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Abstract 

This study aims to develop a prostate cancer stage classification model using the XGBoost 

algorithm on miRNA expression data, with a focus on race-based analysis. The choice of this 

topic is based on the high mortality rate from prostate cancer and diagnostic disparities between 

races, particularly between White and Black populations. The data used were obtained from 

the GDC TCGA XenaBrowser, comprising miRNA expression and patient clinical data. This 

study applied several feature selection methods such as Lasso + RFE, edgeR, and ROC, as well 

as data balancing techniques including RandomOversampler, SMOTE, SMOTEEN, and 

BorderlineSMOTE. The results show that the XGBoost model achieved an accuracy of up to 

99% on data from White patients. However, when tested on data from Black patients, accuracy 

decreased to 84–89%, indicating limitations in cross-race performance. The main challenge in 

this study was the limited amount of data and the approach used to compare performance across 

races to identify the impact of race on cancer stage classification. This study is expected to 

serve as an initial foundation for developing more inclusive and equitable cancer classification 

models. 
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Introduction 

Prostate cancer is the second most commonly diagnosed cancer among men worldwide, 

with an estimated 1,414,000 new cancer cases and 375,304 deaths in 2020 [1]. Prostate cancer 

is the most frequently diagnosed cancer in 112 countries, and the leading cause of cancer death 

in 48 countries. Currently, machine learning techniques have been used in research to further 

develop the diagnosis of prostate cancer [2], [3]. Machine learning techniques can discover 

patterns from complex datasets and effectively predict the outcome of prostate cancer [4]. 

XGBoost, also known as eXtreme Gradient Boosting, is one of many machines learning 

algorithm that has more advanced implementation than gradient boosting [5], [6]. The 

algorithm is called "Extreme" because it uses regularization to prevent overfitting [7]. Unlike 

the LSTM algorithm, XGBoost is not an artificial neural network (ANN) but rather an 

ensemble of decision trees. XGBoost is one of the most commonly used methods for building 

predictive models due to its accuracy, efficiency, and adaptability to various datasets [8], [9]. 

Additionally, the XGBoost algorithm can be used for binary classification, which helps in 

achieving accurate model predictions. XGBoost can classify miRNA data into early-stage and 

late-stage classes. In several cases, Ogunleye demonstrated the strong performance of XGBoost 

in liver disease, achieving high accuracy and sensitivity [10]. This makes XGBoost become 

robust tool for detection of prostate cancer. While XGBoost algorithms can enhance the 

accuracy of prostate cancer, the outcome is also affected by other key factors. One of the key 

factors is race disparity in prostate cancer. 

MicroRNA (miRNA) is a group of small RNA molecules measuring 19–25 nucleotides 

in length. A single miRNA can influence the expression of other miRNAs that are often 

involved in functional interaction pathways [11], [12]. miRNAs control various biological 

processes such as cell division, cell differentiation, angiogenesis, migration, apoptosis, and 

oncogenesis [13], [14]. Dysregulation of miRNA expression in cancer cells is often rooted in 

the genomic location that encodes the miRNA. They are frequently located in genetically 

unstable regions, fragile sites, or cancer-associated genomic regions (CAGR), which often 

leads to their deletion, resulting in a lack of miRNA expression [15]. Other than that, each 

miRNA can have multiple targeted genes [16], [17]. This broad targeting allows miRNAs to 

regulate complex biological pathways.  miRNAs are also related to the concept of the central 

dogma. The concept of the central dogma describes the stages by which DNA is broken down 

and processed into proteins [18]. In the context of the central dogma, miRNA is a transcription 



product of DNA that does not undergo translation into protein but instead acts as a regulator 

that controls cell growth in the body. Uncontrolled cell growth can lead to the development of 

cancer cells within the body [19]. 

Racial differences play a significant role in the diagnosis of prostate cancer, affecting 

detection outcomes across different racial groups. In the United States, Black men are 1.76 

times more likely to be diagnosed with prostate cancer and have a 2.14 times higher mortality 

rate compared to White men [20]. Furthermore, Black men are more likely to be diagnosed at 

a more advanced stage of the disease [21]. These disparities highlight the need for further race-

specific analysis to reduce the risk of misdiagnosis and improve detection accuracy. Therefore, 

understanding racial differences is essential to ensure more accurate prostate cancer diagnosis. 

