BAB III

METODOLOGI PENELITIAN

3.1 Gambaran Umum Objek Penelitian

PT ARTHA SUKI JAYA

Gambar 3.1 Logo PT Artha Suki Jaya

PT Artha Suki Jaya adalah sebuah perusahaan yang bergerak di bidang air minum dalam kemasan (AMDK) dengan merek dagang "Riyo." Perusahaan ini didirikan pada tahun 2018 dan telah berdedikasi untuk memasok minuman berkualitas kepada konsumen. Produk-produk mereka mungkin mencakup berbagai jenis air minum, seperti air mineral, air mineral berkarbonasi, atau produk sejenis lainnya yang dikemas dengan merek "Riyo." Dengan pengalaman sejak tahun 2018, PT Artha Suki Jaya telah berkontribusi pada industri AMDK dan melayani konsumen dengan minuman berkualitas. Dalam mengevaluasi penggunaan sistem *ERP* modul produksi menggunakan *model IS Success* membantu meningkatkan tingkat kesiapan perusahaan dalam mengimplementasikan *ERP*.

3.2 Metode Penelitian

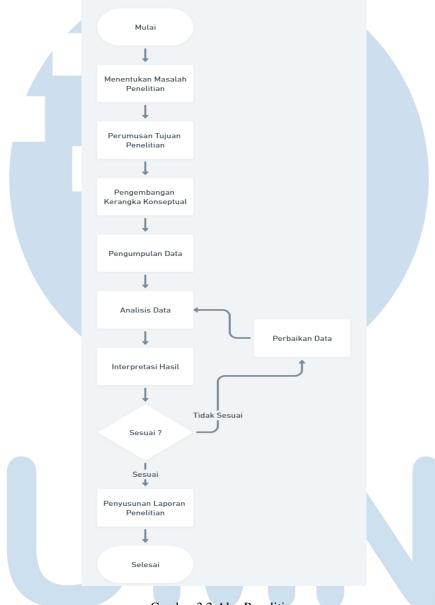
Penelitian ini menggunakan metode kuantitatif sebagai metode penelitian. Dengan menggunakan kuesioner menggunakan *tools Google Form* untuk mendapatkan data dari responden. Terdapat total 26 pernyataan yang ada di dalam kuesioner untuk diisi oleh responden. 6 pernyataan merupakan pernyataan umum, 20 pernyataan merupakan pernyataan dari 3 indikator yang akan diteliti seperti *people, process*, dan *technology*.

Dalam penelitian metode pengembangan sistem juga menjadi kerangka penyusunan sistem berdasarkan kebutuhan pengguna. Terdapat tiga perbandingan metode pengembangan dalam penelitian ini yaitu, *Rapid Application Development*

(RAD), System Development Life Cycle, dan Prototyping, Berikut merupakan perbandingan metode pengembangan dalam bentu tabel.

