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Abstract—The rise of social media has significantly accelerated
the spread of online hate speech, particularly on Platform X
(Twitter). This study proposes a hybrid approach that com-
bines Bidirectional Encoder Representations from Transformers
(BERT) and Extreme Gradient Boosting (XGBoost) to improve
the accuracy of hate speech detection, while also integrating
Generative Al to produce narrative explanations that are ac-
cessible to non-technical audiences. The dataset was collected via
scraping using the Twitter Search API and annotated through
crowdsourcing, covering the categories, targets, and intensity
levels of hate speech, resulting in a total of 13,014 entries.
Three models were developed and compared: a hybrid BERT +
XGBoost model, an XGBoost model with TF-IDF features, and a
fine-tuned BERT model. Evaluation results show that the hybrid
model achieved an accuracy of 81%, but did not outperform
the fine-tuned BERT model, which attained an accuracy of
88.99% and an Fl-score of 0.8893. These findings indicate
that hybrid approaches do not always guarantee performance
improvements, especially in the context of Indonesian-language
text classification.

Index Terms—text classification, hate speech, BERT, XGBoost,
hybrid model.

I. INTRODUCTION

The advancement of digital technology has fundamentally
transformed various aspects of human life, including the
economic, social, and educational domains. Nevertheless, this
progress has also introduced new challenges, one of which is
the escalating prevalence of hate speech on digital platforms.
Hate speech refers to expressions—whether in the form of text,
images, or symbols—that propagate hatred, discrimination, or
hostility towards individuals or groups based on attributes such
as race, religion, or ethnicity. These expressions often exploit
the anonymity afforded by online environments [1], resulting
in a range of adverse impacts, including emotional distress,
social polarization, and, in severe cases, real-world conflict
escalation.

Machine learning techniques have been extensively adopted
to address the problem of hate speech detection in digital
spaces. Early applications of Natural Language Processing
(NLP) utilized traditional approaches such as Bag-of-Words
and Term Frequency-Inverse Document Frequency (TF-IDF),
sometimes supported by lexicon-based methods [2], [3]. These
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were commonly combined with classical classification algo-
rithms, such as Support Vector Machines (SVM) [5], and
dimensionality reduction techniques like Principal Component
Analysis (PCA) [4] to reduce feature complexity. However,
these traditional approaches are limited in their ability to
capture linguistic nuances and contextual dependencies.

Among digital platforms, Platform X (formerly known as
Twitter) is recognized as a primary channel for the dissemina-
tion of hate speech in Indonesia [6]. The platform’s large user
base, combined with features such as retweets and hashtags,
enables aggressive content to spread rapidly [7]. Recent studies
have reported a tenfold increase in online hate speech exposure
in Indonesia over the past two years, with minority religious
and ethnic groups being the most frequent targets. This trend
poses serious concerns regarding digital safety, data privacy,
and the integrity of online public discourse, particularly for
younger users who are the most active on social media.

To effectively identify and mitigate such harmful con-
tent, more advanced approaches are required. One promis-
ing method is the use of Bidirectional Encoder Representa-
tions from Transformers (BERT), which offers deeper contex-
tual understanding than traditional NLP models. BERT has
demonstrated strong performance in hate speech detection
tasks, achieving an Fl-score of 92% for English-language
datasets such as Davidson, and a macro-F1 score of 0.78
for Indonesian-language datasets such as IndoToxic2024 [8].
Further studies have confirmed that BERT-based approaches
significantly improve classification performance in hate speech
detection tasks across multiple languages [9]-[12].

Building upon these advances, this study proposes a hybrid
model that combines BERT with the Extreme Gradient Boost-
ing (XGBoost) algorithm. The goal is to utilize BERT’s ability
to produce semantically rich textual embeddings and integrate
it with XGBoost’s high-performance classification capabilities,
particularly its effectiveness in handling high-dimensional and
imbalanced datasets [13]. In the proposed approach, the text
embeddings generated by BERT serve as input features for
the XGBoost classifier [14]. This hybrid strategy is expected to
yield more accurate hate speech detection outcomes, especially
in the context of Indonesian-language content on social media



platforms [15].

