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Abstract. The prevalence of online harassment necessitates sophisticated automated systems that can accurately classify offensive
content. In this work, we present a text classification system based on Long Short-Term Memory (LSTM) networks to categorize
text into Neutral, Insult, and Defamation classes, thereby providing a more granular understanding of abusive behavior in digital
environments. The system was evaluated using two labeled datasets—150 samples generated by ChatGPT and 1000 samples from
internet sources—achieving an accuracy of 85% on both. Notably, the model demonstrated strong performance in identifying
Defamation, exhibiting high precision and recall. These findings underscore the effectiveness of LSTM networks in capturing
complex linguistic features, highlighting their potential for improving content moderation tools and curbing online harassment.

INTRODUCTION

In the rapidly evolving digital era, cases of cyberspace harassment are becoming increasingly complex, which requires
swift and accurate handling [1]. Traditionally, the analysis of such cases has involved linguistic experts tasked with
evaluating language use, including slander and defamation, under the Undang-Undang Informasi dan Transaksi Elek-
tronik (UU ITE). Badan Reserse Kriminal (Bareskrim) and the police frequently engage linguistic experts to analyze
examination reports (BAP) to determine whether a case falls under the categories of slander, defamation, or other
violations.

In a private interview with M. Niknik on September 18, 2024, it was stated that, in response to technological
advancements, the police have developed a website allowing the public to file complaints, including harassment cases.
While this platform has facilitated the reporting process, the current system still faces limitations in terms of speed and
efficiency. A primary challenge lies in the three-hour time frame set to determine whether a report can proceed. This
constraint often requires linguistic experts to be available at any time, even during unconventional hours, potentially
affecting the accuracy of analysis due to fatigue or time limitations [2].

Recognizing the critical role of linguistic accuracy and efficient text analysis in addressing harassment cases, efforts
have been made to enhance automated systems for language processing. As cases involving language use continue
to rise and technology advances, Universitas Multimedia Nusantara has strived to remain responsive by developing a
system for detecting Indonesian language errors. This system aims to support automation in journalism while offering
potential applications in contexts such as harassment detection [3, 4, 5]. Existing language-screening systems include
modules for detecting errors in word usage, compound words, and spelling [6, 7, 8].

In forensic linguistics, texts or messages can serve as concrete evidence [9, 10, 11]. However, the exploration and
development of the U-Tapis system have yet to include a module capable of detecting harassment elements within
a text. Developing such a module would not only strengthen U-Tapis as a pioneer of automation in journalism, but
would also contribute significantly to the prevention and resolution of harassment cases in Indonesia.

Harassment can be broadly classified into categories such as slander, abuse, insults, and defamation. According to
M. Niknik in September 23, 2024, private interview, among these categories, insults and defamation are among the
most frequently encountered in Indonesia. This phenomenon underscores the importance of developing applications
capable of detecting insults and defamation within text [2].

Detecting text containing harassment, particularly insults and defamation, requires a comprehensive approach. A
significant challenge is the accurate classification of text into harassment subcategories, given the diversity of language
used, including both formal and informal styles. Insults and defamation often overlap in linguistic characteristics,
necessitating models that can identify specific patterns within textual data [12, 13].

In the realm of computer science, this research is highly significant as it integrates forensic linguistics with
technology-based automation. The chosen approach addresses journalistic needs for detecting harassment and sup-
ports the development of algorithms capable of processing textual data effectively and efficiently. With the ever-



increasing volume of data, employing appropriate techniques in feature engineering and classification is crucial for
creating an accurate and reliable system [14, 15].

This research employs Long Short-Term Memory (LSTM), a deep learning architecture renowned for its ability to
process sequential data. LSTM has demonstrated exceptional performance in identifying patterns within unstructured
text, such as hate speech and negative sentiments, making it highly suitable for this research problem [16, 17, 18].
Its strength lies in its capacity to model linguistic complexities, such as informal language nuances and overlapping
harassment subcategories like insults and defamation, while maintaining high accuracy [19, 20].

