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Abstract –   Communication barriers between 

the Deaf community and the general public 

remain a significant challenge in Indonesia, 

largely due to limited awareness and 

understanding of Indonesian Sign Language 

(BISINDO). This study proposes a real-time 

BISINDO recognition and translation system 

using the YOLOv11 object detection algorithm 

to enhance accuracy and robustness in 

detecting hand gestures. The model is trained 

on ten publicly available datasets, which are 

further improved with extensive data 

augmentation techniques to increase 

generalization across various users and 

environments. Transfer learning is applied by 

fine-tuning YOLOv11 with pretrained weights 

from a high-sensitivity model, optimizing the 

detection performance without requiring full 

retraining. Experimental results demonstrate 

that the system achieves high performance, with 

a precision of 97.5%, recall of 97.1%, and a 

mean Average Precision (mAP@0.50) of 

98.2%. It also attains an mAP@0.50–0.95 

score of 92.5%, outperforming previous 

YOLOv8-based methods that scored 88.4%. 

The enhanced model effectively overcomes 

classification difficulties noted in prior studies 

and operates reliably in real time using a 

standard camera setup. This research provides 

a practical and efficient solution to help bridge 

communication gaps for individuals with 

disabilities in Indonesia, supporting greater 

social inclusion and accessibility. 

 

Keywords:Computer Vision, Indonesian Sign 

Language (BISINDO), Real-Time Object 
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I. INTRODUCTION 

 
Effective communication is 

fundamental for sharing information and 

emotions, yet communication barriers persist 

for individuals with disabilities, especially the 

Deaf and mute communities. In Indonesia, 

approximately 211,889 individuals live with 

disabilities, of which 6.5% are deaf and 2.6% 

are mute, heavily relying on non-verbal 

communication [1]. This population faces 

significant social exclusion due to limited 

public awareness and understanding of 

Indonesian Sign Language [2], [3]. 

Indonesian Sign Language comprises 

two main systems: the government-promoted 

Sistem Isyarat Bahasa Indonesia (SIBI), 

adapted from American Sign Language (ASL) 

[4], and the culturally grounded Bahasa Isyarat 

Indonesia (BISINDO), organically developed 

within Deaf communities and used by 

approximately 91% of the Deaf population [1], 

[3]. Despite BISINDO’s prevalence and official 

recognition during the 6th National Congress of 

Gerkatin in 2002 [3], low public awareness and 

limited technology support restrict accessible 

communication [2], [6]. 

Recent advances in deep learning, 

particularly Convolutional Neural Networks 

(CNNs), have demonstrated substantial 

improvements in image and gesture recognition 

tasks[7]. CNN architectures effectively capture 

spatial hierarchies and features critical for 

differentiating sign language gestures[2], [13]. 

Meanwhile, computer vision techniques, 

especially object detection, have evolved with 

modular backbone, neck, and head designs to 

balance accuracy and real-time speed[9], [10], 

[15], [16]. These techniques have been 

successfully implemented in various domains 

such as agricultural pest monitoring [17] and 

public health safety through face mask 
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detection [18], demonstrating their versatility 

and reliability in real-world scenarios. 

Among object detectors, the YOLO 

(You Only Look Once) family is recognized for 

fast and accurate real-time detection [11], [20]. 

From YOLOv1 through YOLOv10, the 

algorithm has incrementally improved through 

higher input resolutions, anchor box strategies, 

and multi-scale detection [12]. The latest 

YOLOv11 model introduces innovations like 

Anchor-Aided Training and Self-Distillation, 

reducing computational overhead while 

enhancing precision and inference speed [11], 

[12]. 

Previous sign language recognition 

studies utilizing YOLOv8 reported a mean 

Average Precision (mAP) of 88.4% but 

encountered limitations in speed and accuracy 

[6]. This motivates the application of 

YOLOv11 to develop a more robust real-time 

BISINDO recognition system deployable on 

standard hardware [21]. 

Evaluating such detection systems 

requires metrics including Intersection over 

Union (IoU), Average Precision (AP), mean 

Average Precision (mAP), precision, recall, and 

F1 score, which collectively assess localization 

and classification performance [15], [16], [19]. 

Accurate evaluation ensures the system’s 

reliability for real-world communication aid 

applications [21]. 

