BAB 3
PELAKSANAAN KERJA MAGANG

3.1 Kedudukan dan Koordinasi

Pelaksanaan kerja magang dilakukan di PT CreateIT Solution Indonesia,
sebuah perusahaan yang bergerak di bidang pengembangan perangkat lunak
berbasis teknologi informasi. Periode magang dilaksanakan pada Divisi
Pengembangan Web (Web Module) dengan posisi sebagai Backend Developer.
Dalam struktur organisasi proyek, supervisi dilakukan secara langsung oleh
Vincentius Marco Melandri selaku Supervisor Lapangan, yang berperan dalam
memberikan arahan teknis, bimbingan profesional, serta evaluasi terhadap setiap
tahapan pekerjaan yang dilakukan.

Pelaksanaan magang berlangsung dalam proyek pengembang proyek
Warehouse Management System (WMS) yang dikembangkan untuk Ritra
Logistics, salah satu klien PT CreateIT Solution Indonesia. Dalam tim
tersebut, peran yang ditugaskan adalah sebagai Backend Developer, berfokus
pada perancangan dan pengembangan Application Programming Interface (API)
menggunakan bahasa pemrograman Go (Golang) dengan framework Go Fiber.
Pendekatan pengembangan backend berbasis RESTful API dipilih karena mampu
meningkatkan modularitas sistem serta mempermudah integrasi dengan layanan
frontend dan sistem lain [4]. Pekerjaan dilakukan secara kolaboratif dengan
seorang rekan yang juga bertugas di sisi backend, serta melakukan koordinasi rutin
dengan tim frontend yang menggunakan Next.js dan TypeScript untuk memastikan
kesesuaian antara API dan antarmuka pengguna, sebagaimana praktik kolaborasi
lintas tim yang umum diterapkan dalam pengembangan perangkat lunak modern
[5].

Kegiatan magang dilaksanakan secara hybrid, di mana sebagian pekerjaan
dilakukan secara daring dan sebagian lainnya secara tatap muka di kantor PT
CreateIT Solution Indonesia. Proses koordinasi dilakukan melalui berbagai
platform komunikasi dan manajemen proyek seperti Slack, Google Meet, dan
Trello, yang digunakan untuk pembagian tugas, pelaporan kemajuan, serta
diskusi teknis terkait pengembangan sistem. Penggunaan tools kolaborasi digital
terbukti mampu meningkatkan efektivitas komunikasi tim serta transparansi progres

pengembangan perangkat lunak [6]. Evaluasi dan pelaporan progres dilakukan

7

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

secara mingguan, di mana setiap anggota tim menyampaikan capaian pekerjaan,
kendala yang dihadapi, serta rencana tindak lanjut yang akan dilakukan pada iterasi
berikutnya.

Melalui mekanisme koordinasi tersebut, setiap tahapan pengembangan
sistem dapat berjalan secara terstruktur, terpantau, dan sesuai dengan target
fungsional yang telah ditetapkan. Selain memastikan keterpaduan antar bagian
sistem, kegiatan ini juga menjadi sarana bagi mahasiswa untuk mengembangkan
kemampuan teknis dan profesional dalam lingkungan kerja pengembangan

perangkat lunak yang sesungguhnya.

3.2 Tugas yang Dilakukan

Selama masa magang di PT CreateIT Solution Indonesia, posisi yang
ditempati berada pada divisi Backend Development dalam proyek Warehouse
Management System (WMS) untuk klien Ritra Logistics. Tanggung jawab utama
mencakup pengembangan sisi backend sistem berbasis web menggunakan bahasa
pemrograman Golang dengan framework Go Fiber. Penggunaan bahasa Go dipilih
karena keunggulannya dalam performa, konkurensi, serta kemudahan pemeliharaan
sistem berskala besar [7].

Pekerjaan difokuskan pada perancangan dan implementasi Application
Programming Interface (API) yang berfungsi sebagai penghubung antara basis
data dan antarmuka pengguna yang dikembangkan oleh tim frontend menggunakan
Next.js dan TypeScript. Setiap API dikembangkan berdasarkan API contract yang
terdokumentasi melalui Swagger, sehingga komunikasi data antara backend dan
frontend berjalan secara konsisten, terstruktur, dan terdokumentasi dengan baik [8].

Pengembangan dilakukan untuk berbagai entitas dalam sistem, seperti
modul Purchase Order (PO), Manajemen Barang, dan Inventori Gudang. Proses
pengembangan mencakup pembuatan endpoint untuk operasi Create, Read, Update,
dan Delete (CRUD), serta fitur pencarian data berdasarkan UUID maupun ID.
Pendekatan CRUD ini merupakan praktik umum dalam pengelolaan data terstruktur
pada sistem informasi modern [9]. Selain itu, sistem autentikasi dan otorisasi
pengguna juga diterapkan untuk memastikan pembatasan akses sesuai dengan peran
masing-masing pengguna dalam sistem [10].

Proses kerja dilaksanakan secara kolaboratif dengan anggota tim lain
melalui platform Gitea sebagai sistem version control dan OpenProject untuk

manajemen tugas serta pelacakan progres proyek. Koordinasi dilakukan melalui

8

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

daily meeting, baik secara daring menggunakan Microsoft Teams maupun secara
langsung di kantor, serta komunikasi informal menggunakan WhatsApp untuk
pembahasan teknis harian. Setiap perubahan kode melalui proses code review
sebelum digabungkan (merge) ke cabang utama repositori, guna menjaga kualitas
kode dan meminimalkan potensi kesalahan implementasi [11].

Pengujian terhadap setiap endpoint dilakukan menggunakan Postman untuk
memastikan bahwa seluruh fungsi API berjalan sesuai spesifikasi dan menghasilkan
respons data yang tepat. Tahapan ini juga digunakan untuk memverifikasi
kesesuaian API dengan kebutuhan frontend sebelum proses integrasi dilakukan.

Melalui proses tersebut, kegiatan pengembangan sistem berjalan secara
terstruktur, efisien, dan terkoordinasi dengan baik, menghasilkan komponen
backend yang stabil dan sesuai dengan spesifikasi fungsional sistem Warehouse

Management System.

3.3 Uraian Pelaksanaan Magang

Proses pelaksanaan kegiatan magang di PT CreatelT Solution Indonesia
berlangsung selama enam bulan sesuai dengan ketentuan yang tercantum dalam
kontrak magang. Kegiatan magang dimulai pada tanggal 4 Agustus 2025 dan
berakhir pada 3 Februari 2026. Selama periode tersebut, aktivitas magang
dilaksanakan secara rutin pada hari kerja. Adapun hari Sabtu, Minggu, hari libur
nasional, serta hari libur perusahaan tidak termasuk dalam jadwal pelaksanaan
magang.

Pelaksanaan kerja magang diuraikan seperti pada Tabel 3.1.

Tabel 3.1. Pekerjaan yang dilakukan tiap minggu selama pelaksanaan kerja magang

Minggu Ke - | Pekerjaan yang dilakukan

1 Mempelajari struktur kode backend, standar penamaan
variabel dan fungsi, serta mulai mengembangkan modul
autentikasi dengan membuat repository, service, dan handler

untuk proses registrasi dan verifikasi pengguna, termasuk

pengelolaan OTP.

9

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

Minggu Ke -

Pekerjaan yang dilakukan

2

Melanjutkan pengembangan modul autentikasi dengan
penambahan field dan logic verifikasi pengguna, serta
memulai pengerjaan frontend proyek Seilbahnen melalui
persiapan aset parallax dan implementasi animasi scroll

parallax.

Mengimplementasikan smooth scrolling untuk meningkatkan
pengalaman parallax, memastikan responsivitas tampilan pada
berbagai resolusi layar, serta melakukan perbaikan animasi

scrolling parallax.

Memulai pengerjaan backend proyek Seilbahnen dengan
melakukan remodeling struktur database dan penyesuaian

response API sesuai permintaan klien dan arahan supervisor.

Melanjutkan pengembangan modul Activity dengan
menambahkan field yang belum tersedia pada response
API serta melakukan perbaikan response agar sesuai dengan
kebutuhan frontend.

Menyelesaikan pengembangan modul Activity dan memulai
pengembangan fitur Winter dengan pembuatan model, DTO,

handler, service, dan repository sesuai standar proyek.

Melanjutkan pengembangan fitur Winter, memperbaiki error
response, membantu pengerjaan halaman admin frontend,
serta memastikan integrasi backend dan frontend berjalan

dengan baik.

Melakukan penyesuaian lanjutan pada fitur Winter sesuai
permintaan klien dan memulai pengembangan modul Risk
dengan pembuatan model, validator, request, response, serta

handler, service, dan repository.

Melakukan pengembangan API Risk dengan dukungan
multibahasa dan endpoint tambahan, serta memulai proyek
RITRA dengan membangun sistem autentikasi berbasis JWT
untuk aplikasi web dan mobile.

10

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

Minggu Ke -

Pekerjaan yang dilakukan

10

Mengembangkan fitur lanjutan pada modul Winter dengan
penambahan logic weekday, weekend, dan holiday,
memperbaiki bug minor, serta mengimplementasikan logic

baru pada sisi frontend.

11

Melakukan optimalisasi tampilan parallax pada proyek
Seilbahnen dengan mengganti aset gambar sesuai permintaan
klien, menambahkan animasi scrolling, dan melakukan

kompresi gambar untuk meningkatkan performa.

12

Menyesuaikan struktur dan kualitas parallax, mengatur
kecepatan animasi scrolling, serta mengganti background
tertentu menjadi video untuk meningkatkan pengalaman visual

pengguna.

13

Melakukan optimalisasi kualitas gambar parallax dan
melanjutkan pengembangan proyek RITRA dengan
menambahkan API permissions, termasuk fitur bulk assign

dan bulk remove.

14

Melakukan perbaikan logic dan response pada beberapa API,
menyesuaikan kebutuhan frontend, serta mengoptimalkan
logic pada PO service agar lebih efisien dan sesuai kebutuhan

klien.

15

Melanjutkan pengembangan modul PO dan HU dengan
menambahkan field baru, memisahkan model delivery,
menghubungkan relasi antar model, serta melakukan

penyesuaian aset visual sesuai permintaan klien.

16

Melakukan perbaikan pada tampilan parallax dan frontend,
menambahkan field timestamp pada beberapa response API,

serta menyesuaikan struktur response PO dan delivery.

17

Melakukan perbaikan minor bug pada beberapa API,
menambahkan status stuffing pada PO, serta mengubah value
status PO menjadi enumerasi yang lebih terstruktur sesuai

kebutuhan sistem.

11

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

3.3.1 Gambaran Umum Arsitektur Sistem

Arsitektur sistem Ritra Logistics dirancang secara terpusat dengan satu
layanan backend yang digunakan oleh dua jenis platform, yaitu aplikasi web dan
aplikasi mobile. Aplikasi web digunakan oleh admin untuk melakukan proses
persetujuan (approval) serta pengelolaan data operasional, sedangkan aplikasi
mobile digunakan oleh petugas lapangan untuk melakukan pemindaian barcode
dan input data barang. Skema arsitektur aplikasi Ritra Logistics dapat dilihat pada
Gambar 3.1.

Kedua aplikasi tersebut terhubung ke sistem backend yang sama melalui
antarmuka layanan berbasis API. Backend sistem berperan sebagai pusat
pengolahan data dan logika bisnis, termasuk validasi data, pengelolaan proses
gudang, serta komunikasi dengan basis data. Seluruh data operasional disimpan
dalam satu database terpusat sehingga konsistensi data antara aplikasi web dan

aplikasi mobile dapat terjaga.

Web Application —

Database

Backend
Senvices

Mobile Application —

Gambar 3.1. Skema arsitektur umum sistem aplikasi Ritra Logistics

Dengan arsitektur ini, sistem mampu mendukung proses operasional gudang
secara terintegrasi, di mana data yang diinput melalui aplikasi mobile dapat

langsung dikelola dan diverifikasi oleh admin melalui aplikasi web.

3.3.2 Analisis Perancangan Sistem

Perancangan sistem backend pada Warehouse Management System (WMS)
Ritra Logistics dilakukan berdasarkan rancangan awal yang telah disusun oleh

Supervisor Lapangan. Rancangan tersebut berfungsi sebagai acuan utama dalam

12

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

proses pengembangan sistem backend, khususnya dalam menentukan alur proses
bisnis, urutan eksekusi logika program, serta interaksi antar modul dalam sistem.

Pendekatan perancangan yang digunakan tidak berfokus pada pemodelan
berbasis objek secara penuh, melainkan menitikberatkan pada alur proses
operasional sistem. Dengan tujuan memperjelas perancangan sistem yang telah
dibuat, flowchart digunakan untuk menggambarkan tahapan-tahapan proses yang
terjadi dalam sistem backend, mulai dari penerimaan permintaan (request) hingga
pengolahan data dan pengembalian respons (response).

A Flowchart Register User

User memasukkan
data registrasi

Apakah user 1

ditemukan ?

Y

Validasi data
registrasi di frontend

¥

Melakukan password

hashing Mengembalikan error

registrasi ke frontend

Apakah input

valid?

Y

Menyimpan user baru
ke database

Backend menerima
register request

Y
Mengirim response
v success dan user ke End

Mengambil data user frontend
dari email yang
dimasukkan

Gambar 3.2. Flowchart register user

Flowchart proses registrasi pengguna menggambarkan alur pendaftaran

akun baru pada sistem Ritra Logistics, sebagaimana ditunjukkan pada Gambar

13

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

3.2. Proses diawali ketika pengguna memasukkan data registrasi berupa email
dan kata sandi melalui antarmuka aplikasi. Setelah data diinput, sistem frontend
melakukan validasi awal untuk memastikan seluruh data telah diisi dengan
benar dan memenuhi ketentuan yang ditetapkan, seperti panjang karakter dan
kelengkapan field. Apabila data tidak lolos validasi, pengguna akan diminta untuk
memperbaiki atau melengkapi kembali data hingga sesuai dengan aturan yang
berlaku.

Apabila proses validasi pada sisi frontend berhasil, data registrasi
akan dikirimkan ke backend melalui request APl untuk diproses lebih lanjut.
Backend kemudian melakukan pengecekan terhadap email yang digunakan dengan
mencocokkannya pada basis data. Jika email tersebut telah terdaftar sebelumnya,
sistem akan mengembalikan respons berupa pesan kesalahan yang menandakan
bahwa proses registrasi tidak dapat dilanjutkan.

Jika email belum terdaftar, backend akan melanjutkan proses dengan
melakukan hashing terhadap kata sandi pengguna sebagai langkah pengamanan
data sebelum penyimpanan. Setelah itu, data pengguna baru akan disimpan ke
dalam basis data dan sistem akan mengirimkan respons success beserta informasi
data pengguna kepada frontend. Dengan alur tersebut, proses registrasi dapat

berjalan secara aman, terstruktur, dan sesuai dengan rancangan sistem.

14

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

B Flowchart Login User

User memasukan login
Credentials

Validasi input login di

frontend Membuat token

Tidak

Apakah
input valid?

‘Apakah

Apakah user password

ditemukan 7 Check password

Y

valid?

Mengirim response
success & user ke
frontend

Backend menerima
login request

¥

l

Mengambil data user
dari email yang |—
dimasukkan

Mengembalikan error
autentikasi ke
frantend

End

h 4

Gambar 3.3. Flowchart login user

Flowchart proses login pengguna menggambarkan alur autentikasi
pengguna pada sistem Ritra Logistics, sebagaimana ditunjukkan pada Gambar 3.3.
Proses dimulai ketika pengguna memasukkan kredensial login berupa email dan
kata sandi melalui antarmuka aplikasi. Selanjutnya, sistem frontend melakukan
validasi awal terhadap inpur yang diberikan, seperti pengecekan format email,
panjang kata sandi, serta memastikan tidak ada field yang kosong. Apabila
validasi ini tidak terpenuhi, pengguna akan diminta untuk memperbaiki data yang
dimasukkan hingga sesuai dengan ketentuan yang berlaku.

Jika data login telah lolos validasi pada sisi frontend, permintaan login akan
dikirimkan ke backend untuk diproses lebih lanjut. Backend kemudian mengambil
data pengguna berdasarkan email yang dikirimkan pada request. Apabila data
pengguna tidak ditemukan dalam basis data, sistem akan mengembalikan respons
berupa pesan kesalahan autentikasi kepada frontend.

Apabila data pengguna berhasil ditemukan, backend akan melakukan proses

verifikasi kata sandi dengan mencocokkannya terhadap data yang tersimpan di

15

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

dalam basis data. Jika kata sandi tidak sesuai, sistem akan mengirimkan pesan
kesalahan autentikasi ke frontend. Sebaliknya, jika proses verifikasi berhasil,
backend akan mengirimkan respons berupa status success beserta data pengguna
kepada frontend. Dengan alur ini, proses login dapat berjalan secara aman dan

terkontrol sesuai dengan rancangan sistem.