The objective of this research is to evaluate the accuracy of the LSTM method integrated into the U-Tapis project
module for detecting insults and defamation in harassment cases, with a focus on automating text classification to
improve the efficiency of online reporting systems. This approach addresses the computational demands of processing
unstructured text while maintaining robustness in identifying linguistic complexities. By integrating advanced Natural
Language Processing (NLP) techniques to identify specific language patterns, this research not only meets practical
needs such as accelerating online reporting systems but also contributes to the development of more adaptive large-
scale text analysis technologies, essential in an era of exponential digital data growth [21, 22].

LITERATURE REVIEW

Harassment

Harassment refers to actions intended to demean, threaten, or embarrass individuals, either physically or verbally. In
the digital context, harassment often occurs on social media, forums, and messaging applications. Common forms of
this behavior include insults, threats, and the spread of defamatory statements, also known as cyberbullying. Online
harassment can significantly impact mental health, increasing stress and anxiety levels [23]. Therefore, automated
detection of harassment is crucial to address the rising incidents of online abuse [24].

Insults in Text Analysis

Insults are expressions intended to demean or harm the dignity of an individual. They often take the form of offensive
language, derogatory remarks, or insinuations. The detection of insults in textual data poses significant challenges
due to the informal, ambiguous, and context-dependent nature of language used on digital platforms [25, 26].

Early efforts in insult detection focused on rule-based approaches, leveraging predefined dictionaries of offensive
words. While effective in identifying explicit insults, these methods struggled with implicit or sarcastic expressions
[27]. For example, phrases disguised with humor or contextual ambiguities often go unnoticed by simplistic systems.

Defamation in Text Analysis

Defamation involves false or harmful statements aimed at damaging an individual’s or an organization’s reputation. It
is commonly classified into libel (written or published text) and slander (spoken words) [28]. Unlike insults, which are
often direct and personal, defamation can include subtle insinuations or claims that require contextual understanding.
Automated detection of defamation has been successfully advanced by leveraging Natural Language Processing (NLP)
techniques and machine learning models [29].

Natural Language Processing (NLP)

Natural Language Processing (NLP) is a branch of artificial intelligence focused on understanding and generating
human language, enabling computers to interact with humans without relying on machine-specific languages [30].

NLP involves preprocessing steps such as tokenization, segmentation, and stemming, which significantly improve
the quality of unstructured text data for information retrieval techniques [31].



Text Preprocessing

Text preprocessing is a crucial step to prepare text data for analysis by simplifying and standardizing its format. In
this research, the preprocessing steps include:

1. Slang Word Normalization: Replacing informal or abbreviated words (e.g., "gak" to "tidak," "dgn" to "den-
gan") with their standard forms to enhance comprehension.

2. Text Cleaning: Converting all text to lowercase, removing punctuation, numbers, and extra spaces.

3. Tokenization: Splitting text into smaller units like words or phrases for analysis.

These steps are essential to ensure clean, semantically accurate input for subsequent Natural Language Processing
(NLP) tasks. Proper preprocessing directly impacts the effectiveness of NLP applications by improving tokenization,
semantic understanding, and system performance [32].

Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM)

Recurrent Neural Networks (RNNs) are a class of neural networks that excel at modeling sequential data by maintain-
ing a hidden state across time steps. However, traditional RNNs struggle with long-term dependencies due to issues
like vanishing and exploding gradients, which hinder their effectiveness for tasks requiring context over extended
sequences [33].

Long Short-Term Memory (LSTM) networks address these challenges by introducing a memory cell and three key
gates: the forget gate, input gate, and output gate. These mechanisms enable LSTMs to selectively store, update,
or discard information, making them highly effective for tasks requiring long-term dependencies [34]. LSTMs have
demonstrated robust performance in natural language processing (NLP) applications, particularly for detecting subtle
patterns in textual data, such as harassment [35].

LSTM Mechanism

The operations within an LSTM cell at time step ¢ are as follows:

fi=0(Ws-[h—1,x]+by) (Forget Gate)
ir = (Wi [he—1,%:] + b;) (Input Gate)
C; = tanh(Wc - [h;_1, %] +bc) (Candidate Memory)
C=f0C 1+ioC (Memory Cell Update)
0r =0 (W, - [ly—1,x]+b,) (Output Gate)
hy = o; @ tanh(C;) (Hidden State Update)

By overcoming the limitations of traditional RNNs, LSTMs can model long-range dependencies in text, which is
essential for detecting subtle and context-specific harassment cues [36].

