BAB II LANDASAN TEORI

2.1 Tinjauan Teori Mengenai Topik Penelitian

2.1.1 Rancang Bangun

Rancang bangun dapat diartikan sebagai segala kegiatan yang melibatkan perancangan, pengembangan, dan implementasi hasil analisis kebutuhan untuk menjadi sebuah gambaran atau bentuk sketsa yang belum pernah dibuat sebelumnya [12]. Dalam konteks perancangan sistem informasi, rancang bangun merujuk pada perancangan dan pembangunan suatu desain sistem informasi baru atau merupakan perbaikan dan hasil modifikasi dari sistem yang sudah ada. Tujuan dari rancang bangun sistem informasi adalah untuk menciptakan infrastruktur penyebaran informasi yang efektif dan efisien dalam perusahaan, serta mempermudah pengguna dalam melaksanakan operasi bisnis [13].

2.1.2 Website

Website adalah sekumpulan halaman web yang terdapat dalam sebuah domain, di mana setiap halamannya saling terkait dan mengandung informasi yang berharga [14]. Untuk dapat mengakses sebuah website diperlukan koneksi internet, perangkat keras (hardware), dan perangkat lunak (software) yang memadai. Website biasanya berisi informasi atau konten dalam bentuk teks, gambar, video, atau elemen multimedia lainnya. Penggunaan website diperlukan dalam berbagai keperluan, mulai dari media penyampaian informasi, tempat penjualan produk dan jasa, atau sebagai sarana interaksi antara pengguna dan perusahaan. Saat ini, penggunaan dari website telah menjadi bagian yang kritikal dalam

aktivitas bisnis, perancangan sistem informasi, sarana komunikasi, dan kegiatan sosial di era digital [15].

2.1.3 Inventory Management

Inventory Management merupakan salah satu bagian dari proses Supply Chain Management (SCM), yang berperan dalam merencanakan, mengimplementasikan, dan mengendalikan aliran penyimpanan barang dalam inventaris perusahaan [16]. Tujuan utama dalam penggunaan Inventory Management adalah untuk mengoptimalkan level persediaan dengan mempertimbangkan faktor-faktor seperti permintaan pelanggan, biaya penyimpanan, dan risiko kekurangan atau kelebihan persediaan. Salah satu proses yang merupakan cakupan dari Inventory Management adalah proses pemantauan inventaris atau Inventory Monitoring [17]. Inventory Monitoring merupakan salah satu bagian penting dalam penerapan Inventory Management, di mana proses yang dilakukan berfokus pada pemantauan inventaris secara akurat dan real time. Berikut ini adalah kontribusi dari penerapan Inventory Monitoring pada perusahaan industri manufaktur obat [18].

1. Visibilitas Stok Obat secara Real Time

Inventory Monitoring memungkinkan perusahaan industri manufaktur obat untuk memantau persediaan secara real time. Dengan memiliki visibilitas stok obat secara real time, membuat perusahaan dapat mengimplementasikan sistem kontrol yang lebih kuat untuk mencegah terjadinya fraud. Hal ini meliputi penggunaan otentikasi dan otorisasi dalam mengakses dan memproses transaksi inventaris. Dengan demikian, perusahaan dapat meningkatkan keandalan dan keamanan inventaris, serta mengurangi risiko kecurangan dalam pengelolaan persediaan obat.

2. Meningkatkan Kontrol Stok Obat Kedaluwarsa

Dalam perusahaan industri manufaktur obat, memiliki persediaan produk yang kedaluwarsa dapat mengakibatkan kerugian finansial yang signifikan. Dengan *Inventory Monitoring*, perusahaan dapat dengan mudah memantau stok obat yang akan segera kedaluwarsa dan dapat mengambil langkah-langkah yang diperlukan untuk menghindari stok obat kedaluwarsa. Penggunaan *Inventory Monitoring* juga dapat memberikan kemudahan bagi manajemen inventaris untuk mengetahui lokasi dari stok obat yang akan kedaluwarsa, sehingga dapat ditempatkan di tempat penyimpanan strategis.