II. THEORETICAL BASIS

A. Hate Speech

Hate speech refers to expressions—textual, visual, or sym-
bolic—that incite hatred, discrimination, or hostility toward
individuals or groups based on attributes such as race, religion,
ethnicity, gender, or sexual orientation [16]. It often leverages
the anonymity of digital platforms to intensify its reach and
impact [1].

Such content typically involves offensive language, negative
stereotypes, and intent to provoke conflict. Its exposure can
lead to emotional distress, especially among vulnerable users,
and contribute to broader societal issues such as polarization
and violence. Therefore, detecting hate speech is essential,
and machine learning-based text analysis has emerged as an
effective solution for identifying harmful content at scale.

B. Platform X (Twitter)

Platform X, formerly known as Twitter, is a real-time mi-
croblogging platform that allows users to share short messages
up to 280 characters [17]. Core features such as retweets, hash-
tags, and replies facilitate rapid communication and enable
viral dissemination of content, including hate speech [7], [20].

Although the platform serves as an open space for public
discourse, it has also been widely used to spread offensive con-
tent. In Indonesia, online hate speech incidents have increased
tenfold within two years, often targeting religious and ethnic
minorities [8]. High interaction volumes, user anonymity, and
hashtag amplification make harmful content difficult to mod-
erate [18]. The resulting impact includes emotional distress,
social division, and increased risk of real-world conflict [19].

C. TF-IDF

Term Frequency-Inverse Document Frequency (TF-IDF) is
a statistical method used to evaluate the importance of a term
in a document relative to a corpus [21]. It is widely applied
in information retrieval and text mining to convert text into
numerical features suitable for machine learning models.

The Term Frequency (TF) measures how frequently a term
t appears in a document d:

TFE(t, d) = Ji.a (1)

B Zt'ed .ft/,d

The Inverse Document Frequency (IDF) quantifies the rarity
of a term across /N documents:

IDF(t) = log (g;) @)
t

The final TF-IDF score is computed as:

TFIDF(t,d) = TF(t,d) x IDF(t) 3)

D. Bidirectional Encoder Representations from Transformers
(BERT)

BERT is a language representation model introduced by
Devlin et al. [22], designed to capture deep contextual relation-
ships in text using a bidirectional Transformer encoder [23].
Unlike earlier models such as Word2Vec [24], BERT processes
words by considering both left and right context simultane-
ously.

Built solely on the encoder stack of the Transformer archi-
tecture, BERT utilizes self-attention mechanisms to generate
contextualized embeddings. It is pretrained using two unsu-
pervised tasks: Masked Language Modeling (MLM), where
random tokens are masked and predicted, and Next Sentence
Prediction (NSP), which determines whether two sentences are
contextually related.

BERT’s flexibility in fine-tuning allows it to be adapted to
various downstream NLP tasks, including hate speech clas-
sification. Studies have shown that its bidirectional structure
enhances the detection of subtle language patterns such as
sarcasm and implicit bias, making it a powerful baseline for
many text classification applications.

E. Extreme Gradient Boosting (XGBoost)

Extreme Gradient Boosting (XGBoost) is a highly opti-
mized and scalable implementation of gradient boosting pro-
posed by Chen and Guestrin [25]. It is based on an ensemble
learning strategy where multiple decision trees are trained
sequentially. Each new tree is constructed to minimize the
residual errors made by the ensemble of previously built trees.
This additive approach improves model accuracy by learning
from previous mistakes.

Let y; be the prediction for input x;. The prediction function
in XGBoost is defined as:
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where F is the space of regression trees, and each fj, repre-
sents an individual tree.

The learning process minimizes a regularized objective
function composed of the training loss [ and a regularization

term €Q:
n
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The regularization term penalizes model complexity and pre-
vents overfitting:
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where T' is the number of leaves, w; is the score of the j-th
leaf, and v, A are regularization parameters.
To accelerate training and enable second-order optimization,
XGBoost uses a second-order Taylor expansion of the loss

function:
n
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where g; and h; denote the first and second derivatives (gra-

dient and Hessian) of the loss with respect to the prediction.
An important part of tree construction in XGBoost is

selecting the best feature splits using the gain function:

Gain = 1 [_CL Ch _ (GotGr)l ] _
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where G1,Gr and Hp, Hi represent the sum of gradients
and Hessians for the left and right branches, respectively.

