BAB III

METODOLOGI PENELITIAN

3.1 Gambaran Umum Objek Penelitian

PT Global adalah sebuah bisnis yang mendistribusikan layanan keuangan dan barang-barang digital. Sejak didirikan pada tahun 2006, bisnis ini telah berkembang menjadi salah satu distributor terbaik di industrinya. Selain itu, PT Global Reload juga menjadi mitra bagi banyak Usaha Mikro, Kecil, dan Menengah (UMKM) dan agen resmi untuk bank-bank besar seperti BRI dan BNI. Perusahaan terus berupaya membangun jaringan distribusi yang luas dan terus berinovasi untuk memenuhi visinya menjadi penyedia produk dan layanan keuangan digital yang inovatif, dapat dipercaya, dan terbaik di kelasnya, serta misinya untuk membuat produk dan layanan keuangan digital berkualitas tinggi dapat diakses dengan mudah oleh masyarakat luas.

Dalam penelitian ini, perusahaan merupakan pihak yang menyumbangkan data dan referensi berupa proses kerja yang dibutuhkan berdasarkan operasional sehari-hari. PT Global Reload, bagaimanapun, memiliki sejumlah masalah manajemen persediaan yang dapat berdampak pada kinerja bisnis secara keseluruhan dan efektivitas operasional. Sifat manual dari prosedur manajemen inventaris yang ada saat ini menyebabkan pencatatan data yang tidak tepat dan rentan terhadap kesalahan manusia. Hal ini sering kali menyulitkan pengawasan inventaris perusahaan secara realtime, yang menyebabkan masalah seperti kelebihan stok pada barang yang kurang diminati atau kehabisan stok pada produk Selain itu, tidak adanya sistem yang terintegrasi menghambat yang populer. antar departemen, yang menyebabkan keterlambatan kolaborasi ketidakefektifan dalam pengambilan keputusan mengenai distribusi dan pembelian Masalah-masalah ini menyoroti perlunya menerapkan Sistem komoditas. Informasi Manajemen Inventaris (SIMI) yang lebih mutakhir dan efektif untuk meningkatkan ketepatan, efektivitas, dan daya tanggap manajemen inventaris serta memfasilitasi ekspansi perusahaan di masa depan.

Tujuan dari penelitian ini adalah untuk menggunakan metode *Waterfall* bersama dengan pendekatan *System Development Life Cycle (SDLC)* untuk merancang dan membangun sistem manajemen persediaan. PT Global Reload akan dapat mengelola inventaris mereka secara lebih efektif dan efisien dengan bantuan solusi ini. Fitur-fitur termasuk manajemen stok, pelacakan penggunaan inventaris, dan pelaporan inventaris akan menjadi bagian dari sistem manajemen inventaris yang dikembangkan. Struktur organisasi perusahaan PT Global Reload terdiri dari beberapa lapisan, termasuk:

Gambar 3. 1 Struktur Organisasi PT Global Reload

Berdasarkan gambar 3.1 yang merupakan struktur organisasi perusahaan di atas, *Chief Executive Officer* (CEO) PT Global Reload bertanggung jawab atas pengawasan umum dan pengambilan keputusan strategis. Dia diawasi oleh Manajer HRD, yang bertanggung jawab atas sumber daya manusia, termasuk perekrutan dan pelatihan staf untuk memastikan bahwa grup memiliki orang yang tepat. Manajer operasional bertanggung jawab untuk memastikan bahwa semua prosedur dijalankan secara efektif dan operasional harian berjalan dengan lancar. Operasi keuangan perusahaan, termasuk pelaporan dan pencatatan keuangan yang tepat, diawasi oleh manajer keuangan dan akuntansi. Untuk menarik klien dan meningkatkan penjualan, Divisi Penjualan & Pemasaran mengkhususkan diri dalam memasarkan layanan keuangan dan barang digital. Selain itu, untuk mempertahankan kepuasan klien, layanan pelanggan bertindak sebagai garis pertahanan pertama ketika menangani pertanyaan dan masalah dari pelanggan. Sebagai hasilnya, penelitian ini sangat membantu PT Global Reload dalam

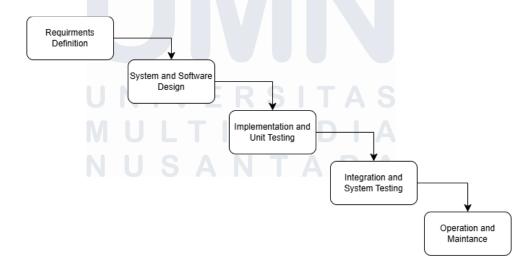
mengidentifikasi kebutuhan akan sistem manajemen informasi yang dapat secara efisien mendukung pembelian, pemeliharaan, dan penjualan produk digital. Diharapkan bahwa implementasi sistem ini akan meningkatkan akurasi data, mempercepat proses pengambilan keputusan, dan pada akhirnya meningkatkan pertumbuhan bisnis dan kepuasan pelanggan.