In previous studies, there has not been any research that used miRNA data with the 

XGBoost algorithm. A study conducted by Kalaiyarasi M. et al. used a miRNA dataset on 

prostate cancer. This study performed feature selection from a website to identify the most 

significant miRNAs, resulting in 209 miRNAs. The study achieved an accuracy of 92% and an 

AUC of 95% using the SVM algorithm [22]. Other study conducted by Fernando et al. used 4 

miRNAs specifically without feature selection to get the accuracy for biomarker in prostate 

cancer. The study achieved precision of 0.763 and accuracy of 0.762 by using logistic 

regression [23]. 

Unlike previous research, the current study uses data obtained from the GDC TCGA 

XenaBrowser and applies the XGBoost algorithm, which has not yet been used in prostate 

cancer staging detection. Furthermore, this study employs different feature selection methods 

to identify significant miRNA features, such as EdgeR, Lasso + RFE, and ROC, and also 

performs AUC Score validation. The study uses various balancing techniques to achieve 

balanced data. The data used focuses on patients of the white race, and testing will be conducted 

on black race patients to observe the impact of racial differences. By using a combination of 

different algorithms and feature selection methods, this research aims to build a more accurate 

classification model for prostate cancer staging, allowing patients to detect prostate cancer at 

an earlier stage. 

Methodology 

 The pipeline of this study is described in Figure 1. The method consists of several steps 

such as data gathering, data preprocessing, feature selection and AI modelling using XGBoost. 



All steps in this study were conducted by python version 3.13.2 in visual studio software. The 

devices used for this study included a Windows 11 OS, dengan 16GB RAM, processor 12th 

Gen Intel® Core™ i5-12500H (16 CPUs), 2.5Hz dan NVIDIA GeForce RTX 3050 4GB. 

 

Figure 1 Research Pipeline for Prostate Cancer 

Data Gathering 

 This study utilized two primary datasets: stem-loop miRNA expression data and GDC 

TCGA-PRAD phenotype data, both obtained from the GDC TCGA Xena Browser on February 

3, 2025 [24]. The stem-loop miRNA expression dataset contains miRNA expression levels 

from prostate cancer patients, which are essential for identifying disease-specific patterns. The 

expression values were pre-normalized using the log2(RPM + 1) transformation. Additionally, 

the GDC TCGA-PRAD phenotype dataset includes clinical information such as T stage, M 

stage, PSA levels, Gleason scores, age, and other relevant clinical variables. 

Data Preprocessing 

 In the data preprocessing stage, the miRNA expression dataset was separated based on 

race using the phenotype dataset as a reference. The separated data then underwent a cleaning 

process to handle missing values. After the initial preprocessing steps, labelling was carried out 

for cancer stages 1 through 4, which were subsequently grouped into early stage and late-stage 

categories. The labelling was based on T, N, M values, Gleason score, and PSA levels. The 



rules used for label grouping are detailed in Table 1 [25]. These criteria T, N, M values, Gleason 

score, and PSA were obtained from the phenotype dataset. Libraries such as Pandas version 

2.2.2 and Numpy version 1.26.4 were used for data preprocessing, while Scikit-learn version 

1.5.1 was used to perform the labeling process. 

Table 1. Prostate Cancer Staging Criteria 

Group T N M PSA Gleason 

I T1a–c N0 M0 
PSA < 

10 

Gleason 

≤ 6 

  T2a N0 M0 
PSA < 

10 

Gleason 

≤ 6 

  T1–2a N0 M0 PSA X 
Gleason 

X 

IIA T1a–c N0 M0 
PSA < 

20 

Gleason 

7 

  T1a–c N0 M0 

PSA 

≥10 < 

20 

Gleason 

≤ 6 

  T2a N0 M0 

PSA 

≥10 < 

20 

Gleason 

≤ 6 

  T2a N0 M0 
PSA < 

20 

Gleason 

7 

  T2b N0 M0 
PSA < 

20 

Gleason 

≤ 7 

  T2b N0 M0 PSA X 
Gleason 

X 

IIB T2c N0 M0 
Any 

PSA 

Any 

Gleason 

  T1–2 N0 M0 
PSA ≥ 

20 

Any 

Gleason 

  T1–2 N0 M0 
Any 

PSA 

Gleason 

≥ 8 

III T3a–b N0 M0 
Any 

PSA 

Any 

Gleason 

IV T4 N0 M0 
Any 

PSA 

Any 

Gleason 

  Any T N1 M0 
Any 

PSA 

Any 

Gleason 

  Any T Any N M1 
Any 

PSA 

Any 

Gleason 

 

 

 



Feature Selection 

 After obtaining data labeled as early and late stage, feature selection was conducted to 

identify the most significant and cancer-related miRNA features. RFE and Lasso were used to 

identify significant features by specifying the desired number of features in the RFE method. 