This study utilizes XGBoost as the core classifier that oper-
ates on BERT-extracted text features. Its robustness against
overfitting and ability to capture complex patterns make it
suitable for handling high-dimensional representations in hate
speech classification tasks.

F. Confusion Matrix

Confusion matrix is a widely used method for evaluating
classification model performance by comparing predicted and
actual labels. It consists of four components: true positives
(TP), true negatives (TN), false positives (FP), and false
negatives (FN). Based on these, the following metrics are
defined:

o Accuracy: measures the proportion of correct predic-

tions:
A TP+ TN ©)
ccuracy =
Y T TPYTN + FP+FN
o Precision: evaluates how many predicted positives are
correct: Tp
Precision = ———— 10
recision TP+ FP (10)
¢ Recall: indicates how many actual positives are identi-
fied: Tp
Recall = ——— 11
T TPTFEN (b
e F1-Score: harmonic mean of precision and recall:
Precisi Recall
Fl-Score — 2 x Crecision X Reca (12)

Precision + Recall

These metrics are crucial in imbalanced classification tasks
like hate speech detection, where accuracy alone may be
misleading [26].

III. RESEARCH METHODOLOGY
A. Literatur Review

This study reviews previous research on hate speech detec-
tion using machine learning approaches, particularly focusing
on social media platform X. The literature spans from 2016 to
2024 and covers both international and national sources. The
reviewed works discuss various aspects, including the defini-
tion and impact of hate speech, text preprocessing techniques,
and the implementation of hybrid models such as BERT
and XGBoost. In addition, performance evaluation methods,
particularly the use of confusion matrix metrics, are also
considered as part of the analytical foundation.

B. Data Collection

The dataset used in this study was obtained from two
sources: the publicly available dataset by Ibrohim and Budi
[?], and additional data collected via Twitter Search API
using keyword-based scraping. Keywords and phrases were
selected based on common patterns of hate speech and abusive
language identified in previous studies.

The collected data was curated and annotated in two stages:
binary classification for hate speech and abusive content,
followed by multilabel annotation for target, category, and
intensity. To ensure annotation quality and objectivity, a web-
based crowdsourcing platform was used, involving 30 annota-
tors from diverse backgrounds.

C. Data Preprocessing

The preprocessing stage is performed to clean and normalize
the dataset before feeding it into the XGBoost classifier. The
full workflow is illustrated in Fig. 1 and consists of the
following steps:

Import Libraries

Read Dataset Data Cleaning
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Fig. 1. Alur Preprocessing Dataset

o Import Libraries: Load essential Python libraries for
data manipulation (pandas), text processing (re), and
modeling (xgboost).

o Read Dataset: Load labeled tweet data into a structured
format (e.g., DataFrame) for further processing.

o Data Cleaning: Remove unwanted elements such as
URLSs, mentions (@), hashtags (#), numbers, emojis,
symbols, and non-ASCII characters.

« Normalization: Convert slang, abbreviations, and typos
into formal words using a normalization dictionary. In-
cludes case folding (lowercasing).

o Tokenization: Break text into tokens using the BERT
tokenizer, which also adds special tokens like [CLS] and
[SEP] to match the model input format.

This structured preprocessing pipeline ensures clean, consis-
tent, and contextually rich tokenized inputs, which are essential
for effective embedding representation and classification.

D. Model Architecture

This research implements a classification system to detect
hate speech on Platform X using a hybrid architecture. The
model combines contextual text embeddings generated by
BERT and a tree-based classifier, XGBoost. The input to



XGBoost consists of sentence-level feature vectors obtained
via mean pooling over BERT token embeddings. The entire
pipeline—from preprocessing, feature extraction, to model
training—was designed to optimize classification accuracy.
The system design is illustrated in Fig. 2.

Split Dataset Feature Extracfion

Hyperparameter

Train Final Model .
Tuning

)

Fig. 2. Model architecture and workflow

The key stages of the model development are as follows:

o Dataset Splitting: The dataset is divided into training,
validation, and test sets to ensure fair performance eval-
uation.

