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Abstract

This study aims to develop a prostate cancer stage classification model using the XGBoost
algorithm on miRNA expression data, with a focus on race-based analysis. The choice of this
topic is based on the high mortality rate from prostate cancer and diagnostic disparities between
races, particularly between White and Black populations. The data used were obtained from
the GDC TCGA XenaBrowser, comprising miRNA expression and patient clinical data. This
study applied several feature selection methods such as Lasso + RFE, edgeR, and ROC, as well
as data balancing techniques including RandomOversampler, SMOTE, SMOTEEN, and
BorderlineSMOTE. The results show that the XGBoost model achieved an accuracy of up to
99% on data from White patients. However, when tested on data from Black patients, accuracy
decreased to 84-89%, indicating limitations in cross-race performance. The main challenge in
this study was the limited amount of data and the approach used to compare performance across
races to identify the impact of race on cancer stage classification. This study is expected to
serve as an initial foundation for developing more inclusive and equitable cancer classification

models.
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Introduction

Prostate cancer is the second most commonly diagnosed cancer among men worldwide,
with an estimated 1,414,000 new cancer cases and 375,304 deaths in 2020 [1]. Prostate cancer
is the most frequently diagnosed cancer in 112 countries, and the leading cause of cancer death
in 48 countries. Currently, machine learning techniques have been used in research to further
develop the diagnosis of prostate cancer [2], [3]. Machine learning techniques can discover

patterns from complex datasets and effectively predict the outcome of prostate cancer [4].

XGBoost, also known as eXtreme Gradient Boosting, is one of many machines learning
algorithm that has more advanced implementation than gradient boosting [5], [6]. The
algorithm is called "Extreme" because it uses regularization to prevent overfitting [7]. Unlike
the LSTM algorithm, XGBoost is not an artificial neural network (ANN) but rather an
ensemble of decision trees. XGBoost is one of the most commonly used methods for building
predictive models due to its accuracy, efficiency, and adaptability to various datasets [8], [9].
Additionally, the XGBoost algorithm can be used for binary classification, which helps in
achieving accurate model predictions. XGBoost can classify miRNA data into early-stage and
late-stage classes. In several cases, Ogunleye demonstrated the strong performance of XGBoost
in liver disease, achieving high accuracy and sensitivity [10]. This makes XGBoost become
robust tool for detection of prostate cancer. While XGBoost algorithms can enhance the
accuracy of prostate cancer, the outcome is also affected by other key factors. One of the key

factors is race disparity in prostate cancer.

MicroRNA (miRNA) is a group of small RNA molecules measuring 19-25 nucleotides
in length. A single miRNA can influence the expression of other miRNAs that are often
involved in functional interaction pathways [11], [12]. miRNAs control various biological
processes such as cell division, cell differentiation, angiogenesis, migration, apoptosis, and
oncogenesis [13], [14]. Dysregulation of miRNA expression in cancer cells is often rooted in
the genomic location that encodes the miRNA. They are frequently located in genetically
unstable regions, fragile sites, or cancer-associated genomic regions (CAGR), which often
leads to their deletion, resulting in a lack of miRNA expression [15]. Other than that, each
miRNA can have multiple targeted genes [16], [17]. This broad targeting allows miRNAs to
regulate complex biological pathways. miRNAs are also related to the concept of the central
dogma. The concept of the central dogma describes the stages by which DNA is broken down

and processed into proteins [18]. In the context of the central dogma, miRNA is a transcription



product of DNA that does not undergo translation into protein but instead acts as a regulator
that controls cell growth in the body. Uncontrolled cell growth can lead to the development of

cancer cells within the body [19].

Racial differences play a significant role in the diagnosis of prostate cancer, affecting
detection outcomes across different racial groups. In the United States, Black men are 1.76
times more likely to be diagnosed with prostate cancer and have a 2.14 times higher mortality
rate compared to White men [20]. Furthermore, Black men are more likely to be diagnosed at
a more advanced stage of the disease [21]. These disparities highlight the need for further race-
specific analysis to reduce the risk of misdiagnosis and improve detection accuracy. Therefore,

understanding racial differences is essential to ensure more accurate prostate cancer diagnosis.

