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Abstract—Formula 1 (F1) is one of the most prestigious
motorsport events in the world, combining speed, strategy, and
high technology. Predicting the World Driver Champion (WDC)
is an intriguing challenge in the era of modern sports analytics.
This research aims to build a model to predict the WDC for
the 2025 season using the Extreme Gradient Boosting (XGBoost)
algorithm, known for its superiority in handling complex and
tabular data. The dataset is obtained from the Jolpi APL, covering
historical F1 data from the 1950 to 2025 seasons, including
race results, qualifying sessions, driver standings, and team
data. The data is then processed through merging, cleaning,
feature engineering, and transformation stages, and then split
into training and testing data. The model is developed and opti-
mally adjusted through hyperparameter tuning using the Optuna
library to find the best parameter combinations that increase
prediction accuracy. The model evaluation was conducted using
the Mean Absolute Error (MAE), Root Mean Squared Error
(RMSE), and R? Score metrics. The evaluation results for the
2025 season data indicate that the model has an MAE value
of 1.0610, an RMSE of 1.3634, and an R> score of 0.9441.
These results demonstrate that the XGBoost model is capable
of predicting drivers’ final positions with high accuracy. This
research is expected to contribute to the development of data-
driven prediction systems for motorsports, particularly Formula
1.

Index Terms—Formula 1, Prediction, World Driver Champion,
XGBoost

I. INTRODUCTION

Formula 1 (F1) is the highest class of international motor-
sport, combining speed, strategy, and cutting-edge technology
[16], [18]. Since its inception in 1950, F1 has evolved into one
of the most data-driven and technologically complex sports.
Modern teams rely on real-time telemetry from thousands
of car sensors to monitor tire wear, fuel consumption, aero-
dynamic performance, and component degradation, enabling
optimized decision-making throughout the race [10], [19],
[20].

Throughout an F1 season, drivers accumulate points based
on their finishing positions in each race [17]. The driver
with the highest total at the end of the season becomes
the World Driver Champion (WDC). However, predicting the
WDC is challenging due to the dynamic nature of the sport,
involving variables such as vehicle performance, team strategy,
and evolving race regulations [9]. Technical innovations like
the Drag Reduction System (DRS) have increased overtaking
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opportunities, making race outcomes more unpredictable [8],
[17].

The recent dominance of Max Verstappen, who secured
four consecutive WDC titles from 2021 to 2024, reflects the
significance of consistency and adaptability in modern F1
[14], [15]. His continued performance makes him the top
contender for the 2025 season, generating widespread interest
in predictive analytics for motorsport outcomes.

The role of data extends beyond the racetrack. In profes-
sional sports, data-driven strategies are reshaping management
decisions, as seen in major financial transactions like the $10
billion acquisition of the Los Angeles Lakers [?], [13]. These
developments reflect a growing demand for accurate predictive
models powered by machine learning (ML) techniques.

Extreme Gradient Boosting (XGBoost) has shown strong
performance in predicting sports outcomes, including cricket
[7], tennis [6], and horse racing [5]. Additionally, Patil et al.
[4] demonstrated that statistical models can uncover technical
factors in F1 cars that strongly correlate with a driver’s season
points using regression and principal component analysis.

This research aims to leverage the XGBoost algorithm to
predict the 2025 Formula 1 World Driver Champion, based
on data such as race and qualification results, driver standings,
and car/team attributes. The model utilizes data up to Round
10 of the 2025 season, retrieved via the official Jolpi APIL.
The outcome of this research could support fans, analysts,
sponsors, and broadcasters in understanding mid-season per-
formance trends in the competitive landscape of F1.

II. THEORETICAL BASIS
A. Formula 1

Formula 1 (F1) is the pinnacle of single-seater motorsport,
featuring high-performance cars, advanced technology, and
elite drivers from around the world [3]. The championship
awards points based on finishing positions in two race formats:
the feature race (main race) and the sprint race, each with
distinct scoring systems [26].

Table I summarizes the current points allocation for both
race types. The feature race awards a maximum of 25 points,
reflecting its status as the primary event of the weekend.
The sprint race, introduced in 2021 to increase weekend



excitement, awards fewer points and has a shorter distance
without mandatory pit stops [25], [34].

Position | Feature Race | Sprint Race

Ist 25 8
2nd 18 7
3rd 15 6
4th 12 5
5th 10 4
6th 8 3
7th 6 2
8th 4 1
9th 2 0
10th 1 0

TABLE T
POINTS DISTRIBUTION FOR FEATURE AND SPRINT RACES.