Model Implementation
The proposed model leverages an LSTM-based architecture for classifying text into harassment subcategories such as
insults and defamation. The implementation involves the following steps:

1. Embedding Layer: Transform input text into dense vector representations using embeddings trained during
the model’s learning process [37].

2. LSTM Layer: Process the sequential data to extract contextual features and generate hidden states representing
the semantic structure of the text.



3. Fully Connected Layer: Map the output from the LSTM layer to the target classification space.

4. Softmax Layer: Convert raw scores into probabilities for assigning the input to specific categories.

Objective Function

The model is trained using the categorical cross-entropy loss function:

N
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Where:

e N: Total number of samples.

* y;: True label for the i-th sample.

* §;: Predicted probability for the true class of the i-th sample.

Optimization is performed using advanced techniques such as Adam, ensuring stable convergence during training
[38].

Advantages of LSTM for Harassment Detection

LSTMs are particularly well-suited for harassment detection tasks because:

* They capture long-term dependencies, allowing the detection of subtle harassment patterns spread across sen-
tences [35].

* They handle informal and noisy text effectively, such as that found in social media [36].

By leveraging these capabilities, the proposed LSTM model provides a robust and reliable approach to detecting
harassment in textual data.

METHODS

Figure 1 provides a detailed overview of the methodology applied in this research, from the initial steps to the final
processes. The diagram aims to offer a clear understanding of the procedures followed in this research and how each
stage is interconnected to achieve the research’s objectives.

Problem Identification

In this stage, an interview was conducted with M. Niknik, a lecturer and research coordinator for the U-Tapis project.
In addition to her academic role, M. Niknik is a linguistics expert frequently involved in forensic linguistic cases.
During the interview, M. Niknik explained that the harassment reporting system in Indonesia has advanced to the
point where individuals can report cases through a dedicated website. The system then decides whether or not the case
will proceed for legal action. However, while this system was designed to streamline the process, it has inadvertently
placed a burden on the professionalism of linguists [2].

One major challenge is the three-hour time limit for determining whether a case can move forward legally. Within
this timeframe, the police consult linguists for an opinion on whether a given statement qualifies as harassment.
Another issue is that linguists are often contacted outside of standard working hours. This situation highlights the
need for a system that can automatically determine whether a sentence falls into the category of harassment, thus
supporting the legal process and reducing the workload on linguistic professionals.
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FIGURE 1. Research Methodology Flowchart

Literature Review

The literature review stage involves collecting both theoretical and practical knowledge to support the development of
an NLP model for detecting harassment insults. The literature includes concepts such as the definition of harassment,
insults, defamtaions, NLP, supervised learning, text preprocessing, and the LSTM algorithm.

Data Collection and Preprocessing

Data Collection

The data collection in this study involved 18,000 sentences generated by the ChatGPT language model using specific
query methods. These sentences were then categorized into three groups: those containing insults, those containing
defamation, and those that were neutral (i.e., not containing harassment). The labeling of the data was performed
by ChatGPT based on predetermined rules, regulations, and definitions. These definitions were derived from relevant
literature, expert-validated case examples, and the Indonesian Electronic Information and Transactions Law (UU ITE).
This approach ensures that the generated data aligns with the context and boundaries of harassment, particularly in
the categories of insults and defamation.

The use of synthetic data generated by ChatGPT offers several advantages that have been recognized in the litera-
ture. First, it helps address the scarcity of authentic data, which is often difficult to obtain for legal or privacy reasons.
Second, the flexibility in designing query parameters enables researchers to maintain the relevance and purpose of
the generated data. Studies such as those by Xu Guo and Yigiang Chen (2024) have demonstrated that synthetic data
from generative Al can effectively replace authentic data for specific tasks [39]. In the context of NLP, Ghanadian
et al. (2024) utilized synthetic data generated by large models such as ChatGPT to detect suicidal ideation, thereby
significantly improving model performance [40].