3.2 Metode Penelitian

System Development Lifecycle (SDLC) bersama dengan teknik waterfall adalah metodologi penelitian yang digunakan dalam penelitian ini. Dalam memilih metode penelitian yang optimal untuk PT Global Reload, perbandingan metode penelitian yang relevan berikut ini juga diperhitungkan. Berikut perbandingan beberapa metode:

Tabel 3. 1 Perbandingan beberapa metode

Aspek	Model Waterfall	Model Prototyping	Model Agile	
Pendekatan	Sekuensial	Iteratif-Eksploratif:	Iteratif-	
	(Berurutan): Setiap	Membangun versi	Inkremental:	
	fase harus selesai	awal (prototipe)	Pengembangan	
	secara tuntas	dengan cepat untuk	dilakukan dalam	
	sebelum	mendapatkan umpan	siklus pendek	
	melanjutkan ke	balik pengguna, lalu	(sprint), di mana	
	fase berikutnya.	memperbaikinya	setiap siklus	
		secara berulang.	menghasilkan	
	UNIV	FRSITA	tambahan	
	MILLIT		fungsionalitas	
	MULI		pada produk.	
Fleksibilitas	Rendah: Sulit dan	Sedang: Cukup	Tinggi: Sangat	
	mahal untuk	fleksibel karena	fleksibel.	
	mengakomodasi	perubahan dapat	Perubahan adalah	
	perubahan jika	dimasukkan	bagian inti dari	
	sudah melewati	berdasarkan umpan	proses dan dapat	


Aspek	Model Waterfall	Model Prototyping	Model Agile	
	tahap analisis dan	balik dari setiap versi	diakomodasi di	
	desain.	prototipe.	setiap sprint baru.	
Keterlibatan	Rendah: Terutama	Tinggi: Pengguna	Sangat Tinggi:	
Pengguna	di awal (analisis	terlibat aktif dalam	Pengguna (atau	
	kebutuhan) dan di	memberikan umpan	perwakilannya)	
	akhir (pengujian	balik pada setiap versi	terlibat secara	
	penerimaan).	prototipe.	terus-menerus di	
			sepanjang siklus	
	4		pengembangan.	
Kapan	Ketika kebutuhan	Ketika kebutuhan	Ketika proyek	
Cocok	sistem sudah	awal belum jelas atau	bersifat	
Digunakan	sangat jelas,	kabur, dan diperlukan	erlukan kompleks,	
	terdefinisi dengan	visualisasi nyata	kebutuhan	
	baik, dan tidak	untuk mendapatkan	diperkirakan akan	
	mungkin berubah.	pemahaman yang	terus	
		sama antara	berkembang, dan	
		pengembang dan	kecepatan rilis	
		pengguna.	menjadi prioritas.	

Berdasarkan perbandingan pada tabel 3.1, model *Waterfall* dipilih sebagai metodologi pengembangan yang paling sesuai untuk penelitian ini karena beberapa pertimbangan fundamental yang selaras dengan karakteristik proyek dan konteks akademisnya. Pertama, dari sisi karakteristik proyek, kebutuhan fungsional untuk sebuah sistem inventaris standar dapat didefinisikan secara jelas dan lengkap di awal [9]. Tingkat kepastian kebutuhan yang tinggi ini membuat pendekatan sekuensial *Waterfall* lebih efisien dibandingkan Model *Prototyping* yang lebih cocok digunakan saat kebutuhan masih ambigu dan memerlukan validasi berulang [6]. Demikian pula, ruang lingkup penelitian yang terbatas dan telah ditetapkan membuat fleksibilitas tinggi dari Metode *Agile*, yang dirancang untuk mengakomodasi perubahan berkelanjutan, menjadi kurang relevan untuk kasus ini. Selain karakteristik proyek, konteks pelaksanaan penelitian ini juga menjadi faktor

penentu. Sebagai penelitian yang dilakukan menggunakan pendekatan *Waterfall* yang linear dengan peta jalan (*roadmap*) yang jelas lebih mudah dikelola dibandingkan Metode *Agile* yang umumnya menuntut adanya tim kolaboratif dan koordinasi intensif [13]. Lebih lanjut, tuntutan akademis untuk pelaporan skripsi yang sistematis sangat didukung oleh sifat *Waterfall* yang menghasilkan artefak atau *deliverable* yang jelas dan terdokumentasi di setiap akhir tahapannya, membuat alur penelitian lebih mudah untuk dilaporkan secara terstruktur [13].