« Feature Extraction: BERT is used to generate contextual
embeddings for each sentence. Mean pooling is applied
over all token embeddings (excluding special tokens such
as [CLS] and [SEP]) to obtain a single fixed-length
vector representing the semantic meaning of the sentence.

o Hyperparameter Tuning: A manual search strategy is
used to tune key XGBoost parameters, including learning
rate, maximum depth, number of estimators, subsample
ratio, and column sampling ratio.

e Model Training: The final model is trained using the
best parameter settings derived from the tuning process.
This model is then used for performance evaluation and
prediction.

1) Dataset Splitting: The dataset was split into three sub-
sets: training (70%), validation (15%), and testing (15%). This
split ensures effective model training while enabling objective
performance evaluation.

Stratified sampling was applied to maintain class distribu-
tion across all subsets. The train_test_split function
from the scikit-learn library was used in a two-step
procedure with the st ratify=y parameter to preserve label
proportions.

2) Feature Extraction: Feature extraction was performed
using a pre-trained BERT (Bidirectional Encoder Represen-
tations from Transformers) model as a contextual feature
extractor. BERT captures deep semantic relationships between
words using self-attention mechanisms, producing richer text
representations than conventional methods such as TF-IDF.

Each input comment was converted into an embedding
vector using BERT, followed by mean pooling over all token
embeddings (excluding special tokens) to obtain a fixed-size
sentence representation. These vectors were then used as input
features for the XGBoost classifier.

This approach leverages BERT’s contextual understanding
without requiring full model fine-tuning, offering computa-
tional efficiency while maintaining strong performance.

3) Hyperparameter Tuning: Hyperparameters are model
settings that are not learned directly from the data but must
be defined prior to training. In the XGBoost algorithm,
key hyperparameters affecting model complexity and perfor-
mance include maximum tree depth (max_depth), learn-
ing rate (learning_rate), and the number of estimators
(n_estimators) [25]. Proper tuning of these parameters
is essential to balance generalization capability and prevent
overfitting or underfitting.

This study employed hyperparameter tuning to find the
optimal parameter combinations. The method used was Grid
Search, which exhaustively evaluates all predefined combina-
tions within a parameter grid. The implementation utilized the
GridSearchCV function from the scikit-learn library,
performing automatic evaluation using cross-validation and
Fl-score as the primary performance metric [27].

Although Grid Search is more computationally expensive
compared to methods such as Random Search, it ensures that
all candidate configurations are tested, increasing the chance of
identifying the best setting [28]. To keep computation feasible,
the search space was limited to commonly used values for
XGBoost: max_depth = {4, 6, 8}, learning_rate =
{0.01, 0.1, 0.2}, and n_estimators = {100, 200}.

E. Model Evaluation

The evaluation stage aims to assess the classification per-
formance of the model in categorizing tweets, particularly in
the context of hate speech detection. This study utilizes a
confusion matrix to summarize the number of correct and
incorrect predictions, consisting of four components: True
Positive (TP), True Negative (TN), False Positive (FP), and
False Negative (FN).

Based on these values, several evaluation metrics are com-
puted:

e Accuracy: the proportion of correct predictions over all
predictions.

o Precision: the proportion of true positives among pre-
dicted positives.

e Recall: the proportion of true positives among actual
positives.

o F1-Score: the harmonic mean of precision and recall,
especially useful for imbalanced datasets.

These metrics provide a quantitative evaluation of the
model’s predictive performance. All calculations were
performed using built-in evaluation functions from the
scikit—-learn library, widely used in Natural Language
Processing (NLP) and text classification research. Addition-
ally, a confusion matrix plot was generated to visually illustrate
the prediction distribution across classes.

IV. RESULTS AND DISCUSSION

A. Dataset Description

This study utilizes an Indonesian-language tweet dataset
annotated for hate speech and non-hate speech. Each class
label is binary (0 or 1), where 1 indicates the presence of the



corresponding attribute. The dataset was curated and prepro-
cessed from publicly available Twitter data collected via the
Twitter API [?], comprising a total of 13,169 tweets annotated
using a multilabel approach, allowing multiple categories per
tweet.