In previous studies, there has not been any research that used miRNA data with the
XGBoost algorithm. A study conducted by Kalaiyarasi M. et al. used a miRNA dataset on
prostate cancer. This study performed feature selection from a website to identify the most
significant miRNAs, resulting in 209 miRNAs. The study achieved an accuracy of 92% and an
AUC of 95% using the SVM algorithm [22]. Other study conducted by Fernando et al. used 4
miRNAs specifically without feature selection to get the accuracy for biomarker in prostate
cancer. The study achieved precision of 0.763 and accuracy of 0.762 by using logistic

regression [23].

Unlike previous research, the current study uses data obtained from the GDC TCGA
XenaBrowser and applies the XGBoost algorithm, which has not yet been used in prostate
cancer staging detection. Furthermore, this study employs different feature selection methods
to identify significant miRNA features, such as EdgeR, Lasso + RFE, and ROC, and also
performs AUC Score validation. The study uses various balancing techniques to achieve
balanced data. The data used focuses on patients of the white race, and testing will be conducted
on black race patients to observe the impact of racial differences. By using a combination of
different algorithms and feature selection methods, this research aims to build a more accurate
classification model for prostate cancer staging, allowing patients to detect prostate cancer at

an earlier stage.
Methodology

The pipeline of this study is described in Figure 1. The method consists of several steps

such as data gathering, data preprocessing, feature selection and AI modelling using XGBoost.



All steps in this study were conducted by python version 3.13.2 in visual studio software. The
devices used for this study included a Windows 11 OS, dengan 16GB RAM, processor 12th
Gen Intel® Core™ i5-12500H (16 CPUs), 2.5Hz dan NVIDIA GeForce RTX 3050 4GB.
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Figure 1 Research Pipeline for Prostate Cancer

Data Gathering

This study utilized two primary datasets: stem-loop miRNA expression data and GDC
TCGA-PRAD phenotype data, both obtained from the GDC TCGA Xena Browser on February
3, 2025 [24]. The stem-loop miRNA expression dataset contains miRNA expression levels
from prostate cancer patients, which are essential for identifying disease-specific patterns. The
expression values were pre-normalized using the log2(RPM + 1) transformation. Additionally,
the GDC TCGA-PRAD phenotype dataset includes clinical information such as T stage, M

stage, PSA levels, Gleason scores, age, and other relevant clinical variables.
Data Preprocessing

In the data preprocessing stage, the miRNA expression dataset was separated based on
race using the phenotype dataset as a reference. The separated data then underwent a cleaning
process to handle missing values. After the initial preprocessing steps, labelling was carried out
for cancer stages 1 through 4, which were subsequently grouped into early stage and late-stage

categories. The labelling was based on T, N, M values, Gleason score, and PSA levels. The



rules used for label grouping are detailed in Table 1 [25]. These criteria T, N, M values, Gleason
score, and PSA were obtained from the phenotype dataset. Libraries such as Pandas version
2.2.2 and Numpy version 1.26.4 were used for data preprocessing, while Scikit-learn version

1.5.1 was used to perform the labeling process.

Table 1. Prostate Cancer Staging Criteria

Group T N M PSA | Gleason
PSA< Gleason
I Tla—c NO MO 10 <6
PSA< Gleason
T2a NO MO 10 <6
Gleason
T1-2a NO MO PSA X %
1A Tlac |NO MO PSA< | Gleason
20 7
PSA Gl N
Tlac | NO MO >10 < caso
<6
20 -
PSA Gl
T2a NO MO >10 < cason
<6
20 -
PSA < Gleason
T2a NO MO 20 7
PSA < Gleason
T2b NO MO 20 <7
Gleason
T2b NO MO PSA X X
Any Any
1IB T2c NO MO PSA Gleason
PSA> | Any
Ti-2 NO MO 20 Gleason
Any Gleason
T1-2 NO MO PSA > 8
Any Any
11 T3a-b NO MO PSA Gleason
Any Any
v T4 NO MO PSA Gleason
Any Any
Any T NI MO PSA Gleason
Any Any
Any T Any N Ml PSA Gleason




