
BAB 3
PELAKSANAAN KERJA MAGANG

3.1 Kedudukan dan Koordinasi

Pelaksanaan kerja magang dilakukan di PT CreateIT Solution Indonesia,
sebuah perusahaan yang bergerak di bidang pengembangan perangkat lunak
berbasis teknologi informasi. Periode magang dilaksanakan pada Divisi
Pengembangan Web (Web Module) dengan posisi sebagai Backend Developer.
Dalam struktur organisasi proyek, supervisi dilakukan secara langsung oleh
Vincentius Marco Melandri selaku Supervisor Lapangan, yang berperan dalam
memberikan arahan teknis, bimbingan profesional, serta evaluasi terhadap setiap
tahapan pekerjaan yang dilakukan.

Pelaksanaan magang berlangsung dalam proyek pengembang proyek
Warehouse Management System (WMS) yang dikembangkan untuk Ritra
Logistics, salah satu klien PT CreateIT Solution Indonesia. Dalam tim
tersebut, peran yang ditugaskan adalah sebagai Backend Developer, berfokus
pada perancangan dan pengembangan Application Programming Interface (API)
menggunakan bahasa pemrograman Go (Golang) dengan framework Go Fiber.
Pendekatan pengembangan backend berbasis RESTful API dipilih karena mampu
meningkatkan modularitas sistem serta mempermudah integrasi dengan layanan
frontend dan sistem lain [4]. Pekerjaan dilakukan secara kolaboratif dengan
seorang rekan yang juga bertugas di sisi backend, serta melakukan koordinasi rutin
dengan tim frontend yang menggunakan Next.js dan TypeScript untuk memastikan
kesesuaian antara API dan antarmuka pengguna, sebagaimana praktik kolaborasi
lintas tim yang umum diterapkan dalam pengembangan perangkat lunak modern
[5].

Kegiatan magang dilaksanakan secara hybrid, di mana sebagian pekerjaan
dilakukan secara daring dan sebagian lainnya secara tatap muka di kantor PT
CreateIT Solution Indonesia. Proses koordinasi dilakukan melalui berbagai
platform komunikasi dan manajemen proyek seperti Slack, Google Meet, dan
Trello, yang digunakan untuk pembagian tugas, pelaporan kemajuan, serta
diskusi teknis terkait pengembangan sistem. Penggunaan tools kolaborasi digital
terbukti mampu meningkatkan efektivitas komunikasi tim serta transparansi progres
pengembangan perangkat lunak [6]. Evaluasi dan pelaporan progres dilakukan

7
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

secara mingguan, di mana setiap anggota tim menyampaikan capaian pekerjaan,
kendala yang dihadapi, serta rencana tindak lanjut yang akan dilakukan pada iterasi
berikutnya.

Melalui mekanisme koordinasi tersebut, setiap tahapan pengembangan
sistem dapat berjalan secara terstruktur, terpantau, dan sesuai dengan target
fungsional yang telah ditetapkan. Selain memastikan keterpaduan antar bagian
sistem, kegiatan ini juga menjadi sarana bagi mahasiswa untuk mengembangkan
kemampuan teknis dan profesional dalam lingkungan kerja pengembangan
perangkat lunak yang sesungguhnya.

3.2 Tugas yang Dilakukan

Selama masa magang di PT CreateIT Solution Indonesia, posisi yang
ditempati berada pada divisi Backend Development dalam proyek Warehouse
Management System (WMS) untuk klien Ritra Logistics. Tanggung jawab utama
mencakup pengembangan sisi backend sistem berbasis web menggunakan bahasa
pemrograman Golang dengan framework Go Fiber. Penggunaan bahasa Go dipilih
karena keunggulannya dalam performa, konkurensi, serta kemudahan pemeliharaan
sistem berskala besar [7].

Pekerjaan difokuskan pada perancangan dan implementasi Application
Programming Interface (API) yang berfungsi sebagai penghubung antara basis
data dan antarmuka pengguna yang dikembangkan oleh tim frontend menggunakan
Next.js dan TypeScript. Setiap API dikembangkan berdasarkan API contract yang
terdokumentasi melalui Swagger, sehingga komunikasi data antara backend dan
frontend berjalan secara konsisten, terstruktur, dan terdokumentasi dengan baik [8].