3.2.1 Metode Pengembangan Sistem

Penelitian ini menggunakan pendekatan kuantitatif dengan metode pengembangan sistem *System Development Life Cycle (SDLC)*. Model SDLC yang dipilih adalah model *Waterfall* [5]. Model *Waterfall* adalah pendekatan sekuensial atau berurutan di mana pengembangan dipandang sebagai aliran yang terus mengalir ke bawah (seperti air terjun) melalui fase-fase analisis, desain, implementasi, pengujian, dan pemeliharaan. Model ini dipilih karena alurnya yang logis, terstruktur, dan setiap tahapannya memiliki *deliverable* (hasil kerja) yang jelas, sehingga sangat cocok untuk proyek dengan ruang lingkup dan kebutuhan yang dapat diidentifikasi secara detail di awal, seperti kasus pada PT. Global Reload. Terdapat 5 tahapan dalam metode *Waterfall* [21]:

Gambar 3. 2 Lima tahapan metode SDLC Waterfall

1. Requirement Definition

Tahapan awal dalam metode *Waterfall* adalah memahami kebutuhan pengguna akan perangkat lunak yang akan dibangun. Pada fase ini, dilakukan wawancara mendalam dengan manajer operasional untuk mengidentifikasi kebutuhan dari sisi bisnis dan pelaporan. Selain itu, dilakukan observasi langsung terhadap staf operasional untuk memetakan alur kerja inventaris manual yang saat ini berjalan, serta menganalisis dokumen yang ada seperti contoh catatan stok dan penjualan.

2. System and Software Design

Pada tahap ini, kebutuhan spesifik yang ditentukan oleh tahap analisis direfleksikan dalam desain sistem. Kegiatan yang dilakukan mencakup perancangan arsitektur sistem, struktur basis data, dan alur kerja logis. Perancangan akan divisualisasikan menggunakan *Unified Modeling Language* (UML).

3. Implementation and Unit Testing

Pada tahap ini, perangkat lunak dibuat dalam bentuk modul-modul kecil. Pembangunan basis data dilakukan menggunakan *MySQL* berdasarkan *Class Diagram*, yang dilanjutkan dengan pengkodean (*coding*) setiap fitur menggunakan bahasa pemrograman PHP.

4. Integration and System Testing

Setelah setiap modul dikembangkan dan diuji, proses integrasi dilakukan untuk menggabungkan modul-modul tersebut ke dalam sistem secara keseluruhan. Semua modul akan digabungkan dan diuji menggunakan metode *black box* dari sudut pandang pengguna. Skenario uji dibuat berdasarkan *Use*

Case Diagram untuk memvalidasi bahwa sistem telah memenuhi semua kebutuhan fungsional.

5. Operation and Maintenance

Tahap terakhir adalah pengoperasian dan pemeliharaan perangkat lunak oleh pengguna. Proses pengembangan ini dianggap selesai setelah tahap pengujian fungsional berhasil dan hasilnya terdokumentasi. Tahap Operasi dan Pemeliharaan jangka panjang berada di luar ruang lingkup proyek ini.

3.3 Teknik Pengumpulan Data

Penelitian ini menggunakan pendekatan kualitatif untuk mendapatkan pemahaman yang mendalam dan kontekstual mengenai kebutuhan sistem. Data primer dan sekunder dikumpulkan melalui dua teknik utama, yaitu wawancara dan studi pustaka, yang kemudian divalidasi untuk menjamin kredibilitas temuan.

3.3.1 Wawancara

Wawancara mendalam dilakukan untuk menggali data primer mengenai proses bisnis, kendala operasional, serta kebutuhan fungsional dan nonfungsional sistem langsung dari sumbernya. Teknik yang digunakan adalah wawancara semi-terstruktur untuk memungkinkan adanya fleksibilitas dalam menggali informasi.