In addition, a bioinformatics-based feature selection technique, EdgeR, was also used to 

identify significant miRNA features. Feature selection using EdgeR focused on the logFC 

values and p-values. The feature selection methods used to identify significant miRNA features 

are summarized in Table 2. Scikit-learn version 1.5.1 was used for implementing RFE and 

Lasso, while EdgeR was run using version 4.0.16. ROC analysis was also employed from the 

beginning to select significant miRNA features [26], [27]. The identified miRNA expressions 

will be verified using the websites miRCancer and dbDEMC (Database of Differentially 

Expressed miRNAs in Human Cancers) [28], [29]. Several miRNAs that show a strong 

correlation with prostate cancer will be analysed to identify their target genes using miRDB 

[30]. Through this approach, the study aims to determine whether the genes targeted by these 

miRNAs are also associated with cancer development or progression. 

Table 2. Feature Selection Method 

No. Feature Selection Method Criteria 

1 EdgeR PValue < 0.01 and logFC > 0.4 

2 Lasso + RFE 
Best result from 15, 18, and 19 

miRNA features 

3 ROC ROC > 0.6 

 

XGBoost Modelling 

 In the model development phase, the data was split into training and testing sets using 

three different ratios: 80/20, 70/30, and 60/40. To address class imbalance, a balancing 

technique with a ratio of 1:3 was applied. Only the training data was balanced to avoid 

introducing synthetic data into the test set. The balancing techniques used in this study include 

RandomOverSampler, SMOTE, SMOTEENN, and BorderlineSMOTE. The package used for 

data balancing was imbalanced-learn version 0.12.3. 

The model involved several scenarios focusing on feature selection methods, including 

RFE, Lasso, ROC, and EdgeR. Hyperparameter tuning was performed using Grid Search with 



cross-validation to obtain optimal results. Hyperparameters such as max_depth and 

learning_rate were also used during model construction. After completing all scenarios, 

validation was conducted using the AUC score. The scenarios used in the model development 

process are presented in Table 3. 

Table 3. Modelling Scenario Using XGBoost 

Feature Selection Splitting Ratio Balancing Technique 

EdgeR criteria 

PValue < 0.01 and 

logFC > 0.4 

80:20                     

70:30                     

60:40 

Random Oversampler 

SMOTEEN       

KMeans SMOTE 

Borderline SMOTE 

Lasso + RFE with the 

best result from 15, 

18 dan 19 feature 

80:20                     

70:30                     

60:40 

Random Oversampler 

SMOTEEN       

KMeans SMOTE 

Borderline SMOTE 

ROC criteria > 0.6 

80:20                     

70:30                     

60:40 

Random Oversampler 

SMOTEEN       

KMeans SMOTE 

Borderline SMOTE 

 

The resulting model is evaluated using a classification report and confusion matrix, 

which include accuracy, precision, recall, and F1-score metrics. Each metric serves a specific 

function and is essential in determining whether the model's performance meets the desired 

criteria. The model development process is illustrated in Figure 3. The finalized model is then 

tested using a different dataset specifically, data from Black patients to assess the significance 

of racial differences.  

Result 

Data Gathering and Preprocessing 

 The datasets used in this study are the stem-loop miRNA expression and GDC TCGA-

PRAD phenotype datasets. The stem-loop miRNA expression dataset contains 1,882 miRNA 

features across 551 samples, as shown in Table 4. Meanwhile, the GDC TCGA-PRAD 

phenotype dataset includes 88 variables related to clinical and hospital data. This study focuses 



on the White race, which comprises approximately 83% (458 out of 551) of the total sample 

population. 