Feature Selection

After obtaining data labeled as early and late stage, feature selection was conducted to
identify the most significant and cancer-related miRNA features. RFE and Lasso were used to
identify significant features by specifying the desired number of features in the RFE method.
In addition, a bioinformatics-based feature selection technique, EdgeR, was also used to
identify significant miRNA features. Feature selection using EdgeR focused on the logFC
values and p-values. The feature selection methods used to identify significant miRNA features
are summarized in Table 2. Scikit-learn version 1.5.1 was used for implementing RFE and
Lasso, while EdgeR was run using version 4.0.16. ROC analysis was also employed from the
beginning to select significant miRNA features [26], [27]. The identified miRNA expressions
will be verified using the websites miRCancer and dbDEMC (Database of Differentially
Expressed miRNAs in Human Cancers) [28], [29]. Several miRNAs that show a strong
correlation with prostate cancer will be analysed to identify their target genes using miRDB
[30]. Through this approach, the study aims to determine whether the genes targeted by these

miRNAs are also associated with cancer development or progression.

Table 2. Feature Selection Method

No. Feature Selection Method Criteria
1 EdgeR PValue <0.01 and logFC > 0.4
Best result from 15, 18, and 19
2 Lasso + RFE
miRNA features
3 ROC ROC > 0.6
XGBoost Modelling

In the model development phase, the data was split into training and testing sets using
three different ratios: 80/20, 70/30, and 60/40. To address class imbalance, a balancing
technique with a ratio of 1:3 was applied. Only the training data was balanced to avoid
introducing synthetic data into the test set. The balancing techniques used in this study include
RandomOverSampler, SMOTE, SMOTEENN, and BorderlineSMOTE. The package used for

data balancing was imbalanced-learn version 0.12.3.

The model involved several scenarios focusing on feature selection methods, including

RFE, Lasso, ROC, and EdgeR. Hyperparameter tuning was performed using Grid Search with



cross-validation to obtain optimal results. Hyperparameters such as max depth and
learning rate were also used during model construction. After completing all scenarios,
validation was conducted using the AUC score. The scenarios used in the model development

process are presented in Table 3.

Table 3. Modelling Scenario Using XGBoost

Feature Selection Splitting Ratio Balancing Technique
EdgeR criteria 80:20 Random Oversampler
SMOTEEN
PValue <0.01 and 70:30
logFC > 0.4 60-40 KMeans SMOTE
’ ’ Borderline SMOTE
Lasso + RFE with the 80:20 Random Oversampler
SMOTEEN
best result from 15, 70:30
18 dan 19 feature 60:40 KMeans SMOTE
’ Borderline SMOTE
20:20 Randgn];[ g;zlfg;lvmpler
ROC criteria > 0.6 2828 KMeans SMOTE
’ Borderline SMOTE

The resulting model is evaluated using a classification report and confusion matrix,
which include accuracy, precision, recall, and F1-score metrics. Each metric serves a specific
function and is essential in determining whether the model's performance meets the desired
criteria. The model development process is illustrated in Figure 3. The finalized model is then
tested using a different dataset specifically, data from Black patients to assess the significance

of racial differences.

Result

Data Gathering and Preprocessing

The datasets used in this study are the stem-loop miRNA expression and GDC TCGA-
PRAD phenotype datasets. The stem-loop miRNA expression dataset contains 1,882 miRNA
features across 551 samples, as shown in Table 4. Meanwhile, the GDC TCGA-PRAD

phenotype dataset includes 88 variables related to clinical and hospital data. This study focuses



on the White race, which comprises approximately 83% (458 out of 551) of the total sample

population.