The F1 scoring system has evolved over time to ensure
competitive fairness and maintain fan engagement. Major
changes include expanding point allocations (e.g., from top 6
to top 10), adding fastest lap points (2019-2024), and trialing
double points for the final race in 2014 [28], [35]. However,
fastest lap points were removed again in 2025 [29].

F1 also employs a multi-phase qualifying format (Q1, Q2,
Q3) to determine starting positions for the feature race. Each
session progressively eliminates the slowest drivers, culminat-
ing in a shootout among the top 10 for pole position [30], [31].
The 107% rule applies in Q1 to ensure competitive entry into
the race [36].

On sprint weekends, an alternate Sprint Qualifying format
is used, comprising shorter timed sessions (SQ1-SQ3), which
set the grid for the sprint race. Grid penalties from engine
component changes or infractions can also affect final race
positions, making qualification strategy as crucial as race pace.

B. Machine Learning

Machine Learning (ML) is a subset of Artificial Intelligence
(AI) that enables systems to automatically learn from data,
identify patterns, and make predictions or decisions with
minimal human intervention. Unlike traditional programming,
which relies on explicit rules, ML develops models based
on historical data and improves performance through iterative
training [2].

According to Badillo et al. [1], ML employs statistical and
computational methods to extract knowledge from data for
tasks such as classification and prediction. It is particularly
effective in processing large and complex datasets and adapt-
ing to dynamic input patterns. A further subfield of ML is
Deep Learning (DL), which utilizes multi-layered artificial
neural networks to process unstructured data such as images
and audio.

Fig. 1 illustrates the hierarchical relationship between Al,
ML, and DL. Al represents the broadest category, encompass-
ing all intelligent computational systems. ML is a subset of
Al focused on learning from data, while DL is a more specific
subset of ML that uses deep neural architectures to solve more
complex problems [32].

Artificial intelligence uses computer

Artificialintelligence ——— %y science and data to enable problem

solving in machines

Machine learning refers to the study of
computer systems that learn and adapt
automatically from experience, without
being explicitly programmed

Deep learning is a machine learning
technique that layers algorithms and
computing units—or neurons—into
artificial neural networks that mimic the
human brain

Fig. 1. The relationship between Al, Machine Learning, and Deep Learning.

C. Extreme Gradient Boosting (XGBoost)

Extreme Gradient Boosting (XGBoost) is a high-
performance machine learning algorithm based on the
gradient boosting decision tree (GBDT) framework [11], [12].
It has gained significant popularity for tabular data prediction
tasks and competitive data science applications due to its
efficiency, scalability, and predictive accuracy.

Unlike traditional decision trees, which are prone to over-
fitting and limited generalization [22], XGBoost builds an
ensemble of shallow trees sequentially, where each new tree
corrects the residual errors of the previous ensemble. This
additive model is optimized using a regularized objective
function:
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Here, I(y;, 3;) denotes the loss function between predicted
and actual values, and Q(fy) is the regularization term to
control model complexity and prevent overfitting:
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In this formulation, 7" is the number of leaves in a tree,
w; is the prediction score on the j-th leaf, and + and A are
regularization parameters.

XGBoost differs from random forests in that it builds trees
sequentially, not in parallel [23]. Tree construction in XGBoost
is guided by maximizing the information gain at each node.
The gain is calculated as:
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where G, Gp are first-order gradients, and Hy, Hg are
second-order derivatives (Hessians) for the left and right child
nodes, respectively.



A visual summary of the XGBoost training process is
shown in Fig. 2, which demonstrates its iterative and residual-
correcting architecture.
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Fig. 2. Illustration of XGBoost model training process [21].

D. Evaluation Metrics

To assess the predictive performance of regression models,
several evaluation metrics are commonly used. The three
primary metrics are Mean Absolute Error (MAE), Root Mean
Square Error (RMSE), and the coefficient of determination
(R? score) [37], [38].

1) Mean Absolute Error (MAE): MAE measures the aver-
age absolute difference between predicted values and actual
values. It is robust to outliers and is defined as:

1 & .
= 1y — 9l 4)
n i=1

where y; is the true value, g; is the predicted value, and n is
the number of observations.