Tabel 3.1 Tabel Perbandingan Metode Pengembangan

	RAD	SDLC	Prototyping
Pengertian	RAD adalah pendekatan	SDLC adalah pendekatan	Prototyping adalah metode
	pengembangan perangkat	berstruktur dalam	pengembangan yang
	lunak yang fokus pada	pengembangan perangkat	melibatkan pembuatan
	pengembangan prototipe	lunak yang melibatkan	model awal dari perangkat
	perangkat lunak yang dapat	serangkaian tahap, seperti	lunak yang akan dibangun.
	dengan cepat diuji dan	perencanaan, analisis,	Prototipe ini digunakan
	dimodifikasi berdasarkan	desain, pengkodean,	untuk memahami
	umpan balik pengguna.	pengujian, dan	kebutuhan pengguna,
	Pendekatan ini	implementasi. Ini adalah	merancang sistem, dan
	memprioritaskan respons	pendekatan berurutan	mengumpulkan umpan
	cepat terhadap perubahan	yang mengikuti tahapan	balik sebelum
	kebutuhan[27].	yang ketat[28].	pengembangan yang
			sebenarnya dimulai[29].
Keunggulan	1. Kemampuan	1. Struktur dan	1. Pemahaman
	Respons Cepat,	Keteraturan:	Kebutuhan yang
	RAD	SDLC	Lebih Baik:
	memungkinkan	memberikan	Prototyping
	perubahan	struktur yang jelas	membantu dalam
	kebutuhan atau	dalam	pemahaman yang
	perbaikan	pengembangan	lebih baik tentang
	diimplementasikan	perangkat lunak,	kebutuhan
	dengan cepat.	yang membantu	pengguna sebelum
	2. <i>RAD</i> melibatkan	mengurangi risiko	pengembangan
	pengguna secara	dan meningkatkan	dimulai.
	aktif dalam	kendali proyek.	2. Respons Cepat
	pengembangan	2. Dokumentasi	terhadap
	prototipe, sehingga	yang Kuat:	Perubahan:
	meminimalkan risiko	Dokumentasi	Prototipe dapat
	ketidakcocokan	yang rinci dibuat di setiap tahap	dengan cepat dimodifikasi sesuai
	dengan kebutuhan	SDLC,	
	mereka.	memudahkan	dengan umpan balik pengguna.
	3. Penggunaan	pemahaman dan	3. Pengguna Terlibat:
	komponen-	pemeliharaan	Melibatkan
	komponen yang	perangkat lunak.	pengguna dalam
	sudah ada dapat	3. Lebih Cocok	pengujian prototipe
	mempercepat	untuk Proyek	dapat menghasilkan
	pengembangan.	Besar: SDLC	solusi yang lebih
	1 5 5	biasanya lebih	sesuai.


		RAD	SDLC		Prototyping
				cocok untuk	
				proyek perangkat	
				lunak yang besar	
				dan kompleks	
Kelemahan	1.	Tidak Cocok untuk		1. Lambat dalam	1. Memerlukan
		Proyek Besar, RAD		Respons	Sumber Daya
		lebih cocok untuk		Perubahan:	Tambahan:
		proyek kecil hingga		Struktur SDLC	Membuat prototipe
		menengah dan		yang ketat	dan pengujian
		mungkin tidak		membuatnya	memerlukan
		efektif untuk		kurang responsif	sumber daya
		proyek perangkat		terhadap	tambahan.
		lunak yang sangat		perubahan	2. Tidak Cocok untuk
		besar dan		kebutuhan.	Semua Proyek:
		kompleks.	2	2. Biaya yang	Prototyping cocok
	2.			Tinggi: Karena	untuk proyek yang
		Keterampilan		tahapan dan	mengandalkan
		Desain yang Kuat:		dokumentasi yang	respons pengguna
		Perlu keterampilan		kuat, biaya	awal, tetapi
		desain yang baik		pengembangan	mungkin kurang
		untuk		bisa menjadi	cocok untuk proyek
		menghasilkan		tinggi.	dengan persyaratan
		prototype yang		3. Proses yang	yang sangat ketat
		efektif.		Panjang: SDLC	atau sangat
	3.	Potensi untuk		memerlukan	kompleks.
		Pengembangan		waktu yang lebih	
		yang Tidak		lama untuk	
		Terkendali: Dalam		menyelesaikan	
		beberapa kasus,		seluruh siklus	
		proses RAD dapat		pengembangan	
		menghasilkan			
		prototipe yang			
		tidak sesuai dengan			
		arsitektur perangkat			
		lunak yang baik.			