C Flowchart Get All Color Code

Start

Y

Mendapatkan request
GET dari frontend

h

Mengirim response
missing or invalid
token ke frontend

Pengecekan token
JWT oleh middleware

Apakah token
terautentikasi?

v

Mengirim response
forbidden: missing
permission Ke

FPengecekan role

permission oleh Apakah memiliki

permission?

middleware frontend
Ya
v
Mengambil semua Meggglcrgsf EF::,"SE
data ColorCode » ColorCodes ke
dalam database frontend

Gambar 3.4. Flowchart get all color code

Flowchart proses pengambilan seluruh data color code menggambarkan
alur pengambilan data kode area yang digunakan dalam sistem Ritra Logistics,
sebagaimana ditunjukkan pada Gambar 3.4. Dalam sistem ini, color code

digunakan sebagai penanda area tertentu yang direpresentasikan dalam bentuk

16

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

nama warna. Proses dimulai ketika frontend mengirimkan permintaan (request)
bertipe GET untuk mengambil seluruh data color code yang tersedia pada sistem.

Setelah permintaan diterima, backend akan melakukan proses autentikasi
dengan memeriksa token JWT yang dikirimkan bersama request. Apabila token
tidak ditemukan atau tidak valid, sistem akan mengembalikan respons berupa
pesan kesalahan yang menyatakan bahwa autentikasi gagal. Jika token dinyatakan
valid, backend kemudian melanjutkan ke tahap otorisasi dengan memeriksa apakah
pengguna memiliki hak akses atau permission yang sesuai untuk mengakses data
color code. Apabila pengguna tidak memiliki izin yang diperlukan, sistem akan
mengembalikan pesan kesalahan berupa missing permission kepada frontend.

Jika proses autentikasi dan otorisasi berhasil, backend akan mengambil
seluruh data color code yang tersimpan di dalam basis data. Data tersebut kemudian
dikirimkan kembali ke frontend dalam bentuk respons sukses. Dengan alur ini,
sistem memastikan bahwa hanya pengguna yang terautentikasi dan memiliki izin
yang sesuai yang dapat mengakses data color code, sehingga keamanan dan kontrol

akses tetap terjaga sesuai dengan rancangan sistem.

17

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

D Flowchart Get Color Code By UUID

Mendapatkan request
GET dari frontend

|

Pengecekan token
JWT oleh middleware

Mengirim response
missing or invalid f—
token ke frontend

Apakah token
terautentikasi?

¥

Mengirim response
forbidden: missing
permission ke

Pengecekan role

permission oleh Apakah memiliki

permission?

middleware frontand
Y
s | oncoocuse et Mrom |
database Huld lersebul ditemukan found ke frontend

Ya

r

Mengirim response
success dan
ColorCode ke
frontend

Mengambil data
ColorCode dari
database

p 4

Gambar 3.5. Flowchart gef color code by uuid

Flowchart proses pengambilan data color code berdasatkan UUID
menggambarkan alur pengambilan data spesifik dari sistem Ritra Logistics,
sebagaimana ditunjukkan pada Gambar 3.5. Proses dimulai ketika frontend
mengirimkan permintaan (request) bertipe GET dengan menyertakan UUID dari
color code yang ingin diambil. Permintaan ini kemudian diterima oleh backend
untuk diproses lebih lanjut.

Setelah menerima request, backend melakukan proses autentikasi dengan
memeriksa token JWT yang dikirimkan. Apabila token tidak valid atau tidak
ditemukan, sistem akan mengembalikan respons kesalahan berupa missing or
invalid token. Jika autentikasi berhasil, backend melanjutkan dengan proses

otorisasi untuk memastikan bahwa pengguna memiliki hak akses yang sesuai.

18

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

Apabila pengguna tidak memiliki izin yang diperlukan, sistem akan mengirimkan
respons berupa missing permission kepada frontend.

Jika proses autentikasi dan otorisasi berhasil, backend akan melakukan
pencarian data color code berdasarkan UUID yang diterima dari request. Apabila
data tidak ditemukan di dalam basis data, sistem akan mengembalikan respons
berupa pesan color code not found. Namun, jika data ditemukan, backend akan
mengambil data tersebut dan mengirimkan respons keberhasilan beserta detail
color code yang diminta kepada frontend. Dengan alur ini, sistem memastikan
pengambilan data dilakukan secara aman dan terkontrol sesuai dengan hak akses

pengguna.

E Flowchart Create Color Code

Mendapatkan request
POST dari frontend

p 4

Mengirim response
missing or invalid
token ke frontend

Pengecekan token
JWT oleh middleware

Apakah token
terautentikasi?

p 4

Fengecekan role
permission oleh
middleware

Apakah memiliki
permission?

p 4

Ya

Memasukkan data
ColorCode baru ke
database

Mengirim response
forbidden: missing
permission ke
frontend

| Mengirim response

“| success ke frontend

Gambar 3.6. Flowchart create color code

Flowchart proses pembuatan color code baru menggambarkan alur
penambahan data kode area ke dalam sistem Ritra Logistics, sebagaimana

ditunjukkan pada Gambar 3.6. Proses dimulai ketika frontend mengirimkan

19

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

permintaan (request) bertipe POST yang berisi data color code baru yang akan
ditambahkan ke dalam sistem. Permintaan ini kemudian diterima oleh backend
untuk diproses lebih lanjut.

Setelah menerima request, backend melakukan proses autentikasi dengan
memeriksa token JWT yang dikirimkan. Apabila token tidak valid atau
tidak ditemukan, sistem akan mengembalikan respons berupa pesan kesalahan
autentikasi. Jika proses autentikasi berhasil, backend akan melanjutkan ke tahap
otorisasi untuk memastikan bahwa pengguna memiliki hak akses yang sesuai.
Apabila pengguna tidak memiliki izin yang diperlukan, sistem akan mengembalikan
respons berupa missing permission kepada frontend.

Jika proses autentikasi dan otorisasi berhasil, backend akan melanjutkan
dengan menyimpan data color code baru ke dalam basis data. Setelah proses
penyimpanan berhasil dilakukan, sistem akan mengirimkan respons keberhasilan
beserta data color code yang baru dibuat kepada frontend. Dengan alur ini, proses
penambahan color code dapat dilakukan secara aman dan terkontrol sesuai dengan

hak akses pengguna.

20

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

F Flowchart Update Color Code

Mendapatkan request
PUT dari frontend

¥

FPengecekan token
JWT oleh middleware

Apakah token
terautentikasi?

v

Pengecekan role
permission oleh
middleware

Apakah memiliki
permission?

k4

Pengecekan
colorCodeUUID di
database

ipakah colorCods
dengan uuid tersebut
ditemukan?

Ya

h

Tidak

Memperbarui data
ColorCode lama
dengan data
ColorCode baru

Menyimpan data
ColorCode baru

Mengirim response
missing or invalid
token ke frontend

Mengirim response
forbidden: missing
permission ke
fromtend

Mengirim response
error: colorCode not
found ke frontend

Mengirim response
success dan
ColorCode ke
frontend

Gambar 3.7. Flowchart update color code

21

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

Flowchart proses pembaruan color code menggambarkan alur perubahan
data color code yang telah ada pada sistem Ritra Logistics, sebagaimana
ditunjukkan pada Gambar 3.7. Proses dimulai ketika frontend mengirimkan
permintaan (request) bertipe PUT yang berisi data color code terbaru yang akan
diperbarui. Permintaan ini kemudian diterima oleh backend untuk diproses lebih
lanjut.

Setelah menerima request, backend melakukan proses autentikasi dengan
memeriksa token JWT yang dikirimkan. Apabila token tidak valid atau
tidak ditemukan, sistem akan mengembalikan respons berupa pesan kesalahan
autentikasi. Jika autentikasi berhasil, backend akan melanjutkan ke tahap otorisasi
untuk memastikan bahwa pengguna memiliki hak akses yang sesuai. Apabila
pengguna tidak memiliki izin yang diperlukan, sistem akan mengembalikan respons
berupa missing permission kepada frontend.

Jika proses autentikasi dan otorisasi berhasil, backend akan melakukan
pencarian data color code berdasarkan UUID yang diterima dari request. Apabila
data tidak ditemukan, sistem akan mengembalikan respons berupa pesan color code
not found. Namun, jika data ditemukan, backend akan memperbarui data color code
yang lama dengan data baru yang dikirimkan dari frontend, tanpa menambahkan
baris data baru pada basis data. Setelah proses pembaruan berhasil dilakukan,
sistem akan mengirimkan respons keberhasilan beserta data color code terbaru

kepada frontend.

22

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

G Flowchart Delete Color Code

Start

p 4

Mendapatkan request
DELETE dari frontend

L 4

Mengirim response

FPengecekan token Apakah token

i I missing or invalid +—
7
JWT oleh middleware terautentikasi® token ke frontend
v
Mengirim response
Pengecekan role . ; e
permission len iy R
middleware frontend
v
Pengecekan Mengirim response
colorCodeUUID di error: colorCode not F—
database ditemukan? found ke frontend
Ya
w
Menghapus data .
ColorCode » Mengirim response

berdasarkan UUID success ke frontend

Gambar 3.8. Flowchart delete color code

Flowchart proses penghapusan color code menggambarkan alur
penghapusan data color code dari sistem Ritra Logistics, sebagaimana ditunjukkan
pada Gambar 3.8. Proses dimulai ketika fronfend mengirimkan permintaan

(request) bertipe DELETE yang berisi UUID dari color code yang akan dihapus.

23

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

Permintaan ini kemudian diterima oleh backend untuk diproses lebih lanjut.

Setelah menerima request, backend melakukan proses autentikasi dengan
memeriksa token JWT yang dikirimkan. Apabila token tidak valid atau
tidak ditemukan, sistem akan mengembalikan respons berupa pesan kesalahan
autentikasi. Jika autentikasi berhasil, backend melanjutkan ke tahap otorisasi untuk
memastikan bahwa pengguna memiliki hak akses yang sesuai. Apabila pengguna
tidak memiliki izin yang diperlukan, sistem akan mengembalikan respons berupa
missing permission kepada frontend.

Jika proses autentikasi dan otorisasi berhasil, backend akan melakukan
pencarian data color code berdasarkan UUID yang diterima dari request. Apabila
data tidak ditemukan, sistem akan mengembalikan respons berupa pesan color code
not found. Namun, jika data ditemukan, backend akan menghapus data color code
tersebut dari basis data. Setelah proses penghapusan berhasil dilakukan, sistem
akan mengirimkan respons keberhasilan kepada frontend sebagai penanda bahwa
data telah berhasil dihapus.

24

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

H Flowchart Get All Vendor

Mendapatkan request
GET dari frontend

Y

Mengirim response
missing or invalid
token ke frontend

Pengecekan token
JWT oleh middleware

Apakah token
terautentikasi?

h

Mengirim response
forbidden: missing
permission ke
frontend

FPengecekan role
permission oleh
middleware

Apakah memiliki
permission?

Ya

b

¥

Mengambil semua
data Vendor dalam

k4

database

Mengirim response
success dan Vendors
ke frontend

Gambar 3.9. Flowchart get all vendor

Flowchart proses pengambilan seluruh data vendor menggambarkan
alur pengambilan data vendor yang tersimpan dalam sistem Ritra Logistics,
sebagaimana ditunjukkan pada Gambar 3.9. Proses dimulai ketika frontend
mengirimkan permintaan (request) bertipe GET untuk mengambil seluruh data
vendor yang tersedia pada sistem. Permintaan ini kemudian diterima oleh backend
untuk diproses lebih lanjut.

Setelah menerima request, backend melakukan proses autentikasi dengan
memeriksa token JWT yang dikirimkan. Apabila token tidak valid atau
tidak ditemukan, sistem akan mengembalikan respons berupa pesan kesalahan

autentikasi. Jika autentikasi berhasil, backend melanjutkan ke tahap otorisasi untuk

25

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

memastikan bahwa pengguna memiliki hak akses yang sesuai. Apabila pengguna
tidak memiliki izin yang diperlukan, sistem akan mengembalikan respons berupa
missing permission kepada frontend.

Jika proses autentikasi dan otorisasi berhasil, backend akan mengambil
seluruh data vendor yang tersimpan di dalam basis data. Data tersebut kemudian
dikirimkan kembali ke frontend dalam bentuk respons keberhasilan beserta daftar
vendor yang tersedia. Dengan alur ini, sistem memastikan bahwa data vendor
hanya dapat diakses oleh pengguna yang telah terautentikasi dan memiliki izin yang

sesuai.

26

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

I Flowchart Get Vendor By UUID

Start

p 4

Mendapatkan request
GET dari frontend

L 4

Mengirim response
missing or invalid +—
token ke frontend

FPengecekan token
JWT oleh middleware

Apakah token
terautentikasi?

L 4

Mengirim response
forbidden: missing
permission ke

Pengecekan role

permission oleh Apakah memiliki

permission?

middleware frontend
¥
wendorouID alan vendor dengan ulis, ™, FCTOTVENGIORE | |
database) found ke frontend

A 4

Mengirim response
success dan vendor
ke fromtend

Mengambil data
vendor dari database

p 4

Gambar 3.10. Flowchart get vendor by uuid

Flowchart ~proses — pengambilan data vendor berdasarkan UUID
menggambarkan alur pengambilan data vendor tertentu dalam sistem Ritra
Logistics, sebagaimana ditunjukkan pada Gambar 3.10. Proses dimulai ketika

frontend mengirimkan permintaan (request) bertipe GET yang berisi UUID dari

27

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

vendor yang ingin diambil. Permintaan ini kemudian diterima oleh backend untuk
diproses lebih lanjut.

Setelah menerima request, backend melakukan proses autentikasi dengan
memeriksa token JWT yang dikirimkan. Apabila token tidak valid atau
tidak ditemukan, sistem akan mengembalikan respons berupa pesan kesalahan
autentikasi. Jika autentikasi berhasil, backend melanjutkan ke tahap otorisasi untuk
memastikan bahwa pengguna memiliki hak akses yang sesuai. Apabila pengguna
tidak memiliki izin yang diperlukan, sistem akan mengembalikan respons berupa
missing permission kepada frontend.

Jika proses autentikasi dan otorisasi berhasil, backend akan melakukan
pencarian data vendor berdasarkan UUID yang diterima dari request. Apabila data
tidak ditemukan, sistem akan mengembalikan respons berupa pesan vendor not
found. Namun, jika data ditemukan, backend akan mengambil data vendor tersebut

dan mengirimkan respons keberhasilan beserta detail data vendor kepada frontend.

28

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

J Flowchart Create Vendor

Mendapatkan request
POST dari frontend

¥

Mengirim response
missing or invalid
token ke frontend

FPengecekan token
JWT oleh middleware

Apakah token
terautentikasi?

¥

Pengecekan role
permission oleh
middleware

Apakah memiliki
permission?

Mengirim response
forbidden: missing
permission ke

frontend

Ya

¥

Memasukkan data
Vendor baru ke o
database

Mengirim response
success ke frontend

Gambar 3.11. Flowchart create vendor

Flowchart proses pembuatan vendor baru menggambarkan alur

penambahan data vendor ke dalam sistem Ritra Logistics, sebagaimana ditunjukkan
pada Gambar 3.11.
(request) bertipe POST yang berisi data vendor baru yang akan ditambahkan ke

Proses dimulai ketika frontend mengirimkan permintaan

dalam sistem. Permintaan ini kemudian diterima oleh backend untuk diproses lebih
lanjut.

Setelah menerima request, backend melakukan proses autentikasi dengan
memeriksa token JWT yang dikirimkan. Apabila token tidak valid atau
tidak ditemukan, sistem akan mengembalikan respons berupa pesan kesalahan

autentikasi. Jika autentikasi berhasil, backend melanjutkan ke tahap otorisasi untuk

29

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

memastikan bahwa pengguna memiliki hak akses yang sesuai. Apabila pengguna
tidak memiliki izin yang diperlukan, sistem akan mengembalikan respons berupa
missing permission kepada frontend.

Jika proses autentikasi dan otorisasi berhasil, backend akan menyimpan data
vendor baru ke dalam basis data. Setelah proses penyimpanan berhasil dilakukan,
sistem akan mengirimkan respons keberhasilan beserta data vendor yang baru
ditambahkan kepada frontend. Dengan alur ini, proses penambahan data vendor

dapat dilakukan secara aman dan terkontrol sesuai dengan kebijakan akses sistem.