2) Root Mean Square Error (RMSE): RMSE is the square
root of the average squared differences between predictions
and actual values. It penalizes larger errors more heavily than
MAE [38]:

MAE =

RMSE = ®)

3) R? Score (Coefficient of Determination): The R? score

indicates the proportion of the variance in the target variable
explained by the model. Its value ranges from O to 1 and is
calculated as:
Z?:l(yi - 9:)°
Z:'L:1 (yi —9)?
where ¢ is the mean of the observed data. Higher R? values
indicate better model performance [37].

4) Cross-Validation: Cross-validation is a statistical method
used to evaluate model generalization on unseen data. The
most common approach is k-fold cross-validation, which par-
titions the dataset into k equal parts. The model is trained on
k — 1 folds and validated on the remaining fold, repeating the
process k times [24]. The final performance is averaged across

RZ=1- (6)

all folds, reducing the risk of overfitting and providing a more
reliable performance estimate.

III. RESEARCH METHODOLOGY
A. Literature Review

A comprehensive literature review was conducted to estab-
lish the theoretical and methodological basis for this research,
focusing on the application of machine learning—particularly
the XGBoost algorithm—to Formula 1 data. Prior studies
on World Driver Champion (WDC) prediction have explored
various modeling approaches but show limitations in scope
and methodology.

Den Hartog [39] employed machine learning models such as
Logistic Regression, Random Forest, AdaBoost, and XGBoost
to predict the WDC from 2014 to 2022. XGBoost yielded
the best performance with an accuracy of 93% and an F1-
score of 0.85. The key features included average finishing
position, number of wins, and podiums. However, the research
was limited to end-of-season predictions and did not utilize
explainable AI (XAI) techniques or contextual race factors
such as penalties, pit strategies, or weather conditions.

In contrast, Van Kesteren and Bergkamp [40] analyzed the
contribution of drivers versus constructors using a Bayesian
multilevel rank-ordered logit regression model. Their results
indicated that constructors accounted for 88% of performance
variance. Despite offering valuable insights, the research was
descriptive in nature and did not develop predictive models for
championship outcomes.

This research addresses the research gaps by introducing
a mid-season regression-based WDC prediction model using
XGBoost with hyperparameter tuning via Optuna. It utilizes
a comprehensive dataset from the 1950-2025 seasons, up
to round 10 of the 2025 season. The model’s performance
is evaluated using standard regression metrics including R?,
Mean Absolute Error (MAE), and Root Mean Squared Error
(RMSE). Unlike previous work, this approach allows for early-
season championship forecasts and lays the groundwork for
real-time predictive analysis in competitive racing scenarios.

B. Data Collection

Historical Formula 1 data was collected using the Jolpi API,
which provides comprehensive access to racing information,
including race results, driver standings, team data, and quali-
fying performance [33]. The data spans from the 1950 to the
2025 season and was retrieved using Python.

The following API endpoints were utilized:

e /races — race schedules and locations.

e /results - final race outcomes (finish positions).

e /qualifying — qualifying session results (start posi-

tions).

e /drivers — demographic and identity data of drivers.

e /driverstandings — seasonal points and rankings of

drivers.

e /constructors — information about Formula 1 teams.

e /constructorstandings — team rankings by accu-

mulated points.



The collected data was stored in .csv format to facilitate
preprocessing and integration with data analysis tools such
as pandas. This structured format also supports seamless
exploration and visualization in subsequent stages of the
analysis.

C. Data Analysis

Data analysis was performed to understand the structure,
patterns, and relationships between variables in the historical
Formula 1 dataset. Visualization was carried out using the
Plotly library, enabling interactive exploration of the data.

This step involved exploratory data analysis (EDA) to
examine point distributions across seasons, driver performance
by team, and the relationship between qualifying positions and
final race results. Key objectives of the analysis included:

o Identifying potential predictor variables for the final
championship standings.

« Evaluating correlations between numerical and categori-
cal features with the target variable (final driver rank).

o Selecting relevant data to be used as features in the
prediction model.

Statistical methods such as Cramér’s V were used to mea-
sure associations between categorical variables. These analyses
provided critical insights that guided the feature selection and
model development process.

D. Data Pre-processing

The pre-processing stage ensures that the data is clean,
consistent, and suitable for machine learning model input.
This process involved merging multiple data sources into a
unified dataset, removing duplicates, handling missing values,
and converting data types.

Feature engineering was applied to derive relevant attributes
such as average finishing position, average starting grid posi-
tion, race completion ratio (DNF rate), and point trends. Cate-
gorical features were transformed using LabelEncoder and
OrdinalEncoder, while numerical features were standard-
ized using StandardScaler to normalize their distribution.