3. Pemantauan Transaksi Inventory dengan Otorisasi

Dengan menggunakan *Inventory Monitoring*, memungkinkan perusahaan untuk melibatkan otorisasi dalam pemantauan transaksi *inventory*. Penggunaan otorisasi dapat membuat perusahaan memiliki kontrol yang lebih baik terhadap pergerakan dan penggunaan stok obat, mencegah kerugian atau kehilangan yang tidak terduga, dan memastikan kepatuhan terhadap kebijakan dan prosedur yang ditetapkan dalam manajemen inventaris. Otorisasi dapat dilakukan oleh berbagai pihak, seperti manajer departemen terkait, atau atasan langsung.

4. Penyediaan Informasi untuk Pengambilan Keputusan

Inventory Monitoring menyediakan data yang akurat dan terkini mengenai kondisi persediaan. Hal ini memungkinkan perusahaan untuk melakukan analisis persediaan dengan lebih cepat dan tepat, sehingga dapat mengoptimalkan proses pengambilan keputusan dan meningkatkan efisiensi proses bisnis.

2.1.4 Unified Modeling Language (UML)

Unified Modeling Language atau yang biasa disebut UML adalah sebuah bahasa yang digunakan untuk membantu menggambarkan dan mendokumentasikan desain, struktur, dan perilaku sistem perangkat lunak [19]. Dalam penerapannya, UML terdiri dari sejumlah simbol penulisan yang dapat membantu untuk menjelaskan atau mendeskripsikan elemen - elemen sistem perangkat lunak beserta hubungannya. Penyusunan simbol dan notasi UML dapat diklasifikasikan menjadi berbagai jenis diagram. Menurut Peker, UML dapat diklasifikasikan menjadi 11 jenis diagram yang berbeda, namun pada penelitian ini hanya akan digunakan 3 jenis diagram UML yaitu Use Case Diagram, Activity Diagram, dan Class Diagram [20].

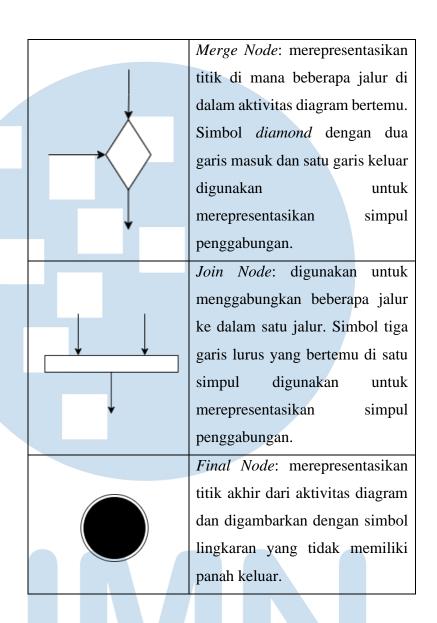
2.1.4.1 Use Case Diagram

Use Case Diagram merupakan salah satu jenis diagram UML yang bertujuan untuk menampilkan interaksi antara aktor (user) dan fitur-fitur (use case) dalam sistem perangkat lunak [20]. Pada penerapannya, terdapat notasi dan simbol yang digunakan untuk memvisualisasikan sebuah Use Case Diagram. Berikut ini adalah 7 notasi yang digunakan dalam Use Case Diagram.

Tabel 2. 1 Notasi Use Case Diagram

	Notasi	Keterangan
N U	I V E R S I L T Actor M E	Actor: merupakan orang, sistem, atau perangkat lain yang berinteraksi dengan sistem.
	SANT	ARA

		Use Case: merupakan	
		fungsi atau tugas yang	
	Use Case	dilakukan oleh sistem.	
		Association	
4		Relationship: merupakan	
		salah satu jenis hubungan	
		dalam Use Case	
		Diagram, yang	
		digunakan untuk	
		menghubungkan Actor	
		dan Use Case.	
		Include Relationship:	
		merupakan salah satu	
		jenis hubungan dalam	
		Use Case Diagram, yang	
	< <include>></include>	digunakan untuk	
	>	menunjukkan bahwa	
		suatu Use Case	
		melibatkan penggunaan	
		atau eksekusi dari <i>Use</i>	
		Case lain.	
		Extend Relationship:	
		merupakan salah satu	
		jenis hubungan dalam	
UN	IVFRSI	Use Case Diagram, yang	
	<-extend>>	digunakan untuk	
MU	LTIME	menunjukkan / bahwa	
KI 11	CANIT	suatu <i>Use Case</i> bisa	
IN U	3 A IN I	diperpanjang (extended)	