Table 4. Dataset miRNA 

miRNA_ID TCGA-KK-A8IG-01A TCGA-EJ-7792-11A TCGA-HC-7079-01A 

hsa-let-7a-1 13.42 12.28 12.51 

hsa-let-7a-2 13.41 12.27 12.53 

hsa-let-7a-3 13.41 12.28 12.52 

 

Data preprocessing involved labeling each sample using the AJCC Cancer Staging 

Manual, which provides information on prostate cancer stages from stage 1 to stage 4. Out of 

458 patients, 360 patients had identifiable cancer stages. From this group, 309 were classified 

as early-stage prostate cancer and 51 as late-stage prostate cancer. The resulting labels were 

stored in the metadata to facilitate the modeling process. 

Feature Selection 

 Feature selection was performed using two different approaches: edgeR and Lasso + 

RFE. The edgeR method resulted in a total of 3 selected miRNAs. The criteria used in this 

scenario were p-value < 0.01 and logFC > 0.4. In addition, feature selection using Lasso and 

RFE yielded 15, 18, and 19 miRNAs. With Lasso and RFE, the number of selected features 

can be determined based on the desired maximum. The selected miRNA features showed 

significant expression results. To further improve performance, ROC analysis was also applied 

with a threshold > 0.6, resulting in 7 miRNAs. The results of feature selection are presented in 

Table 5. The selected features represent the most optimal set for model construction. 

Table 5. Feature Selection Results 

No. 
Feature Selection 

Method 
Criteria miRNA Feature 

1 EdgeR 
PValue < 0.01 and 

logFC > 0.4 
3 miRNA 

2 Lasso + RFE 
Best result from 15 

miRNA feature 
15 miRNA 



3 Lasso + RFE 
Best result from 18 

miRNA feature 
18 miRNA 

4 Lasso + RFE 
Best result from 

159miRNA feature 
19 miRNA 

5 ROC AUC > 0.6 7 miRNA 

 

The miRNA expressions obtained from various feature selection scenarios will be 

verified using several websites such as miRCancer and dbDEMC. These websites will be used 

to check whether the miRNA biomarkers are associated with prostate cancer. The biomarkers 

can be seen in Table 6. 

Tabel 6. Biomarker miRNA pada Database 

No. miRNA ID 

miRCancer dbDEMC 

Biomarker 
Prostate 

Cancer 
Biomarker 

Prostate 

Cancer 

1. hsa-mir-21 V V V V 

2. hsa-mir-302a V V V V 

3. hsa-mir-3155a X X V V 

4. hsa-mir-3662 V X V V 

5. hsa-mir-370 V X V V 

6. hsa-mir-4436b-1 X X X X 

7. hsa-mir-4532 X X V V 

8. hsa-mir-4673 X X V V 

9. hsa-mir-4771-2 X X X X 

10. hsa-mir-4795 X X V V 

11. hsa-mir-490 V X V V 

12. hsa-mir-498 V X V V 

13. hsa-mir-555 X X V V 

14. hsa-mir-631 X X V V 

15. hsa-mir-6504 X X V V 

16. hsa-mir-6761 X X V V 

17. hsa-mir-6785 X X V V 

18. hsa-mir-6876 X X V V 

19. hsa-mir-7641-1 X X X X 

 



Table 3 illustrates that the biomarkers identified through various feature selection 

scenarios exhibit correlations with prostate cancer when evaluated using three different 

databases such as miRCancer, and dbDEMC. The verification process involved assessing each 

miRNA biomarker for general cancer association as well as its specific relevance to prostate 

cancer. While some miRNAs were highly associated with cancer, others demonstrated a direct 

and strong link to prostate cancer. hsa-mir-21 showed a strong and correlation across all 

databases, supporting its significance as a potential biomarker for prostate cancer. Conversely, 

several biomarkers were found to be associated with other cancer types but not with prostate 

cancer. In certain cases, some miRNAs were not detected in specific databases, likely due to 

the absence of those entries in the database repositories. For example, hsa-mir-3155a was only 

found in the dbDEMC database. Among the platforms used, dbDEMC demonstrated the most 

comprehensive corellation, detecting a greater number of relevant biomarkers during the 

validation process. This suggests that dbDEMC may offer a more extensive and up to date 

resource for miRNA-cancer associations.  