Feature importance analysis guided the selection of the most
predictive attributes. Only race results available before the final
round of the 2025 season were included to prevent data leakage
in the championship prediction task.

E. Model Design

This research employs the XGBoost (Extreme Gradient
Boosting) algorithm, a tree-based ensemble learning method
recognized for its speed and performance in handling struc-
tured data [?]. The objective is to predict the final champi-
onship position of Formula 1 drivers in the 2025 season using
various features, including qualifying results, race outcomes,
team information, and historical statistics. The model was
trained using data from 2014 to 2024 and evaluated on
the 2025 season. Several training scopes—10, 20, and 30
seasons—were tested to examine the effect of historical data
coverage on model performance.

Initially, a baseline XGBoost model was created using
default parameters. To evaluate the model’s generalization
capability, 5-Fold Cross-Validation was applied on the training
data using Mean Absolute Error (MAE), Root Mean Squared
Error (RMSE), and the coefficient of determination (R2)
as evaluation metrics [?]. To improve performance, hyper-
parameter tuning was performed using Optuna, a state-of-
the-art Bayesian optimization framework that utilizes Tree-
structured Parzen Estimators (TPE) [?]. Optuna’s efficiency
in exploring complex parameter spaces and support for early
stopping made it well-suited for this task. After obtaining the
best parameter configuration, the final model was retrained
using the entire training set and used to predict the 2025
championship outcomes.

F. Model Evaluation

The performance of the XGBoost model was evaluated to
determine its ability to accurately predict the Formula 1 World
Driver Champion for the 2025 season. To ensure generalization
beyond the training data, three common regression metrics
were used: Mean Absolute Error (MAE), Root Mean Squared
Error (RMSE), and the Coefficient of Determination (R2).
MAE calculates the average magnitude of absolute prediction
errors, offering an intuitive measure of prediction accuracy.
RMSE, by squaring the errors before averaging, penalizes
larger deviations more heavily, making it more sensitive to
outliers [?]. The R? score evaluates the proportion of vari-
ance in the target variable that is predictable from the input
features, with values closer to 1 indicating better model perfor-
mance [?]. These evaluation metrics provide a comprehensive
assessment of the model’s predictive capability and highlight
both its effectiveness and limitations when applied to unseen
data.

IV. RESULTS AND DISCUSSION

A. Dataset Description

The dataset used in this research was collected via the Jolpi
API using automated scraping implemented in Python. Data
from multiple endpoints were retrieved in JSON format and
converted into a structured DataFrame using the pandas
library for further processing.

The raw dataset consisted of multiple entities with the
following record counts: driver_standings (2,097),
drivers (2,099), qualifying_results (10,594),
race_results (25,385), race_schedules (1,149),
constructor_standings (1,121), and constructors
(1,121). After merging and cleaning, the final dataset contained
706 rows, covering Formula 1 seasons from 1950 to 2025.

The target variable represents the final driver standings at
the end of each season, focusing on predicting the rankings
for the 2025 season. The dataset also reflects changes in the
F1 point system, particularly the major revision in 2010 and
the introduction of sprint races in 2021, which influenced the
point distribution system.



B. Import and Merge Dataset

The initial stage involved importing historical Formula 1
data in CSV format, which had been obtained through the
Jolpi APIL. Multiple entities such as drivers, driver standings,
qualifying results, race results, race schedules, constructors,
and constructor standings were loaded using the pandas
library in Python.

These datasets, including the 2025 season data, were
merged using the pd.concat () function with the
ignore_index=True parameter to ensure consistent in-
dexing. This resulted in consolidated datasets for each entity,
covering the period from 1950 to 2025. The merged datasets
formed the basis for further preprocessing and feature con-
struction steps.

C. Preprocessing

1) Data Merging: To build a comprehensive dataset for
model training, multiple data sources were merged into a
single integrated structure. The merging process began by
extracting the final driver standings for each season, identified
from the last race round of every year. This was followed
by merging driver information—such as full name, birthdate,
and debut year—to calculate each driver’s age and experience
per season. Constructor points from the final race of each
season were also added by matching teams with drivers in
the corresponding year. Finally, driver performance statistics,
including average qualifying position, number of pole posi-
tions, average race finish, and Did Not Finish (DNF) rate,
were calculated and merged. This unified dataset enabled a
broader and interconnected feature space for effective model
training.