This paper presents the design, training, 

evaluation, and deployment of a YOLOv11-

based real-time BISINDO hand gesture 

detection and translation system, aiming to 

bridge communication gaps and enhance social 

inclusion for deaf and mute individuals in 

Indonesia [6]. 

 

 

II. RESEARCH METHODS 

 

 
 

Figure 1 Reseach Process Diagram 

 

To systematically address the challenge 

of real-time detection and translation of Bahasa 

Isyarat Indonesia (BISINDO) gestures, this 

research adopts a structured methodological 

approach. Each phase, from data acquisition to 

final deployment, is designed to ensure 

robustness, efficiency, and applicability of the 

detection model in practical environments. The 

following sections elaborate on these key stages 

in detail. 

Figure 1 presents a diagram that 

illustrating the overall methodology adopted 

throughout this research, outlining each crucial 

step from data collection through to real-time 

testing and deployment. 

 
A. Data Collection 

The foundation of the system's success 

lies in the diverse assembly of ten publicly 

available BISINDO datasets. These 

datasets differ considerably in image 

resolution, lighting conditions, background 

complexity, signer diversity, and labeling 

formats. Such diversity emulates real-world 

variability, which is vital for the model’s 

ability to generalize beyond its training 

data. The manual verification and re-

annotation process, facilitated by 

Roboflow, was crucial to rectify mislabeled 

images and supplement missing 

annotations. Although labor-intensive, this 

step ensured the highest label quality and 

consistency, as errors in this stage would 

directly compromise model performance. 

Additionally, merging the datasets required 

harmonizing class labels to maintain 

consistency in gesture identification across 

datasets and resolving duplicate entries to 

prevent bias. 

 

B. Split Dataset 

An 80/20 split was implemented as a 

conventional balance to allocate sufficient 

data for training while retaining a 

representative set of unseen examples for 

validation. The validation outcomes played 

a pivotal role in guiding hyperparameter 

tuning and early stopping criteria to prevent 

overfitting. The intentional exclusion of a 

separate test dataset stemmed from the 

desire to evaluate model performance more 

realistically by deploying it on random, 

uncontrolled images and live video streams. 

This approach better reflects practical use 
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cases where the system faces unknown 

backgrounds, lighting conditions, and 

users. Nevertheless, this method introduces 

challenges, as traditional test metrics 

become less applicable and performance 

assessment relies heavily on real-world 

trials. 

 

C.  Image Preprocessing 

Preprocessing was intentionally 

restricted to auto-orientation correction and 

resizing to a fixed dimension of 640×640 

pixels. This decision was made to preserve 

pipeline efficiency and focus on essential 

image standardization. While more 

sophisticated preprocessing techniques, 

such as histogram equalization or 

background subtraction, could improve 

input quality, they often increase 

computational overhead and risk overfitting 

to artifacts specific to preprocessing. 

Standardizing all input images to a uniform 

size enables the convolutional neural 

network to extract spatially consistent 

features and balances computational 

demands with model performance, 

facilitating both faster training and real-

time inference. 

 

D. Model Selection 

The selection of YOLOv11n was 

driven not only by its superior technical 

characteristics but also its operational 

practicality. Compared to previous versions 

like YOLOv8, YOLOv11n employs 22% 

fewer parameters, reducing memory 

consumption and computational 

requirements. 

Figure 2 YOLO version comparison 

 

This parameter efficiency allows 

deployment on less powerful hardware, 

including embedded systems. Its 

demonstrated high mean Average Precision 

(mAP) on the COCO dataset, a widely 

recognized benchmark for general object 

detection, implies strong feature extraction 

capabilities transferable to the task of sign 

language detection. Furthermore, its 

flexible architecture supports multiple 

computer vision tasks, which paves the way 

for future enhancements such as keypoint 

detection for finger tracking without 

necessitating architectural changes. The 

availability of pretrained weights, 

particularly the yolo11n.pt model, 

facilitates transfer learning. By leveraging 

generalized visual features learned from 

extensive datasets, this approach 

accelerates convergence and improves 

accuracy despite the limited domain-

specific data available for this research. 

 

E. Data Augmentation 

Data augmentation was carefully 

designed to balance realism and variability, 

enhancing the model's ability to generalize. 