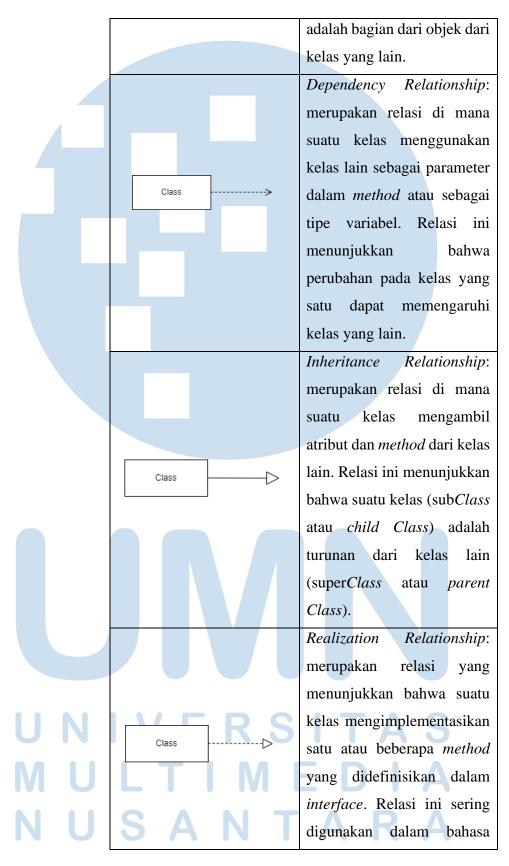


2.1.4.2 Activity Diagram

Activity Diagram merupakan salah satu jenis diagram UML yang digunakan untuk memberikan visualisasi mengenai alur kerja atau proses bisnis dalam sistem [20]. Diagram ini digunakan untuk menggambarkan alur kerja atau serangkaian aktivitas yang terjadi dalam suatu proses atau sistem. Activity Diagram menunjukkan urutan aktivitas, keputusan yang dibuat selama proses, dan aliran kontrol antara aktivitas-aktivitas tersebut. Pada penerapannya, terdapat notasi dan simbol yang digunakan untuk memvisualisasikan sebuah Activity Diagram. Berikut ini adalah 8 notasi yang digunakan dalam Activity Diagram.

Tabel 2. 2 Notasi Activity Diagram

	Notasi	Keterangan
		Initial Node: merupakan titik
		awal dari aktivitas diagram dan
		digambarkan dengan simbol
		lingkaran berisi panah yang
		menunjuk ke <i>node</i> pertama.
		Action: merupakan suatu
	Action	kegiatan atau tindakan yang
		dilakukan.
		Control Flow: merupakan simpul
		yang digunakan untuk
		menyatakan transisi dari satu
		aktivitas ke aktivitas yang lain.
		Fork Node: merupakan simpul
		yang digunakan untuk memecah
	•	alur aktivitas menjadi beberapa
		jalur.
	* * *	
		Decision Node: merupakan
		sebuah simbol berbentuk
		diamond yang digunakan untuk
		proses pembuatan keputusan
	[Condition] [Condition]	dalam <i>Activity Diagram</i> .
UN	I V È R	SITAS
M U	LTIM	EDIA
N U	SAN	TARA



2.1.4.3 Class Diagram

Class Diagram merupakan salah satu jenis diagram UML yang digunakan untuk mendeskripsikan struktur dari kelas-kelas atau entitas yang ada dalam sistem [20]. Pada penerapannya, terdapat notasi dan simbol yang digunakan untuk memvisualisasikan sebuah Class Diagram. Berikut ini adalah 7 notasi yang umunya digunakan dalam Class Diagram.