Pengembangan dilakukan untuk berbagai entitas dalam sistem, seperti
modul Purchase Order (PO), Manajemen Barang, dan Inventori Gudang. Proses
pengembangan mencakup pembuatan endpoint untuk operasi Create, Read, Update,
dan Delete (CRUD), serta fitur pencarian data berdasarkan UUID maupun ID.
Pendekatan CRUD ini merupakan praktik umum dalam pengelolaan data terstruktur
pada sistem informasi modern [9]. Selain itu, sistem autentikasi dan otorisasi
pengguna juga diterapkan untuk memastikan pembatasan akses sesuai dengan peran
masing-masing pengguna dalam sistem [10].

Proses kerja dilaksanakan secara kolaboratif dengan anggota tim lain
melalui platform Gitea sebagai sistem version control dan OpenProject untuk
manajemen tugas serta pelacakan progres proyek. Koordinasi dilakukan melalui

8
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

daily meeting, baik secara daring menggunakan Microsoft Teams maupun secara
langsung di kantor, serta komunikasi informal menggunakan WhatsApp untuk
pembahasan teknis harian. Setiap perubahan kode melalui proses code review
sebelum digabungkan (merge) ke cabang utama repositori, guna menjaga kualitas
kode dan meminimalkan potensi kesalahan implementasi [11].

Pengujian terhadap setiap endpoint dilakukan menggunakan Postman untuk
memastikan bahwa seluruh fungsi API berjalan sesuai spesifikasi dan menghasilkan
respons data yang tepat. Tahapan ini juga digunakan untuk memverifikasi
kesesuaian API dengan kebutuhan frontend sebelum proses integrasi dilakukan.

Melalui proses tersebut, kegiatan pengembangan sistem berjalan secara
terstruktur, efisien, dan terkoordinasi dengan baik, menghasilkan komponen
backend yang stabil dan sesuai dengan spesifikasi fungsional sistem Warehouse
Management System.

3.3 Uraian Pelaksanaan Magang

Proses pelaksanaan kegiatan magang di PT CreateIT Solution Indonesia
berlangsung selama enam bulan sesuai dengan ketentuan yang tercantum dalam
kontrak magang. Kegiatan magang dimulai pada tanggal 4 Agustus 2025 dan
berakhir pada 3 Februari 2026. Selama periode tersebut, aktivitas magang
dilaksanakan secara rutin pada hari kerja. Adapun hari Sabtu, Minggu, hari libur
nasional, serta hari libur perusahaan tidak termasuk dalam jadwal pelaksanaan
magang.

Pelaksanaan kerja magang diuraikan seperti pada Tabel 3.1.

Tabel 3.1. Pekerjaan yang dilakukan tiap minggu selama pelaksanaan kerja magang

Minggu Ke - Pekerjaan yang dilakukan

1 Mempelajari struktur kode backend, standar penamaan
variabel dan fungsi, serta mulai mengembangkan modul
autentikasi dengan membuat repository, service, dan handler
untuk proses registrasi dan verifikasi pengguna, termasuk
pengelolaan OTP.

9
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

Minggu Ke - Pekerjaan yang dilakukan

2 Melanjutkan pengembangan modul autentikasi dengan
penambahan field dan logic verifikasi pengguna, serta
memulai pengerjaan frontend proyek Seilbahnen melalui
persiapan aset parallax dan implementasi animasi scroll
parallax.

3 Mengimplementasikan smooth scrolling untuk meningkatkan
pengalaman parallax, memastikan responsivitas tampilan pada
berbagai resolusi layar, serta melakukan perbaikan animasi
scrolling parallax.

4 Memulai pengerjaan backend proyek Seilbahnen dengan
melakukan remodeling struktur database dan penyesuaian
response API sesuai permintaan klien dan arahan supervisor.

5 Melanjutkan pengembangan modul Activity dengan
menambahkan field yang belum tersedia pada response
API serta melakukan perbaikan response agar sesuai dengan
kebutuhan frontend.

6 Menyelesaikan pengembangan modul Activity dan memulai
pengembangan fitur Winter dengan pembuatan model, DTO,
handler, service, dan repository sesuai standar proyek.

7 Melanjutkan pengembangan fitur Winter, memperbaiki error
response, membantu pengerjaan halaman admin frontend,
serta memastikan integrasi backend dan frontend berjalan
dengan baik.

8 Melakukan penyesuaian lanjutan pada fitur Winter sesuai
permintaan klien dan memulai pengembangan modul Risk
dengan pembuatan model, validator, request, response, serta
handler, service, dan repository.