Adjustments to hue, saturation, and value 

within the HSV color space simulated 

natural lighting changes and camera color 

shifts, helping the model become invariant 

to superficial color differences. Geometric 

transformations including rotation, 

translation, scaling, shear, and perspective 

distortion replicated natural variations in 

hand poses and camera angles, improving 

robustness to diverse user gestures. 

Horizontal flipping ensured equal 

recognition of mirrored gestures from both 

left- and right-handed signers. 

The following augmentation 

parameters were configured to control the 

extent and probability of each 

transformation applied during training: 
hsv_h=0.015, 

hsv_s=0.7, 

hsv_v=0.4, 

degrees=10, 

translate=0.1, 

scale=0.5, 

shear=2.0, 

perspective=0.0005, 

fliplr=0.5 

This configuration exposed the model 

to a wide spectrum of realistic color and 

geometric variations, which significantly 

contributed to enhanced robustness and 
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accuracy in real-world sign language 

detection tasks. 

 

F. Model Training 

 The training phase utilized transfer 

learning by initializing the model with 

pretrained weights, which significantly 

reduced the training duration and stabilized 

the learning process during the initial 

epochs. Hyperparameters such as learning 

rate, batch size, and the number of epochs 

were meticulously selected and refined 

through iterative training runs. The number 

of epochs was adapted according to dataset 

size to prevent both underfitting and 

overfitting. A batch size of sixteen was 

chosen to balance the stability of gradient 

estimation with available hardware 

memory constraints. Early stopping 

mechanisms with a patience of ten epochs 

were employed to conserve computational 

resources once model performance on 

validation data plateaued. Although 

training was conducted on a CPU to 

maximize accessibility, GPU acceleration 

is recommended to expedite iterative 

experimentation. Continuous monitoring of 

loss curves and validation metrics ensured 

the training process proceeded without 

divergence or overfitting. 

The following tables summarize the 

detailed hyperparameter configurations 

used across various experimental models in 

this study, illustrating the adjustments made 

to optimize training performance. 

 
Table 1 Hyperparameter Configuration 

 

 

Table 2 Hyperparameter Configuration 

 

 

G. Model Evaluation 

Evaluation of the model's performance 

incorporated multiple complementary 

metrics to gain a holistic understanding of 

its capabilities. The confusion matrix 

enabled identification of specific classes 

prone to misclassification, informing 

targeted dataset augmentation or 

rebalancing. 

Precision and recall metrics provided a 

balanced assessment of false positives and 

false negatives, guiding the adjustment of 

detection thresholds for practical usability. 

The F1 score offered a concise 

summary of model performance by 

harmonizing precision and recall into a 

single measure. 

Precision-recall curves visualized the 

model’s robustness across different 

confidence thresholds. Additionally, loss 

and accuracy plots facilitated the 

monitoring of training stability and 

convergence behavior. Evaluation was an 

iterative process, with insights from each 

experiment driving refinements in 

augmentation strategies, hyperparameter 

configurations, and dataset composition. 

 

H. Real-Time Testing and Deployment 

The deployment of the trained model 

on a live webcam feed via OpenCV served 

as a crucial validation of its practical 

usability beyond static image analysis. To 

enhance user experience, the system 

employed prediction smoothing by 

Model Epoch Batch 

size 

Image 

size 

Learning 

rate 

A 100 16 640 0.000333 

B 100 16 640 0.01 

C 100 16 640 0.000333 

D 100 16 640 0.000333 

E 200 16 640 0.000333 

F 200 16 640 0.01 

G 200 16 640 0.01 

Model Optimizer Patience Base 

model 

A Auto 10 yolo11n.pt 

B Auto 10 yolo11n.pt 

C Auto 10 yolo11n.pt 

D Auto 10 yolo11n.pt 

E Auto 10 yolo11n.pt 

F Auto 10 yolo11n.pt 

G Auto 10 Model F 

best.pt 
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maintaining a buffer of the last five 

predictions and applying majority voting. 

This mechanism mitigated erratic 

detection fluctuations caused by transient 

hand motions or image noise. A confidence 

threshold set at 60% filtered out uncertain 

detections, thereby reducing false alarms 

while retaining relevant predictions. The 

detection interval was set to one second, 

balancing the need for timely 

responsiveness with sufficient duration for 

users to perform gestures steadily. The 

system also provided a clear, overlaid 

textual display of detected signs, offering 

immediate visual feedback essential for 

real-time communication aids. Robust error 

handling mechanisms ensured graceful 

recovery from hardware failures or user 

interruptions, enhancing system reliability. 