Tweets are labeled under two main categories: “HS” (hate
speech) and “Abusive” (offensive language), along with addi-
tional subcategories of hate speech including:

e HS_Individual — directed at individuals

o HS_Group — directed at groups

« HS_Religion — related to religion or belief

o HS_Race — related to race or ethnicity

o HS_Physical — related to physical appearance or disability

+ HS_Gender — related to gender or sexual orientation

e« HS_Other — related to defamation or other forms of hate

o HS_Weak — weak hate speech

o HS_Moderate — moderate hate speech

o HS_Strong — strong hate speech

This dataset provides a comprehensive representation of
hate speech phenomena on Indonesian social media, making
it suitable for building and evaluating classification models.

B. Library Initialization

The implementation phase begins with the initialization
of essential libraries required for the entire experimental
pipeline. These include libraries for data processing (pandas,
numpy), natural language processing (t ransformers, re,
emoji), machine learning (xgboost, scikit-learn),
deep learning frameworks (torch), and visualization tools
(matplotlib, seaborn).

In addition to general-purpose libraries, this study employs
modules from the transformers library to handle BERT-
based tokenization and modeling, and xgboost for imple-
menting the tree-based classifier. Libraries such as tgdm are
used for tracking training progress, while joblib and json
support model saving and configuration management. Metrics
such as accuracy, precision, recall, Fl-score, and confusion
matrix are computed using scikit-learn’s built-in evalu-
ation tools.

By importing all necessary modules at the beginning, the
implementation ensures efficient access to key functionalities
across all stages—ranging from preprocessing and feature
extraction to training, evaluation, and visualization.

C. Preprocessing

Data preprocessing is a crucial step in natural language
processing tasks, as it directly affects the quality of input data
used during model training. This study applied a systematic
preprocessing pipeline that includes data cleaning, normal-
ization, and label verification to enhance the reliability and
consistency of the dataset.

1) Initial Dataset Inspection and Column Removal: The
initial inspection was conducted by loading the raw dataset
and examining its structure, including the number of entries
and label distribution. To focus the classification task solely on
hate speech detection, irrelevant columns such as Abusive,

HS_Group, and other subcategories were removed. The re-
sulting dataset retained only the tweet text and the main binary
HS label, representing whether a tweet contains hate speech
(1) or not (0). This reduction improves analytical efficiency
while preserving classification intent.

2) Text Cleaning and Normalization: The tweet texts under-
went a series of cleaning operations to remove noisy elements.
These include lowercasing, removal of URLs, mentions, hash-
tags, non-ASCII characters, punctuation, repetitive characters,
emojis, and specific placeholders such as USER. Additionally,
informal or slang words (“alay”) were normalized using an
external dictionary, mapping non-standard terms to their for-
mal equivalents. All transformations were combined into a
centralized preprocessing function, applied to each tweet, with
the results stored in a new column clean_text for further
use.

3) Detection and Correction of Mislabeling: After prepro-
cessing, an audit was conducted to detect potential mislabel-
ing, particularly tweets labeled as non-hate speech (HS = 0)
but containing abusive terms. Using a curated dictionary of
offensive words, tweets were filtered based on the presence
of such keywords. This process identified 1,030 potentially
mislabeled samples, which were manually reviewed. Upon
confirmation, their labels were updated from O to 1 to reflect
their actual hate speech nature.

TABLE 1
HATE SPEECH LABEL DISTRIBUTION BEFORE AND AFTER RELABELING

Label HS | Before Relabeling | After Relabeling
0 7,516 6,486
1 5,498 6,528

Table I presents the distribution of hate speech labels before
and after relabeling. The correction resulted in a significant
shift, increasing the number of tweets identified as hate
speech, thus enhancing the dataset’s alignment with real-world
offensive language occurrences.

D. Model Design

The integration of BERT and XGBoost was carried out by
extracting contextual embeddings from the final layer of the
BERT model, which served as feature inputs for the XGBoost
classifier to predict hate speech labels. This process involved
several key steps: splitting the dataset into training, validation,
and test sets; generating sentence-level embeddings using
mean pooling; performing hyperparameter tuning with grid
search; and training the final model based on the optimized
parameters.