• Kualifikasi dan Jumlah Responden Pemilihan responden (narasumber) dalam penelitian ini menggunakan teknik *Purposive Sampling*, yaitu memilih individu yang dianggap paling memahami dan paling relevan dengan topik penelitian. Rincian responden adalah sebagai berikut:

No	Peran	Jumlah	Kualifikasi dan Tujuan		
			Wawancara		
1.	Manajer	1 orang	Manajer operasional memiliki		
	Operasi		pandangan menyeluruh terhadap alur		
	onal		bisnis. Beliau paling memahami		
			dampak dari masalah inventaris		
			terhadap tujuan perusahaan, seperti		
			kerugian finansial akibat kehabisan		
			stok atau inefisiensi biaya.		
			Keterlibatannya sangat krusial untuk		
			mengidentifikasi kebutuhan tingkat		
			tinggi (high-level requirements),		
			seperti jenis laporan yang		
			dibutuhkan, data analitik untuk		
			pengambilan keputusan, dan		
			bagaimana sistem baru harus		
			mendukung strategi bisnis		
			perusahaan.		
2.	Staf	1 orang	Staf pelaksana adalah individu yang		
	Admin /		setiap hari berinteraksi langsung		
	Operasi		dengan sistem manual yang ada. Dia		
	onal		paling memahami kendala, kesulitan,		
			dan alur kerja harian secara detail.		
		,	Masukannya sangat vital untuk		
U	NII	ER	merancang sistem yang fungsional		
M	UL	TIN	dan <i>user-friendly</i> , karena beliau		
N	US	AN	adalah representasi dari calon		
			pengguna utama sistem. Beliau dapat		
			memberikan informasi spesifik		
			mengenai titik-titik di mana human		

No	Peran	Jumlah	Kualifikasi	dan	Tujuan
			Wawancara		
			error paling sering terjadi dan proses		
			mana yang paling memakan waktu.		

3.3.2 Studi Pustaka

Studi pustaka dilakukan dengan menelaah berbagai literatur relevan untuk membangun kerangka teoretis yang kuat. Sumber yang digunakan meliputi buku teks, jurnal penelitian, artikel ilmiah, dan dokumentasi teknis terkait pengembangan sistem inventaris dan metode *Waterfall*. Validasi dalam studi pustaka dilakukan dengan cara memprioritaskan sumber-sumber primer dan bereputasi, seperti buku dari penulis ternama di bidang rekayasa perangkat lunak dan artikel dari jurnal ilmiah yang telah melalui proses *peer-review*.

Untuk menjamin keabsahan dan kredibilitas data kualitatif yang terkumpul, penelitian ini akan menerapkan teknik Triangulasi Data. Triangulasi adalah proses verifikasi temuan dengan cara membandingkan data dari berbagai sumber dan metode yang berbeda. Proses validasi yang akan dilakukan meliputi:

1. Triangulasi Sumber.

Membandingkan data yang diperoleh dari narasumber yang berbeda untuk mendapatkan gambaran yang lebih utuh. Misalnya, informasi mengenai masalah strategis dari Manajer akan diverifikasi dengan keluhan operasional sehari-hari yang disampaikan oleh Staf. Jika informasi dari kedua sumber saling mendukung, maka data tersebut dianggap valid.

2. Triangulasi Metode.

Membandingkan temuan dari hasil wawancara (data primer) dengan teori atau konsep yang ditemukan dalam studi pustaka (data sekunder).

Misalnya, jika hasil wawancara mengungkapkan masalah sering terjadi kesalahan *input* data, temuan ini divalidasi dengan teori dari literatur yang menyatakan bahwa sistem manual memang memiliki kelemahan inheren berupa kerentanan terhadap *human error* [29].

3. Member *Check* (Konfirmasi Narasumber).

Setelah sesi wawancara selesai dan hasilnya ditranskripsikan atau dirangkum, poin-poin utama dari interpretasi akan disajikan kembali kepada narasumber. Tujuannya adalah untuk memastikan bahwa pemahaman dan interpretasi yang didapat sudah akurat dan sesuai dengan apa yang dimaksudkan oleh narasumber, sehingga mengurangi risiko salah tafsir.

3.4 Tools Penelitian

Penelitian ini menggunakan beberapa tools untuk mendukung pengembangan sistem manajemen inventaris pada PT. Global Reload dengan menerapkan metode waterfall. Visual Studio Code digunakan sebagai code editor utama dalam pengembangan sistem, baik untuk bagian Front End maupun Back End. Untuk merancang antarmuka pengguna (user interface) yang interaktif dan intuitif, penelitian ini memanfaatkan Figma sebagai alat desain. Selain itu, pengelolaan basis data dilakukan menggunakan PhpMyAdmin, yang berfungsi sebagai platform pengelolaan dan pengembangan basis data secara efisien selama proses penelitian ini. Kombinasi tools ini dipilih untuk memastikan pengembangan sistem berjalan optimal dan sesuai dengan kebutuhan pengguna.

M U L T I M E D I A N U S A N T A R A