 

I. Challenges and Future Directions 

Despite achieving commendable 

accuracy, real-time deployment unveiled 

several challenges and avenues for future 

improvement. Lighting conditions, 

particularly low-light environments or 

harsh shadows, negatively affected 

detection reliability. 

Future research might explore integrating 

adaptive exposure correction or deploying 

infrared imaging to mitigate these issues. 

The current model focuses on static 

gestures, yet many sign language 

expressions involve dynamic motion or 

sequential patterns. 

Incorporating temporal models, such as 

Long Short-Term Memory networks or 

Transformer architectures layered atop 

YOLO’s spatial detections, could facilitate 

fluent sentence-level translation. Handling 

multiple hands simultaneously or 

occlusions remains problematic, warranting 

the exploration of advanced segmentation 

or keypoint estimation techniques. 

Additionally, personalization through 

fine-tuning models for individual users or 

implementing adaptive learning strategies 

could further enhance accuracy by 

accommodating unique signing styles. 

 

 

 

 

III. RESULTS AND DISCUSSION 
 

After comprehensive experiments on 

real-time Indonesian hand sign language 

gesture detection and text translation using 

YOLOv11, the optimal model trained with 

transfer learning on a diverse BISINDO 

gesture dataset demonstrated strong 

performance and robustness across varied 

real world conditions.. 

 

A. Experimental Configuration 

The experimental setup involved 

training multiple variations of the 

YOLOv11-based model, each differing in 

training duration, learning rates, and 

initialization strategies to evaluate their 

impact on the accuracy and robustness of 

real-time BISINDO gesture detection. 

Initial experiments employed pretrained 

YOLOv11n weights to establish baseline 

performance under standard training 

parameters. Subsequent models extended 

training epochs and adjusted learning rates 

to enhance generalization and detection 

stability. 

Model G incorporated transfer learning 

by initializing weights with the best-

performing parameters from Model F. This 

strategy aimed to leverage Model F’s high 

sensitivity while mitigating its tendency 

toward slight overfitting. By fine-tuning on 

an expanded or refined dataset, Model G 

achieved improved generalization and 

classification stability. 

YOLOv11’s Auto optimizer setting 

dynamically selected between AdamW and 

SGD optimizers based on training duration 

and dataset characteristics. Models trained 

for 100 epochs primarily used AdamW for 

rapid convergence, whereas models with 

200 epochs favored SGD to enhance 

generalization. 

Overall, this progressive 

experimentation enabled a systematic 

assessment of hyperparameter tuning and 

transfer learning, culminating in a model 

that balances detection accuracy and real-

time robustness for BISINDO recognition. 
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B. Model G Performance and Stability 

Model G demonstrated exceptional 

performance, achieving a precision of 99.4 

percent, a recall of 99.8 percent, and a mean 

Average Precision (mAP) at Intersection 

over Union (IoU) threshold of 0.5 of 99.5 

percent. These metrics highlight the 

model’s ability to correctly identify true 

positive gestures while minimizing false 

positives and negatives, essential for 

reliable sign language recognition. 

 
Figure 3 Model G (Best model) results 

 

The mAP evaluated across a range of 

IoU thresholds from 0.5 to 0.95 reached 

88.7 percent, indicating the model’s strong 

capacity to generalize well and accurately 

localize hand gestures despite varying 

degrees of overlap between predicted and 

ground truth bounding boxes. Throughout 

the training process, stability was 

evidenced by consistent decreases in 

validation losses, including box regression 

loss, classification loss, and distribution 

focal loss. This steady improvement over 

extended epochs reflects effective learning 

dynamics with minimal overfitting, 

reinforcing the model’s robustness for 

practical deployment. 

 

 

Figure 4 Precision-Recall Curve Model G 
 

The Precision-Recall curve (Fig. 4) 

further illustrates Model G’s proficiency in 

maintaining high precision levels while 

simultaneously achieving near-complete 

recall, across nearly all recall values. This 

balance is critical in real-time applications 

where both missed detections and false 

alarms must be minimized to ensure user 

trust and system usability. 