Tabel 2. 3 Notasi Class Diagram

	Notasi	Keterangan
		Class: merupakan sebuah
		kumpulan objek yang
		memiliki karakteristik dan
	Class	perilaku yang sama. Kelas
	Attributes	digambarkan sebagai sebuah
	Operations	persegi panjang terbagi
		menjadi tiga bagian yaitu
		nama kelas, atribut, dan
		operasi.
		Association Relationship:
		merupakan relasi dasar yang
		menggambarkan hubungan
		antara dua kelas. Relasi ini
	Class	menunjukkan bahwa suatu
		objek dari kelas yang satu
		dapat menggunakan objek
		dari kelas yang lain.
		Aggregation Relationship:
		Merupakan relasi di mana
		suatu objek dari kelas yang
	Class	satu terdiri dari objek-objek
		dari kelas yang lain.
UN	IVERS	Composition Relationship:
		merupakan bentuk khusus
IVI U	L IN I	dari relasi agregasi, di mana
	Class	objek dari kelas yang satu
IN U	3 A N I	ARA

	pemrograman	yang
	mendukung	konsep
	pemrograman	berorientasi
	objek dan <i>inter</i> j	face seperti
	Java.	

2.1.5 Metode FEFO

Metode FEFO (*First Expired First Out*) merupakan salah satu metode manajemen persediaan atau yang berfokus pada prinsip bahwa barang dengan tanggal kedaluwarsa paling dekat harus digunakan atau dijual lebih dahulu [11]. Dalam metode ini, barangbarang yang memiliki tanggal kedaluwarsa mendekati atau melewati batas waktu akan diutamakan penggunaannya atau penjualannya sebelum barang-barang dengan tanggal kedaluwarsa yang lebih jauh. Penerapan metode FEFO dalam pengelolaan persediaan memastikan bahwa produk dengan tanggal kedaluwarsa mendekati dikeluarkan dari inventaris terlebih dahulu, sehingga dapat mengurangi risiko pemborosan dan kerugian akibat barang yang kadaluwarsa [21]. Selain itu, dengan penggunaan metode FEFO juga memungkinkan perusahaan untuk mengelola persediaan dengan lebih efisien, meminimalkan pemborosan, dan menjaga kualitas produk yang dihasilkan atau dijual [22].

2.1.6 Metode Pengembangan Perangkat Lunak

2.1.6.1 Metode Waterfall

Waterfall merupakan salah satu metode pengembangan perangkat lunak dalam *Software Development Life Cycle* (*SDLC*) yang pertama kali diperkenalkan [23]. Metode Waterfall menggunakan pendekatan linear dan berurutan dalam perancangan perangkat lunak, di mana setiap fase bergantung pada selesainya fase sebelumnya. Langkah

pengembangan perangkat lunak menurut metode Waterfall antara lain, *Requirement Analysis*, *Design*, *Implementation*, *Testing*, dan *Maintenance* [23].

2.1.6.2 Metode RAD

Metode RAD (Rapid Application Development) merupakan sebuah model pengembangan perangkat lunak yang menekankan pada kecepatan dan fleksibilitas [23]. Metode RAD memprioritaskan pengembangan iteratif dan kolaborasi antara pengembang perangkat lunak dan pengguna. Tujuannya adalah untuk menghasilkan aplikasi dapat dikembangkan dengan cepat dan dapat disesuaikan dengan kebutuhan yang berubah. Dengan pendekatan RAD, pengembang dapat menghasilkan aplikasi dengan cepat dan responsif terhadap perubahan kebutuhan. Metode ini sangat cocok untuk digunakan dalam proyekproyek yang membutuhkan waktu pengembangan yang singkat, memiliki kebutuhan yang dapat berubah-ubah, serta memerlukan keterlibatan aktif dari pengguna. Langkah pengembangan perangkat lunak menurut metode RAD antara lain, Requirement Planning, Design System, dan Implementation [23].

2.1.6.3 Metode Prototype

Metode Prototype merupakan sebuah model pengembangan perangkat lunak yang melibatkan pembuatan prototipe awal dari aplikasi sebelum pembuatan versi akhirnya [23]. Prototipe dibuat sebagai bentuk representasi dari sistem informasi yang direncanakan, dengan menunjukkan fungsionalitas utama dan antarmuka pengguna. Metode Prototype memungkinkan pengembang dan pengguna berinteraksi lebih awal dalam proses pengembangan, sehingga memungkinkan perubahan dan perbaikan yang cepat berdasarkan umpan balik pengguna. Pendekatan ini membantu memastikan aplikasi yang dikembangkan memenuhi kebutuhan pengguna dan mencapai tingkat yang diharapkan sebelum diluncurkan secara resmi. Tahapan dalam metode proytotype antara lain, Requirement Identification, Prototype Development, Evaluation, Iterative Development, Implementation, dan Final Evaluation.