Dalam penelitian ini, pendekatan yang digunakan adalah metode prototyping untuk mengembangkan prototype Rancangan Alat Pengukuran (assessment tools) yang akan digunakan dalam evaluasi kesiapan implementasi ERP di PT Artha Suki Jaya. Tahapan penelitian dimulai dengan pengembangan prototype alat pengukuran, yang kemudian divalidasi dan diperbaiki berdasarkan umpan balik pemangku kepentingan. Prototype alat pengukuran ini akan digunakan

untuk mengumpulkan data terkait kesiapan implementasi, termasuk pemahaman organisasi tentang perubahan, pelatihan yang diberikan, dan infrastruktur yang telah dipersiapkan. Hasil analisis data ini akan memungkinkan untuk mengevaluasi sejauh mana organisasi telah mempersiapkan diri untuk implementasi *ERP*. Selain itu, penelitian ini juga akan menggunakan *Model IS Success* sebagai kerangka kerja untuk mengumpulkan dan menganalisis data yang relevan terkait dengan kesiapan implementasi *ERP*, seperti kepuasan pengguna, produktivitas yang meningkat, dan pencapaian tujuan organisasi. Dengan kombinasi *prototyping* dan *Model IS Success*, penelitian ini bertujuan untuk menyusun rekomendasi solusi yang dapat membantu perbaikan atau langkah-langkah selanjutnya dalam implementasi *ERP* di PT Artha Suki Jaya. Semua temuan dan rekomendasi akan disajikan dalam laporan penelitian untuk menjadi panduan bagi perusahaan dalam mencapai kesiapan implementasi *ERP* yang diinginkan.

UNIVERSITAS MULTIMEDIA NUSANTARA

3.2.1 Alur Penelitian

Gambar 3.2 Alur Penelitian

Langkah 1: Menentukan Masalah Penelitian

Pertama, penelitian dimulai dengan menentukan masalah penelitian yang akan diinvestigasi. Dalam hal ini, masalah penelitian adalah evaluasi penilaian kesiapan implementasi *ERP* dengan menggunakan *Model IS Success* di PT Artha Suki Jaya.

Langkah 2: Perumusan Tujuan Penelitian

Setelah masalah penelitian ditentukan, langkah berikutnya adalah merumuskan tujuan penelitian. Tujuan penelitian adalah untuk memahami faktor-faktor kritis yang mempengaruhi perencanaan implementasi *ERP* dan bagaimana cara mengimplementasikan perencanaan tersebut dengan sukses.

Langkah 3: Pengembangan Kerangka Konseptual

Penelitian ini akan mengembangkan kerangka konseptual yang akan digunakan untuk memandu penelitian. Kerangka konseptual akan mencakup variabel-variabel yang relevan, termasuk variabel kesiapan implementasi (*People, Technology*) dan variabel dependen (*Process*) yang mencerminkan keberhasilan implementasi.

Langkah 4: Pengumpulan Data

Data akan dikumpulkan melalui penyebaran kuesioner kepada responden di PT Artha Suki Jaya. Kuesioner akan mencakup pertanyaan yang berkaitan dengan variabel-variabel yang telah diidentifikasi dalam kerangka konseptual.

Langkah 5: Analisis Data

Setelah data terkumpul, data akan dianalisis menggunakan teknik *SmartPLS*. Analisis ini akan mengungkapkan hubungan antara variabel kesiapan implementasi dan variabel keberhasilan implementasi.

Langkah 6: Interpretasi Hasil

Hasil analisis akan diinterpretasikan untuk menjawab rumusan masalah penelitian. Ini akan memberikan wawasan tentang faktor-faktor kritis yang mempengaruhi keberhasilan implementasi *ERP* di PT Artha Suki Jaya. Apabila hasil analisis tidak sesuai maka akan dilakukan perbaikan data dan di analisa kembali.

NUSANTARA

Langkah 7: Penyusunan Laporan Penelitian

Langkah terakhir, hasil penelitian akan digunakan untuk menyusun laporan penelitian yang komprehensif. Laporan akan mencakup temuan, analisis, kesimpulan, dan rekomendasi yang dihasilkan dari penelitian ini.