Text Preprocessing

Preprocessing textual data is a crucial step in preparing raw input for machine learning models. For this research on
insult and defamation detection using Long Short-Term Memory (LSTM) networks, a systematic text preprocessing
pipeline was implemented to ensure data consistency and facilitate effective model training. The key stages in this
pipeline included text cleaning, data splitting, tokenization, conversion of text to sequences, and sequence padding.
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FIGURE 2. Text Preprocessing Flowchart

As shown in Figure 2, the preprocessing began with the normalization of slang words. Informal or abbreviated
terms commonly found in Indonesian text, such as "gak" (informal for "tidak") and "dgn" (abbreviation for "dengan"),
were replaced with their standard forms to ensure linguistic consistency.

The next step was text cleaning, which involved a series of actions to eliminate noise and irrelevant elements
from the data. All text was converted to lowercase to ensure uniformity and prevent unnecessary distinctions due to
capitalization. URLSs, email addresses, and other unnecessary patterns were removed, followed by the elimination of
special characters, numbers, and punctuation marks. Extra whitespace, including leading, trailing, and consecutive
spaces, was stripped to produce a cleaner, standardized input.

After cleaning, the text was processed further without stemming or stopword removal. Unlike traditional prepro-
cessing approaches, this research retained the original word forms and common words such as "dan," "atau," and
"tetapi" to preserve contextual and linguistic patterns critical for classification. This decision was based on observa-
tions that stemming or removing stopwords could hinder the model’s ability to capture important semantic and syn-
tactic relationships. Tokenization was then performed, converting the processed text into tokens—individual words
or phrases that form the building blocks of natural language processing models. To reduce computational complexity
and improve model efficiency, the vocabulary was limited to the 10,000 most frequent words in the dataset, with
out-of-vocabulary words replaced by a special token.

The tokenized text was subsequently transformed into sequences of integers, where each word was mapped to a
unique index in the vocabulary. To address the varying lengths of text samples, all sequences were pre-padded or pre-
truncated to a fixed length of 100 words. Padding augmented shorter sequences with zeros, while truncation shortened
longer sequences, ensuring a uniform input shape compatible with the LSTM model.



Finally, the preprocessed data was split into two subsets: 80% for training and 20% for testing. This stratified
division preserved the representativeness of the dataset across all subsets, enabling the model to learn effectively from
the training data while maintaining a separate set for validation and final performance assessment.

Model Construction

The model construction and hyperparameter tuning process in this research consisted of several systematic steps to
ensure robust performance in classifying insult, defamation, and neutral texts.

Model Construction

As shown on figure 3, the process began with the initialization of a sequential neural network model, enabling the
addition of layers in a linear stack. The first layer was an embedding layer, configured to map the input words to dense
vector representations in a 128-dimensional space. This embedding layer served to capture semantic relationships
between words, ensuring that the model could learn meaningful patterns from the input text.

Following the embedding layer, the first and second LSTM (Long Short-Term Memory) layer was added to extract
temporal and contextual features from the input sequences. The number of hidden units in the LSTM layer, dropout
rate, and recurrent dropout rate were set as hyperparameters to be optimized during tuning. Dropout was applied to
prevent overfitting by randomly deactivating a fraction of neurons during training.

The output layer was a dense layer with three units, corresponding to the three target classes: insult, defamation, and
neutral. A softmax activation function was applied at this layer to normalize the outputs into probabilities, ensuring
that the sum of the probabilities across the three classes equaled one. This configuration allowed the model to output
class probabilities for each input text sample.

The model was then compiled with categorical crossentropy as the loss function, which is appropriate for multi-
class classification tasks. The Adam optimizer was used to adjust the model’s weights iteratively during training.
Accuracy was chosen as the primary evaluation metric to assess the model’s performance.
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Hyperparameter Tuning

To optimize the model’s configuration, hyperparameter tuning was conducted using a grid search approach with the
keras_tuner library. The search focused on key hyperparameters that significantly influence the model’s perfor-
mance. The parameters explored during the tuning process included:

* The dimensionality of the embedding layer (embedding_dim), tested with values of 50, 100, and 200.

