Ujung Tool sebagai Origin di
RobotStudio
Gambar 3.2 Hasil Target Simulasi Proyek dari Objek Visible dan Invisible di
RobotStudio
Gambar 3.3 Membuat Objek Menjadi Invisible di RobotStudio
Gambar 3.4 Tampilan Target untuk Mengambil dan Menempatkan Balok Kecil di
Sisi Atas
Gambar 3.5 Pilihan Path pada Home
Gambar 3.6 Penambahan Target ke dalam Path di RobotStudio 39
Gambar 3.7 Target Berada di Path
Gambar 3.8 Path Proyek untuk Memindahkan Balok Kecil ke Sisi Atas 40
Gambar 3.9 Path Proyek untuk Memindahkan Balok Kecil ke Sisi Bawah 40
Gambar 4.0 Path Proyek untuk Memindahkan Silinder ke Sisi Atas 41
Gambar 4.1 Path Proyek untuk Memindahkan Silinder ke Sisi Bawah 41
Gambar 4.2 Path Proyek untuk Memindahkan Balok Besar ke Sisi Atas

Gambar 4.3 <i>Path</i> Proyek untuk Memindahkan Balok Besar ke Sisi Bawah 42
Gambar 4.4 Tampilan Path dari Pemindahan Balok Kecil ke Sisi Atas di
RobotStudio
Gambar 4.5 Memasukkan Attacher, Detacher, dan Positioner di RobotStudio 43
Gambar 4.6 Parameter Attacher untuk Balok Kecil
Gambar 4.7 Parameter Detacher untuk Balok Kecil 44
Gambar 4.8 Parameter <i>Positioner</i> untuk Balok Kecil
Gambar 4.9 Pilihan I/O System 44
Gambar 5.0 Pilihan Memasukkan Input dan Output di RobotStudio 45
Gambar 5.1 Parameter Input dan Output Simulasi Proyek
Gambar 5.2 Memasukkan Input dan Output ke Sistem di Station Logic 46
Gambar 5.3 Cara Memasukkan Input dan Output 46
Gambar 5.4 Tampilan Pengkoneksian Attacher, Detacher, dan Positioner dari
Simulasi Proyek di Station Logic
Gambar 5.5 Penambahan Instruksi di Paths & Procedures
Gambar 5.6 Path Proyek untuk Memindahkan Balok Kecil ke Sisi Atas
Gambar 5.7 Path Proyek untuk Memindahkan Balok Kecil ke Sisi Bawah 49
Gambar 5.8 Path Proyek untuk Memindahkan Silinder ke Sisi Atas
Gambar 5.9 Path Proyek untuk Memindahkan Silinder ke Sisi Bawah 50
Gambar 6.0 Path Proyek untuk Memindahkan Balok Besar ke Sisi Atas 50
Gambar 6.1 Path Proyek untuk Memindahkan Balok Besar ke Sisi Bawah 51
Gambar 6.2 Pilihan All Move Instructions di Auto Configuration
Gambar 6.3 Synchronize to RAPID di RobotStudio
Gambar 6.4 Pilihan untuk Membuka Program RAPID di RobotStudio 53
Gambar 6.5 Pilihan <i>I/O Simulator</i> dan <i>Play</i>
Gambar 6.6 Tampilan I/O Simulator Simulasi Proyek
Gambar 6.7 Tampilan untuk Melakukan Simulasi pada Lengan Robot ABB IRB
6700 di RobotStudio 54
Gambar 6.8 Button untuk Mengatur Pergerakan Lengan Robot secara Linear dan
Reorient di FlexPendant
Gambar 6.9 Button untuk Mengatur Pergerakan Lengan Robot secara Axis 1 – 6 di
FlexPendant
Gambar 7.0 Tampilan untuk Melihat Pergerakan Lengan Robot yang akan
Diterapkan di FlexPendant
Gambar 7.1 Kondisi Manual dan Motors On di FlexPendant
Gambar 7.2 Tampilan Pengaturan Kecepatan Lengan Robot di FlexPendant 61
Gambar 7.3 Button untuk Membuat Motors On di FlexPendant
Gambar 7.4 Pilihan Program Editor untuk Melakukan Pemograman di
FlexPendant
Gambar 7.5 Tampilan <i>Program Editor</i> di FlexPendant
Gambar 7.6 Tampilan Program Editor dengan Menekan Pilihan Add Instruction di
FlexPendant
Gambar 7.7 Penggunaan z 50 [15]

Gambar 7.8 Penggunaan fine [15]
Gambar 7.9 Penempatan Tiga Set Point untuk Mengambil dan Menempatkan Objek
Gambar 8.0 Ilustrasi Pergerakan Lengan Robot ABB untuk Mengambil dan
Menempatkan Balok Kecil ke Sisi Bawah71
Gambar 8.1 Flowchart Alur Kerja Program (1)72
Gambar 8.2 Flowchart Alur Kerja Program (2)
Gambar 8.3 Flowchart Alur Kerja Program (3)74
Gambar 8.4 Posisi Origin Lengan Robot ABB IRB 670075
Gambar 8.5 PLC Mitsubishi Tipe Q61P dengan Modul Lainnya76
Gambar 8.6 Diagram Blok Pengkoneksian dari Komputer ke Lengan Robot ABB
IRB 6700
Gambar 8.7 Ladder Diagram dari HMI untuk Mengendalikan Lengan Robot ABB
IRB 6700 (1)
Gambar 8.8 Ladder Diagram dari HMI untuk Mengendalikan Lengan Robot ABB
IRB 6700 (2)
Gambar 8.9 Ladder Diagram dari HMI untuk Mengendalikan Lengan Robot ABB
IRB 6700 (3)
Gambar 9.0 Tiga Objek yang Digunakan dalam Proyek 145
Gambar 9.1 Vacuum dari Lengan Robot 145
Gambar 9.2 Posisi Ketiga Objek di Tingkatan Atas 146
Gambar 9.3 Posisi Ketiga Objek di Tingkatan Bawah 146
Gambar 9.4 Posisi Ketiga Objek untuk Pengambilan 147
Gambar 9.5 Posisi Peletakkan Objek dengan Penanda Spidol di Sisi Bawah 147
Gambar 9.6 Posisi Peletakkan Objek dengan Penanda Spidol di Sisi Atas 148
Gambar 9.7 FlexPendant
Gambar 9.8 Area Lengan Robot ABB IRB 6700, Meja dengan Satu Tingkat, dan
HMI Komputer
Gambar 9.9 Area Lengan Robot ABB IRB 6700, Meja dengan Dua Tingkat, dan
Papan Tulis 149

U N I V E R S I T A S M U L T I M E D I A N U S A N T A R A

DAFTAR LAMPIRAN

Surat Pengantar MBKM 01	33
Surat Penerimaan Magang	34
Kartu MBKM 02	35
Lembar Verifikasi Laporan MBKM 04 14	2
Lembar Pengecekan Hasil Turnitin	3
Semua Hasil Karya Tugas yang Dilakukan Selama Magang 14	5