3.3 Teknik Pengumpulan Data

Dalam penelitian ini, menggunakan dua teknik untuk mengumpulkan data yang relevan. Teknik pertama menggunakan teknik penyebaran kuesioner kepada responden. Kuesioner ini dirancang khusus untuk mengukur variabelvariabel kesiapan implementasi *ERP* dan keberhasilan implementasi sesuai dengan *Model IS Success*, dengan fokus pada aspek kesiapan sumber daya manusia (*People*), kesiapan teknologi (*Technlogy*), dan variabel dependen yang mengukur kesiapan implementasi (*Process*). Kuesioner akan membantu mengumpulkan data langsung dari responden yang terlibat dalam implementasi *ERP*. Selain itu, studi pustaka dilakukan untuk menggali informasi dan temuan yang relevan dari literatur, riset terdahulu, dan sumber-sumber teori yang berkaitan dengan topik penelitian ini.

3.3.1 Populasi dan Sampel

Dalam penelitian ini, populasi merujuk kepada kelompok individu atau elemen-elemen yang menjadi fokus penelitian. Populasi ini mencakup berbagai tingkat pegawai, mulai dari direktur hingga karyawan operasional yang pernah menggunakan sistem *ERP* dalam aktivitas sehari-hari. Contohnya pada Tingkat pegawai sebanyak 48 responden dari 77 responden menjabat sebagai *staff*, 23 sebagai manager, dan 6 responden sebagai direktu. Sementara itu, dalam penelitian ini sampel atau subkelompok yang dipilih dari populasi adalah kepada orang-orang yang berkerja di Perusahaan di dalam PT Artha Suki Jaya sebanyak 53 orang dan 24 orang berada di luar perusahaan.

M U L T I M E D I A N U S A N T A R A

3.3.2 Periode Pengambilan Data

Data untuk penelitian ini diambil dalam rentang waktu antara tanggal 16 hingga 30 Oktober 2023. Selama periode ini, data dikumpulkan melalui penyebaran kuesioner kepada responden yang terlibat dalam proses implementasi *ERP*. Data yang terkumpul selama periode ini akan memberikan gambaran yang representatif tentang kesiapan implementasi *ERP* selama periode tersebut, yang akan membantu dalam analisis dan penilaian keseluruhan. Sebanyak 77 data responden dipakai dalam penelitian ini.

3.4 Variabel Penelitian

Pada awalnya, variabel dependent mengarah ke Technology, dengan fokus pada kesiapan teknologi, termasuk perangkat keras dan perangkat lunak ERP, dalam konteks implementasi. Namun, seiring berjalannya penelitian dan analisis lebih lanjut, terungkap bahwa variabel Technology tidak sepenuhnya mencerminkan dimensi proses implementasi ERP yang sesungguhnya. Temuan ini menggugah penelitian untuk merefleksikan kembali kerangka konseptual dan mengevaluasi kecocokan variabel dependent dengan tujuan penelitian ini.

Dalam tahap tersebut, perubahan signifikan terjadi dengan menggeser variabel dependent dari Technology menjadi Process. Perubahan ini muncul dari pemahaman mendalam bahwa evaluasi keberhasilan implementasi ERP tidak hanya terletak pada sejauh mana aspek teknologi terintegrasi, tetapi juga seberapa efektif proses implementasi tersebut dijalankan. Variabel Process (Y) memberikan fokus lebih spesifik pada dimensi proses yang mencakup langkahlangkah, strategi, dan interaksi dalam implementasi ERP.

Transformasi ini mencerminkan respons terhadap dinamika penelitian, di mana pengertian mendalam terhadap konteks penelitian membimbing penyesuaian variabel dependent untuk mencapai pemahaman yang lebih akurat dan relevan terkait keberhasilan implementasi ERP. Dengan demikian, pemilihan variabel dependent melibatkan proses refleksi dan penyesuaian yang mendalam untuk memastikan bahwa konstruksi penelitian mencerminkan esensi dari fenomena yang diteliti.