* The number of units in the first and second Bidirectional LSTM layers (1stm_units_1 and 1stm_units_2),
tested with values of 128 and 256 for each layer.

* Dropout rates for the first and second LSTM layers (dropout_1 and dropout_2), as well as the dense layer
(dropout_dense), tested with values ranging from 0.2 to 0.5 in increments of 0.1.

The grid search explored a total of 20 configurations, evaluating each based on validation accuracy. Each trial
involved training a model composed of the following layers:

* An embedding layer with a vocabulary size of 10,000 and sequence length of 100.

* Two Bidirectional LSTM layers, each followed by dropout layers to prevent overfitting.

* A dense layer with 64 units and ReL U activation, followed by a dropout layer.

* A softmax output layer for classifying sentences into Neutral, Insult, and Defamation categories.

To ensure the model converged effectively and avoided overfitting, additional callbacks were incorporated during
training:

« EarlyStopping: Monitored the validation loss and stopped training after three consecutive epochs without
improvement, restoring the best weights to prevent overfitting.

* ReduceLROnPlateau: Reduced the learning rate by a factor of 0.5 if the validation loss did not improve for
two consecutive epochs, facilitating smoother convergence.

After evaluating all configurations, the optimal hyperparameters were selected based on validation accuracy. The
final model was trained using these hyperparameters for up to 20 epochs with a batch size of 32. This tuned model
demonstrated improved performance and robustness during the evaluation phase, effectively balancing complexity
and generalization.

Test and Evaluate Model

The final model was trained using the optimal hyperparameter configuration on the training dataset. The performance
of the final model was evaluated using several key metrics, namely the confusion matrix, accuracy score, precision,
recall, and FI-score. These metrics were chosen to provide a thorough evaluation of the model’s performance, par-
ticularly in ensuring that all classes were treated equitably. By leveraging these metrics, the research ensures that
the final model is both well-tuned and generalizable to unseen data, making it effective in classifying texts into the
categories of insult, defamation, and neutral.

Testing and Evaluation

The evaluation of the experimental results was conducted manually by calculating and comparing the statistical met-
rics of the trained model. Additionally, the model was tested using a separate dataset distinct from the training data.
The evaluation dataset consisted of 1150 sentences, with 150 sentences sourced from GPT 40 LLM and 1000 sen-
tences sourced from the internet. Each dataset contained diverse examples representing the three categories: neutral,
insult, and defamation.
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Website and Interface Development

After completing the testing and evaluation phase, the research proceeds to the creation of a web-based interface. The
workflow for the web development process is illustrated in figure 4. Once the interface design or reference is finalized,
the API is developed using Python. The Flask framework is employed in the web application to handle input data
and generate output in JSON format. On the frontend, Vue.js is used for data processing, enabling the visualization
of words and sentences. The interface displays paragraphs with identified errors alongside their corrected forms,
providing an intuitive and user-friendly representation of the results.

Report and Documentation Making

At the final stage, a comprehensive report and documentation will be prepared, detailing the results of the nd the
implementation of the developed model. This documentation will include information on the research findings, model
implementation, and the evaluation of the model’s accuracy.

RESULT AND ANALYSIS

This section is divided into four subsections: dataset collection, preprocess, the design and interface of the web-based
application, and the testing and evaluation of the LSTM model. The web-based interface was developed to assist law
enforcement in conducting preliminary detection of linguistically relevant cases. Following this, an in-depth analysis
of the model’s testing and evaluation is presented, detailing its performance and accuracy in detecting harassment
cases, including insults and defamation.

Dataset

The dataset used in this research consists of 18,000 labeled text samples, evenly distributed across three categories:
neutral, insult, and defamation, with 6,000 samples in each category. The dataset was generated using GPT, leveraging
its advanced language modeling capabilities to produce linguistically diverse and contextually appropriate examples
for each classification category. This approach facilitated the creation of a well-balanced dataset, enabling the LSTM
model to learn the nuanced differences between categories effectively. The use of GPT-generated data also allowed
for the inclusion of controlled and structured samples, which were instrumental in testing and evaluating the system’s
performance under various linguistic scenarios.