1) Split Dataset: To ensure balanced class representation
across all data subsets, the dataset was partitioned using
a stratified splitting technique. This method maintains the
original distribution of labels in each subset, which is essential
for avoiding bias during training and evaluation. The dataset
was divided into training (70%), validation (15%), and testing
(15%) sets through a two-stage process. First, 70% of the
data was allocated for training. Then, the remaining 30% was
equally split into validation and testing sets, both preserving



the class proportion. This approach ensures that all model
performance metrics are evaluated on data that reflects the
true distribution of the target labels. A follow-up verification
confirmed that both label proportions and average text lengths
were consistently distributed across the subsets, indicating
uniform complexity and representativeness.

2) Feature Extraction: In this stage, the text data is
transformed into fixed-size numerical representations using
a transformer-based language model, specifically IndoBERT-
Base. The model is selected due to its architecture compati-
bility with BERT-Base and its training on Indonesian corpora,
allowing it to better capture contextual semantics within the
target language.

The text preprocessing is followed by tokenization using
the pretrained IndoBERT tokenizer, which standardizes input
into a maximum of 128 tokens, applying both padding and
truncation as needed. Each text instance is converted into
tensors and passed through the IndoBERT model to obtain
the final hidden states from the last layer.

To generate a single vector representation per text, a mean
pooling technique is applied across the token embeddings,
considering only valid tokens as indicated by the attention
mask. This results in a 768-dimensional vector embedding that
captures the semantic information of the input text.

The embedding process is applied to all subsets of the
dataset, namely training, validation, and testing. Each text
instance is converted into its corresponding vector representa-
tion. To ensure robustness, the extraction procedure includes
error handling to prevent processing failures and replace
problematic samples with zero vectors. The final output of
this stage is a feature matrix of size (n, 768) for each subset,
where n denotes the number of samples. These embeddings
serve as the input features for the subsequent classification
model.

3) Hyperparameter Tuning: To optimize the performance
of the XGBoost classifier, hyperparameter tuning was con-
ducted using a grid search approach. This method systemati-
cally evaluates all possible combinations of predefined param-
eter values, providing comprehensive coverage of the search
space and ensuring reproducibility in model selection.

The primary objective of this tuning process was to identify
the most effective parameter configuration in terms of the
Fl1-score, which is particularly important in tasks with class
imbalance. Grid search was chosen due to its deterministic
nature and suitability for relatively small and well-defined
parameter spaces.

The tuning process explored combinations of parameters
such as maximum tree depth, learning rate, number of estima-
tors, subsample ratio, and feature sampling rate per tree. Based
on the results, the optimal configuration included a learning
rate of 0.1, a maximum depth of 8, 200 estimators, and both
subsample and column sampling ratios set to 0.8 and 1.0,
respectively. This configuration was then used to retrain the
final XGBoost model, with the aim of achieving more accurate
and balanced classification outcomes in detecting hate speech.

4) Model Training with XGBoost: Following the extrac-
tion of 768-dimensional semantic embeddings using the
IndoBERT-base model, the classification phase was carried
out using the XGBoost algorithm. The embeddings and their
corresponding labels were converted into XGBoost’s internal
DMatrix format, which is optimized for memory efficiency
and parallel computation.

The model was trained using a set of optimized hyperpa-
rameters selected through a prior grid search. These include
a maximum tree depth of 4, a learning rate of 0.1, row
and feature sampling ratios of 0.8 for subsample and
colsample_bytree, respectively, and regularization terms
reg_alpha = 0.7 and reg_lambda = 2.0. Training was
conducted for up to 2000 boosting rounds, with early stopping
activated to terminate training if no improvement in log loss
was observed on the validation set over 10 consecutive rounds.

Throughout the training process, a custom callback mech-
anism was integrated to log multiple evaluation met-
rics—accuracy, precision, recall, Fl-score, and log loss—on
both the training and validation datasets. This comprehen-
sive monitoring provided valuable insights into the model’s
learning dynamics and helped prevent overfitting. The final
trained model served as a core component in the classification
pipeline, leveraging contextual embeddings from BERT to
enhance the detection of hate speech content across varied
linguistic patterns.

E. Evaluation Models

This section presents a systematic evaluation of the three
classification models developed in this study: XGBoost with
TF-IDF features, fine-tuned BERT, and the hybrid BERT +
XGBoost model. The evaluation was performed on the test
dataset using standard metrics such as accuracy, precision,
recall, Fl-score, and AUC. These metrics provide a compre-
hensive assessment of the models’ ability to detect hate speech
and non-hate speech reliably.