2.1.7 Black Box Testing

Black Box Testing adalah salah satu metode pengujian perangkat lunak yang berfokus pada verifikasi fungsionalitas perangkat lunak, di mana pengujian dilakukan tanpa melihat struktur internal maupun kode pemrograman dari perangkat lunak yang diuji [24]. Pengujian Black Box Testing dilakukan dengan cara mencoba memberikan input ke dalam perangkat lunak dan melakukan pengecekan apakah output yang dihasilkan sesuai dengan yang diharapkan. Langkah ini akan terus dilakukan secara berulang hingga perangkat lunak dinilai telah memenuhi persyaratan fungsional yang telah ditentukan sebelum pengujian. Setelah perangkat lunak sudah berhasil melalui pengujian ini dan memenuhi persyaratan fungsionalitas, maka perangkat lunak kemudian dapat dinyatakan layak untuk digunakan dan siap untuk diuji lebih lanjut lagi [25].

2.1.8 User Acceptance Testing

User Acceptance Testing (UAT) adalah proses pengujian yang dilakukan untuk mengevaluasi apakah sistem atau perangkat lunak yang dikembangkan telah memenuhi persyaratan dan kebutuhan pengguna secara keseluruhan [26]. UAT dilakukan oleh pengguna akhir atau pihak yang mewakili pengguna akhir, dengan tujuan untuk memastikan bahwa sistem telah siap digunakan sebelum

dirilis secara resmi. Hasil pengujian UAT akan memberikan umpan balik kepada tim pengembang tentang keberhasilan sistem atau perangkat lunak dalam memenuhi harapan pengguna. Jika terdapat masalah atau kekurangan, tim pengembang akan mengambil tindakan perbaikan yang diperlukan sebelum merilis produk tersebut secara resmi.

2.2 Framework yang Digunakan

2.2.1 Laravel

Laravel adalah sebuah *framework open-source* berbasis *web* yang ditulis dengan bahasa pemrograman PHP, tidak berbayar, dan diperuntukkan untuk pengembangan perangkat lunak yang menggunakan pendekatan *Model-View-Controller* (MVC) [27]. Dalam penerapannya, struktur pola MVC pada *framework* Laravel sedikit berbeda dibandingkan dengan struktur pola MVC pada umumnya. Struktur pola MVC dalam Laravel mempunyai *routing* yang menjembatani antara *request* dari *user* dan *controller*, sehingga membuat *controller* tidak langsung menerima *request* tersebut. Selain itu, Laravel juga dilengkapi dengan fitur-fitur canggih seperti ORM (*Object Relational Mapping*), *templating engine*, fitur keamanan, dan *routing* [28]. Dengan menggunakan *framework* Laravel, pengembang dapat memproses secara lebih cepat pembuatan aplikasi *web* dengan kode yang lebih bersih, modular, dan mudah dipelihara.

2.3 Tools yang Digunakan

2.3.1 Visual Studio Code

Visual Studio Code atau yang biasa disebut VS Code merupakan sebuah perangkat lunak pengolah kode yang dikembangkan oleh Microsoft. VS Code dirancang secara khusus untuk mendukung pengembangan perangkat lunak secara efisien dengan menyediakan

fitur-fitur yang kuat dan fleksibel. Salah satu yang menjadi keunggulan utama dari VS Code adalah ekstensibilitas. Pengguna dapat menginstal ekstensi dari marketplace untuk menambahkan fitur fitur tambahan sesuai dengan kebutuhan [29]. VS Code juga menyediakan lingkungan pengembangan terintegrasi (*Integrated Development Environment/IDE*) dengan sejumlah fitur yang dapat membantu pengguna dalam menulis, mengubah, dan mengelola kode dengan mudah.