30

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

Flowchart Update Vendor

Start

L 4

Mendapatkan request
PUT dari frontend

v

Pengecekan token
JWT oleh middleware

Apakah token
terautentikasi?

v

Pengecekan role
permission oleh
middleware

Apakah memiliki
permission?

h

Pengecekan
vendorUUID di
database

tersebut ditemukan 7

L 4

Memperbarui data
vendor lama dengan
data vendor baru

Menyimpan data

p 4

Mengirim response
missing or invalid
token ke frontend

Mengirim response
forbidden: missing
permission ke
frontend

Mengirim response
error: vendor not
found ke frontend

vendor baru

Mengirim response
success dan vendor
ke frontend

End

31

Gambar 3.12. Flowchart update vendor

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

Flowchart proses pembaruan data vendor menggambarkan alur perubahan
data vendor yang telah tersimpan di dalam sistem Ritra Logistics, sebagaimana
ditunjukkan pada Gambar 3.12. Proses dimulai ketika frontend mengirimkan
permintaan (request) bertipe PUT yang berisi data vendor terbaru yang akan
digunakan untuk memperbarui data sebelumnya. Permintaan ini kemudian diterima
oleh backend untuk diproses lebih lanjut.

Setelah menerima request, backend melakukan proses autentikasi dengan
memeriksa token JWT yang dikirimkan. Apabila token tidak valid atau
tidak ditemukan, sistem akan mengembalikan respons berupa pesan kesalahan
autentikasi. Jika autentikasi berhasil, backend melanjutkan ke tahap otorisasi untuk
memastikan bahwa pengguna memiliki hak akses yang sesuai. Apabila pengguna
tidak memiliki izin yang diperlukan, sistem akan mengembalikan respons berupa
missing permission kepada frontend.

Jika proses autentikasi dan otorisasi berhasil, backend akan melakukan
pencarian data vendor berdasarkan UUID yang diterima dari request. Apabila
data tidak ditemukan, sistem akan mengembalikan respons berupa pesan vendor
not found. Namun, jika data ditemukan, backend akan memperbarui data vendor
lama dengan data yang baru, kemudian menyimpannya kembali ke dalam basis data.
Setelah proses pembaruan berhasil, sistem akan mengirimkan respons keberhasilan

beserta data vendor terbaru kepada frontend.

32

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

L Flowchart Delete Vendor

Start

L 4

Mendapatkan request
DELETE dari frontend

L 4

Mengirim response

Pengecekan token Apakah token

i o missing or invalid
7
JWT oleh middleware terautentikasi’ token ke frontend
v
Mengirim response
Zi??ﬂ?:;gﬁnﬂg:? Apakah memiliki forbidden: missing
. permission? permission ke
middleware frontend
k4
LenceroUID o ke vendor dengan "ot vendornat | —
database - found ke frontend
L 4
Menghapus data -
vendor berdasarkan » Mengirim response

uuIiD success ke frontend

Gambar 3.13. Flowchart delete vendor

Flowchart proses penghapusan data vendor menggambarkan alur
penghapusan data vendor dari sistem Ritra Logistics, sebagaimana ditunjukkan
pada Gambar 3.13. Proses dimulai ketika frontend mengirimkan permintaan
(request) bertipe DELETE yang berisi UUID dari vendor yang akan dihapus.

33

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

Permintaan tersebut kemudian diterima oleh backend untuk diproses lebih lanjut.

Setelah menerima request, backend melakukan proses autentikasi dengan
memeriksa token JWT yang dikirimkan. Apabila token tidak valid atau
tidak ditemukan, sistem akan mengembalikan respons berupa pesan kesalahan
autentikasi. Jika autentikasi berhasil, backend melanjutkan ke tahap otorisasi untuk
memastikan bahwa pengguna memiliki hak akses yang sesuai. Apabila pengguna
tidak memiliki izin yang diperlukan, sistem akan mengembalikan respons berupa
missing permission kepada frontend.

Jika proses autentikasi dan otorisasi berhasil, backend akan melakukan
pencarian data vendor berdasarkan UUID yang diterima dari request. Apabila
data tidak ditemukan, sistem akan mengembalikan respons berupa pesan vendor
not found. Namun, jika data ditemukan, backend akan menghapus data vendor
tersebut dari basis data. Setelah proses penghapusan berhasil dilakukan, sistem
akan mengirimkan respons keberhasilan kepada frontend sebagai tanda bahwa data
telah berhasil dihapus.

34

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

M Flowchart Get All Incoming

Start

A 4

Mendapatkan request
GET dari frontend

v

Mengirim response
missing or invalid
token ke frontend

Pengecekan token
JWT oleh middleware

Apakah token
terautentikasi?

w

Mengirim response
forbidden: missing
permission ke

FPengecekan role

permission oleh Apakah memiliki

permission?

middleware frontend
¥
Mengambil semua Mengirim response
data Incoming dari » success dan
database incomings ke frontend

Gambar 3.14. Flowchart get all incoming

Flowchart proses pengambilan seluruh data incoming menggambarkan alur
pengambilan data barang masuk yang tersimpan dalam sistem Ritra Logistics,
sebagaimana ditunjukkan pada Gambar 3.14. Proses dimulai ketika frontend
mengirimkan permintaan (request) bertipe GET untuk mengambil seluruh data
incoming yang tersedia pada sistem. Permintaan ini kemudian diterima oleh
backend untuk diproses lebih lanjut.

Setelah menerima request, backend melakukan proses autentikasi dengan
memeriksa token JWT yang dikirimkan. Apabila token tidak valid atau

tidak ditemukan, sistem akan mengembalikan respons berupa pesan kesalahan

35

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

autentikasi. Jika autentikasi berhasil, backend melanjutkan ke tahap otorisasi untuk
memastikan bahwa pengguna memiliki hak akses yang sesuai. Apabila pengguna
tidak memiliki izin yang diperlukan, sistem akan mengembalikan respons berupa
missing permission kepada frontend.

Jika proses autentikasi dan otorisasi berhasil, backend akan mengambil
seluruh data incoming yang tersimpan di dalam basis data. Data tersebut kemudian
dikirimkan kembali ke frontend dalam bentuk respons keberhasilan beserta daftar
data incoming yang tersedia. Dengan alur ini, sistem memastikan bahwa data
incoming hanya dapat diakses oleh pengguna yang telah terautentikasi dan memiliki

izin yang sesuai.

36

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

N Flowchart Get Incoming By UUID

Mendapatkan request
GET dari frontend

h

Mengirim response

Pengecekan token Apakah token

. S missing or invalid
7
JWT oleh middleware terautentikasi? token ke frontend
¥
Mengirim response
Pengecekan role . ; e
pemisson e i e
middleware frontend
¥
Pengecekan . . Mengirim response
incomingUJUID di Apa;?;rézigmng EITor: incoming not
database) found
¥
Mengambil data Mengirim response
Incoming dari » success dan
database incoming ke frontend

Gambar 3.15. Flowchart get incoming by uuid

Flowchart proses pengambilan data incoming berdasarkan UUID
menggambarkan alur pengambilan data barang masuk tertentu dalam sistem
Ritra Logistics, sebagaimana ditunjukkan pada Gambar 3.15. Proses dimulai ketika
frontend mengirimkan permintaan (request) bertipe GET yang berisi UUID dari

37

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

data incoming yang ingin diambil. Permintaan tersebut kemudian diterima oleh
backend untuk diproses lebih lanjut.

Setelah menerima request, backend melakukan proses autentikasi dengan
memeriksa token JWT yang dikirimkan. Apabila token tidak valid atau
tidak ditemukan, sistem akan mengembalikan respons berupa pesan kesalahan
autentikasi. Jika autentikasi berhasil, backend melanjutkan ke tahap otorisasi untuk
memastikan bahwa pengguna memiliki hak akses yang sesuai. Apabila pengguna
tidak memiliki izin yang diperlukan, sistem akan mengembalikan respons berupa
missing permission kepada frontend.

Jika proses autentikasi dan otorisasi berhasil, backend akan melakukan
pencarian data incoming berdasarkan UUID yang diterima dari request. Apabila
data tidak ditemukan, sistem akan mengembalikan respons berupa pesan incoming
not found. Namun, jika data ditemukan, backend akan mengambil data tersebut dan
mengirimkan respons keberhasilan beserta detail data incoming kepada frontend.
Dengan alur ini, sistem memastikan bahwa pengambilan data dilakukan secara

aman dan sesuai dengan hak akses pengguna.

38

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

O Flowchart Create Incoming

Mendapatkan reguest
POST dari frontend

h 4

Mengirim response
missing or invalid |—
token ke frontend

Pengecekan token
JWT oleh middleware

Apakah token
terautentikasi?

h 4

Mengirim response
forbidden: missing
permission ke
frantend

Pengecekan role
permission oleh
middleware

Apakah memiliki
permission?

h 4

Tidak

Apakah po
dengan UUID
tersebut ditemukan?

Pengecekan pollUID
di database

Mengirim response
errar: po not found

Memasukkan data
incoming baru ke |
database

Apakah terdapat data
images?

Menyimpan data
gambar ke database

h 4

Mengirim response
success dan
incoming ke frontend

Y

Gambar 3.16. Flowchart create incoming

39

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

Flowchart proses pembuatan data incoming menggambarkan alur
penambahan data barang masuk ke dalam sistem Ritra Logistics, sebagaimana
ditunjukkan pada Gambar 3.16. Proses dimulai ketika frontend mengirimkan
permintaan (request) bertipe POST yang berisi data incoming baru. Permintaan ini
kemudian diterima oleh backend untuk diproses lebih lanjut.

Setelah menerima request, backend melakukan proses autentikasi dengan
memeriksa token JWT yang dikirimkan. Apabila token tidak valid atau
tidak ditemukan, sistem akan mengembalikan respons berupa pesan kesalahan
autentikasi. Jika autentikasi berhasil, backend melanjutkan ke tahap otorisasi untuk
memastikan bahwa pengguna memiliki hak akses yang sesuai. Apabila pengguna
tidak memiliki izin yang diperlukan, sistem akan mengembalikan respons berupa
missing permission kepada frontend.

Jika proses autentikasi dan otorisasi berhasil, backend akan melakukan
pengecekan terhadap purchase order (PO) berdasarkan PO UUID yang dikirimkan
pada request. Hal ini dilakukan karena setiap data incoming harus memiliki relasi
dengan data purchase order. Apabila data PO tidak ditemukan, sistem akan
mengembalikan respons berupa pesan PO not found. Jika data PO ditemukan,
backend akan menyimpan data incoming baru ke dalam basis data.

Setelah data incoming berhasil disimpan, backend akan melakukan
pengecekan terhadap field images. Apabila field tersebut tidak berisi data,
sistem akan langsung mengirimkan respons keberhasilan beserta data incoming
ke frontend. Namun, apabila field images tersedia, backend akan terlebih dahulu
menyimpan data gambar tersebut ke dalam basis data, kemudian mengirimkan
respons keberhasilan beserta data incoming yang telah tersimpan. Dengan alur ini,
proses pencatatan data barang masuk dapat berjalan secara fleksibel dan terintegrasi

sesuai kebutuhan sistem.

40

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

P Flowchart Update Incoming

Mendapatkan request
PUT dari frontend

l

Pengecekan token
JWT oleh middleware

Apakah token
terautentikasi?

Y

Pengecekan role
permission oleh
middleware

Apakah memiliki
permission?

h 4

Pengecekan
incomingJUID di
database

Apakah incoming
dengan UUID
tersebut ditemukan?

Y

Pengecekan poUUID
di database

Memasukkan data
incoming baru ke
database

v

Menghapus data
images incoming dari
database

Apakah terdapat data
images?

Apakah po
dengan UUID
tersebut ditemukan?

Menyimpan data
gambar ke database

h 4

Mengirim response
success dan
incoming ke frontend

Mengirim response
missing or invalid
token ke frontend

Mengirim response
forbidden: missing
permission ke
frontend

Tidak

Mengirim response
error: incoming not
found

Tidak

Mengirim response
errar: po hot found

Gambar 3.17. Flowchart update incoming

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

41

Flowchart proses pembaruan data incoming menggambarkan alur
perubahan data barang masuk yang telah tersimpan dalam sistem Ritra Logistics,
sebagaimana ditunjukkan pada Gambar 3.17. Proses dimulai ketika frontend
mengirimkan permintaan (request) bertipe PUT yang berisi data incoming terbaru
untuk dilakukan pembaruan. Permintaan ini kemudian diterima oleh backend untuk
diproses lebih lanjut.

Setelah menerima request, backend melakukan proses autentikasi dengan
memeriksa token JWT yang dikirimkan. Apabila token tidak valid atau
tidak ditemukan, sistem akan mengembalikan respons berupa pesan kesalahan
autentikasi. Jika autentikasi berhasil, backend melanjutkan ke tahap otorisasi untuk
memastikan bahwa pengguna memiliki hak akses yang sesuai. Apabila pengguna
tidak memiliki izin yang diperlukan, sistem akan mengembalikan respons berupa
missing permission kepada frontend.

Jika proses autentikasi dan otorisasi berhasil, backend akan melakukan
pencarian data incoming berdasarkan UUID yang diterima dari request. Apabila
data incoming tidak ditemukan, sistem akan mengembalikan respons berupa pesan
incoming not found. Selanjutnya, backend akan melakukan pengecekan terhadap
purchase order (PO) berdasarkan PO UUID yang dikirimkan. Apabila data PO
tidak ditemukan, sistem akan mengembalikan respons berupa pesan PO not found.

Jika seluruh data valid, backend akan memperbarui data incoming dengan
informasi terbaru yang diterima dari request. ~ Setelah itu, backend akan
menghapus data images lama yang sebelumnya terasosiasi dengan incoming
tersebut. Selanjutnya, sistem akan melakukan pengecekan terhadap field images.
Apabila tidak terdapat data gambar, sistem akan langsung mengirimkan respons
keberhasilan beserta data incoming terbaru kepada frontend. Namun, apabila field
images tersedia, backend akan menyimpan data gambar tersebut ke dalam basis data
dan kemudian mengirimkan respons keberhasilan beserta data incoming terbaru ke
frontend.

42

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

Q Flowchart Delete Incoming

Mendapatkan request
DELETE dari frontend

h J

Pengecekan token
JWT oleh middleware

Apakah token
terautentikasi?

Mengirim response
missing or invalid
token ke frontend

Y

Pengecekan role
permission oleh
middleware

Apakah memiliki
permission?

Mengirim response
forbidden: missing
permission ke
frontend

Y

Pengecekan
incomingUUID di
database

Apakah incoming
ditemukan?

Mengirim response
error: incoming not
found

h 4

Menghapus data
Incoming dari
database

Kpakah incomint
tersebut memiliki
images?

Tidak

Ya Menghapus images
berdasarkan
incominglD

¥

.| Mengirim response

success frontend

Gambar 3.18. Flowchart delete incoming

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

43

Flowchart proses penghapusan data incoming menggambarkan alur
penghapusan data barang masuk dari sistem Ritra Logistics, sebagaimana
ditunjukkan pada Gambar 3.18. Proses dimulai ketika frontend mengirimkan
permintaan (request) bertipe DELETE yang berisi UUID dari data incoming yang
akan dihapus. Permintaan tersebut kemudian diterima oleh backend untuk diproses
lebih lanjut.

Setelah menerima request, backend melakukan proses autentikasi dengan
memeriksa token JWT yang dikirimkan. Apabila token tidak valid atau
tidak ditemukan, sistem akan mengembalikan respons berupa pesan kesalahan
autentikasi. Jika autentikasi berhasil, backend melanjutkan ke tahap otorisasi untuk
memastikan bahwa pengguna memiliki hak akses yang sesuai. Apabila pengguna
tidak memiliki izin yang diperlukan, sistem akan mengembalikan respons berupa
missing permission kepada frontend.

Jika proses autentikasi dan otorisasi berhasil, backend akan melakukan
pencarian data incoming berdasarkan UUID yang diterima dari request. Apabila
data incoming tidak ditemukan, sistem akan mengembalikan respons berupa pesan
incoming not found. Namun, jika data ditemukan, backend akan menghapus data
incoming tersebut dari basis data. Selanjutnya, sistem juga akan menghapus data
images yang terasosiasi dengan incoming apabila data tersebut tersedia. Setelah
seluruh proses penghapusan berhasil dilakukan, sistem akan mengirimkan respons

keberhasilan kepada frontend sebagai tanda bahwa data telah berhasil dihapus.

44

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

R Flowchart Get HU By UUID

Mendapatkan request
GET dari frontend

¥

FPengecekan token
JWT oleh middleware

Apakah token
terautentikasi?

Mengirim response
missing or invalid
token ke frontend

v

Pengecekan role
permission oleh
middleware

Apakah memiliki
permission?

Mengirim response
forbidden: missing
permission ke
fromtend

k4

Pengecekan hulUID
di database

Apakah hu dengan uuid

tersebut ditemukan?