Preprocess

The preprocessing stage significantly enhanced the dataset’s quality, ensuring optimal performance of the LSTM
model. Slang normalization was a key component, where a slang-to-formal mapping was applied using a colloquial
Indonesian lexicon. This step allowed the conversion of informal expressions into their standard forms, enabling the
model to better capture the intended meaning of the text.

Text cleaning involved converting all characters to lowercase and systematically removing unnecessary elements
such as URLs, special characters, numbers, and punctuation. By focusing on linguistically relevant content, this
process reduced noise and improved data clarity.

Unlike traditional preprocessing techniques, stemming and stop-word removal were deliberately omitted in this
research. This decision was based on the observation that stemming and removing stop words often eliminate critical
linguistic patterns and nuances. These patterns, such as specific word choices or syntactical structures, are particularly
important for distinguishing between categories like insult and defamation, where subtle variations in language play
a significant role.

Tokenization transformed the cleaned text into sequences of integer tokens, limiting the vocabulary to the 10,000
most frequent words for computational efficiency. Padding and truncation standardized the length of input sequences
to 100 tokens, ensuring uniformity across the dataset. Additionally, class labels were encoded numerically, facilitating
seamless integration with the LSTM model.

These preprocessing steps not only refined the input data but also directly contributed to the model’s ability to
distinguish between subtle linguistic differences in the categories of neutral, insult, and defamation, as demonstrated
in subsequent performance evaluations.

Website Implementation
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The developed web-based interface provides an intuitive and user-friendly platform for text classification, specif-
ically designed to assist in the detection of linguistic harassment. Figure 7 illustrates the initial interface displayed
when users access the website. To begin with, users are required to input a sentence in the designated input field
provided on the homepage. Once the input is complete, they can proceed by clicking the "Mulai Deteksi” button,
which triggers the system to process the text and classify it accordingly.

FIGURE 8. Classification Result

Figure 8 shows the output generated by the system after processing the user’s input. The results include the proba-
bilities associated with each classification category—neutral, insult, and defamation—displayed as percentages below
the input field. This clear visualization enables users to interpret the results effectively. Additionally, if users wish to
analyze another sentence or recheck their input, they can simply click the "Mulai Deteksi"” button again. This action
resets the interface and prompts the system to perform a new calculation based on the updated input.

The interface is designed with simplicity and efficiency in mind, ensuring that it meets the practical needs of law
enforcement officers who may require rapid and accurate preliminary assessments.

Testing and Evaluation

The purpose of this section is to assess the performance and effectiveness of the developed system in accurately
classifying text into neutral, insult, and defamation categories. To achieve this, the system was evaluated using a
dataset specifically designed to test its capabilities under both controlled and real-world scenarios. This evaluation
utilized a total of 1150 data samples, comprising 1000 labeled data samples sourced from the internet to reflect
everyday language use and 150 labeled data from LLM ChatGPT 4o.

By conducting these tests, this section aims to validate the accuracy and reliability of the system while identifying
areas for potential improvement. This rigorous evaluation process is critical to ensuring the system’s readiness for
practical applications, such as its integration into a web-based interface for law enforcement.



Testing with 150 GPT Datasets

The evaluation of the system using the LSTM model with 150 labeled data samples generated by ChatGPT aims
to assess the model’s ability to accurately classify text into the categories of Neutral, Insult, and Defamation. The
evaluation results are presented in Table 1.

TABLE 1. Confusion Matrix for the LSTM Algorithm (ChatGPT Data)

True Label Neutral (0) Insult (1) Defamation (2)
Neutral (0) 54 0 0
Insult (1) 15 32 2
Defamation (2) 5 0 42

The confusion matrix demonstrates that the LSTM model classified most samples accurately, achieving an overall
accuracy of 85%. The detailed metrics of precision, recall, and F1-score for each category are provided in Table 2.