Table 4. Dataset miRNA

miRNA_ID | TCGA-KK-A8IG-01A | TCGA-EJ-7792-11A | TCGA-HC-7079-01A
hsa-let-7a-1 13.42 12.28 12.51
hsa-let-7a-2 13.41 12.27 12.53
hsa-let-7a-3 13.41 12.28 12.52

Data preprocessing involved labeling each sample using the AJCC Cancer Staging
Manual, which provides information on prostate cancer stages from stage 1 to stage 4. Out of
458 patients, 360 patients had identifiable cancer stages. From this group, 309 were classified
as early-stage prostate cancer and 51 as late-stage prostate cancer. The resulting labels were

stored in the metadata to facilitate the modeling process.
Feature Selection

Feature selection was performed using two different approaches: edgeR and Lasso +
RFE. The edgeR method resulted in a total of 3 selected miRNAs. The criteria used in this
scenario were p-value < 0.01 and logFC > 0.4. In addition, feature selection using Lasso and
RFE yielded 15, 18, and 19 miRNAs. With Lasso and RFE, the number of selected features
can be determined based on the desired maximum. The selected miRNA features showed
significant expression results. To further improve performance, ROC analysis was also applied
with a threshold > 0.6, resulting in 7 miRNAs. The results of feature selection are presented in

Table 5. The selected features represent the most optimal set for model construction.

Table 5. Feature Selection Results

Feature Selection

No. Criteria miRNA Feature
Method
PValue <0.01 and
1 EdgeR 3 miRNA
logC > 0.4

Best result from 15
2 Lasso + RFE 15 miRNA
miRNA feature




Best result from 18

3 Lasso + RFE 18 miRNA
miRNA feature
Best result from
4 Lasso + RFE 19 miRNA
159miRNA feature
5 ROC AUC > 0.6 7 miRNA

The miRNA expressions obtained from various feature selection scenarios will be
verified using several websites such as miRCancer and dbDEMC. These websites will be used
to check whether the miRNA biomarkers are associated with prostate cancer. The biomarkers

can be seen in Table 6.

Tabel 6. Biomarker miRNA pada Database

miRCancer dbDEMC
No. miRNA ID Prostate Prostate
Biomarker Biomarker
Cancer Cancer
1. hsa-mir-21 vV A% Vv A%
2. hsa-mir-302a vV A% Vv A%
3. hsa-mir-3155a X X Vv A%
4, hsa-mir-3662 v X v v
5. hsa-mir-370 v X v v
6. | hsa-mir-4436b-1 X X X X
7. hsa-mir-4532 X X A" v
8. hsa-mir-4673 X X A" v
9. | hsa-mir-4771-2 X X X X
10. hsa-mir-4795 X X A" v
11. hsa-mir-490 A" X A" v
12. hsa-mir-498 A" X A" v
13. hsa-mir-555 X X v v
14. hsa-mir-631 X X v A%
15. hsa-mir-6504 X X v v
16. hsa-mir-6761 X X v v
17. hsa-mir-6785 X X v v
18. hsa-mir-6876 X X v v
19. | hsa-mir-7641-1 X X X X




Table 3 illustrates that the biomarkers identified through various feature selection
scenarios exhibit correlations with prostate cancer when evaluated using three different
databases such as miRCancer, and dbDEMC. The verification process involved assessing each
miRNA biomarker for general cancer association as well as its specific relevance to prostate
cancer. While some miRNAs were highly associated with cancer, others demonstrated a direct
and strong link to prostate cancer. hsa-mir-21 showed a strong and correlation across all
databases, supporting its significance as a potential biomarker for prostate cancer. Conversely,
several biomarkers were found to be associated with other cancer types but not with prostate
cancer. In certain cases, some miRNAs were not detected in specific databases, likely due to
the absence of those entries in the database repositories. For example, hsa-mir-3155a was only
found in the dbDEMC database. Among the platforms used, dbDEMC demonstrated the most
comprehensive corellation, detecting a greater number of relevant biomarkers during the
validation process. This suggests that dbDEMC may offer a more extensive and up to date

resource for miRNA-cancer associations.