Mengirim response
error: hu not found ke
frontend

v

Mengambil data po

dari hu tersebut dari
database

k4

Menyambungkan po-
po ke hu dalam
reponse

Y

Mengirim response
success dan hu
beserta po-po ke

fromtend

Gambar 3.19. Flowchart get HU by uuid

45

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

Flowchart proses pengambilan data handling unit (HU) berdasarkan UUID
menggambarkan alur pengambilan informasi HU beserta data purchase order (PO)
yang terkait di dalam sistem Ritra Logistics, sebagaimana ditunjukkan pada Gambar
3.19. Proses dimulai ketika frontend mengirimkan permintaan (request) bertipe
GET yang berisi UUID dari HU yang ingin diambil. Permintaan tersebut kemudian
diterima oleh backend untuk diproses lebih lanjut.

Setelah menerima request, backend melakukan proses autentikasi dengan
memeriksa token JWT yang dikirimkan. Apabila token tidak valid atau
tidak ditemukan, sistem akan mengembalikan respons berupa pesan kesalahan
autentikasi. Jika autentikasi berhasil, backend melanjutkan ke tahap otorisasi untuk
memastikan bahwa pengguna memiliki hak akses yang sesuai. Apabila pengguna
tidak memiliki izin yang diperlukan, sistem akan mengembalikan respons berupa
missing permission kepada frontend.

Jika proses autentikasi dan otorisasi berhasil, backend akan melakukan
pencarian data handling unit berdasarkan UUID yang diterima dari request. Apabila
data HU tidak ditemukan, sistem akan mengembalikan respons berupa pesan HU
not found. Namun, jika data HU ditemukan, backend akan mengambil seluruh
data purchase order (PO) yang terhubung dengan HU tersebut. Seluruh data
tersebut kemudian digabungkan menjadi satu struktur respons yang berisi informasi
HU beserta daftar PO yang terkait. Setelah itu, sistem mengirimkan respons
keberhasilan beserta data HU dan PO kepada frontend.

46

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

S Flowchart Get PO by PO Number

Mendapatkan request
GET dari frontend

¥

Mengirim response
missing or invalid |—
token ke frontend

FPengecekan token
JWT oleh middleware

Apakah token
terautentikasi?

v

Mengirim response
forbidden: missing
permission ke

Pengecekan role
permission oleh
middleware

Apakah memiliki
permission?

frontend
¥
FPengecekan Apakah po dengan Tidak | Mengirim response
poMumber di poMumber tersebut error: po not found ke —
database ditemukan? frontend

v

Mengambil data po
dari database

Mengirim response
———= success beserta po
ke frontend

Gambar 3.20. Flowchart get PO by PO number

Flowchart proses pengambilan data purchase order (PO) berdasarkan
nomor PO menggambarkan alur pengambilan data PO tertentu dalam sistem Ritra
Logistics, sebagaimana ditunjukkan pada Gambar 3.20. Proses dimulai ketika

frontend mengirimkan permintaan (request) bertipe GET yang berisi nomor PO

47

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

yang ingin dicari. Permintaan tersebut kemudian diterima oleh backend untuk
diproses lebih lanjut.

Setelah menerima request, backend melakukan proses autentikasi dengan
memeriksa token JWT yang dikirimkan. Apabila token tidak valid atau
tidak ditemukan, sistem akan mengembalikan respons berupa pesan kesalahan
autentikasi. Jika autentikasi berhasil, backend melanjutkan ke tahap otorisasi untuk
memastikan bahwa pengguna memiliki hak akses yang sesuai. Apabila pengguna
tidak memiliki izin yang diperlukan, sistem akan mengembalikan respons berupa
missing permission kepada frontend.

Jika proses autentikasi dan otorisasi berhasil, backend akan melakukan
pencarian data purchase order berdasarkan nomor PO yang diterima dari request.
Apabila data PO tidak ditemukan, sistem akan mengembalikan respons berupa
pesan PO not found. Namun, jika data PO ditemukan, backend akan mengambil
data tersebut dan mengirimkan respons keberhasilan beserta informasi PO kepada
frontend. Dengan alur ini, proses pencarian data PO dapat dilakukan secara aman

dan terkontrol sesuai dengan ketentuan sistem.

3.3.3 Pembuatan Model dan Data Transfer Object (DTO)

Model dan Data Transfer Object (DTO) merupakan komponen penting
dalam perancangan backend sistem Ritra Logistics. Model digunakan sebagai
representasi struktur tabel pada basis data, sedangkan DTO berfungsi sebagai
perantara dalam pertukaran data antara client dan server. Penggunaan DTO
bertujuan untuk memastikan data yang dikirim dan diterima sesuai dengan
kebutuhan sistem, sekaligus menjaga keamanan dan konsistensi data yang diproses.

Setiap model dalam sistem memiliki sejumlah field utama yang secara
otomatis dihasilkan oleh backend tanpa memerlukan input dari sisi frontend. Field
tersebut meliputi ID, UUID, CreatedAt, CreatedBy, UpdatedAt, dan UpdatedBy.
Keberadaan field-field ini berperan penting dalam proses identifikasi data, pelacakan

perubahan, serta pengelolaan relasi antar entitas dalam sistem.

A Model dan DTO User

Dalam model user, field yang disimpan ke database adalah nama user, email,
password, dan role. Cuplikan kode model user dapat dilihat pada 3.1.

1 package models

48

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

3 import (

4 “time”

7 type User struct {

8 1D uint ‘gorm:” primaryKey; autolncrement” *

o UUID string ‘gorm:” type:char(36);uniquelndex”

1o Name string ‘gorm:” size:50;not null™ "

B Email string ‘gorm:” size:100;uniquelndex ;not null”*

12 Password string ‘gorm:”size:255;not null”®

13 RolelID xuint

4+ Role *Role ‘gorm:” foreignKey:RoleID; constraint:OnUpdate:
CASCADE, OnDelete : SET NULL;” *

16 CreatedAt time.Time ‘gorm:” autoCreateTime” °
17 CreatedBy =uint
18 UpdatedAt time.Time ‘gorm:” autoUpdateTime” °
19 UpdatedBy =uint

20 }
Kode 3.1: Cuplikan kode model User

Untuk kebutuhan komunikasi data antara frontend dan backend, digunakan Data
Transfer Object (DTO) yang dibedakan berdasarkan jenis permintaan. Pada
proses autentikasi, terdapat dua jenis DTO request, yaitu RegisterRequest dan
LoginRequest. DTO RegisterRequest digunakan saat proses pendaftaran pengguna
baru dan memerlukan data nama, email, serta kata sandi. Sementara itu,
LoginRequest hanya membutuhkan email dan kata sandi. Cuplikan kode DTO
request dapat dilihat pada Kode 3.2.

I package requests

3 type RegisterRequest struct {

4 Name string json:”name” validate:”required ,min=3,max=50"
5 Email string json:”email” validate:”required ,email”

6 Password string json:”password” validate:”required ,min=6"

o type LoginRequest struct {
10 Email string json:”email” validate:”required ,email”

B Password string json:”password” validate:”required”

Kode 3.2: Cuplikan kode DTO request user

49

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

Selain request, sistem juga memiliki DTO response yang digunakan
untuk mengirimkan data pengguna kembali ke frontend setelah proses autentikasi
berhasil. DTO ini hanya memuat informasi yang diperlukan oleh sisi klien, yaitu
UUID, nama, dan email pengguna. Cuplikan kode DTO response dapat dilihat pada
Kode 3.3.

package responses

 type AuthResponse struct {

UUID string json:”’uuid”
Name string json:’name”

Email string json:”email”

Kode 3.3: Cuplikan kode DTO response user

B Model dan DTO ColorCode

Model Color Code digunakan untuk merepresentasikan data kode area
yang digunakan dalam sistem Ritra Logistics. Model ini menyimpan informasi
terkait identitas warna, area, serta atribut tambahan yang berkaitan dengan lokasi
dan klasifikasi barang. Selain itu, model ini juga memiliki atribut audit seperti
waktu pembuatan dan pembaruan data yang dikelola secara otomatis oleh sistem.

Cuplikan kode model Color Code dapat dilihat pada Kode 3.4.

package models

3 import (

Mtimen

”github.com/google/uuid”

”gorm.io/gorm”

» type ColorCode struct {

ID uint json:”id” gorm:”primaryKey;autolncrement”

UUID string json:”uuid” gorm:”type:char(36);uniquelndex ;not
null”

Name string json:”name” gorm:”’type:varchar(100);not null”
Code string json:”code” gorm:”type:varchar(50);not null”

Highland bool json:”highland” gorm:”not null;default: false”

50

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

Description string json:”description” gorm:” type:text”
Bloc string json:”bloc” gorm:”type:varchar(100)”

CreatedAt time.Time json:”created_at” gorm:”autoCreateTime”
CreatedBy =uint json:”created_by”

UpdatedAt time.Time json:”updated_at” gorm:~autoUpdateTime”
UpdatedBy =*uint json:”updated_by”

DeletedAt gorm.DeletedAt json:”-" gorm:”index”

Kode 3.4: Cuplikan kode model Color Code

Untuk kebutuhan komunikasi data antara frontend dan backend, digunakan
Data Transfer Object (DTO) sebagai perantara pengiriman data. DTO request
digunakan saat proses pembuatan atau pembaruan data color code. Struktur DTO
ini hanya memuat field yang diperlukan dari sisi klien, sehingga dapat menjaga
validasi dan keamanan data. Cuplikan kode DTO request dapat dilihat pada Kode
3.5.

package requests

5 type ColorCodeRequest struct {

ColorCode string json:”color_code” validate:”required”
Area string json:’area” validate:”required”

Highland bool json:”highland”

Description string json:”description”

Sloc string json:”sloc”

Kode 3.5: Cuplikan kode DTO request Color Code

Selain DTO request, sistem juga menggunakan DTO response untuk
mengirimkan data color code kembali ke frontend. DTO ini berisi informasi
utama yang diperlukan untuk ditampilkan pada sisi klien, tanpa menyertakan atribut
internal yang tidak diperlukan. Cuplikan kode DTO response dapat dilihat pada
Kode 3.6.

package responses

3 type ColorCodeResponse struct {

UUID string json:”uuid”

ColorCode string json:”color_code”
Area string json:”area”

Highland bool json:”highland”
Description string json:”description”

Sloc string json:”sloc”

51

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

10 }
Kode 3.6: Cuplikan kode DTO response Color Code

C Model dan DTO Vendor

Model Vendor digunakan untuk merepresentasikan data pemasok atau pihak
penyedia barang dalam sistem Ritra Logistics. Model ini menyimpan informasi
identitas vendor seperti nama, alamat, nomor telepon, nomor faks, serta alamat
email. Selain itu, model Vendor juga memiliki atribut pendukung berupa informasi
waktu pembuatan dan pembaruan data yang dikelola secara otomatis oleh sistem.
Cuplikan kode model Vendor dapat dilihat pada Kode 3.7.

package models

)

3 import (
4 “time”
s “gorm.io/gorm”

6)

s type Vendor struct {
9 ID uint gorm:”primaryKey” json:”id”
10 UUID string gorm:”type:char(36);uniquelndex” json:”uuid”

il

11 Name string gorm:”type:varchar(255);not null” json:”name’

12 Address string gorm:”type:text” json:”address”

13 Phone string gorm:”type:varchar(50)” json:”phone”

14 FaxNumber string gorm:”type:varchar(50)” json:”fax_number”

Is Email string gorm:”type:varchar(255)” json:”email”

16

17 CreatedAt time.Time ‘json:” created_at” gorm:”
autoCreateTime” *

18 CreatedBy uint ‘json:”created_by” gorm:” column:
created_by” ¢

19 UpdatedAt time.Time ‘json:”updated_at” gorm:”
autoUpdateTime”

20 UpdatedBy uint ‘json:”updated_by” gorm:” column:
updated_by” ¢

21

2 DeletedAt gorm.DeletedAt ‘json:”-" gorm:”index” *

!

Kode 3.7: Cuplikan kode model Vendor

52

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

Untuk kebutuhan pertukaran data antara frontend dan backend, digunakan
Data Transfer Object (DTO) yang berfungsi membatasi serta memvalidasi data
yang diterima dan dikirimkan oleh sistem. DTO request digunakan pada proses
pembuatan maupun pembaruan data vendor, sedangkan DTO response digunakan
untuk mengirimkan informasi vendor yang telah diproses kepada frontend.
Cuplikan kode DTO request dapat dilihat pada Kode 3.8.

1 package requests

; type VendorRequest struct {

4 Name string json:”name” validate:”required ,min=3,max=255"
5 Address string json:”address” validate:”required”

6 Phone string json:”phone” validate:”required”

7 FaxNumber string json:”fax_number”

8 Email string json:”email” validate:”required ,email”

Kode 3.8: Cuplikan kode DTO request Vendor

Selain DTO request, sistem juga menggunakan DTO response untuk
mengirimkan data vendor ke sisi frontend setelah proses berhasil dilakukan. DTO
ini hanya memuat informasi yang relevan untuk ditampilkan, tanpa menyertakan

atribut internal sistem. Cuplikan kode DTO response dapat dilihat pada Kode 3.9.

I package responses

3 type VendorResponse struct {

4 UUID string json:’uuid”

5 Name string json:”name”

6 Address string json:”address”
Phone string json:”phone”

8 FaxNumber string json:”fax_number”

9 Email string json:”email”

Kode 3.9: Cuplikan kode DTO response Vendor

D Model dan DTO Incoming

Model Incoming digunakan untuk merepresentasikan data barang masuk
(incoming goods) dalam sistem Ritra Logistics. Data ini merekam informasi
penerimaan barang yang berkaitan dengan Purchase Order (PO), termasuk status

pemeriksaan, catatan tambahan, serta dokumentasi berupa gambar. Model ini juga

53

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

o

memiliki relasi dengan beberapa entitas lain seperti PO, User, dan Incominglmage.

Cuplikan kode model Incoming dapat dilihat pada Kode 3.10.

package models

3 import (

”time”
”github .com/google/uuid”

”gorm.io/gorm”

)

type Incoming struct {
ID uint json:”id” gorm:”primaryKey;autolncrement”
UUID string json:”uuid” gorm:”type:char(36);uniquelndex;not
null”
POID #uint json:”po_id”
CheckBy #uint json:”check_by”
Status string json:”status” gorm:”type:varchar(10);not null;
default:’ pass’”

Notes #string json:’notes” gorm:”’type:text”

PO PO ‘json:”po” gorm:” foreignKey :
POID; constraint : OnUpdate : CASCADE, OnDelete : SET NULL;” °
IncomingImages []Incominglmage ‘json:”incoming_images” gorm:”
foreignKey :IncomingID ; constraint : OnUpdate : CASCADE, OnDelete :
CASCADE;” ¢
CheckByUser xUser ‘json:” check_by_user ,omitempty”
gorm:” foreignKey : CheckBy;references :ID;constraint : OnUpdate:
CASCADE, OnDelete : SET NULL;” *

CreatedAt time.Time ‘json:” created_at” gorm:”
autoCreateTime” *

CreatedBy =uint ‘json:” created _by”*
UpdatedAt time.Time ‘json:”updated_at” gorm:”
autoUpdateTime”

UpdatedBy =uint ‘json:”updated_by”
DeletedAt gorm.DeletedAt ‘json:”-" gorm:”index” °

Kode 3.10: Cuplikan kode model Incoming

Untuk menerima data dari frontend, digunakan DTO request yang berfungsi
sebagai validasi awal terhadap data yang dikirimkan. DTO ini mencakup UUID

dari Purchase Order, catatan tambahan, serta daftar gambar yang berkaitan dengan

54

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

proses incoming. Cuplikan kode DTO request dapat dilihat pada Kode 3.11.

package requests

5 type IncomingRequest struct {

POUUID string json:”’po_uuid” validate:”required ,uuid4”
Notes #=string json:’notes”
Images []IncominglmageRequest json:”’images”

Kode 3.11: Cuplikan kode DTO request Incoming

Sebagai respons terhadap permintaan dari frontend, sistem mengembalikan
data dalam bentuk DTO response. DTO ini berisi informasi utama incoming beserta
relasi terkait seperti data PO, pemeriksa (checker), dan daftar gambar jika tersedia.
Cuplikan kode DTO response dapat dilihat pada Kode 3.12.

package responses

3 import “time”

type IncomingResponse struct {
UUID string json:”’uuid”
POUUID string json:”po_uuid”
PO «POResponse json:”po,omitempty”
CheckBy #CheckByResponse json:”check_by ,omitempty”
Status string json:”status”
Notes #*string json:’notes ,omitempty”
Images []IncominglmageResponse json:”images,omitempty”
CreatedAt time.Time json:”’created_at”
UpdatedAt time.Time json:”updated_at”

Kode 3.12: Cuplikan kode DTO response Incoming

E Model dan DTO HU

Handling Unit (HU) digunakan untuk merepresentasikan satuan kemasan
atau unit logistik yang digunakan dalam proses distribusi barang. Dalam sistem
Ritra Logistics, struktur HU dibagi menjadi dua bagian utama, yaitu HU sebagai
entitas induk dan HU Detail sebagai rincian isi dari HU tersebut. Pendekatan ini
digunakan untuk memisahkan informasi umum HU dengan detail dimensi atau

karakteristik fisik dari setiap unit yang terkandung di dalamnya.