3.4.1 Variabel Independen

Variabel independen terdapat pada indikator *people* sebagai X1, dan *Technology* sebagai X2. Pada variabel X1 mengukur "Kesiapan SDM" (Sumber Daya Manusia) dalam konteks kesiapan implementasi. Ini mencakup faktor-faktor yang terkait dengan kemampuan, pengetahuan, komitmen, dan kesiapan sumber daya manusia dalam menghadapi perubahan yang akan terjadi akibat implementasi *ERP*. Variabel ini akan digunakan untuk menilai pengaruh kesiapan SDM terhadap keberhasilan implementasi *ERP*. Pada variabel X2 mengukur "Kesiapan Teknologi" yang melibatkan sejauh mana aspek teknologi, termasuk perangkat keras dan perangkat lunak *ERP*, dapat diintegrasikan dan berkontribusi pada kesiapan implementasi.

3.4.2 Variabel Dependen

Variabel dependen (process) menjadi fokus yang pertama dalam penelitian, sedangkan variabel independen (*people dan technology*) menjadi faktor-faktor yang memengaruhi proses implementasi *ERP*. People mencakup faktor manusia, sementara Technology berfokus pada aspek teknologi yang terlibat dalam implementasi. Variabel-variabel ini membentuk kerangka analisis yang komprehensif untuk mengevaluasi keberhasilan implementasi *ERP* melalui tiga dimensi utama: proses, manusia, dan teknologi.

3.5 Teknik Analisis Data dan Tools

Dua *tools* digunakan dan yang akan dibandingkan dalam Analisa data, data yang dianalisis merupakan data dari hasil penyebaran kuesioner, yaitu SPSS dan SmartPLS. Berikut adalah perbandingan kedua *tools* tersebut.

M U L T I M E D I A N U S A N T A R A

Tabel 3.2 Tabel Perbandingan SPSS dan SmartPLS

	SPSS	SmartPLS
Pengertian	Software yang digunakan untuk menganalisis statistik. Merupakan alat untuk menganalisis data	Software yang digunakan untuk permodelan persamaan struktural(SEM). Merupakan alat untuk menganalisis
	kuantitatif dan	variable laten, seperti dalam
	menghasilkan seperti koefisien regresi, uji-t, uji chi-kuadrat, dan	ilmu sosial dan bisnis.
	lainnya.	
Keunggulan	SPSS memiliki	SmartPLS dapat mengatasi
	antarmuka yang relative	sampel yang lebih kecil
	memudahkan pengguna	karena menggunakan
	dalam melakukan	bootstrap, yang menghasilkan
	analisis statistic tanpa	estimasi yang lebih stabil
	perlu memiliki latar belakang statistic yang	bahkan dengan sampel yang terbata
	mendalam	Cibata
Kelemahan	SPSS mungkin tidak	SmartPLS lebih terbatas
	sesuai untuk analisis	dalam jenis analisis yang
	yang sangat kompleks	dapat dilakukan dibandingkan
	atau model yang	dengan SPSS. Ini lebih sesuai
	melibatkan variabel	untuk analisis SEM dan
	laten.	pemodelan konstruk laten.

Dalam penelitian ini, digunakan *tools* SmartPLS sebagai alat utama untuk analisis data. Salah satu keunggulan utama SmartPLS adalah kemampuannya untuk menangani model persamaan struktural yang melibatkan variabel laten dan hubungan antar variabel yang kompleks. Dalam konteks penelitian kami, ini sangat relevan karena kami fokus pada pemodelan konstruk laten yang mencerminkan kesiapan implementasi *ERP* dan keberhasilan implementasi. SmartPLS juga dapat mengatasi sampel yang lebih kecil, yang sesuai dengan ketersediaan data kami, dan ini menjadikan alat ini pilihan yang cocok. Selain itu, antarmuka pengguna yang lebih sederhana *SmartPLS* memudahkan memiliki latar belakang statistik yang mendalam, sehingga kami dapat dengan efisien menganalisis data dan menguji model kami.