Every miRNA in human can have targeted gene to regulate gene expression. For 

example, hsa-miR-21 targets the SCAI gene, which acts as a suppressor of cancer cell invasion. 

When miR-21 reduces the expression of SCAI, it can make it easier for cancer cells to spread. 

Another example is hsa-miR-302a, which targets the CASC1 gene which linked to a higher 

risk of developing certain types of cancer. These cases show that miRNAs can control genes 

that are important in cancer. By targeting multiple genes, miRNAs can help suppress or 

sometimes support cancer development. 

XGBoost Modelling 

 In model development, several scenarios were implemented based on the training-test 

ratio, the number of miRNAs, the feature selection methods used, and the balancing techniques 

applied. 

Table 7. Results for using 3 miRNA features 

Number 

of 

miRNA 

Feature 

Selection 
Ratio Balancing 

AUC 

Score 

Train 

Acc 

Test 

Acc 

(White) 

Test 

Prec 

Test 

Recall 

Test 

F1 

Score 

Test 

Acc 

(Black) 

3 EdgeR 60/40 

Random

Oversam

pler 

100% 98% 99% 98% 100% 99% 88% 



3 EdgeR 80/20 

Random

Oversam

pler 

100% 98% 99% 98% 100% 99% 88% 

3 EdgeR 70/30 

Random

Oversam

pler 

100% 98% 98% 98% 100% 99% 88% 

3 EdgeR 60/40 
Borderlin

eSMOTE 
93% 91% 92% 93% 98% 95% 86% 

3 EdgeR 60/40 SMOTE 92% 83% 92% 92% 100% 96% 88% 

 

As shown in Table 7, the use of RandomOversampler yielded the best results when applied 

with 3 miRNA features. A training-to-test data ratio of 60/40 produced the highest accuracy at 

99%. In addition, the results demonstrated consistent performance despite changes in the data 

split ratios (60/40, 70/30, and 80/20), with accuracy remaining relatively high. This indicates 

that the choice of data split ratio does not significantly affect model accuracy, as long as the 

number of features and balancing technique remain the same. Furthermore, an AUC score of 

100% highlights the model's ability to perfectly distinguish between classes. However, when 

the model was tested using internal data from Black patients, the resulting accuracy dropped to 

88%, indicating that a model trained primarily on data from White patients has limited 

generalizability to other racial groups. 

Table 8. Results for using 15 miRNA features 

Number 

of 

miRNA 

Feature 

Selection 
Ratio Balancing 

AUC 

Score 

Train 

Acc 

Test 

Acc 

(White) 

Test 

Prec 

Test 

Recall 

Test 

F1 

Score 

Test 

Acc 

(Black) 

15 
Lasso + 

RFE 
60/40 

RandomO

versampl

er 

99% 98% 97% 97% 100% 98% 89% 

15 
Lasso + 

RFE 
70/30 

RandomO

versampl

er 

98% 98% 97% 97% 100% 98% 89% 

15 
Lasso + 

RFE 
60/40 SMOTE 98% 99% 97% 97% 100% 98% 84% 

15 Lasso + 80/20 SMOTE 98% 98% 96% 95% 100% 98% 84% 



RFE 

15 
Lasso + 

RFE 
80/20 

RandomO

versampl

er 

98% 98% 96% 95% 100% 98% 89% 

 

As shown in Table 8, the use of 15 miRNA features selected through the Lasso and RFE 

methods resulted in a relatively high accuracy performance, reaching up to 97%. The best 

results were obtained with a 60/40 training-test ratio using the RandomOversampler balancing 

technique. The results indicate that this feature selection combination consistently delivers 

strong model performance, even with variations in the data split ratios and balancing techniques 

applied. The high AUC score of up to 99% further confirms the model’s excellent classification 

ability in distinguishing between classes. However, when tested on data from Black patients, 

the model’s accuracy dropped to between 84% and 89%, highlighting its limitations in 

generalizing to different racial groups. 

