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DETEKSI ANOMALI SENSOR MESIN INDUSTRI FARMASI

MENGGUNAKAN PSEUDO-LABELING DAN HYBRID LEARNING

Jesse Laurencia

ABSTRAK

Peningkatan kebutuhan produk farmasi setiap tahun mendorong industri
farmasi untuk menjaga keandalan mesin produksi guna meminimalkan risiko
kehilangan produksi. Kompleksitas data sensor mesin yang bersifat tidak
berlabel, tidak seimbang, dan memiliki pola non-linear menuntut sistem
deteksi anomali yang akurat untuk mendukung Predictive Maintenance.
Penelitian ini berfokus pada perancangan dan evaluasi model Machine
Learning untuk mendeteksi anomali pada data sensor mesin produksi di PT
Saka Farma. Dataset yang digunakan merupakan data publik IoT sensor
dengan karakteristik yang menyerupai data operasional industri, meliputi fitur
suhu, getaran, tekanan, dan konsumsi energi.

Penelitian ini mengevaluasi tiga pendekatan utama, yaitu model
supervised, unsupervised, dan hybrid. Supervised digunakan untuk memilih
classifier terbaik untuk kombinasi model Hybrid. Tahapan penelitian
menggunakan framework CRISP-DM meliputi data preprocessing,
normalisasi, serta penanganan imbalanced data. Hasil evaluasi model
dilakukan menggunakan metrik seperti F1-score, Precision, Recall, PR-AUC
dan Confidence Interval.

Hasil eksperimen menunjukkan model supervised XGBoost secara
individu memberikan performa stabil dengan Fl-score anomali sebesar
0.7932. Model unsupervised mampu mencapai nilai Recall tinggi namun
menghasilkan Precision yang sangat rendah sehingga kurang ideal digunakan
secara individu. Pendekatan hybrid menunjukkan kinerja terbaik secara
keseluruhan. Kombinasi Isolation Forest dan XGBoost berhasil mencapai F1-
score tertinggi sebesar 0.8456 dengan Precision 0.8939 dan Recall 0.8022,
serta nilat PR AUC sebesar 0.8519 yang mencerminkan keseimbangan,
stabilitas, dan kemampuan membedakan yang baik. Hasil ini menunjukkan
bahwa penggabungan kemampuan deteksi awal dari model unsupervised
dengan klasifikasi non-linear pada model supervised lebih efektif dalam
menangani kompleksitas dan heterogenitas data sensor industri.

Kata kunci: Anomaly detection, Manufacture Industry, Machine Learning,
Hybrid
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PSEUDO-LABELING AND HYBRID LEARNING FOR MACHINE
SENSOR ANOMALY DETECTION IN THE PHARMACEUTICAL
INDUSTRY

Jesse Laurencia

ABSTRACT (English)

The increasing demand for pharmaceutical products each year has
prompted the pharmaceutical industry to maintain the reliability of
production machinery to minimize the risk of production losses. The
complexity of machine sensor data, which is unlabeled, unbalanced, and has
non-linear patterns, requires an accurate anomaly detection system to
support Predictive Maintenance. This study focuses on the design and
evaluation of Machine Learning models to detect anomalies in production
machine sensor data at PT Saka Farma. The dataset used is public IoT sensor
data with characteristics like industrial operational data, including
temperature, vibration, pressure, and energy consumption features.

This study evaluates three main approaches, namely supervised,
unsupervised, and hybrid models. Supervised models are used to select the
best classifier for the Hybrid model combination. The research stages use the
CRISP-DM framework, including data preprocessing, normalization, and
imbalanced data handling. Model evaluation results are performed using
metrics such as Fl-score, Precision, Recall, PR-AUC, and Confidence
Interval.

The results of the experiment show that the supervised XGBoost model
individually provides stable performance with an anomaly Fl-score of
0.7932. The unsupervised model achieve a high Recall value but produces
very low Precision, making it not ideal for individual use. The hybrid
approach shows the best overall performance. The combination of Isolation
Forest and XGBoost achieved the highest F'[-score of 0.8456 with Precision
of 0.8939 and Recall of 0.8022, as well as a PR AUC value of 0.8519,
reflecting good balance, stability, and discrimination capabilities. These
results show that combining the early detection capabilities of unsupervised
models with non-linear classification in supervised models is more effective
in handling the complexity and heterogeneity of industrial sensor data.

Keywords: Anomaly detection, Manufacture Industry, Machine Learning,
Hybrid
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