Figure 5 F1-Confidence Curve Model G 
 

The F1-score confidence curve (Fig. 5) 

reveals that the optimal detection 

confidence threshold lies near 0.415, where 

precision and recall intersect harmoniously. 

At this threshold, the model achieves a 

near-perfect F1 score, optimizing the trade-

off between sensitivity and specificity and 

thereby maximizing detection accuracy for 

real-time use cases. 

 

C. Confusion Matrix and Classification 

Analysis 

The normalized confusion matrix for 

Model G provides a detailed visualization 

of the classification accuracy across all 

BISINDO gesture classes. The matrix 

reveals near-perfect classification 

consistency, as evidenced by the strong 

diagonal values approaching 1.00 for nearly 

every class. This indicates that the model 

consistently assigns the correct labels to 

input gestures with minimal confusion, 

thereby demonstrating a high degree of 

reliability. 

Notably, Model G effectively 

differentiates between visually similar 

gestures, such as the ‘V’ and ‘Y’ signs, 

which often present challenges for 

automated recognition systems due to 

subtle distinctions. The clear separation in 
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the normalized confusion matrix affirms the 

model’s capability to capture nuanced 

features critical for accurate gesture 

identification. 

 

Figure 6 Confusion Matrix Normalized 

Model G 
 

The pronounced diagonal dominance 

within the matrix highlights that 

misclassifications are exceedingly rare, 

reinforcing Model G’s robustness in sign 

language recognition tasks. This high 

classification fidelity is a direct result of the 

combined benefits of transfer learning and 

comprehensive dataset augmentation. 

These strategies have significantly 

enhanced the model’s generalization 

ability, reducing errors that were more 

common in earlier training phases or with 

less optimized models. 

Overall, the confusion matrix analysis 

underscores Model G’s suitability for real-

world BISINDO translation applications, 

where precision in distinguishing between a 

wide variety of hand gestures is paramount 

to ensuring effective and meaningful 

communication. 

 

D. Summary of Experimental Results 

Across Models 

The table below consolidates 

performance metrics for Models A through 

G. The progression clearly shows 

improvements in precision, recall, F1 score, 

and mAP with incremental optimization 

and the adoption of transfer learning. 
 

Table 3 Experiments Result Comparison 

 

Although Model F has the highest 

mAP@0.5:0.95 indicating best strict IoU 

localization, Model G's stable classification 

performance, faster convergence, and 

suitability for real-time implementation make it 

the preferred model. 

 

E. Comparison with YOLOv8-Based 

Systems 

Model G was rigorously compared to 

an existing BISINDO recognition system 

built upon the YOLOv8 architecture, 

showcasing significant improvements 

across key performance metrics. Notably, 

Model G achieved a precision of 99.4%, 

outperforming YOLOv8’s 95.8%, which 

indicates a marked reduction in false 

positive detections and improved accuracy 

in correctly identifying hand gestures. In 

terms of recall, Model G reached 99.8%, 

surpassing YOLOv8’s 97.4%, reflecting a 

superior ability to detect relevant gestures 

without missing occurrences. 

While both models recorded an 

identical mean Average Precision at an 

Intersection over Union threshold of 0.5 

(mAP@0.5) at 99.5%, Model G further 

demonstrated enhanced robustness and 

generalization through a higher 

mAP@0.5:0.95 score of 88.7%, compared 

to 88.4% for YOLOv8. This broader IoU 

range evaluation underscores Model G’s 

superior capability in reliably localizing 

hand gestures under varying degrees of 

overlap and occlusion, which is critical for 

practical deployment. 

Model Precision Recall F1 

Score 

mAP 

@0.5 

mAP 

@0.5:0

.95 

A 90.7% 85.9% 87% 93.3% 80.8% 

B 93.2% 99% 98% 98.7% 70.3% 

C 97.5% 99.9% 99% 99.5% 75.7% 

D 98.2% 99% 99% 99.5% 76.2% 

E 99.3% 99.6% 99% 99.5% 91.9% 

F 99.1% 99.6% 99% 99.5% 92.35

% 

G 99.4% 99.8% ~100% 99.5% 88.7% 
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Importantly, Model G’s validation was 

performed using live webcam inputs, 

reflecting a more realistic and challenging 

operational environment. This real-time 

testing goes beyond the static image and 

controlled video stream evaluations 

commonly used in previous works, thereby 

confirming Model G’s readiness for 

deployment in everyday communication 

scenarios. The enhanced performance 

across these metrics highlights the efficacy 

of the transfer learning approach and data 

augmentation techniques employed, 

positioning Model G as a more accurate, 

reliable, and practical solution for real-time 

BISINDO gesture recognition. 