2.3.2 **MySQL**

MySQL adalah sebuah sistem manajemen database relasional (RDMS) berbasis open-source, yang sangat popular untuk digunakan dalam pengembangan aplikasi web [30]. Untuk dapat mengoperasikan MySQL, dibutuhkan bahasa pemrograman SQL (Structured Query Language). SQL sudah dikenal luas oleh kebanyakan pengembang karena digunakan untuk dapat melakukan operasi dalam MySQL. Dengan SQL memungkinkan pengguna untuk dapat mengambil, memperbaharui, dan menghapus data yang ada di dalam database. MySQL sudah mendukung protokolprotokol seperti TCP/IP dan HTTP, sehingga sangat mudah untuk mengintegrasikannya ke aplikasi web. Selain itu MySQL juga bersifat sangat fleksibel dalam pengembangan aplikasi web, karena mampu berinteraksi dengan berbagai platform sistem operasi, seperti Linux, Windows, dan Mac. Untuk melakukan administrator MySQL secara lebih mudah dan cepat, pengguna dapat menggunakan tambahan perangkat lunak seperti phpMyAdmin dan MySQL Yog [31].

2.3.3 **XAMPP**

XAMPP merupakan sebuah paket perangkat lunak berbasis *open-source* yang lengkap dan dapat digunakan untuk mempelajari pemrograman *web*, khususnya PHP dan MySQL [32]. Tujuan

utama dari XAMPP adalah memudahkan pengembang web dalam menginstal, mengkonfigurasi, dan menjalankan aplikasi web pada komputer lokal (localhost). Dengan XAMPP, pengembang dapat menguji aplikasi web secara lokal terlebih dahulu sebelum web diunggah ke server publik. XAMPP juga mudah digunakan dan dipelajari, sehingga sangat cocok untuk digunakan pengembang web pemula yang ingin belajar dan memulai pengembangan aplikasi web. Karena bersifat open-source, XAMPP juga dapat diunduh dan digunakan secara gratis. Dalam penerapannya, XAMPP juga terdiri atas beberapa program yang membantu pembangunan aplikasi web seperti Apache HTTP Server, MySQL, PHP, dan Perl [33].

2.3.4 HTML

HTML (*HyperText Markup Language*) merupakan salah satu bahasa pemrograman yang digunakan untuk membangun struktur dan menampilkan konten pada halaman web [34]. HTML digunakan oleh web browser untuk menafsirkan dan menampilkan elemenelemen halaman web. HTML menggunakan sejumlah tag atau elemen untuk mengatur dan memformat konten pada halaman web. Setiap tag memiliki sintaksis yang spesifik dan mampu memberikan instruksi kepada web browser tentang bagaimana konten tersebut harus ditampilkan. Tag HTML juga dapat digunakan untuk menyusun elemen seperti teks, gambar, tautan, tabel, formulir, video, dan lainnya.

2.3.5 CSS

CSS (*Cascading Style Sheets*) merupakan salah satu bahasa pemrograman yang digunakan untuk mengatur tampilan, tata letak, dan *styling* dari elemen-elemen pada halaman *web* [35]. CSS pertama kali diperkenalkan pada tahun 1966 sebagai bagian dari spesifikasi HTML 3.0. Dalam pengembangan *web*, CSS bekerja bersama dengan HTML untuk mengendalikan gaya dan tampilan

dari elemen-elemen pada halaman web, sehingga halaman terlihat lebih menarik. CSS memisahkan tampilan dari struktur dan konten halaman web, sehingga memungkinkan pengembang untuk dengan mudah mengubah tampilan global dari beberapa halaman dengan mengedit file CSS tunggal.

2.3.6 JavaScript

JavaScript merupakan sebuah bahasa pemrograman berbentuk kumpulan script yang berjalan pada suatu dokumen HTML [36]. JavaScript memiliki syntax yang dinilai cukup serupa dengan bahasa pemrograman C dan C++, perbedaannya terletak pada fitur-fitur unik yang dimiliki seperti *closure*, *prototype*, dan *event loop*. Dalam penerapannya, **JavaScript** biasanya digunakan menyempurnakan tampilan dan sistem pada halaman aplikasi berbasis web yang dikembangkan. JavaScript juga digunakan untuk membuat interaksi antara pengguna dan halaman web, seperti animasi, validasi form input, efek visual, dan lain-lain. Selain itu, JavaScript juga digunakan untuk membuat aplikasi web yang lebih kompleks seperti aplikasi berbasis single-page (SPA) dan aplikasi berbasis RESTful API [37].