Table 9. Results for using 16 miRNA features 

Number 

of 

miRNA 

Feature 

Selection 
Ratio Balancing 

AUC 

Score 

Train 

Acc 

Test 

Acc 

(White) 

Test 

Prec 

Test 

Recall 

Test 

F1 

Score 

Test 

Acc 

(Black) 

16 
Lasso + 

RFE 
60/40 

RandomO

versampl

er 

99% 98% 97% 96% 90% 93% 89% 

16 
Lasso + 

RFE 
80/20 

RandomO

versampl

er 

98% 98% 96% 97% 85% 90% 89% 

16 
Lasso + 

RFE 
70/30 SMOTE 97% 94% 97% 95% 93% 95% 89% 

16 
Lasso + 

RFE 
80/20 SMOTE 97% 94% 97% 98% 90% 93% 89% 

16 
Lasso + 

RFE 
70/30 

RandomO

versampl

er 

98% 98% 97% 96% 90% 93% 89% 

 



As shown in table 9, the results demonstrates that the use of 16 miRNA features selected 

through the combination of Lasso and Recursive Feature Elimination (RFE) consistently yields 

excellent model performance, with AUC scores ranging from 97% to 99% across all 

configurations. The configuration employing a 60/40 training-to-testing data ratio and the 

RandomOversampler technique achieved the highest AUC score of 99%, along with a test 

accuracy of 97%, precision of 96%, recall of 90%, and F1-score of 93%. These results indicate 

that the model is capable of effectively and fairly detecting the target class within the test data. 

Furthermore, the model maintained consistent accuracy at 89% when applied to data from 

Black patients across all configurations, highlighting its robustness and potential applicability 

in diverse demographic settings. Overall, the combination of Lasso + RFE feature selection 

and the RandomOversampler balancing method produced the best classification performance, 

particularly under the 60/40 and 70/30 training-testing splits. These findings underscore the 

critical role of data ratio configuration and balancing techniques in enhancing the predictive 

capability of the classification model. 

Table 10. Results for using 17 miRNA features 

Number 

of 

miRNA 

Feature 

Selection 
Ratio Balancing 

AUC 

Score 

Train 

Acc 

Test 

Acc 

(White) 

Test 

Prec 

Test 

Recall 

Test 

F1 

Score 

Test 

Acc 

(Black) 

17 
Lasso + 

RFE 
70/30 

RandomO

versampl

er 

99% 98% 99% 99% 96% 98% 91% 

17 
Lasso + 

RFE 
60/40 

RandomO

versampl

er 

99% 98% 99% 99% 95% 97% 91% 

17 
Lasso + 

RFE 
70/30 

RandomO

versampl

e 

99% 98% 99% 99% 95% 97% 91% 

17 
Lasso + 

RFE 
60/40 

Borderlin

eSMOTE 
98% 94% 95% 94% 85% 89% 91% 

17 
Lasso + 

RFE 
60/40 SMOTE 93% 93% 92% 90% 76% 72% 91% 

 

As shown in table 10, the results highlights the strong classification performance achieved 

using 17 miRNA features selected through Lasso and Recursive Feature Elimination (RFE), 



particularly when employing the RandomOversampler technique. Under both 70/30 and 60/40 

train-test splits, the model achieved an AUC score of 99%, test accuracy of up to 99%, and a 

high F1-score of 98%. These results demonstrate the model’s excellent precision and 

consistency in classifying data from White patients. In contrast, the use of the SMOTE 

balancing technique resulted in a noticeable decline in performance, with the AUC score 

dropping to 93% and the F1-score falling to 72%. Interestingly, the test accuracy on data from 

Black patients remained consistent at 91% across all configurations, indicating the model’s 

robustness and potential for generalization across different racial groups. 

Table 11. Results for using 18 miRNA features 

Number 

of 

miRNA 

Feature 

Selection 
Ratio Balancing 

AUC 

Score 

Train 

Acc 

Test 

Acc 

(White) 

Test 

Prec 

Test 

Recall 

Test 

F1 

Score 

Test 

Acc 

(Black) 

18 
Lasso + 

RFE 
80/20 

RandomO

versampl

er 

99% 99% 99% 98% 100% 99% 89% 

18 
Lasso + 

RFE 
70/30 

RandomO

versampl

er 

99% 99% 99% 99% 100% 99% 89% 

18 
Lasso + 

RFE 
70/30 SMOTE 100% 98% 99% 99% 100% 99% 89% 

18 
Lasso + 

RFE 
70/30 

Borderlin

eSMOTE 
99% 97% 97% 98% 99% 98% 89% 

18 
Lasso + 

RFE 
70/30 

SMOTEE

N 
76% 95% 88% 88% 99% 93% 93% 

 