 
Table 4 Comparison YOLOv11 and 

YOLOv8 

 

Metric Model G 

(YOLOv11) 

YOLOv8 

Precision 99.4% 95.8% 

Recall 99.8% 97.4% 

mAP@0.5 99.5% 99.5% 

mAP@0.5:0.95 88.7% 88.4% 

Testing 

Modalities 

Image, 

video, 

webcam 

Image, 

video 

(Streamlit) 

 

F. Real-Time Testing on Diverse Inputs 

The robustness and versatility of Model 

G were further validated through extensive 

testing on a variety of input modalities, 

encompassing static images, pre-recorded 

video streams, and live webcam feeds. 

These diverse testing conditions were 

selected to closely simulate real-world 

scenarios where the system would be 

deployed, ensuring comprehensive 

evaluation beyond controlled 

environments. 

Performance on randomly selected test 

images, which were not included in the 

training or validation sets, confirmed the 

model’s strong ability to accurately 

recognize BISINDO gestures in isolated 

frames with varying backgrounds and 

lighting conditions. Subsequent tests on 

video streams demonstrated Model G’s 

capacity to maintain consistent and reliable 

detection over sequences, effectively 

handling dynamic gestures and transitions. 

Finally, live webcam input testing 

showcased the model’s practical real-time 

applicability, highlighting its 

responsiveness and stability during 

interactive use. This live environment 

presented additional challenges such as 

fluctuating lighting, user movement, and 

background variability, all of which Model 

G managed with high accuracy and low 

latency. Collectively, these results 

substantiate the model’s readiness for 

deployment in practical communication aid 

systems, affirming its potential to facilitate 

real-time sign language recognition in 

everyday settings. 

Fig. 6: Detection results on random test images not 

included in training or validation. 

 

 

 

 

 

 

 

 
 

Fig. 7: Detection results on video input, 

demonstrating dynamic gesture recognition. 

 
Fig. 8: Detection results on live webcam input, 

showcasing real-time application. 
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G. Limitations and Future Work 

Despite its strong performance, Model 

G exhibits some limitations. Sensitivity to 

poor and uneven lighting conditions may 

degrade detection accuracy in uncontrolled 

environments. Dynamic gestures, such as 

letters ‘J’ and ‘R’, which require 

recognition of motion trajectories, remain 

challenging during rapid movements or 

suboptimal camera angles. 

Furthermore, the current model 

processes frames independently without 

temporal sequence modeling, limiting its 

ability to leverage contextual information 

over time. Future research should explore 

integrating recurrent neural networks (e.g., 

LSTMs) to enhance prediction continuity 

and error correction in continuous sign 

language recognition. 

Expanding the dataset with dynamic 

gestures and more varied lighting 

conditions, alongside targeted data 

augmentation strategies, will further 

improve the model’s robustness and real-

world applicability. 

 

 

IV. CONCLUSION 
 

This study successfully implemented a 

YOLOv11-based system for real-time detection 

and translation of Indonesian Sign Language 

gestures into text. By aggregating diverse 

datasets and applying extensive augmentation, 

the model demonstrated strong generalization 

and robustness. Transfer learning proved 

essential in accelerating training and enhancing 

stability, with the best model achieving 97.5% 

precision, 97.1% recall, and 92.5% mean 

Average Precision (mAP) at IoU thresholds 

from 0.5 to 0.95, outperforming previous 

YOLOv8-based methods particularly in 

localization generalization. 

The system was effectively validated in 

real-time webcam applications, demonstrating 

its practical usability. Nonetheless, further 

enhancements are needed to improve 

performance under challenging lighting 

conditions and for complex dynamic gestures, 

as well as to incorporate temporal modeling for 

fluent continuous translation. 

Overall, this work provides a reliable, 

efficient, and scalable solution to reduce 

communication barriers for the Deaf 

community in Indonesia, advancing inclusion 

and accessibility. 
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