Every miRNA in human can have targeted gene to regulate gene expression. For
example, hsa-miR-21 targets the SCAI gene, which acts as a suppressor of cancer cell invasion.
When miR-21 reduces the expression of SCALI, it can make it easier for cancer cells to spread.
Another example is hsa-miR-302a, which targets the CASC1 gene which linked to a higher
risk of developing certain types of cancer. These cases show that miRNAs can control genes
that are important in cancer. By targeting multiple genes, miRNAs can help suppress or

sometimes support cancer development.
XGBoost Modelling

In model development, several scenarios were implemented based on the training-test

ratio, the number of miRNAs, the feature selection methods used, and the balancing techniques

applied.
Table 7. Results for using 3 miRNA features
NS Feature . . AUC | Train L Test Test L P
@ Selection iy || ERlEiy Score | Acc s Prec | Recall i1 158
miRNA (White) Score | (Black)
Random
3 EdgeR | 60/40 [ Oversam | 100% | 98% 99% |98% | 100% | 99% 88%
pler




EdgeR

80/20

Random
Oversam
pler

100%

98%

99%

98%

100%

99%

88%

EdgeR

70/30

Random
Oversam
pler

100%

98%

98%

98%

100%

99%

88%

EdgeR

60/40

Borderlin
eSMOTE

93%

91%

92%

93%

98%

95%

86%

EdgeR

60/40

SMOTE

92%

83%

92%

92%

100%

96%

88%

As shown in Table 7, the use of RandomOversampler yielded the best results when applied

with 3 miRNA features. A training-to-test data ratio of 60/40 produced the highest accuracy at

99%. In addition, the results demonstrated consistent performance despite changes in the data

split ratios (60/40, 70/30, and 80/20), with accuracy remaining relatively high. This indicates

that the choice of data split ratio does not significantly affect model accuracy, as long as the

number of features and balancing technique remain the same. Furthermore, an AUC score of

100% highlights the model's ability to perfectly distinguish between classes. However, when

the model was tested using internal data from Black patients, the resulting accuracy dropped to

88%, indicating that a model trained primarily on data from White patients has limited

generalizability to other racial groups.

Table 8. Results for using 15 miRNA features

Nuglfber Itz Ratio | Balancin AUC || Train };isc;[ Lisii Ll %ft I,ecs;
. Selection €| score | Acc . Prec | Recall
miRNA (White) Score | (Black)
Lasso + RandomO
15 RFE 60/40 | versampl | 99% | 98% 97% | 97% | 100% 98% 89%
er
Lasso + RandomO
15 RFE 70/30 | versampl | 98% | 98% 97% | 97% | 100% 98% 89%
er
15 L‘i‘;;? 60/40 | SMOTE | 98% | 99% | 97% |97% | 100% | 98% | 84%
15 Lasso + | 80/20 | SMOTE 98% | 98% 96% | 95% | 100% 98% 84%




Lasso + RandomO

15 RFE 80/20 | versampl | 98% | 98% 96% | 95% | 100% | 98% 89%
er

As shown in Table 8, the use of 15 miRNA features selected through the Lasso and RFE
methods resulted in a relatively high accuracy performance, reaching up to 97%. The best
results were obtained with a 60/40 training-test ratio using the RandomOversampler balancing
technique. The results indicate that this feature selection combination consistently delivers
strong model performance, even with variations in the data split ratios and balancing techniques
applied. The high AUC score of up to 99% further confirms the model’s excellent classification
ability in distinguishing between classes. However, when tested on data from Black patients,
the model’s accuracy dropped to between 84% and 89%, highlighting its limitations in

generalizing to different racial groups.