TABLE 2. Classification Report for the LSTM Algorithm (ChatGPT Data)

Label Precision Recall F1-Score Support
Neutral (0) 0.73 1.00 0.84 54
Insult (1) 1.00 0.65 0.79 49
Defamation (2) 0.95 0.89 0.92 47
Accuracy 0.85 (85%)

The confusion matrix and classification report reveal several performance trends:

* Neutral (True Label: 0): All 54 Neutral samples were correctly classified as Neutral, resulting in a recall of
100% and an F1-score of 84%. The precision of 73% suggests a modest possibility of false positives for this
category when considering the other labels.

e Insult (True Label: 1): Out of 49 Insult samples, 32 were correctly classified, while 15 were misclassified as
Neutral and 2 were misclassified as Defamation. This category achieved an F1-score of 79%, reflecting a perfect
precision of 100%, but a recall of 65% indicates further room for improvement in detecting Insult content.

* Defamation (True Label: 2): Of the 47 Defamation samples, 42 were correctly identified, while 5 were misclas-
sified as Neutral. This resulted in an F1-score of 92%, with precision of 95% and recall of 89%.

Overall, the LSTM model attained an accuracy of 85%. The confusion matrix indicates solid performance for
Defamation and good performance for Neutral samples, with comparatively more confusion between the Neutral and
Insult categories. These findings highlight the model’s ability to handle text generated by ChatGPT effectively, while
still underscoring opportunities to refine Insult detection accuracy.

Testing with 1000 Internet-Sourced Datasets

The evaluation of the system using the LSTM model with 1000 labeled data samples collected from various Inter-
net sources aims to assess the model’s ability to accurately classify text into the categories of Neutral, Insult, and
Defamation. The evaluation results are presented in Table 3.

The confusion matrix demonstrates that the LSTM model correctly classified most samples, achieving an overall
accuracy of 85%. The detailed metrics of precision, recall, and F1-score for each category are provided in Table 4.

* Neutral (True Label: 0): Of the 412 Neutral samples, 356 were correctly classified, yielding a recall of 86%
and an Fl-score of 89%. The precision of 91% indicates strong performance in correctly identifying Neutral
instances.



¢ Insult (True Label: 1): Among the 320 Insult samples, 274 were correctly classified, while 15 were labeled as
Neutral and 31 as Defamation. This category achieved an F1-score of 85% with a recall of 86%, suggesting
reliable but not perfect detection of Insult cases.

e Defamation (True Label: 2): Of the 268 Defamation samples, 222 were correctly identified, while 19 were
misclassified as Neutral and 27 as Insult. This resulted in an Fl-score of 80%, underlining the category’s
slightly greater confusion compared to Insult and Neutral.

TABLE 3. Confusion Matrix for the LSTM Algorithm (Internet-Sourced Data)

True Label Neutral (0) Insult (1) Defamation (2)
Neutral (0) 356 24 32
Insult (1) 15 274 31
Defamation (2) 19 27 222

TABLE 4. Classification Report for the LSTM Algorithm (Internet-Sourced Data)

Label Precision Recall F1-Score Support
Neutral (0) 0.91 0.86 0.89 412
Insult (1) 0.84 0.86 0.85 320
Defamation (2) 0.78 0.83 0.80 268
Accuracy 0.85 (85%)

Overall, the LSTM model attained an accuracy of 85%. While performance across categories is generally strong,
future improvements may focus on refining the detection of Defamation instances and reducing the confusion among
related categories.

CONCLUSION

This research evaluated a text classification system using Long Short-Term Memory (LSTM) networks to catego-
rize text into Neutral, Insult, and Defamation categories. The system was tested on two datasets: a 150-sample set
generated by ChatGPT and a 1000-sample set collected from the internet, achieving accuracies of 85% and 85%, re-
spectively. Notably, the model demonstrated strong performance in recognizing Defamation, showing high precision
and recall, and effectively handled diverse linguistic expressions.

Challenges did emerge in distinguishing Insult from Neutral in some cases, as well as in correctly identifying
Defamation when text was subtle or ambiguous. These observations underscore the need for enhanced contextual
understanding and refined classification in borderline instances. Future work could explore integrating large language
models (LLMs)—such as Indonesia’s Sahabat Al or BLOOM—to improve semantic representations and overall ac-
curacy. This integration can help the system better adapt to domain-specific nuances and underrepresented language
patterns, ultimately strengthening its performance in real-world scenarios.
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