2.3.7 PHP

PHP (Hypertext Pre*process*or) adalah sebuah bahasa pemrograman berbasis *open-source* yang terpasang pada HTML dan digunakan untuk pengembangan *website* [38]. PHP dirancang khusus untuk memproses kode pada sisi server (*server-side*), dan juga dapat digunakan untuk membuat tampilan *web* menjadi lebih dinamis. Sebagian besar dari sintak PHP sebenarnya mirip dengan bahasa pemrograman C, Java, ASP, dan Perl, hanya saja berbeda penggunaannya dalam pengembangan aplikasi *web*. Selain itu, PHP juga sangat fleksibel karena sudah dapat terhubung dan digunakan dalam *framework* dan *database*. Untuk *framework*, PHP dapat

digunakan dalam *framework* CodeIgniter, Laravel, dan Symfony. Untuk *database* PHP dapat berinteraksi dengan *database* walaupun dengan kelengkapan yang berbeda seperti DBM, MySQL, dan Oracle.

2.4 Penelitian Terdahulu

Pada bagian ini dijabarkan kumpulan artikel penelitian terdahulu yang telah dilakukan dan digunakan sebagai referensi dalam menyelesaikan penyusunan penelitian ini.

Tabel 2. 4 Penelitian Terdahulu

No	Nama Jurnal	Judul Artikel &	Metode	Hasil
		Penulis		
1.	JSiI (JSiI	Nama Artikel:	Scrum	Sistem informasi
	(Jurnal	Design and Build	(Agile)	inventory yang
	Sistem	Inventory		dihasilkan mampu
	Informasi),	Management		mengumpulkan data
	2022,	Information System		barang masuk dan
	9(1), pp. 27-	Using the Scrum		keluar secara real time.
	35.	Method		
		Nama Penulis:		
		Ilham Firman Ashari,		
		Annisa Jufe Aryani,		
		Alief Moehamad		
		Ardhi.		

2.	Jurnal	Nama Artikel:	Waterfall	Sistem informasi yang
	SISFOKOM	Rancang Bangun		dihasilkan dapat
	(Sistem	Sistem Informasi		memudahkan
	Informasi dan	Manajemen Arsip		penelusuran dan
	Komputer),	Digital		monitoring terhadap
	10(3), 419-	N D12		arsip yang ada.
	425	Nama Penulis: Anisah, Delpiah		
		Anisah, Delpiah Wahyuningsih, Ellya		AS
N A		Helmud, Tedy Suwanda, Parlia		
IVI	UL	Romadiana, dan Devi		I A
		Irawan.		
3.	Jurnal	Nama Artikel:	Waterfall	Sistem informasi yang
3.	Sisfokom	i tama Ai tikti.	vi aterran	dihasilkan dapat
	DISTORULL			umasiikan uapat

	(Sistem	Rancang Bangun		digunakan untuk
	Informasi Dan	Sistem Informasi		melakukan pembagian
	Komputer),	Manajemen Proyek		tugas dan <i>monitoring</i>
	9(3), 365-372.	Berbasis Web Pada PT		proyek yang sedang
)(3), 303 372.	Seatech Infosys		dikerjakan oleh PT
		Seateen miosys		Seatech Infosys.
	4	Nama Penulis:		Scatter infosys.
		Doni Darmawan dan		
		Anita Ratnasari.		
4.	JITK (Jurnal	Nama Artikel:	Waterfall	Sistem informasi yang
4.	Ilmu	Rancang Bangun	vv atc11a11	dihasilkan mampu
	Pengetahuan	Sistem Informasi		menyajikan laporan
	Dan	Akuntansi Penjualan		penjualan dengan cepat
	Teknologi Komputer)	dengan Model Waterfall Berbasis		dan depat, sehingga dapat membantu
	Komputer),			T
	5(1), 15-22.	Java Desktop		pemilik dalam proses
		Nome Perulia		pengambilan
		Nama Penulis:		keputusan.
		Muthia, Nurul, Hilda		
		Amalia, Ari Puspita,		
	TD (T 1	dan Ade Fitria Lestari.	XXI . C 11	
6.	JIMP (Jurnal	Nama Artikel:	Waterfall	Sistem informasi
	Informatika	Rancang Bangun		inventory yang
	Merdeka	Sistem Informasi		dihasilkan dapat
	Pasuruan),	Persediaan Obat Pada		memberikan
	4(1).	Puskesmas Babelan I		kelancaran dalam
		Kabupaten Bekasi		penginputan data,
				sehingga mampu
		Nama Penulis:		memberikan informasi
		Miwan Kurniawan		yang cepat dan akurat.
		Hidayat.		
7.	Voteteknika	Nama Artikel:	Waterfall	Sistem informasi
	(Vocational	Rancang Bangun		inventory yang
	Teknik	Sistem Informasi		dihasilkan dapat
	Elektronika	Inventory Barang pada		mempermudah proses
	dan	Master Dealer CV.		pengelolaan dan
	Informatika),	Orbit Techno Regional		pelaporan data barang,
	9(4), 55-63.	Sentral Sumatra		dari yang sebelumnya
				dilakukan manual
		Nama Penulis:	TIS	menjadi berbasis
		Syahisro Mirajdandi,		digital.
		Dedy Irfan, dan		
ΛI		Agariadne Dwinggo		
		Samala.		
8.	Jurnal Tekno	Nama Artikel:	Waterfall	Sistem informasi
N	Kompak,	Rancang Bangun		inventory \(\) yang
	17(1), 67-80.	Sistem Informasi	• • •	dihasilkan