Table 9. Results for using 16 miRNA features

Il Feature . . AUC | Train Uz Test Test s Uz
o Selection Ratio | Balancing Score | Acc Acc Prec | Recall Fl Acc
miRNA (White) Score | (Black)
Lasso + RandomO
16 REL | 6040 | versampl | 99% | 98% | 97% [96% | 90% | 93% | 89%
er
Lasso + RandomO
16 RFE 80/20 | versampl | 98% 98% 96% 97% 85% 90% 89%
er
16 Lz;:;(})a-F 70/30 SMOTE 97% 94% 97% 95% 93% 95% 89%
+
16 L;S;‘}’E 8020 | SMOTE | 97% | 94% | 97% |98% | 90% | 93% | 89%
Lasso + RandomO
16 Rsli% 70/30 | versampl | 98% | 98% | 97% |96% | 90% | 93% | 89%
er




As shown in table 9, the results demonstrates that the use of 16 miRNA features selected
through the combination of Lasso and Recursive Feature Elimination (RFE) consistently yields
excellent model performance, with AUC scores ranging from 97% to 99% across all
configurations. The configuration employing a 60/40 training-to-testing data ratio and the
RandomOversampler technique achieved the highest AUC score of 99%, along with a test
accuracy of 97%, precision of 96%, recall of 90%, and F1-score of 93%. These results indicate
that the model is capable of effectively and fairly detecting the target class within the test data.
Furthermore, the model maintained consistent accuracy at 89% when applied to data from
Black patients across all configurations, highlighting its robustness and potential applicability
in diverse demographic settings. Overall, the combination of Lasso + RFE feature selection
and the RandomOversampler balancing method produced the best classification performance,
particularly under the 60/40 and 70/30 training-testing splits. These findings underscore the
critical role of data ratio configuration and balancing techniques in enhancing the predictive

capability of the classification model.

Table 10. Results for using 17 miRNA features

I ber Feature . . AUC | Train st Test Test st e
o2 Selection Sa o[ dlencine Score | Acc Acc Prec | Recall Fl Acc
miRNA (White) Score | (Black)
Lasso + RandomO
17 RFE 70/30 | versampl | 99% | 98% 99% [99% | 96% 98% 91%
er
Lasso + RandomO
17 RFE 60/40 | versampl | 99% | 98% 99% [ 99% | 95% 97% 91%
er
Lasso + RandomO
17 RFE 70/30 | versampl | 99% | 98% 99% [ 99% | 95% 97% 91%
e
Lasso + Borderlin o o o o o o o
17 RFE 60/40 oSMOTE 98% | 94% 95% |94% | 85% 89% 91%
17 L;s;? 60/40 | SMOTE | 93% | 93% | 92% |90% | 76% | 72% | 91%

As shown in table 10, the results highlights the strong classification performance achieved

using 17 miRNA features selected through Lasso and Recursive Feature Elimination (RFE),



particularly when employing the RandomOversampler technique. Under both 70/30 and 60/40
train-test splits, the model achieved an AUC score of 99%, test accuracy of up to 99%, and a
high Fl-score of 98%. These results demonstrate the model’s excellent precision and
consistency in classifying data from White patients. In contrast, the use of the SMOTE
balancing technique resulted in a noticeable decline in performance, with the AUC score
dropping to 93% and the F1-score falling to 72%. Interestingly, the test accuracy on data from
Black patients remained consistent at 91% across all configurations, indicating the model’s

robustness and potential for generalization across different racial groups.

Table 11. Results for using 18 miRNA features

Number Feature . . AUC | Train st Test Test Uit Vel
oif Selection Ratio | Balancing Score | Acc A Prec | Recall i e
miRNA (White) Score | (Black)
Lasso + RandomO
18 RFE 80/20 | versampl | 99% 99% 99% 98% | 100% 99% 89%
er
Lasso + RandomO
18 RFE 70/30 | versampl | 99% 99% 99% 99% | 100% 99% 89%
er
18 L?:;%Jr 70/30 | SMOTE | 100% | 98% 99% 99% | 100% 99% 89%
Lasso + Borderlin o 0 0 o o o o
18 RFE 70/30 oSMOTE 99% 97% 97% 98% | 99% 98% 89%
18 L?:;%Jr 70/30 SM?VTEE 76% 95% 88% 88% | 99% 93% 93%