As shown in Table 11, the use of 18 miRNA features selected through Lasso and RFE achieved 

the highest test accuracy of 99%, with a precision of 98%, recall of 100%, and an F1-score of 

99%. This best-performing combination was obtained using a 70/30 training-test ratio with the 

RandomOversampler balancing technique, indicating that the model is not only accurate but 

also benefits from a well-balanced dataset during training. The AUC score, reaching between 

99% and 100%, further confirms the model’s strong classification capability. On the other hand, 

the SMOTEEN technique yielded relatively lower results, with a test accuracy of only 88% 

and an AUC score of 76%. This suggests that SMOTEEN may be less effective in handling 

data distribution for this configuration compared to other balancing techniques such as 



RandomOversampler or SMOTE. Additionally, when tested on data from Black patients, the 

model’s accuracy ranged from 89% to 93%, showing an improvement compared to testing with 

fewer selected features. 

Table 12. Results for using 19 miRNA features 

Number 

of 

miRNA 

Feature 

Selection 
Ratio Balancing 

AUC 

Score 

CV 

Test 

Acc 

Train 

Acc 

Test 

Acc 

(White) 

Test 

Prec 

Test 

Recall 

Test 

F1 

Score 

Test 

Acc 

(Black) 

19 
Lasso + 

RFE 
60/40 

RandomO

versampl

er 

99% 86% 99% 99% 99% 100% 100% 89% 

19 
Lasso + 

RFE 
80/20 

RandomO

versampl

er 

99% 88% 99% 99% 98% 100% 99% 89% 

19 
Lasso + 

RFE 
70/30 SMOTE 100% 82% 98% 99% 99% 100% 99% 89% 

19 
Lasso + 

RFE 
60/40 SMOTE 100% 85% 98% 99% 99% 100% 100% 89% 

19 
Lasso + 

RFE 
60/40 

Borderlin

eSMOTE 
98% 88% 97% 97% 97% 99% 98% 89% 

 

As shown in Table 12, although the same feature selection methods Lasso and RFE were used, 

the model’s performance remained exceptionally high with 19 selected miRNA features. The 

best scenario was achieved with a 60/40 data split ratio and the RandomOversampler balancing 

technique, resulting in a test accuracy of 99%, along with a precision of 99%, recall of 100%, 

and an F1-score of 100%. These metric values indicate that the model is capable of classifying 

the data with excellent accuracy. Supported by an AUC score of 99%, the model demonstrates 

outstanding discriminative ability. Compared to other balancing techniques such as SMOTE or 

BorderlineSMOTE, RandomOversampler continued to yield superior results in model 

development using 19 features. When tested on data from Black patients, the model maintained 

an accuracy of 89% across all configurations, indicating better performance consistency across 

racial groups compared to models using fewer features. The model using 19 miRNA features 

were tested using cross validation since it has the best accuracy among all model. The accuracy 

for 5-fold cross validation lower than the normal splitting due to increase in variation across 

fold in cross validation. However, this does not contradict the high performance seen in the 



main evaluation—it instead reinforces the model's overall reliability and robustness by 

showing that it performs well across multiple subsets of data, not just a single train-test split. 

Table 13. Results for using 7 miRNA features 

Number 

of 

miRNA 

Feature 

Selection 
Ratio Balancing 

AUC 

Score 

Train 

Acc 

Test 

Acc 

(White) 

Test 

Prec 

Test 

Recall 

Test 

F1 

Score 

Test 

Acc 

(Black) 

7 ROC 80/20 SMOTE 100% 97% 99% 98% 100% 99% 84% 

7 ROC 60/40 SMOTE 99% 97% 97% 97% 100% 98% 84% 

7 ROC 70/30 SMOTE 99% 97% 97% 97% 100% 98% 84% 

7 ROC 80/20 
Borderlin

eSMOTE 
97% 94% 93% 94% 98% 96% 86% 

7 ROC 60/40 
Borderlin

eSMOTE 
97% 94% 93% 93% 99% 96% 86% 

 

As shown in Table 13, the use of ROC-based feature selection with 7 miRNA features produced 

excellent performance, especially when combined with SMOTE and an 80/20 data split ratio, 

achieving a test accuracy of 99%. Furthermore, the high precision, recall, and F1-score values 

indicate that the model is not only accurate but also stable in detecting both classes evenly. 