55

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

o

w

)

Model HU menyimpan informasi utama seperti nomor seri, kode klien,
nomor OF, total berat, serta relasi terhadap Color Code dan Purchase Order. Selain
itu, model ini juga memiliki relasi satu-ke-banyak dengan model HU Detail, yang
memungkinkan satu HU memiliki beberapa detail item di dalamnya. Cuplikan kode
model HU dapat dilihat pada Kode 3.13.

package models

import (
“time”
”github .com/google/uuid”

”gorm.io/gorm”

type HU struct {
ID uint json:”id” gorm:”primaryKey;autolncrement”
UUID string json:”uuid” gorm:”type:char(36);uniquelndex ;not
null”
Series string json:”series” gorm:”type:varchar(100);not null”
ClientSeries string json:”client_series” gorm:”type:varchar
(100) ;not null”
OF string json:”of” gorm:”type:varchar(50);not null”
TotalWeight float64 json:”total_weight” gorm:”type:decimal

(10,2)”
IsFM bool ‘json:”is_fm” gorm:” not null;default: false”
ColorCodeID =xuint ‘json:”color_code_id” gorm:”index” °

Details []HUDetail ‘json:” details” gorm:” foreignKey :HUID;
constraint : OnUpdate : CASCADE, OnDelete : CASCADE” *

POs [1PO ‘json:”po” gorm:” foreignKey :HUID; constraint
:OnUpdate : CASCADE, OnDelete : SET NULL;” ¢

CreatedAt time.Time ‘json:” created_at” gorm:”

autoCreateTime” ¢

CreatedBy =uint ‘json:”created_by”*

UpdatedAt time.Time ‘json:”updated_at” gorm:”

autoUpdateTime”

UpdatedBy =uint ‘json:”updated_by” *

DeletedAt gorm.DeletedAt ‘json:”-" gorm:”index” °
56

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

1

)

Kode 3.13: Cuplikan kode model HU

HU Detail berfungsi untuk menyimpan informasi rinci dari setiap unit
barang yang terdapat di dalam satu HU. Data yang disimpan meliputi dimensi fisik,
berat, jenis satuan, serta deskripsi tambahan. Setiap HU Detail terhubung langsung
dengan satu HU melalui foreign key. Cuplikan kode model HU Detail dapat dilihat
pada Kode 3.14.

type HUDetail struct {
ID uint json:”id” gorm:”primaryKey;autolncrement”
HUID uint json:”hu_id” gorm:”not null;index”
UUID string json:”uuid” gorm:”type:char(36);uniquelndex ;not

null”

Length float64 ‘json:”length” gorm:” type:decimal(10,2);not
null”*
Width float64 ‘json:” width” gorm:” type:decimal(10,2);not
null” ¢
Height float64 ‘json:” height” gorm:”type:decimal(10,2);not
null”*

9 ¢

Weight =float64 ‘json:”weight” gorm:”type:decimal(10,2)

Units string ‘json:”units” gorm:”type:varchar(20);not
null”*

HU string ‘json:”hu” gorm:”type:varchar(50);not
null”*

Dimension float64 ‘json:”dimension” gorm:” type:decimal
(10,2);no0t null”*

HUDescription string ‘json:”hu_description” gorm:”type:

varchar (255)” ¢

CreatedAt time.Time ‘json:” created_at” gorm:”
autoCreateTime” °
UpdatedAt time.Time ‘json:”updated_at” gorm:”
autoUpdateTime” ¢

29

DeletedAt gorm.DeletedAt ‘json:”-" gorm:”index” °

Kode 3.14: Cuplikan kode model HU Detail

Untuk pertukaran data antara frontend dan backend, digunakan DTO yang
memisahkan kebutuhan input dan output. DTO request digunakan saat pembuatan
HU baru, yang berisi data utama HU serta daftar detailnya. Sementara itu, DTO

57

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

response digunakan untuk mengembalikan data HU beserta detail dan relasi lain
seperti PO dan informasi pembaruan. Cuplikan kode DTO request dapat dilihat
pada Kode 3.15.

package requests

s type HUDetailRequest struct {

Length float64 json:”length” validate:”required”
Width float64 json:”width” validate:”required”
Height float64 json:”height” validate:”required”
Weight «float64 json:”weight”

Units string ‘json:”units” validate:”required” *
HU string ‘json:”hu” validate:”required” *
Dimension float64 ‘json:”dimension” validate:”required”

9 ¢

HUDescription #string ‘json:” hu_description

type HURequest struct {
Series string json:’series” validate:”required”
ClientSeries #string json:”client_series” validate:”required”
OF string json:”of” validate:”required”
Details []HUDetailRequest json:”details” validate:”required ,

dive”

Kode 3.15: Cuplikan kode DTO request HU

Sebagai hasil akhir, sistem akan mengembalikan DTO response yang
memuat informasi lengkap mengenai HU, termasuk detail barang dan relasi
terhadap PO. DTO ini digunakan oleh frontend untuk menampilkan data secara
terstruktur kepada pengguna. Cuplikan kode DTO response dapat dilihat pada Kode
3.16.

package responses

5 type HUDetailResponse struct {

UUID string json:”’uuid”

Length float64 json:”length”
Width float64 json:”width”

Height float64 json:”height”
Weight =float64 json:”weight”
Units string json:”units”

HU string json:”hu”

Dimension float64 json:”dimension”

58

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

HUDescription string json:”hu_description”

type HUResponse struct {
UUID string json: uuid”
Series string json:”series”
ClientSeries string json:’client_series”
OF string json:”of”
IsFM bool json:”is_fm?”
ColorCode string json:”color_code”

Details []HUDetailResponse ‘json:” details”®

9 ¢

POs []POResponse ‘json:”po
UpdatedBy xUpdateHUResponse ‘json:”updatedBy”*

Kode 3.16: Cuplikan kode DTO response HU

F Model dan DTO PO

Purchase Order (PO) merupakan entitas utama dalam proses operasional
Ritra Logistics yang merepresentasikan permintaan atau pesanan barang dari
vendor. PO menjadi pusat keterkaitan berbagai proses lanjutan seperti incoming,
pemeriksaan barang (article check), wrapping, hingga stuffing. Oleh karena itu,
model PO memiliki banyak relasi dengan entitas lain seperti Vendor, Color Code,
HU, dan berbagai proses operasional lainnya.

Model PO menyimpan informasi dasar seperti nomor PO, tanggal, vendor,
serta berbagai atribut operasional seperti status FM, posisi barang, dan estimasi
waktu proses. Selain itu, model ini juga menyimpan relasi ke beberapa tabel turunan
seperti POProduct, Incoming, ArticleCheck, Wrapping, dan Stuffing. Cuplikan
kode model PO dapat dilihat pada Kode 3.17.
type PO struct {

ID uint json:”id” gorm:”primaryKey;autolncrement”
UUID string json:”uuid” gorm:”type:char(36);uniquelndex;not
null”

PONumber string json:”po_number” gorm:”type:varchar(100);not

null”

VendorID uint ‘json:”vendor_id” gorm:”not null”®

59

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

16

26

Vendor x*Vendor ‘json:”vendor” gorm:” foreignKey: VendorID;
constraint : OnUpdate : CASCADE, OnDelete : RESTRICT” ¢

ColorCodelID uint

‘json:”color_code_id” ¢

ColorCode #*ColorCode ‘json:”color_code” gorm:” foreignKey:
ColorCodelD; constraint : OnUpdate : CASCADE, OnDelete : SET NULL” °

IncomingDuration xfloat64 ‘json
type :double precision”*
ArticleCheckDuration #xfloat64 ‘json
gorm:” type : double precision” *
WrappingDuration xfloat64 ‘json
type:double precision” "
StorageDuration xfloat64 ‘json
type :double precision” "
StuffingDuration «float64 ‘json
type :double precision”*
TotalLeadTime xfloat64 ‘json

type:double precision”®

StorageEndAt =xtime.Time ‘json:” storage_end_at

HUID =xuint ‘json:”hu_id”*

:”incoming _duration” gorm:’

9

:”article_check_duration”

:” wrapping _duration” gorm:’

il

:”storage_duration” gorm:”

:”stuffing_duration” gorm:’

)

:”total_lead_time” gorm:”

2 ¢

HU *HU ‘json:”hu” gorm:” foreignKey :HUID; constraint:

OnUpdate : CASCADE, OnDelete : SET NULL” ¢

POProducts []POProduct ‘json:” po_products” gorm:”
foreignKey :POID; constraint : OnUpdate : CASCADE, OnDelete : CASCADE” *
Incomings []Incoming ‘json:”incomings” gorm:”
foreignKey :POID; constraint : OnUpdate : CASCADE, OnDelete : SET NULL” ¢
ArticleChecks [] ArticleCheck ‘json:”article_checks” gorm:”
foreignKey :POID; constraint : OnUpdate : CASCADE, OnDelete : SET NULL” *
Wrappings [] Wrapping ‘json:” wrappings” gorm:”
foreignKey :POID; constraint : OnUpdate : CASCADE, OnDelete : SET NULL” *
Stuffings [1Stuffing ‘json:” stuffings” gorm:”
foreignKey :POID; constraint : OnUpdate : CASCADE, OnDelete : SET NULL” ¢
Date time . Time ‘json:”date” gorm:”not null”°
M bool ‘json:”fm” gorm:” default: false”*
DG string ‘json:”dg” gorm:”type:varchar(50)”°
VerifyBy xuint ‘json:” verify_by” ¢
Position string ‘json:” position” gorm:” type:varchar (100)
60

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

Note string ‘json:”note” gorm:” type:text”®

AvgleadTime float64 ‘json:”avg_lead_time” gorm:”type:decimal
(10,2);default:0” °

QueueNumber int ‘json:” queue_number” gorm:” not null”®
CreatedAt time.Time ‘json:” created_at” gorm:”
autoCreateTime” *

CreatedBy =uint ‘json:”created_by”*

UpdatedAt time.Time ‘json:”updated_at” gorm:”
autoUpdateTime”

UpdatedBy =uint ‘json:”updated_by” *

DeletedAt gorm.DeletedAt ‘json:”—-" gorm:”index” *

Kode 3.17: Cuplikan kode model PO

Untuk menerima data dari frontend, digunakan DTO request yang berfungsi

sebagai representasi data input saat pembuatan atau pembaruan PO. DTO ini

memastikan bahwa data yang masuk telah tervalidasi sesuai kebutuhan sistem,

seperti validasi UUID dan format tanggal. Cuplikan kode DTO request dapat dilihat
pada Kode 3.18.

package request

3 type PORequest struct {

PONumber string json:”po_number” validate:”required”
VendorUUID string json:”vendor_uuid” validate:”required ,uuid4”
Date string json:”date” validate:”required ,datetime=2006-01-02
ColorCodeUUID string json:”color_code_uuid” validate:”
omitempty ,uuid4”

FM bool json:”fm”

DG string json:”’dg” validate:”omitempty”

VerifyBy s#uint json:”verify_by” validate:”omitempty”

Position string json:”position” validate:”omitempty”

Note string json:”note” validate:”omitempty”

HUUUID string json:”hu_uuid” validate:”omitempty ,uuid4”
Products []POProductRequest json:”products” validate:”

omitempty ,dive”

Kode 3.18: Cuplikan kode DTO request PO

Sebagai respons, sistem mengembalikan DTO yang berisi informasi lengkap

terkait PO, termasuk relasi terhadap vendor, HU, serta seluruh proses lanjutan yang

61

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

1

terhubung. DTO ini digunakan oleh frontend untuk menampilkan status dan detail
PO secara komprehensif. Cuplikan kode DTO response dapat dilihat pada Kode
3.19.

package responses

5 type POResponse struct {

26

UUID string json:”’uuid”

PONumber string json:”po_number”

Date string json:’date”

ColorCodeUUID string json:”color_code_uuid ,omitempty”
ColorCode #*ColorCodeResponse json:”color_code ,omitempty”
M bool json:”fm”

DG string json:”’dg,omitempty”

VerifyBy suint json:”verify_by ,omitempty”

Position string json:”position ,omitempty”
PositionString string json:”position_string ,omitempty”
Note string json:”note,omitempty”

VendorUUID string json:”vendor_uuid ,omitempty”

Vendor *VendorResponse json:”vendor,omitempty”

HUUUID string json:”hu_uuid,omitempty”

HU «HUResponse json:”hu,omitempty”

QueueNumber int json:”queue_number”
Products []POProductResponse ‘json:” products ,omitempty” *
Incoming *POIncomingResponse ‘json:”incoming ,omitempty

9 ¢

ArticleCheck #*POArticleCheckResponse ‘json:”article_check ,

omitempty” ¢

Wrapping *POWrappingResponse ‘json:” wrapping ,omitempty
Storage x*StorageResponse ‘json:” storage ,omitempty”
Stuffing *POStuffingResponse ‘json:” stuffing ,omitempty

9 ¢

TotalLeadTime string ‘json:”total_lead_time ,omitempty” *

Kode 3.19: Cuplikan kode DTO response PO

62

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

3.3.4 Pembuatan Rute
A Rute Authentication

Route autentikasi digunakan untuk menangani proses pendaftaran dan
autentikasi pengguna dalam sistem Ritra Logistics. Seluruh endpoint autentikasi
dikelompokkan dalam satu route group dengan prefix /auth untuk memudahkan
pengelolaan dan menjaga konsistensi struktur API. Pada bagian ini, tersedia dua
endpoint utama, yaitu register dan login, yang masing-masing menangani proses
pembuatan akun pengguna baru serta proses autentikasi pengguna yang telah
terdaftar.

Cuplikan kode pendefinisian route autentikasi dapat dilihat pada Kode 3.20.

auth := router.Group(”’/auth”)

; auth.Post(”/register”, authHandler.Register)

IS

auth.Post(”/login”, authHandler.Login)
Kode 3.20: Cuplikan kode route autentikasi

B Rute ColorCode

Route Color Code digunakan untuk mengelola data kode warna yang
merepresentasikan area atau klasifikasi tertentu dalam sistem Ritra Logistics.
Seluruh endpoint pada modul ini berada dalam satu grup dengan prefix /color-codes
dan dilindungi oleh authentication middleware untuk memastikan hanya pengguna
yang telah terautentikasi yang dapat mengaksesnya. Selain itu, setiap endpoint
juga dilengkapi dengan pemeriksaan permission sesuai dengan jenis operasi yang
dilakukan.

Cuplikan kode pendefinisian route Color Code dapat dilihat pada Kode 3.21.

color := router.Group(”/color—-codes”, middlewares.AuthMiddleware ()

)

5 color.Get(”/get—all™,

4

middlewares . RequirePermission (db, “color_code.view”),

s colorHandler . GetAll ,

8

9

)

color.Get(”/get/:uuid”,

middlewares . RequirePermission (db, “color_code.view”),

63

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

colorHandler . GetByUUID,
)

3 color.Post(”/create”,

middlewares . RequirePermission (db, “color_code.create”),
colorHandler . Create ,

)

color.Put(”/update/: uuid”,
middlewares . RequirePermission (db, “color_code.update”),
colorHandler . Update ,

)

»3 color.Delete(”/delete /: uuid”,

middlewares . RequirePermission (db, “color_code.delete”),

colorHandler . Delete ,

)
Kode 3.21: Cuplikan kode route Color Code

C Rute Vendor

Route Vendor digunakan untuk mengelola data pemasok yang terdaftar
dalam sistem Ritra Logistics. Seluruh endpoint pada modul ini dikelompokkan
dalam satu route group dengan prefix /vendors dan dilindungi oleh authentication
middleware untuk memastikan bahwa hanya pengguna yang telah terautentikasi
yang dapat mengakses layanan ini. Setiap operasi juga dibatasi menggunakan
mekanisme permission sesuai dengan hak akses pengguna.

Cuplikan kode pendefinisian route Vendor dapat dilihat pada Kode 3.22.

vendor := router.Group(”/vendors”, middlewares.AuthMiddleware ())

3 vendor.Get(”/get—all™,

middlewares . RequirePermission (db, “vendor.view”),
vendorHandler . GetAll ,

)

vendor . Get(”/get/:uuid”,

middlewares . RequirePermission (db, “vendor.view”),
vendorHandler . GetByUUID ,

)

3 vendor . Post(”/create”,

64

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

4+ middlewares . RequirePermission (db, “vendor.create”),
15 vendorHandler . Create ,

16)

s vendor.Put(”/update /: uuid”,

v middlewares . RequirePermission (db, “vendor.update”),
20 vendorHandler . Update ,

21)

3 vendor . Delete (”/delete /: uuid”,
2+ middlewares . RequirePermission (db, “vendor.delete”),
»s vendorHandler . Delete ,

26)
Kode 3.22: Cuplikan kode route Vendor

D Rute Incoming

Route Incoming digunakan untuk menangani proses pencatatan dan
pengelolaan data barang masuk (incoming goods) dalam sistem Ritra Logistics.
Seluruh endpoint pada modul ini berada dalam satu grup dengan prefix /incoming
dan dilindungi oleh authentication middleware untuk memastikan hanya pengguna
yang telah terautentikasi yang dapat mengaksesnya. Setiap endpoint juga
dilengkapi dengan pengecekan permission sesuai dengan jenis operasi yang
dilakukan.