As shown in Table 11, the use of 18 miRNA features selected through Lasso and RFE achieved
the highest test accuracy of 99%, with a precision of 98%, recall of 100%, and an F1-score of
99%. This best-performing combination was obtained using a 70/30 training-test ratio with the
RandomOversampler balancing technique, indicating that the model is not only accurate but
also benefits from a well-balanced dataset during training. The AUC score, reaching between
99% and 100%, further confirms the model’s strong classification capability. On the other hand,
the SMOTEEN technique yielded relatively lower results, with a test accuracy of only 88%
and an AUC score of 76%. This suggests that SMOTEEN may be less effective in handling

data distribution for this configuration compared to other balancing techniques such as



RandomOversampler or SMOTE. Additionally, when tested on data from Black patients, the
model’s accuracy ranged from 89% to 93%, showing an improvement compared to testing with

fewer selected features.

Table 12. Results for using 19 miRNA features

Nomloer Feature . . AUC S Train res Test Test s s
of Selection Ratio | Balancing Score Test Acc Acc Prec | Recall Fl Acc
miRNA Acc (White) Score | (Black)
Lasso + RandomO
19 RFE 60/40 | versampl | 99% 86% 99% 99% 99% | 100% | 100% 89%
er
Lasso + RandomO
19 RFE 80/20 | versampl | 99% 88% 99% 99% 98% | 100% 99% 89%
er
Lasso +
19 RFE 70/30 | SMOTE | 100% | 82% 98% 99% 99% | 100% 99% 89%
Lasso +
19 RFE 60/40 | SMOTE | 100% | 85% 98% 99% 99% | 100% | 100% 89%
" .
19 L;S;% 60/40 fgggrﬁg 98% | 88% | 97% | 97% [97% | 99% | 98% | 89%

As shown in Table 12, although the same feature selection methods Lasso and RFE were used,
the model’s performance remained exceptionally high with 19 selected miRNA features. The
best scenario was achieved with a 60/40 data split ratio and the RandomOversampler balancing
technique, resulting in a test accuracy of 99%, along with a precision of 99%, recall of 100%,
and an F1-score of 100%. These metric values indicate that the model is capable of classifying
the data with excellent accuracy. Supported by an AUC score of 99%, the model demonstrates
outstanding discriminative ability. Compared to other balancing techniques such as SMOTE or
BorderlineSSMOTE, RandomOversampler continued to yield superior results in model
development using 19 features. When tested on data from Black patients, the model maintained
an accuracy of 89% across all configurations, indicating better performance consistency across
racial groups compared to models using fewer features. The model using 19 miRNA features
were tested using cross validation since it has the best accuracy among all model. The accuracy
for 5-fold cross validation lower than the normal splitting due to increase in variation across

fold in cross validation. However, this does not contradict the high performance seen in the




main evaluation—it instead reinforces the model's overall reliability and robustness by

showing that it performs well across multiple subsets of data, not just a single train-test split.

Table 13. Results for using 7 miRNA features

Nomler Feature . . AUC | Train s Test Test s s
oit Selection tatp | Ealmeing Score Acc e Prec | Recall o e
miRNA (White) Score | (Black)
7 ROC 80/20 | SMOTE | 100% | 97% 99% 98% | 100% 99% 84%
7 ROC 60/40 | SMOTE 99% 97% 97% 97% | 100% 98% 84%
7 ROC 70/30 | SMOTE 99% 97% 97% 97% | 100% 98% 84%
Borderlin
7 ROC 80/20 oSMOTE 97% 94% 93% 94% | 98% 96% 86%
Borderlin
7 ROC 60/40 oSMOTE 97% 94% 93% 93% | 99% 96% 86%