2) Data Cleaning and Feature Engineering: After merg-
ing the datasets, data cleaning and feature engineering were
performed to ensure the quality and usability of the data.
The cleaning process involved standardizing text formats, such
as converting constructor names to lowercase and removing
unnecessary spaces. Driver birthdates were converted into
standard datetime format to calculate driver age per season.
Additionally, non-numeric or invalid race results, such as “-”
or “D”, were removed, and relevant columns were retained for
modeling.

Feature engineering was conducted to enrich the dataset.
Driver age was calculated based on the difference between
the season year and the driver’s birth year. Another feature,
racing experience, was computed as the difference between the
current season and the driver’s debut year, with a minimum
value of zero to prevent negative values due to inconsistent
records.

Unnecessary columns were dropped, and only relevant
attributes were preserved, including age, experience, aver-
age qualifying position, number of pole positions, average
finishing position, DNF ratio, constructor points, and final
championship standing. Rows with missing values in these
features were removed to ensure robust model training.

3) Feature Importance and Feature Selection: To identify
the most influential features for predicting the final driver
standing, both numerical and categorical correlations were
analyzed. Figure 3 presents the Pearson correlation heatmap
between numerical variables and the encoded target variable.
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Fig. 3. Pearson Correlation Heatmap

Features such as points (r = —0.83),
avg_qualifying_position (r = 0.89), and
avg_finish_position (r = 0.88) show strong

correlations with the target. These relationships indicate that
better qualifying and finishing positions, along with higher
points, are strong predictors of better championship outcomes.

Additionally, Cramér’s V was used to assess the relation-
ship between the categorical feature driver_id and the
target, yielding a moderate association value of 0.53. Although
driver_id may seem non-generalizable for new drivers, it
captures historical performance patterns and improves model
accuracy on past data.

Based on correlation analysis and domain knowledge,

several features were selected for model training.
These include driver_id, age, experience,
points, wins, avg_qualifying position,

pole_positions, avg_finish_position,
dnf_rate, and constructor_points. These features
were chosen because they capture key aspects of a driver’s
performance, experience, and team competitiveness, which are
critical factors in determining final championship standings.
The season feature was excluded due to its lack of pre-
dictive power for future performance. Proper feature selection
ensures the model captures the most relevant information,
avoids overfitting, and enhances generalization to new data.
4) Feature Transformation: Feature transformation was ap-
plied to ensure that the data fed into the model is in a
consistent and optimal format. Numerical features such as
points, wins, pole positions, and constructor points were
standardized using the z-score method to eliminate scale



bias across different seasons. This transformation enables fair
comparisons between driver performances across seasons.

Categorical features, such as the final driver position, were
transformed using ordinal encoding, allowing the model to
understand the natural order in rankings. Meanwhile, the driver
identity (driver_id) was encoded using label encoding
to convert categorical text data into numeric form without
imposing any ordinal relationship.

Additionally, all relevant numeric features were normalized
using standard scaling (z-score normalization) to ensure they
have a mean of zero and standard deviation of one, improving
model convergence and stability.

D. Model Design

To predict the 2025 Formula 1 world champion, an Extreme
Gradient Boosting (XGBoost) model was designed. The train-
ing and evaluation process consisted of multiple phases: train-
test data splitting, base model training, cross-validation, and
hyperparameter optimization.

1) : Train-Test Data Split: The dataset was split temporally,
where the 2025 season served as the testing set and past
seasons (2014-2024, 2004-2024, and 1994-2024) were used
as training data under three scenarios. This allowed an inves-
tigation into how the length of historical data affects model
performance.

TABLE II
TRAIN-TEST SPLIT SCENARIOS BASED ON HISTORICAL COVERAGE
Scenario Years Train Set Test Set
Scenario 1 10 Years | 2014-2024 2025
Scenario 2 | 20 Years | 2004-2024 2025
Scenario 3 | 30 Years 1994-2024 2025

2) Base Model Initialization:: An initial XGBoost regres-
sion model was trained using default parameters. This served
as a baseline for further optimization.

3) Cross-Validation:: Model robustness and generalization
were evaluated using 5-Fold Cross-Validation on the train-
ing data. Performance metrics such as Mean Absolute Error
(MAE), Root Mean Squared Error (RMSE), and R? were used
for assessment. This step was essential to detect overfitting and
ensure generalizability.