Cuplikan kode pendefinisian route Incoming dapat dilihat pada Kode 3.23.

incoming := router.Group(”/incoming”, middlewares. AuthMiddleware ()

)

3 incoming . Get(”/get—all”,

+ middlewares . RequirePermission (db, “incoming.view”),
s incomingHandler . GetAll ,

6)

¢ incoming . Get(”/get/: uuid”,

o middlewares . RequirePermission (db, “incoming.view”),
0 incomingHandler . GetByUUID ,

)

i3 incoming . Post(”/create”,

i+ middlewares . RequirePermission (db, “incoming.create”),

65

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

20

s incomingHandler . Create ,

)

incoming . Put(”/update /: uuid”,
middlewares . RequirePermission (db, “incoming.update”),
incomingHandler . Update ,

)

3 incoming . Delete (7/delete /: uuid”,

middlewares . RequirePermission (db, “incoming.delete”),

»s incomingHandler . Delete ,

)
Kode 3.23: Cuplikan kode route Incoming

E Rute HU

Route Handling Unit (HU) digunakan untuk mengambil data detail HU
berdasarkan UUID tertentu. Endpoint ini digunakan untuk menampilkan informasi
lengkap terkait HU, termasuk detail unit dan relasi dengan data lain seperti
PO. Seluruh akses ke route ini dilindungi oleh authentication middleware dan
pengecekan permission agar hanya pengguna dengan hak akses yang sesuai yang
dapat mengakses data tersebut.

Cuplikan kode pendefinisian route HU dapat dilihat pada Kode 3.24.

hu := router.Group(”’/hu”, middlewares. AuthMiddleware ())

s hu.Get(”/get/:uuid”,

middlewares . RequirePermission (db, “hu.view”),

s huHandler . GetByUUID ,

)
Kode 3.24: Cuplikan kode route HU

F Rute PO

Route Purchase Order (PO) digunakan untuk mengambil data PO
berdasarkan nomor PO yang diberikan. Endpoint in1 berfungsi untuk menampilkan
informasi detail terkait satu PO beserta relasi yang dimilikinya, seperti vendor,
HU, dan proses operasional lainnya. Akses terhadap route ini dilindungi oleh
authentication middleware serta pengecekan permission untuk memastikan hanya

pengguna dengan hak akses yang sesuai yang dapat menggunakannya.

66

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

1

Cuplikan kode pendefinisian route PO dapat dilihat pada Kode 3.25.
po := router.Group(”’/po”, middlewares.AuthMiddleware ())

3 po.Get(”/get—by—number/: po_number”,

middlewares . RequirePermission (db, “po.view”),

s poHandler . GetByPONumber ,

)
Kode 3.25: Cuplikan kode route PO

3.3.5 Pembuatan Handlers, Services, dan Repositories

Dalam pengembangan sistem backend pada aplikasi Ritra Logistics, struktur
kode dibagi ke dalam tiga lapisan utama, yaitu handler, service, dan repository.
Pembagian ini bertujuan untuk menerapkan prinsip pemisahan tanggung jawab
(separation of concerns) sehingga kode menjadi lebih terstruktur, mudah dipelihara,
serta lebih mudah dikembangkan di kemudian hari.

Lapisan handler berfungsi sebagai titik masuk pertama ketika sebuah
endpoint diakses oleh pengguna. Pada bagian ini, sistem menangani proses
yang berkaitan langsung dengan HTTP request, seperti membaca parameter URL,
mengambil data dari body request, melakukan validasi awal, serta membentuk
respons HTTP yang akan dikirimkan kembali ke klien. Handler tidak berisi
logika bisnis yang kompleks, melainkan hanya berperan sebagai penghubung antara
permintaan dari client dan proses internal sistem.

Selanjutnya, lapisan service bertanggung jawab terhadap seluruh logika
bisnis aplikasi. Pada bagian ini dilakukan pengolahan data, validasi lanjutan,
pengambilan keputusan bisnis, serta pengaturan alur proses sesuai kebutuhan
sistem. Oleh karena itu, kode pada layer service umumnya lebih kompleks dan
menjadi pusat dari aturan bisnis aplikasi.

Adapun lapisan repository berfungsi sebagai penghubung langsung dengan
basis data. Layer ini bertugas melakukan operasi penyimpanan, pembacaan,
pembaruan, dan penghapusan data tanpa melibatkan logika bisnis. Dengan
pemisahan ini, proses akses data menjadi lebih terorganisir dan mudah untuk diuji
maupun dikembangkan di kemudian hari.

Struktur pemisahan antara handler, service, dan repository ini diterapkan
secara konsisten pada seluruh modul sistem, seperti autentikasi, color code, vendor,
incoming, handling unit, dan purchase order, sehingga arsitektur backend menjadi

lebih modular, terstruktur, dan mudah dipelihara.

67

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

A Register

Pada bagian handler, fungsi Register akan dijalankan ketika endpoint
registrasi diakses. Fungsi ini bertugas membaca data dari request body, mengambil
informasi tambahan seperti alamat IP dan user agent, lalu meneruskan data tersebut

ke service untuk diproses lebih lanjut.

i func (h *AuthHandler) Register (c *fiber.Ctx) error {

2 var request requests.RegisterRequest

4 if err := c.BodyParser (&request); err != nil {

5 return c.Status (http.StatusBadRequest) .JSON (fiber.Map {

6 "error": "invalid request body",

7 1)

8 }

9

10 ip := c.IP()

1 userAgent := c.Get ("User-Agent")

12

13 _, userDTO, err := h.authService.Register (request, ip, userAgent
)

14 if err != nil {

15 return c.Status (http.StatusInternalServerError) .JSON (fiber.Map
{

16 "error": err.Error (),

17 })

20 return c.Status (http.StatusCreated) .JSON (responses.
MessageResponse {

21 Message: "registration successful",

2 Data: userDTO,

23)

Setelah data diterima oleh handler, proses dilanjutkan ke lapisan service.
Pada tahap ini dilakukan berbagai proses inti seperti hashing password, pembuatan
UUID, penyimpanan data pengguna, pembuatan token JWT, serta pencatatan
aktivitas pengguna.

i func (s *authService) Register (request requests.RegisterRequest,
ip, userAgent string)

2 (string, responses.AuthResponse, error) {

68

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

4 hashedPassword, err := bcrypt.GenerateFromPassword (

5 [Ibyte (request.Password), bcrypt.DefaultCost,
6)

7 if err !'= nil {

8 return "", responses.AuthResponse{}, err
9 }

10

11 createdBy := uint (0)

12

13 newUser := models.User{

14 UUID: uuid.New () .String (),

15 Name : request .Name,

16 Email: request .Email,

17 Password: string (hashedPassword),

18 CreatedBy: &createdBy,

19 }

20

21 err = s.authRepo.Create (&newUser)

2 if err != nil {

23 return "", responses.AuthResponse{}, err
24 }

26 token, err := pkg.GenerateJWT (newUser.ID, newUser.UUID)
27 if err != nil {

28 return "", responses.AuthResponse{}, err

31 _ = s.logService.CreatelLog (
kD) newUser.ID, "REGISTER", "auth", ip, userAgent, "", "",

35 return token, responses.AuthResponse {

36 UUID: newUser .UUID,

37 Name : newUser.Name,
38 Email: newUser.Email,
39 }, nil

Lapisan service berfungsi sebagai pusat pengambilan keputusan dan
memastikan seluruh proses bisnis berjalan sesuai aturan yang telah ditetapkan.

Lapisan repository merupakan lapisan paling bawah yang berinteraksi
langsung dengan database. Fungsi ini bertanggung jawab menyimpan data

pengguna menggunakan ORM GORM serta mengelola context dan timeout untuk

69

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

keamanan eksekusi query.

i func (r *authRepository) Create (user *models.User) error {
2 ctx, cancel := context.WithTimeout (context.Background(),
dbTimeout)

defer cancel ()

5 return r.db.WithContext (ctx).Create (user) .Error
6 }
Repository tidak memiliki logika bisnis dan hanya berfokus pada operasi
database, sehingga struktur kode menjadi lebih bersih dan mudah dipelihara.

B Login

Handler login bertanggung jawab untuk menerima permintaan dari klien,
melakukan parsing data request, serta mengatur respons HTTP yang dikembalikan.
Selain itu, handler juga menyimpan token hasil autentikasi ke dalam cookie agar

dapat digunakan pada permintaan berikutnya.

i func (h *AuthHandler) Login(c *fiber.Ctx) error {

o

var request requests.LoginRequest

4 if err := c.BodyParser (&request); err != nil {

5 return c.Status (fiber.StatusBadRequest) .JSON (fiber.Map {
6 "error": "Invalid request body",

7)

8 }

9

10 ip := c.IP()

11 userAgent := c.Get ("User-Agent")

12

13 token, user, err := h.authService.Login (

14 request .Email, request.Password, 1ip, userAgent,
15)

16 if err != nil {

17 return c.Status (fiber.StatusUnauthorized) .JSON (fiber.Map{
18 "error": err.Error (),

19)

2 c.Cookie (&fiber.Cookie(
23 Name : "token",

24 Value: token,

70

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

36

Expires: time.Now () .Add (24 * time.Hour),
HTTPOnly: true,

Secure: true,
SameSite: "None",
Path: wyw

)

return c.Status (http.StatusOK) .JSON (responses.MessageResponse {
Message: "login successful",
Data: user,

)

Handler hanya bertugas sebagai penghubung antara klien dan service, tanpa
menyentuh proses validasi bisnis maupun akses database secara langsung.

Lapisan service menangani proses autentikasi utama, termasuk pencarian
data pengguna, validasi kata sandi menggunakan bcrypt, pembuatan token JWT,
serta pencatatan aktivitas login ke dalam sistem log.

func (s *authService) Login (email, password, ip, userAgent string)

(string, responses.AuthResponse, error) {

user, err := s.authRepo.GetByEmail (email)
if err != nil {
return "", responses.AuthResponse{}, errors.New("invalid email

or password")

if err := bcrypt.CompareHashAndPassword (
[Ibyte (user.Password), []lbyte(password),
); err != nil {
return "", responses.AuthResponse{}, errors.New("invalid email

or password")

token, err := pkg.GenerateJWT (user.ID, user.UUID)
if err != nil {
return "", responses.AuthResponse{}, err
}
authResponse := responses.AuthResponse {

UUID: wuser.UUID,

Name : user.Name,

71

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

Email: user.Email,

updatedBy := uint (0)
if user.UpdatedBy != nil {
updatedBy = *user.UpdatedBy

_ = s.logService.Createlog (
user.ID, "LOGIN", "auth", ip, userAgent,
fmt.Sprintf ("%$d", updatedBy), "",

return token, authResponse, nil

Service berfungsi sebagai pusat logika autentikasi, termasuk verifikasi
kredensial dan pembuatan token akses yang akan digunakan pada permintaan
berikutnya.

Repository bertugas melakukan komunikasi langsung dengan basis data.
Pada proses login, repository hanya mengambil data pengguna berdasarkan email
yang diberikan.
func (r *authRepository) GetByEmail (email string) (*models.User,

error) f{
ctx, cancel := context.WithTimeout (context.Background(),

dbTimeout)

defer cancel ()

var user models.User

if err := r.db.WithContext (ctx) .
Where ("email = ?", email).
First (&user) .Error; err != nil {

return nil, err

return &user, nil

72

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

C Create Color Code

Handler bertugas menerima data dari request, melakukan validasi awal, serta
mengambil informasi pengguna yang sedang login dari konteks. Jika seluruh data

valid, handler akan memanggil service untuk membuat data color code baru.

i func (h *ColorCodeHandler) Create(c *fiber.Ctx) error {
2 var req requests.ColorCodeRequest
if err := c.BodyParser (&req); err != nil {
4 return c.Status (fiber.StatusBadRequest) .JSON (responses.

ErrorResponse {

5 Error: "invalid request body",

6)

7 }

8

9 userID, ok := c.Locals ("user_id") . (uint)
10 if !'ok || userID == 0 {

i return c.Status (fiber.StatusUnauthorized) .JSON (responses.
ErrorResponse {

12 Error: "unauthorized",

13 P

16 colorCode, err := h.service.Create(reqg, &userID)

17 if err != nil {

18 return c.Status (http.StatuslInternalServerError).JSON (responses
.ErrorResponse {

19 Error: err.Error (),

20 })

23 return c.Status (http.StatusCreated) .JSON (responses.
MessageResponse {

24 Message: "color code created successfully",

25 Data: colorCode,

26 H)

Service bertanggung jawab membentuk entitas ColorCode berdasarkan data
request, sekaligus menetapkan nilai CreatedBy. Setelah itu, data diteruskan ke

repository untuk disimpan ke database.

func (s *colorCodeService) Create (

2 req requests.ColorCodeRequest,

73

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

L)

6

createdBy

colorCode :=
Name :
Code:
Highland:
Description:
Bloc:
CreatedBy:

if err :=

return responses.ColorCodeResponse{},

*uint,

(responses.ColorCodeResponse,

req

req.
req.
req.

req.

error)

models.ColorCode{

.Area,
ColorCode,
Highland,
Description,
Sleec,

createdBy,

s.repo.Create (&colorCode);

return responses.ColorCodeResponse {

UUID:
ColorCode:
Area:
Highland:
Description:
Sloc:

nil

by

colorCode
colorCode.
colorCode
colorCode.
colorCode.

colorCode

.UUID,
Code,

.Name,
Highland,
Description,
.Bloc,

{

err !=

err

nil {

Repository menangani proses penyimpanan data color code ke dalam

database menggunakan ORM. Proses ini dilakukan dalam konteks dengan batas

waktu tertentu untuk menjaga stabilitas koneksi.

func (r
error |
ctx,
dbTimeout)

defer cancel ()

cancel :=

*colorCodeRepository)

Create (colorCode

*models.ColorCode)

context.WithTimeout (context.Background (),

return r.db.WithContext (ctx).Create (colorCode) .Error

D Get All Color Code

Handler bertugas menerima permintaan dari endpoint dan memanggil fungsi

service untuk mengambil seluruh data color code. Jika terjadi kesalahan selama

74

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

1

o

proses, handler akan mengembalikan respons error, sedangkan jika berhasil, data

akan dikembalikan dalam format respons yang telah ditentukan.

func (h *ColorCodeHandler) GetAll (c *fiber.Ctx) error {
colorCodes, err := h.service.GetAll ()
if err != nil {
return c.Status (http.StatusInternalServerError) .JSON (responses
.ErrorResponse {

Error: err.Error (),

b

return c.Status (http.StatusOK) .JSON (responses.MessageResponse {
Message: "color codes retrieved successfully",
Data: colorCodes,

)

Pada bagian service, data color code diambil dari repository, kemudian
dilakukan proses transformasi dari model database menjadi bentuk response yang
akan dikirim ke frontend. Proses ini memastikan hanya data yang diperlukan saja
yang dikirimkan.
func (s *colorCodeService) GetAll () ([]responses.ColorCodeResponse

, error) {
colorCodes, err := s.repo.GetAll ()
if err != nil {

return nil, err

var res []responses.ColorCodeResponse
for _, ¢ := range colorCodes {
res = append(res, responses.ColorCodeResponse {
UUID: c.UUID,
ColorCode: c.Code,
Area: c.Name,
Highland: c.Highland,
Description: c.Description,
Sloc: c.Bloc,

return res, nil

75

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

1

Repository bertanggung jawab mengambil seluruh data color code dari
database menggunakan ORM. Hasil query kemudian dikembalikan ke service untuk

diproses lebih lanjut.

func (r *colorCodeRepository) GetAll () ([]models.ColorCode, error)
{
ctx, cancel := context.WithTimeout (context.Background(),
dbTimeout)

defer cancel ()

var colorCodes []models.ColorCode
if err := r.db.WithContext (ctx).Find (&colorCodes) .Error; err !=
nil {

return nil, err

}

return colorCodes, nil

E Get Color Code By UUID

Handler bertugas mengambil parameter uuid dari URL dan meneruskannya
ke service. Jika service mengembalikan error, handler akan mengirimkan respons

not found ke frontend.

func (h *ColorCodeHandler) GetByUUID (c *fiber.Ctx) error {

uuid := c.Params ("uuid")
colorCode, err := h.service.GetByUUID (uuid)
if err != nil {

return c.Status (http.StatusNotFound) .JSON (responses.
ErrorResponse {

Error: err.Error (),

})

return c.Status (http.StatusOK) .JSON (responses.MessageResponse {
Message: "color code retrieved successfully",
Data: colorCode,

)

Service bertugas memanggil repository untuk mengambil data color code
berdasarkan UUID. Jika data ditemukan, service akan memetakan hasilnya ke

dalam bentuk response yang dikirimkan ke frontend.