1) XGBoost with TF-IDF: The first model uses XGBoost
with TF-IDF features extracted from the preprocessed text.
This traditional machine learning approach achieved an ac-
curacy of 77.3%, with a balanced precision, recall, and F1-
score around 77.2%. The Area Under the Curve (AUC) was
0.87, indicating good discriminatory power between the two
classes. While the performance was decent, the model showed
limitations in capturing contextual semantics, especially for
ambiguous or sarcastic hate speech.

2) Fine-Tuned BERT: The second model involves fine-
tuning a pre-trained BERT model on the hate speech dataset.
This model outperformed the TF-IDF-based XGBoost with
an accuracy of 80.2%, F1-score of 80.2%, and AUC of 0.89.
The contextual understanding of BERT allows it to capture
the nuances in linguistic patterns, making it more robust in
classifying implicit hate speech. These results demonstrate
the advantage of leveraging deep contextual representations
in language modeling tasks.

3) BERT + XGBoost: The third model integrates BERT
embeddings as feature inputs to the XGBoost classifier. With-



out fine-tuning BERT, this hybrid approach achieved the best
overall performance, with an accuracy of 81.3%, precision
of 81.4%, recall of 81.3%, Fl-score of 81.3%, and AUC
of 0.896. This suggests that the combination of contextual
representations from BERT and the decision-tree structure of
XGBoost can offer improved generalization, despite the lack
of full fine-tuning. The consistent scores across all metrics
indicate its effectiveness and stability in classification.

4) Summary of Results: Based on the evaluation metrics,
the hybrid BERT + XGBoost model achieved the best overall
performance, followed closely by the fine-tuned BERT model.
Although XGBoost with TF-IDF features offered a simpler
and faster alternative, its performance was noticeably lower in
comparison. The results are summarized in Table II.

TABLE 11
COMPARISON OF MODEL PERFORMANCE ON TEST SET

Model Acc
XGBoost 77.3
BERT Fine-Tuned 80.2
BERT + XGBoost 81.3

Rec F1 AUC
772 77.2 0.870
80.3 80.2 0.890
81.3 81.3 0.896

Prec
77.1
80.1

81.4

V. CONCLUSSIONS AND RECOMMENDATION
A. Conclusion

This study demonstrates the implementation and evaluation
of three classification models for hate speech detection on
platform X: the hybrid BERT + XGBoost model, XGBoost
with TF-IDF features, and fine-tuned BERT. The hybrid model
achieved an accuracy and Fl-score of approximately 81%,
indicating a reasonably good performance. However, it did
not outperform the fine-tuned BERT or the classical XGBoost
model, suggesting that combining deep contextual embeddings
with traditional classifiers does not necessarily yield superior
results in all scenarios, especially in Indonesian-language hate
speech detection.

Among the tested models, the fine-tuned BERT consis-
tently outperformed the others across all evaluation metrics. It
achieved an accuracy of 88.99%, a precision of 0.8926, a recall
of 0.8862, and an F1-score of 0.8893 on the test set, correctly
classifying 1,737 out of 1,954 samples. These results highlight
the strength of transformer-based models in capturing nuanced
linguistic and semantic patterns in hate speech content.

Nevertheless, challenges remain, particularly in handling the
complexity of natural language expressions such as sarcasm,
idioms, and culturally specific contexts. These limitations in-
dicate that further refinement is needed to enhance the model’s
sensitivity to diverse linguistic variations in Indonesian social
media text.

VI

A. Recommendations

Based on the findings of this study, several directions are
recommended for future development and implementation.
First, incorporating an explicit “neutral” or “normal” class
label can improve the model’s ability to distinguish hate

speech from non-harmful content. This additional label would
enhance the clarity of class mappings during annotation and
evaluation, while also supporting more interpretable multi-
label classification.

In addition, the incorporation of rule-based methods may
serve as a valuable complement to machine learning ap-
proaches. Such methods can be particularly effective in identi-
fying explicit or repetitive hate expressions—such as common
slurs or offensive keyword patterns—that may not be ade-
quately captured during model training. A hybrid system com-
bining both rule-based and learning-based techniques could
therefore increase robustness and coverage in hate speech
detection.
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