4) Hyperparameter Tuning:: To enhance predictive perfor-
mance, Bayesian Optimization via the Optuna library was
employed. It efficiently explored parameter spaces by leverag-
ing past trials. The final optimal configuration is summarized
below:

e n_estimators: 448

e max_depth: 4

e learning_rate: 0.0109

e subsample: 0.5946

e colsample_bytree: 0.9776
e gamma: 4.4287

e reg_alpha: 2.6161

e reg_lambda: 4.8346

This final model configuration was then used for the ulti-
mate training and prediction task, ensuring enhanced predic-
tive power while minimizing overfitting on the training data.

E. Model Evaluation and Results

After determining the optimal hyperparameters through tun-
ing, the final XGBoost model was retrained using the best
configuration. The model was then evaluated on the 2025
season test data using three regression metrics: Mean Absolute
Error (MAE), Root Mean Squared Error (RMSE), and the
Coefficient of Determination (R?). The evaluation results are
shown in Table III.

TABLE III
EVALUATION RESULTS USING THE BEST MODEL ON 2025 TEST SET

RMSE R?
1.3634 | 0.9441

MAE
1.0610

The high R? score of 0.9441 and low MAE/RMSE values
indicate strong predictive performance. The scatter plot in
Fig. 4 visualizes the model’s continuous predictions compared
to actual final driver rankings. Most predictions are close to
the perfect diagonal line, suggesting high accuracy.

Actual vs Predicted Position - Accuracy Plot

Fig. 4. Model predictions before discretization

Since race rankings are ordinal, the continuous predictions
were discretized to obtain final ranking positions. As shown in
Fig. 5, the discretized results still maintain alignment with the
actual rankings, validating the model’s ability to approximate
real-world race standings.

Actual vs Predicted Position - Accuracy Plot

Predicted Position
.

Fig. 5. Model predictions after discretization



The model predicted Oscar Piastri as the 2025 Formula
1 World Champion, based on performance data up to mid-
season. While this prediction is robust, it remains subject to
real-world uncertainties like strategy changes or unforeseen
incidents in the remaining season.

To assess the effect of training data length, three scenarios
were tested: using 10, 20, and 30 years of historical data. The
results are summarized in Table IV.

TABLE IV
PERFORMANCE COMPARISON ACROSS HISTORICAL DATA SCENARIOS
Scenario | Years | Train Period | MAE | RMSE R?
1 10 2014-2024 1.0610 1.3634 0.9441
2 20 2004-2024 1.3288 1.5868 0.9243
3 30 1994-2024 1.1596 1.5234 0.9302

The results show that Scenario 1 (last 10 years) outper-
formed others, suggesting that longer historical data may
introduce outdated patterns that reduce model relevance. Thus,
recent data (10 years) provided the most reliable performance
for predicting current season outcomes.

V. CONCLUSSIONS AND RECOMMENDATIONS
A. Conclusions

This research successfully developed a predictive model
using the Extreme Gradient Boosting (XGBoost) algorithm
to forecast the 2025 Formula 1 World Driver Champion. The
model was trained using historical data from the 2014 to 2024
seasons, covering 20 drivers participating in the 2025 season.
Nine key features representing both driver and team perfor-
mance were utilized, including age, experience, total points,
average qualifying position, number of pole positions, average
race finish position, DNF rate, and constructor performance.

To optimize the model’s accuracy, hyperparameter tuning
was conducted using Optuna over 255 trials. The best con-
figuration yielded 448 trees, a maximum depth of 4, and a
learning rate of 0.01096. The model also applied regularization
techniques to prevent overfitting. The final model achieved
strong performance metrics on the test set, with an MAE of
1.0610, RMSE of 1.3634, and R? score of 0.9441.

Based on the discretized prediction results, the model fore-
casts Oscar Piastri as the potential 2025 World Champion.
These findings demonstrate that XGBoost can deliver accurate
and reliable predictions in the highly dynamic and competitive
environment of Formula 1.

B. Recommendations

1) Addition of external and technical variables. Incorporat-
ing external variables such as weather conditions, race
incidents, and penalties, as well as technical variables
from vehicle telemetry data such as average speed,
number of pit stops, and tire usage, can enrich the
features in the dataset. The combination of these types
of variables is expected to significantly improve the
accuracy and quality of the predictive model.

2) Implementation of time-series-based approaches. Future
research is encouraged to integrate time-series fore-
casting or sequential learning methods, such as Long
Short-Term Memory (LSTM) or Transformer, which
are designed to analyze sequential data. This approach
allows the model to learn patterns in driver performance
changes from one race to another, thereby capturing
trends, fluctuations, and performance dynamics more
accurately than static regression models. As a result,
the prediction can take into account historical context
and gradual performance development throughout the
season.
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