76

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

1

func (s *colorCodeService) GetByUUID (uuid string) (responses.
ColorCodeResponse, error) {
c, err := s.repo.GetByUUID (uuid)
if err != nil {

return responses.ColorCodeResponse{}, err

return responses.ColorCodeResponse {

UUID: c.UUID,
ColorCode: c.Code,
Area: c.Name,
Highland: c.Highland,
Description: c.Description,
Sloc: c.Bloc,

}, nil

Repository melakukan pencarian data color code berdasarkan UUID di
dalam database. Jika data tidak ditemukan, repository akan mengembalikan error

yang menandakan bahwa data tidak tersedia.

func (r *colorCodeRepository) GetByUUID (uuid string) (models.
ColorCode, error) {
ctx, cancel := context.WithTimeout (context.Background(),
dbTimeout)

defer cancel ()

var colorCode models.ColorCode

if err := r.db.WithContext (ctx) .Where ("uuid = ?", uuid).First (&
colorCode) .Error; err != nil {
if errors.Is(err, gorm.ErrRecordNotFound) {

return colorCode, errors.New("color code not found")

}

return colorCode, err

}

return colorCode, nil

F Update Color Code

Handler bertugas mengambil parameter UUID, membaca data pembaruan
dari request body, serta mengambil informasi pengguna yang sedang login. Setelah

itu, handler memanggil service untuk melakukan proses pembaruan data.

71

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

i func (h *ColorCodeHandler) Update(c *fiber.Ctx) error

2 uuid := c.Params ("uuid")

4 var req requests.ColorCodeRequest
5 if err := c.BodyParser (&req); err != nil {
6 return c.Status (fiber.StatusBadRequest) .JSON (responses.

ErrorResponse {

7 Error: "invalid request body",

8 H)

9 }

10

) userID, ok := c.Locals("user_id"). (uint)
12 if !'ok || userID == 0 ({

13 return c.Status (fiber.StatusUnauthorized) .JSON (responses.

ErrorResponse {

14 Error: "unauthorized",

15 H)

16 }

17

18 colorCode, err := h.service.Update (uuid, req, &userID)
19 if err != nil {

20 return c.Status (fiber.StatusNotFound) .JSON (responses.
ErrorResponse {
21 Error: err.Error (),

2 })

25 return c.Status (http.StatusOK) .JSON (responses.MessageResponse {
26 Message: "color code updated successfully",

27 Data: colorCode,

28 H)

Service melakukan pencarian data color code berdasarkan UUID untuk
memastikan data tersedia. Jika ditemukan, data lama diperbarui dengan nilai baru
dari request, kemudian disimpan kembali melalui repository.

1 func (s *colorCodeService) Update (
2 uuid string,

3 req requests.ColorCodeRequest,

4 updatedBy *uint,

5) (responses.ColorCodeResponse, error) {

6

7 existing, err := s.repo.GetByUUID (uuid)
78

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

8 if err != nil {
9 return responses.ColorCodeResponse{}, errors.New("color code

not found")

12 existing.Name = reqg.Area

13 existing.Code req.ColorCode

14 existing.Highland = reg.Highland

15 existing.Description = reqg.Description
16 existing.Bloc = req.Sloc

17 existing.UpdatedBy = updatedBy

19 if err := s.repo.Update (&existing); err != nil {
20 return responses.ColorCodeResponse{}, err
21 }

23 return responses.ColorCodeResponse {

24 UUID: existing.UUID,

25 ColorCode: existing.Code,

26 Area: existing.Name,

27 Highland: existing.Highland,

28 Description: existing.Description,

29 Sloc: existing.Bloc,

30 }, nil

Repository melakukan pembaruan data color code di database berdasarkan
UUID. Proses ini memastikan bahwa hanya data dengan UUID yang sesuai yang
diperbarui.
I func (r *colorCodeRepository) Update (colorCode *models.ColorCode)
error |
2 ctx, cancel := context.WithTimeout (context.Background(),

dbTimeout)

3 defer cancel ()

5 return r.db.WithContext (ctx) .

6 Model (&models.ColorCode{}) .
7 Where ("uuid = ?", colorCode.UUID).
8 Updates (colorCode) .Error

79

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

G Delete Color Code

Handler bertugas mengambil parameter UUID dari URL dan
meneruskannya ke service untuk diproses. Jika terjadi kesalahan, seperti

data tidak ditemukan, handler akan mengembalikan respons error ke frontend.

1 func (h *ColorCodeHandler) Delete(c *fiber.Ctx) error {

2 uuid := c.Params ("uuid")
if err := h.service.Delete (uuid); err != nil ¢{
4 return c.Status (fiber.StatusNotFound) .JSON (responses.

ErrorResponse {

5 Error: err.Error (),

9 return c.Status (http.StatusOK) .JSON (responses.
MessageOnlyResponse {

10 Message: "color code deleted successfully",

Service berfungsi sebagai perantara untuk meneruskan permintaan
penghapusan ke repository. Pada tahap ini tidak dilakukan proses tambahan selain
pemanggilan fungsi repository.

1 func (s *colorCodeService) Delete (uuid string) error {

2 return s.repo.Delete (uuid)

Repository bertanggung jawab untuk menghapus data color code dari
database berdasarkan UUID. Jika tidak ada data yang terhapus, repository akan
mengembalikan error yang menandakan bahwa data tidak ditemukan.

1 func (r *colorCodeRepository) Delete (uuid string) error {
2 ctx, cancel := context.WithTimeout (context.Background(),

dbTimeout)

defer cancel ()

5 result := r.db.WithContext (ctx) .Where ("uuid = ?", uuid) .Delete (&
models.ColorCode({})
6 if result.RowsAffected == 0 {

7 return errors.New("color code not found")
8 }

9 return result.Error

80

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

1

o

H Create Vendor

Handler menerima data vendor dari request body, mengambil informasi
pengguna yang sedang login, lalu meneruskan data tersebut ke service. Jika terjadi
kesalahan pada proses validasi atau penyimpanan, handler akan mengembalikan

respons error ke frontend.

func (h *VendorHandler) Create(c *fiber.Ctx) error {
fmt.Println ("Handler Create START")

var req requests.VendorRequest
if err := c.BodyParser (&req); err != nil {
fmt .Println ("BodyParser error:", err)
return c.Status (fiber.StatusBadRequest).JSON (responses.
ErrorResponse {
Error: "invalid request body",

})

userID, ok := c.Locals ("user_id") . (uint)

fmt.Println ("userID:", userID, "OK?2?", o0k)
fmt.Println ("Request:", req)

vendor, err := h.service.Create(reqg, userID)
if err !'= nil {
fmt.Println ("Service.Create error:", err)
return c.Status (http.StatusInternalServerError) .JSON (responses
.ErrorResponse {
Error: err.Error (),

)

fmt.Println ("Vendor created:", vendor)

return c.Status (http.StatusCreated) .JSON (responses.
MessageResponse {
Message: "vendor created successfully",
Data: vendor,

)

Service bertanggung jawab membentuk objek vendor berdasarkan data dari

81

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

1

request, termasuk menetapkan nilai UUID dan informasi pembuat data. Setelah itu,

data diteruskan ke repository untuk disimpan ke database.

func (s *vendorService) Create(req requests.VendorRequest,

createdBy uint) (responses.VendorResponse, error) {

fmt .Println ("Create Vendor by user:", createdBy)

vendor := models.Vendor {
UUID: uuid.NewString (),
Name : req.Name,
Address: req.Address,
Phone: req.Phone,
FaxNumber: req.FaxNumber,
Email : req.Email,
CreatedBy: createdBy,
}
if err := s.repo.Create(&vendor); err != nil {

return responses.VendorResponse{}, err

return responses.VendorResponse {

UUID:
Name :
Address:
Phone:
FaxNumber:
Email:

}, nil

vendor .UUID,
vendor .Name,
vendor .Address,
vendor.Phone,
vendor.FaxNumber,

vendor.Email,

Repository bertugas menyimpan data vendor ke dalam database

menggunakan ORM. Proses ini dilakukan dalam konteks yang dibatasi waktu

untuk menjaga stabilitas koneksi.

func (r *vendorRepository) Create (vendor *models.Vendor) error

ctx, cancel
dbTimeout)

:= context.WithTimeout (context.Background(),

defer cancel ()

return r.db.WithContext (ctx).Create (vendor) .Error

82

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

I Get All Vendor

Handler bertugas menerima request GET, memanggil service untuk
mengambil semua data vendor, dan mengembalikan hasilnya ke frontend. Jika

terjadi error, handler akan mengirimkan respons error.

i func (h *VendorHandler) GetAll (c *fiber.Ctx) error {

2 vendors, err := h.service.GetAll ()
if err != nil {
4 return c.Status (http.StatusInternalServerError) .JSON (responses

.ErrorResponse {
5 Error: err.Error (),

6 b

9 return c.Status (http.StatusOK) .JSON (responses.MessageResponse {
10 Message: "vendors retrieved successfully",

) Data: vendors,

12 H)

Service memanggil repository untuk mengambil semua data vendor dari
database, lalu mengubahnya menjadi format respons yang sesuai agar bisa dikirim

ke frontend.

i func (s *vendorService) GetAll () ([]responses.VendorResponse,
error) |
2 vendors, err := s.repo.GetAll ()
if err != nil {
4 return nil, err
5 }
6
7 var res []responses.VendorResponse
8 for _, v := range vendors {
9 res = append(res, responses.VendorResponse {
10 UUID: v.UUID,
11 Name : v.Name,
12 Address: v.Address,
13 Phone: v.Phone,
14 FaxNumber: v.FaxNumber,
15 Email: v.Email,
16 1)
17 }
18 return res, nil

83

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

Repository melakukan query ke database untuk mengambil semua data
vendor. Proses ini menggunakan konteks dengan batas waktu agar koneksi tetap

stabil.

1 func (r *vendorRepository) GetAll() ([]lmodels.Vendor, error) {
2 ctx, cancel := context.WithTimeout (context.Background(),
dbTimeout)

defer cancel ()

5 var vendors []models.Vendor

6 if err := r.db.WithContext (ctx) .Find (&vendors) .Error; err != nil

{

7 return nil, err
8 }

9 return vendors, nil

J Get Vendor By UUID

Handler menerima uuid dari parameter URL, lalu memanggil service. Jika
vendor tidak ditemukan, handler mengirimkan respons error Not Found. Jika
berhasil, data vendor dikirimkan ke frontend.

i func (h *VendorHandler) GetByUUID (c *fiber.Ctx) error ({

2 uuid := c.Params ("uuid")
vendor, err := h.service.GetByUUID (uuid)
4 if err != nil {
5 return c.Status (http.StatusNotFound) .JSON (responses.

ErrorResponse {
6 Error: err.Error (),

7 })

10 return c.Status (http.StatusOK) .JSON (responses.MessageResponse {
1 Message: "vendor retrieved successfully",

12 Data: vendor,

13 H)

Service memanggil repository untuk mendapatkan data vendor berdasarkan
UUID. Setelah data diperoleh, service membungkusnya menjadi respons yang

sesuai dengan format DTO.

84

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

i func (s *vendorService) GetByUUID (uuid string) (responses.

VendorResponse, error) {

2 v, err := s.repo.GetByUUID (uuid)
if err != nil {
4 return responses.VendorResponse{}, err

7 return responses.VendorResponse {

8 UUID: v.UUID,

9 Name : v.Name,

10 Address: v.Address,

11 Phone: v.Phone,

12 FaxNumber: v.FaxNumber,
13 Email: v.Email,

14 }, nil

Repository mengeksekusi query ke database untuk mencari vendor
berdasarkan UUID. Jika tidak ditemukan, akan mengembalikan error yang

diteruskan ke service.

i func (r *vendorRepository) GetByUUID (uuid string) (*models.Vendor,
error) {
2 ctx, cancel := context.WithTimeout (context.Background(),
dbTimeout)
3 defer cancel ()

5 var vendor models.Vendor

6 if err := r.db.WithContext (ctx).Where ("uuid = ?", uuid).First (&
vendor) .Error; err != nil {

7 return nil, err

8 }

9 return &vendor, nil

K Update Vendor

Handler mem-parsing body request, mengambil UUID dari parameter URL,
dan memvalidasi user yang melakukan update. Jika valid, handler memanggil
service untuk melakukan update. Hasilnya dikirim ke frontend.

i func (h *VendorHandler) Update(c *fiber.Ctx) error ({

2 uuid := c.Params ("uuid")

85

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

var req requests.VendorRequest
if err := c.BodyParser (&req); err != nil {
return c.Status (fiber.StatusBadRequest).JSON (responses.

ErrorResponse {

Error: "invalid request body",
})
}
userID, ok := c.Locals ("user_id") . (uint)
if !'ok || userID == 0 {

return c.Status (fiber.StatusUnauthorized) .JSON (responses.

ErrorResponse {

Error: "unauthorized",
})
}
vendor, err := h.service.Update (uuid, req, userlID)
if err != nil {

return c.Status (http.StatusNotFound) .JSON (responses.
ErrorResponse {

Error: err.Error (),

})

return c.Status (http.StatusOK) .JSON (responses.MessageResponse {
Message: "vendor updated successfully",
Data: vendor,

)

Service memeriksa apakah vendor dengan UUID yang dimaksud ada di
database. Jika ada, service memperbarui seluruh field dengan data baru dan
memanggil repository untuk menyimpan perubahan. Data vendor yang diperbarui
dikembalikan dalam format DTO.

func (s *vendorService) Update (uuid string, req requests.

VendorRequest, updatedBy uint) (responses.VendorResponse, error
) A

existing, err := s.repo.GetByUUID (uuid)

if err != nil {

return responses.VendorResponse{}, errors.New("vendor not

found")

86

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

1

existing.Name = req.Name
existing.Address = req.Address
existing.Phone = reqg.Phone
existing.FaxNumber = req.FaxNumber
existing.Email = reqg.Email

existing.UpdatedBy = updatedBy

if err := s.repo.Update(existing); err != nil {

return responses.VendorResponse{}, err

return responses.VendorResponse {

UUID: existing.UUID,
Name : existing.Name,
Address: existing.Address,
Phone: existing.Phone,

FaxNumber: existing.FaxNumber,
Email: existing.Email,

}, nil

Repository mengeksekusi query untuk menyimpan data vendor yang sudah
diperbarui. Fungsi ini memanfaatkan GORM Save() sehingga seluruh field yang
diubah akan tersimpan.

func (r *vendorRepository) Update (vendor *models.Vendor) error ({
ctx, cancel := context.WithTimeout (context.Background(),
dbTimeout)
defer cancel ()

return r.db.WithContext (ctx).Save (vendor) .Error

L Delete Vendor

Handler mengambil UUID vendor dari parameter URL dan memanggil
service untuk melakukan penghapusan. Jika UUID tidak ditemukan, respons error
dikembalikan, jika berhasil, pesan sukses dikirim ke frontend.
func (h *VendorHandler) Delete(c *fiber.Ctx) error ({

uuid := c.Params ("uuid")
if err := h.service.Delete (uuid); err != nil ¢{
return c.Status (http.StatusNotFound) .JSON (responses.

ErrorResponse {

87

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

6

|

Error: err.Error (),

)

return c.Status (http.StatusOK).JSON (responses.
MessageOnlyResponse {
Message: "vendor deleted successfully",

)

Service memeriksa apakah vendor dengan UUID yang dimaksud ada di
database. Jika ada, service memanggil repository untuk menghapus berdasarkan

ID vendor. Error dikembalikan jika vendor tidak ditemukan.

func (s *vendorService) Delete (uuid string) error ({
vendor, err := s.repo.GetByUUID (uuid)
if err != nil {
return errors.New ("vendor not found")

}

return s.repo.Delete(vendor.ID)

Repository mengeksekusi query hapus menggunakan GORM berdasarkan
ID vendor. Fungsi ini hanya berfokus pada interaksi database dan mengembalikan
error jika terjadi kegagalan.
func (r *vendorRepository) Delete(id uint) error {
ctx, cancel := context.WithTimeout (context.Background(),
dbTimeout)

defer cancel ()
return r.db.WithContext (ctx) .Delete (&models.Vendor{}, id).Error

M Create Incoming

Handler bertugas parsing request body dan memanggil service. Jika request
valid dan user terotentikasi, service akan dijalankan, dan respons success dikirim

ke frontend.

func (h *IncomingHandler) Create(c *fiber.Ctx) error
var req requests.IncomingRequest
if err := c.BodyParser (&req); err != nil {
return c.Status (fiber.StatusBadRequest) .JSON (responses.