Despite the relatively small number of features, the model maintained strong performance 

across various scenarios, particularly when using SMOTE as the balancing technique. This 

suggests that feature selection using ROC remains effective even with low-dimensional feature 

sets. Supported by an AUC score of up to 100%, the model demonstrated highly optimal 

classification capability. However, when tested on data from Black patients, the accuracy 

dropped to 84%, indicating a performance gap between racial groups. This highlights that while 

ROC-based feature selection is effective for the main dataset, models with fewer features may 

struggle to generalize well to data from different racial backgrounds. 

Discussion 

 This model utilizes XGBoost along with several data splitting ratios and different 

balancing techniques, including RandomOversampler, SMOTE, SMOTEEN, and 

BorderlineSMOTE. By applying various scenarios in the model-building process, a range of 



results were obtained, with performance improving across configurations. In addition, feature 

selection methods such as Lasso + RFE and edgeR were used to identify significant miRNA 

features, further enhancing the potential for optimal outcomes. The results indicate that the 

model’s performance is highly dependent on the combination of feature selection method, train-

test split ratio, and balancing technique. This approach has proven effective in improving the 

model’s accuracy in classifying cancer data more precisely. 

 Across all experiments, the best performance was achieved when using 19 miRNA 

features, with the RandomOversampler balancing technique and a 60/40 train-test ratio, 

resulting in an accuracy of 99%, precision of 99%, recall of 100%, and F1-score of 100%. This 

model demonstrates that RandomOversampler consistently handles imbalanced samples 

effectively in the context of genetic data. The high metric values indicate that the model not 

only excels at identifying the majority class but is also highly sensitive to the minority class. 

These findings highlight the critical role of balancing techniques and feature selection in the 

development of genomic-based classification models. 

However, when the same model was tested on data from Black patients, the test 

accuracy dropped to 89%. This decline indicates that a model trained predominantly on data 

from White patients has limitations in generalizing its performance across different racial 

groups. These results emphasize that race is a relevant factor in the performance of genomic-

based classification models and underscore the importance of considering population diversity 

in the training process to build fairer and more inclusive predictive systems. 

Feature selection plays a crucial role in determining the final performance of a 

classification model. In this study, seven feature selection scenarios were implemented. 

Scenario 1 used a statistical approach with edgeR, applying the criteria of p-value < 0.01 and 

logFC > 0.4 to select significant miRNA features, resulting in the highest accuracy of 99%. 

Scenarios 2 to 4 applied a combination of Lasso and RFE, with variations in the maximum 

number of selected miRNA features 15, 16, 17, 18, and 19 miRNAs, respectively. All three 

scenarios achieved the same accuracy of 99%, demonstrating the consistent performance of the 

Lasso + RFE approach. Scenario 5 employed the ROC Curve method and selected 7 miRNAs 

with the highest AUC values, which also achieved an accuracy of 99%. 

Based on the models developed using various scenarios, the set of 19 miRNA features 

demonstrated the best overall performance. Therefore, the implementation for obtaining these 

19 miRNA features can be carried out using Next-Generation Sequencing (NGS) technology, 



specifically with the Illumina HiSeq 2000 platform, to align with the sequencing approach used 

in the existing training data. During the implementation process, the sequencing results yielded 

1,881 normalized miRNA expression profiles in the form of Reads Per Million (RPM). The 

identified miRNAs will then be matched against the selected 19 miRNA features to ensure 

feature consistency, enabling effective detection of prostate cancer. 

Conclusion 

 This study developed a prostate cancer detection model using the XGBoost algorithm, 

taking into account miRNA data and racial factors. Feature selection methods such as Lasso + 

RFE, edgeR, and ROC were employed to identify significant miRNA features for model 

development. The results show that with proper feature selection, the model achieved high 

accuracy of up to 99%, with a precision of 99%, and recall and F1-score of 100%, 

demonstrating that feature selection plays a crucial role in improving predictive performance. 

Additionally, when tested on data from Black patients, the model achieved an accuracy of 89%. 

This difference indicates a possible variation in miRNA expression patterns across races, which 

should be considered when developing more inclusive and representative classification models. 
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