		Inventory Barang		menggunakan metode
		Menggunakan Metode		FIFO, dan mampu
		First In First Out		mempermudah proses
				permintaan barang, dan
		Nama Penulis:		mengatasi kehilangan
		Nunu Nugraha		pencatatan data barang
		Purnawan dan Slamet		masuk dan keluar.
		Rahayu. (2023)		
9.	JSiI (Jurnal	Nama Artikel:	Waterfall	Sistem informasi
	Sistem	Perancangan Sistem		<i>inventory</i> berbasis
	Informasi),	Informasi Persediaan		website yang
	8(1), 31-42.	Barang Pada Balai		dihasilkan mampu
		Besar Pengawas Obat		mempercepat proses
		Dan Makanan		pembuatan laporan
				stok obat.
		Nama Penulis:		
		Rehulina Tarigan,		
		Budhy Raharjo.		
10.	Jurnal Ilmiah	Nama Artikel:	RAD	Sistem informasi yang
	Matrik, 21(1),	Pengembangan Sistem		dihasilkan dapat
	1-10.	Informasi untuk		membantu
		Memfasilitasi Proses		mengurangi kasus
		Adopsi Anjing		penelantaran anjing.
		Berbasis Web		
		Nama Penulis:		
		Amelinda Chendra,		
		Kristina G.		
		Simanjuntak, Andree		
		E. Widjaja, dan		
		Suryasari.		

Tabel 2.4 merupakan kumpulan penelitian terdahulu yang digunakan sebagai referensi dari penyusunan penelitian ini. Berdasarkan penelitian terdahulu, peneliti melakukan eksplorasi mengenai metode pengembangan perangkat lunak yang digunakan. Kebanyakan penelitian terdahulu menggunakan metode Waterfall dalam melakukan pengembangan sistem informasi [39]–[45]. Dalam melakukan pengembangan sistem informasi *inventory*, juga ditemukan penelitian terdahulu yang membahas penggunaan metode manajemen inventaris FIFO (*First Expired First Out*) dalam

membantu menyelesaikan permasalahan pengelolaan stok barang dalam inventaris [44].

Dalam melakukan pengembangan sistem informasi *inventory*, penelitian ini mengadaptasi metode pengembangan perangkat lunak yang digunakan pada penelitian terdahulu. Pengembangan sistem informasi *inventory* dilakukan dengan mengikuti tahapan dalam metode Waterfall, dan menggunakan bahasa pemrograman HTML, CSS, dan PHP. Perbedaan yang cukup signifikan antara penelitian ini dengan penelitian terdahulu terletak pada metode manajamen inventaris yang digunakan. Pada penelitian ini digunakan metode manajemen inventaris FEFO (*First Expired First Out*) dalam melakukan perancangan sistem informasi *inventory*. Metode FEFO digunakan pada sistem informasi *inventory* dalam proses pemilihan produk yang akan dijual, sehingga dapat membantu dalam proses pengelolaan stok obat kedaluwarsa. Pada penelitian ini juga dilakukan pengembangan sistem informasi *inventory* berdasarkan teori *Inventory Management*, yang penerapannya berfokus pada *Inventory Monitoring*.