ErrorResponse {

88

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

Error: "invalid request body",

})

userID := c.Locals ("user_id") . (uint)
if userID == 0 {
return c.Status (fiber.StatusUnauthorized) .JSON (responses.

ErrorResponse {

Error: "unauthorized",
H)
}
inc, err := h.service.Create (req, &userID)
if err != nil {

return c.Status (http.StatusInternalServerError).JSON (responses
.ErrorResponse {

Error: err.Error (),

P

return c.Status (http.StatusCreated) .JSON (responses.
MessageResponse {
Message: "Incoming created successfully",
Data: inc,

)

Service menangani seluruh logika bisnis: memvalidasi keberadaan PO,
membuat data incoming, menyimpan optional images jika ada, mengubah posisi
PO, dan melakukan commit transaksi database. Jika terjadi kesalahan di tengah

proses, transaksi di-rollback.

func (s *incomingService) Create(req requests.IncomingRequest,

createdBy *uint) (responses.IncomingResponse, error) {
tx := s.db.Begin ()
po, err := s.poRepo.GetByUUID (req.POUUID)
if err != nil {

tx.Rollback ()

return responses.IncomingResponse{}, errors.New("po not found"

)

incoming := models.Incoming{

POID: &po.1ID,

&9

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

1

CheckBy: createdBy,
Status: "pass",
Notes: req.Notes,

CreatedBy: createdBy,

if err := tx.Create(&incoming) .Error; err != nil {
tx.Rollback ()

return responses.IncomingResponse{}, err

if len(reg.Images) > 0 {

var images []Jmodels.IncomingImage
for _, img := range req.Images {
images = append (images, models.IncomingImage {

ImagePath: img.ImagePath,
IncomingID: incoming.ID,
CreatedBy: <createdBy,

P

if err := s.imageRepo.CreateBulkTx (tx, images); err != nil {
tx.Rollback ()

return responses.IncomingResponse({}, err

if err := s.poRepo.UpdatePositionTx (tx, po.UUID, 2, *createdBy);
err != nil {

return responses.IncomingResponse{}, err

if err := tx.Commit ().Error; err != nil {

return responses.IncomingResponse({}, err

created, _ := s.repo.GetByUUID (incoming.UUID)

return mapToIncomingResponse (*created), nil

Repository berfokus menyimpan data incoming ke database menggunakan

GORM. Fungsi ini hanya menangani transaksi database tanpa logika bisnis.

func (r *incomingRepository) Create (incoming *models.Incoming)

90

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

IS

error |
ctx, cancel := context.WithTimeout (context.Background(),
dbTimeout)

defer cancel ()

return r.db.WithContext (ctx).Create (incoming) .Error

N Get All Incoming

Handler berfungsi menerima request GET dan memanggil service. Jika
terjadi error saat pengambilan data, handler akan mengembalikan status internal

server error, sebaliknya akan mengirim data incoming beserta pesan sukses.

func (h *IncomingHandler) GetAll (c *fiber.Ctx) error {
incomings, err := h.service.GetAll ()
if err != nil {
return c.Status (http.StatusInternalServerError).JSON (responses
.ErrorResponse {
Error: err.Error (),

)

return c.Status (http.StatusOK) .JSON (responses.MessageResponse {
Message: "Incomings retrieved successfully",
Data: incomings,

)

Service memanggil repository untuk mendapatkan seluruh data incoming,

kemudian memetakan setiap record ke bentuk response yang telah ditentukan agar

sesuai dengan DTO.
func (s *incomingService) GetAll () ([]responses.IncomingResponse,
error) {
incomings, err := s.repo.GetAll ()
if err != nil {

return nil, err

var res []Jresponses.IncomingResponse
for _, inc := range incomings {
res = append(res, mapToIncomingResponse (inc))
91

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

}

return res, nil

Repository bertugas mengeksekusi query untuk mengambil seluruh data
incoming dari database. Fungsi ini menggunakan query dasar yang sudah termasuk

relasi terkait jika diperlukan.

i func (r *incomingRepository) GetAll () ([]models.Incoming, error) {
2 ctx, cancel := context.WithTimeout (context.Background(),
dbTimeout)

3 defer cancel ()

5 var incomings []models.Incoming
6 err := r.baseQuery(ctx).Find(&incomings) .Error

7 return incomings, err

O Get Incoming By UUID

Handler menerima request GET dengan parameter UUID, lalu memanggil
service untuk mengambil data incoming. Jika terjadi error, handler merespon

dengan error not found.

i func (h *IncomingHandler) GetByUUID (c *fiber.Ctx) error {

2 uuid := c.Params ("uuid")
inc, err := h.service.GetByUUID (uuid)
4 if err != nil {
5 return c.Status (http.StatusNotFound) .JSON (responses.

ErrorResponse {

6 Error: err.Error (),

7 P

10 return c.Status (http.StatusOK) .JSON (responses.MessageResponse {
11 Message: "Incoming retrieved successfully",

Data: inc,

13)

Service memanggil repository untuk mengambil data berdasarkan UUID.
Setelah data didapat, service memetakan data tersebut ke bentuk response sesuai
DTO.

92

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

1

func (s *incomingService) GetByUUID (uuid string) (responses.

IncomingResponse, error) {
inc, err := s.repo.GetByUUID (uuid)
if err != nil {
return responses.IncomingResponse{}, err

}

return mapToIncomingResponse (*inc), nil

Repository mengeksekusi query untuk mencari incoming berdasarkan

UUID. Jika record tidak ditemukan, repository mengembalikan error dengan pesan
“incoming not found”.

func (r *incomingRepository) GetByUUID (uuid string) (*models.

Incoming, error) {
ctx, cancel := context.WithTimeout (context.Background(),
dbTimeout)

defer cancel ()

var incoming models.Incoming
err := r.baseQuery(ctx).
Where ("uuid = ?", uuid).

First (¢incoming) .Error

if errors.Is(err, gorm.ErrRecordNotFound) {

return nil, errors.New("incoming not found")

return &incoming, err

P Update Incoming

Handler menerima parameter UUID dan body request. Selanjutnya, handler

memanggil service Update dan merespon hasilnya ke frontend. Error seperti body
invalid atau user tidak authorized langsung dikembalikan dari handler.

func (h *IncomingHandler) Update (c *fiber.Ctx) error {

uuid := c.Params ("uuid")

var req requests.IncomingRequest
if err := c.BodyParser (&req); err != nil {
return c.Status (fiber.StatusBadRequest) .JSON (responses.

ErrorResponse {

93

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

Error: "invalid request body",

})

userID := c.Locals ("user_id") . (uint)
if userID == 0 {
return c.Status (fiber.StatusUnauthorized) .JSON (responses.

ErrorResponse {

Error: "unauthorized",
1)
}
inc, err := h.service.Update (uuid, reqg, &userID)
if err != nil {

return c.Status (http.StatusNotFound) .JSON (responses.
ErrorResponse {
Error: err.Error (),

P

return c.Status (http.StatusOK) .JSON (responses.MessageResponse {
Message: "Incoming updated successfully",
Data: inc,

)

Service melakukan transaksi database (tx.Begin()) untuk memastikan
integritas data. Service memvalidasi apakah incoming dan PO terkait ada,
memperbarui field utama, menghapus image lama, menambahkan image baru, dan

akhirnya commit transaksi. Jika terjadi error di tengah proses, transaksi di-rollback.

func (s *incomingService) Update (uuid string, req requests.
IncomingRequest, updatedBy *uint) (responses.IncomingResponse,
error) {
tx := s.db.Begin ()
if tx.Error != nil {

return responses.IncomingResponse{}, tx.Error

defer func () {
if r := recover(); r != nil {

tx.Rollback ()

94

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

48

49

50

existing, err := s.repo.GetByUUIDTx (tx, uuid)
if err != nil {
tx.Rollback ()

return responses.IncomingResponse{}, errors.New("incoming

found")
}
po, err := s.poRepo.GetByUUID (req.POUUID)
if err != nil {

tx.Rollback ()

not

return responses.IncomingResponse{}, errors.New("po not found"

)

existing.POID = &po.ID
existing.CheckBy = updatedBy
existing.Notes = reqg.Notes

existing.UpdatedBy = updatedBy

if err := tx.Save (&existing) .Error; err != nil {
tx.Rollback ()

return responses.IncomingResponse{}, err

if err := s.imageRepo.DeleteByIncomingIDTx (tx, existing.ID);

= nil {
tx.Rollback ()

return responses.IncomingResponse{}, err

if len(req.Images) > 0 {

var newlImages []models.IncomingImage
for _, img := range req.Images {
newImages = append (newImages, models.IncomingImage {

ImagePath: img.ImagePath,
IncomingID: existing.ID,
CreatedBy: updatedBy,

})

if err := s.imageRepo.CreateBulkTx (tx, newlImages); err !=

{
tx.Rollback ()

95

err

nil

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

59

60

61

1

1

return responses.IncomingResponse({}, err

if err := tx.Commit ().Error; err != nil {

return responses.IncomingResponse{}, err

updated, _ := s.repo.GetByUUID (existing.UUID)

return mapToIncomingResponse (*updated), nil

Repository melakukan eksekusi update di database dengan menggunakan
UUID sebagai filter. Semua perubahan field incoming dikirim ke database melalui
method Updates.
func (r *incomingRepository) Update (incoming *models.Incoming)
error {
ctx, cancel := context.WithTimeout (context.Background(),

dbTimeout)

defer cancel ()

return r.db.WithContext (ctx) .
Model (&models.Incoming{}) .
Where ("uuid = ?", incoming.UUID) .

Updates (incoming) .Error

Q Delete Incoming

Fungsi delete incoming digunakan untuk menghapus data existing
berdasarkan UUID. Handler menerima request dari frontend, memanggil service,
lalu service meneruskan ke repository untuk melakukan eksekusi delete di
database.

Handler menerima parameter UUID dan langsung memanggil service
Delete. Jika UUID tidak ditemukan atau terjadi error, handler mengembalikan
respons error.

func (h *IncomingHandler) Delete(c *fiber.Ctx) error ({
uuid := c.Params ("uuid")
if err := h.service.Delete (uuid); err != nil ¢{
return c.Status (http.StatusNotFound) .JSON (responses.

ErrorResponse {

96

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

1

Error: err.Error (),

)

return c.Status (http.StatusOK).JSON (responses.
MessageOnlyResponse {

Message: "Incoming deleted successfully",

)

Service bertugas meneruskan UUID ke repository untuk melakukan

penghapusan. Tidak ada logika tambahan selain validasi sederhana dari repository.

func (s *incomingService) Delete (uuid string) error {

return s.prepo.Delete (uuid)

Repository melakukan query delete di database menggunakan UUID

sebagai filter. Jika UUID tidak ditemukan, reposifory mengembalikan error
’incoming not found”.

func (r *incomingRepository) Delete (uuid string) error {

ctx, cancel := context.WithTimeout (context.Background(),
dbTimeout)

defer cancel ()
result := r.db.WithContext (ctx) .
Where ("uuid = ?", uuid).

Delete (&models.Incoming{})

if result.RowsAffected == 0 {

return errors.New("incoming not found")

return result.Error

R Get HU By UUID

Handler membaca parameter UUID dari URL, memanggil service

GetByUUID, dan mengembalikan response ke frontend. Jika UUID tidak

ditemukan, handler mengembalikan error 404 Not Found.

func (h *HUHandler) GetByUUID (¢ *fiber.Ctx) error {

97

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

uuid := c.Params ("uuid")
hu, err := h.service.GetByUUID (uuid)
if err != nil {
return c.Status (http.StatusNotFound) .JSON (responses.
ErrorResponse {
Error: err.Error (),

P

return c.Status (http.StatusOK) .JSON (responses.MessageResponse {
Message: "HU retrieved successfully",
Data: hu,

1)

Service memanggil repository untuk mengambil HU berdasarkan UUID,

lalu melakukan mapping ke response DTO (HUResponse) melalui helper

mapHUToResponse.
func (s *huService) GetByUUID (uuid string) (responses.HUResponse,
error) |
h, err := s.repo.GetByUUID (uuid)
if err != nil {

return responses.HUResponse{}, err

}

return mapHUToResponse (h, s.userRepo, s.poRepo)

Repository mengeksekusi query database menggunakan GORM. Selain

memfilter berdasarkan UUID, repository juga melakukan Preload untuk memuat
relasi Details dan POs. Jika record tidak ditemukan, akan mengembalikan error

khusus.

func (r *huRepository) GetByUUID (uuid string) (models.HU, error) ({
var hu models.HU
if err := r.db.
Preload ("Details").
Preload ("POs") .
Where ("uuid = ?", uuid).

First (&hu) .Error; err != nil {

if errors.Is(err, gorm.ErrRecordNotFound) ({

return hu, errors.New ("HU not found")

98

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

1

5

3

4

}

return hu, err

return hu, nil

S Get PO By PO Number

Handler memeriksa apakah po_number disediakan, memanggil service

GetByPONumber, dan mengembalikan response atau error yang sesuai.

func (h *POHandler) GetByPONumber (¢ *fiber.Ctx) error
poNumber := c.Params ("po_number")
if poNumber == "" {

return c.Status (fiber.StatusBadRequest) .JSON (responses.

ErrorResponse {

P

po,
if err != nil {

Error: "PO number is required",

err := h.service.GetByPONumber (poNumber)

status := fiber.StatusNotFound

if !strings.Contains (err.Error (), "not found") {

}

status = fiber.StatusInternalServerError

return c.Status (status) .JSON (responses.ErrorResponse {

P

Error: err.Error (),

return c.Status (fiber.StatusOK) .JSON (responses.MessageResponse {

)

Message: "PO retrieved successfully",

Data: po,

Service memanggil repository untuk mencari PO berdasarkan po_number.

Setelah data diperoleh, service memetakan model PO ke response DTO

(POResponse) menggunakan helper mapToPOResponse.

func

po;,

(s *poService) GetByPONumber (poNumber string) (responses.

POResponse, error) {

err := s.repo.GetByPONumber (poNumber)

99

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

IS

if err != nil {

return responses.POResponse{}, err

return mapToPOResponse (po), nil

Repository mengeksekusi query ke database dengan filter po_number. Jika
PO tidak ditemukan, akan mengembalikan error khusus PO not found”.
func (r *poRepository) GetByPONumber (poNumber string) (models.PO,
error) {
ctx, cancel := context.WithTimeout (context.Background(),

dbTimeout)

defer cancel ()

var po models.PO
err := r.baseQuery (ctx).Where ("po_number = ?", poNumber).First (&

po) .Error

if err != nil {
if errors.Is(err, gorm.ErrRecordNotFound) {
return po, errors.New("PO not found")

}

return po, err

}

return po, nil

3.4 Kendala dan Solusi yang Ditemukan
3.4.1 Kendala

Dalam proses pengembangan sistem, berbagai kendala sering muncul baik
dari sisi teknis maupun non-teknis. Bagian ini akan menjelaskan kendala-kendala
yang dihadapi selama implementasi dan langkah-langkah solusi yang diterapkan

untuk mengatasinya.

1. Perubahan flow dari klien yang sering terjadi, sehingga beberapa modul dan

fitur harus dirombak berkali-kali dan mempengaruhi progres pengembangan.

2. Kurangnya konsistensi antar modul, yang menimbulkan kebingungan dalam

implementasi karena perbedaan pendekatan atau standar pengembangan antar

100

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

file modul.

3.4.2 Solusi

Untuk mengatasi kendala-kendala tersebut, beberapa langkah solusi

diterapkan agar proses pengembangan tetap efisien dan konsisten.

1. Mengadakan daily meeting dengan tim dan pihak klien untuk memastikan
setiap perubahan yang diminta sudah jelas, tercatat, dan disepakati sebelum

diterapkan pada sistem.

2. Menjaga konsistensi antar modul dengan melakukan koordinasi rutin bersama
supervisor, serta meminta supervisor melakukan pengecekan setiap kali

terjadi perubahan pada modul sebelum diintegrasikan ke sistem utama.

101

Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

	BAB 3 Pelaksanaan Kerja Magang
	3.1 Kedudukan dan Koordinasi
	3.2 Tugas yang Dilakukan
	3.3 Uraian Pelaksanaan Magang
	3.3.1 Gambaran Umum Arsitektur Sistem
	3.3.2 Analisis Perancangan Sistem
	3.3.3 Pembuatan Model dan Data Transfer Object (DTO)
	3.3.4 Pembuatan Rute
	3.3.5 Pembuatan Handlers, Services, dan Repositories

	3.4 Kendala dan Solusi yang Ditemukan
	3.4.1 Kendala
	3.4.2 Solusi