As shown in Table 13, the use of ROC-based feature selection with 7 miRNA features produced
excellent performance, especially when combined with SMOTE and an 80/20 data split ratio,
achieving a test accuracy of 99%. Furthermore, the high precision, recall, and F1-score values
indicate that the model is not only accurate but also stable in detecting both classes evenly.
Despite the relatively small number of features, the model maintained strong performance
across various scenarios, particularly when using SMOTE as the balancing technique. This
suggests that feature selection using ROC remains effective even with low-dimensional feature
sets. Supported by an AUC score of up to 100%, the model demonstrated highly optimal
classification capability. However, when tested on data from Black patients, the accuracy
dropped to 84%, indicating a performance gap between racial groups. This highlights that while
ROC-based feature selection is effective for the main dataset, models with fewer features may

struggle to generalize well to data from different racial backgrounds.
Discussion

This model utilizes XGBoost along with several data splitting ratios and different
balancing techniques, including RandomOversampler, SMOTE, SMOTEEN, and

BorderlineSSMOTE. By applying various scenarios in the model-building process, a range of



results were obtained, with performance improving across configurations. In addition, feature
selection methods such as Lasso + RFE and edgeR were used to identify significant miRNA
features, further enhancing the potential for optimal outcomes. The results indicate that the
model’s performance is highly dependent on the combination of feature selection method, train-
test split ratio, and balancing technique. This approach has proven effective in improving the

model’s accuracy in classifying cancer data more precisely.

Across all experiments, the best performance was achieved when using 19 miRNA
features, with the RandomOversampler balancing technique and a 60/40 train-test ratio,
resulting in an accuracy of 99%, precision of 99%, recall of 100%, and F1-score of 100%. This
model demonstrates that RandomOversampler consistently handles imbalanced samples
effectively in the context of genetic data. The high metric values indicate that the model not
only excels at identifying the majority class but is also highly sensitive to the minority class.
These findings highlight the critical role of balancing techniques and feature selection in the

development of genomic-based classification models.

However, when the same model was tested on data from Black patients, the test
accuracy dropped to 89%. This decline indicates that a model trained predominantly on data
from White patients has limitations in generalizing its performance across different racial
groups. These results emphasize that race is a relevant factor in the performance of genomic-
based classification models and underscore the importance of considering population diversity

in the training process to build fairer and more inclusive predictive systems.

Feature selection plays a crucial role in determining the final performance of a
classification model. In this study, seven feature selection scenarios were implemented.
Scenario 1 used a statistical approach with edgeR, applying the criteria of p-value < 0.01 and
logFC > 0.4 to select significant miRNA features, resulting in the highest accuracy of 99%.
Scenarios 2 to 4 applied a combination of Lasso and RFE, with variations in the maximum
number of selected miRNA features 15, 16, 17, 18, and 19 miRNAs, respectively. All three
scenarios achieved the same accuracy of 99%, demonstrating the consistent performance of the
Lasso + RFE approach. Scenario 5 employed the ROC Curve method and selected 7 miRNAs
with the highest AUC values, which also achieved an accuracy of 99%.

Based on the models developed using various scenarios, the set of 19 miRNA features
demonstrated the best overall performance. Therefore, the implementation for obtaining these

19 miRNA features can be carried out using Next-Generation Sequencing (NGS) technology,



specifically with the Illumina HiSeq 2000 platform, to align with the sequencing approach used
in the existing training data. During the implementation process, the sequencing results yielded
1,881 normalized miRNA expression profiles in the form of Reads Per Million (RPM). The
identified miRNAs will then be matched against the selected 19 miRNA features to ensure

feature consistency, enabling effective detection of prostate cancer.
Conclusion

This study developed a prostate cancer detection model using the XGBoost algorithm,
taking into account miRNA data and racial factors. Feature selection methods such as Lasso +
RFE, edgeR, and ROC were employed to identify significant miRNA features for model
development. The results show that with proper feature selection, the model achieved high
accuracy of up to 99%, with a precision of 99%, and recall and Fl-score of 100%,
demonstrating that feature selection plays a crucial role in improving predictive performance.
Additionally, when tested on data from Black patients, the model achieved an accuracy of 89%.
This difference indicates a possible variation in miRNA expression patterns across races, which

should be considered when developing more inclusive and representative classification models.
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