9 Melakukan pengembangan API Risk dengan dukungan
multibahasa dan endpoint tambahan, serta memulai proyek
RITRA dengan membangun sistem autentikasi berbasis JWT
untuk aplikasi web dan mobile.

10
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

Minggu Ke - Pekerjaan yang dilakukan

10 Mengembangkan fitur lanjutan pada modul Winter dengan
penambahan logic weekday, weekend, dan holiday,
memperbaiki bug minor, serta mengimplementasikan logic
baru pada sisi frontend.

11 Melakukan optimalisasi tampilan parallax pada proyek
Seilbahnen dengan mengganti aset gambar sesuai permintaan
klien, menambahkan animasi scrolling, dan melakukan
kompresi gambar untuk meningkatkan performa.

12 Menyesuaikan struktur dan kualitas parallax, mengatur
kecepatan animasi scrolling, serta mengganti background
tertentu menjadi video untuk meningkatkan pengalaman visual
pengguna.

13 Melakukan optimalisasi kualitas gambar parallax dan
melanjutkan pengembangan proyek RITRA dengan
menambahkan API permissions, termasuk fitur bulk assign
dan bulk remove.

14 Melakukan perbaikan logic dan response pada beberapa API,
menyesuaikan kebutuhan frontend, serta mengoptimalkan
logic pada PO service agar lebih efisien dan sesuai kebutuhan
klien.

15 Melanjutkan pengembangan modul PO dan HU dengan
menambahkan field baru, memisahkan model delivery,
menghubungkan relasi antar model, serta melakukan
penyesuaian aset visual sesuai permintaan klien.

16 Melakukan perbaikan pada tampilan parallax dan frontend,
menambahkan field timestamp pada beberapa response API,
serta menyesuaikan struktur response PO dan delivery.

17 Melakukan perbaikan minor bug pada beberapa API,
menambahkan status stuffing pada PO, serta mengubah value
status PO menjadi enumerasi yang lebih terstruktur sesuai
kebutuhan sistem.

11
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

3.3.1 Gambaran Umum Arsitektur Sistem

Arsitektur sistem Ritra Logistics dirancang secara terpusat dengan satu
layanan backend yang digunakan oleh dua jenis platform, yaitu aplikasi web dan
aplikasi mobile. Aplikasi web digunakan oleh admin untuk melakukan proses
persetujuan (approval) serta pengelolaan data operasional, sedangkan aplikasi
mobile digunakan oleh petugas lapangan untuk melakukan pemindaian barcode

dan input data barang. Skema arsitektur aplikasi Ritra Logistics dapat dilihat pada
Gambar 3.1.

Kedua aplikasi tersebut terhubung ke sistem backend yang sama melalui
antarmuka layanan berbasis API. Backend sistem berperan sebagai pusat
pengolahan data dan logika bisnis, termasuk validasi data, pengelolaan proses
gudang, serta komunikasi dengan basis data. Seluruh data operasional disimpan
dalam satu database terpusat sehingga konsistensi data antara aplikasi web dan
aplikasi mobile dapat terjaga.

Gambar 3.1. Skema arsitektur umum sistem aplikasi Ritra Logistics

Dengan arsitektur ini, sistem mampu mendukung proses operasional gudang
secara terintegrasi, di mana data yang diinput melalui aplikasi mobile dapat
langsung dikelola dan diverifikasi oleh admin melalui aplikasi web.

3.3.2 Analisis Perancangan Sistem

Perancangan sistem backend pada Warehouse Management System (WMS)
Ritra Logistics dilakukan berdasarkan rancangan awal yang telah disusun oleh
Supervisor Lapangan. Rancangan tersebut berfungsi sebagai acuan utama dalam

12
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

proses pengembangan sistem backend, khususnya dalam menentukan alur proses
bisnis, urutan eksekusi logika program, serta interaksi antar modul dalam sistem.

Pendekatan perancangan yang digunakan tidak berfokus pada pemodelan
berbasis objek secara penuh, melainkan menitikberatkan pada alur proses
operasional sistem. Dengan tujuan memperjelas perancangan sistem yang telah
dibuat, flowchart digunakan untuk menggambarkan tahapan-tahapan proses yang
terjadi dalam sistem backend, mulai dari penerimaan permintaan (request) hingga
pengolahan data dan pengembalian respons (response).

A Flowchart Register User

Gambar 3.2. Flowchart register user

Flowchart proses registrasi pengguna menggambarkan alur pendaftaran
akun baru pada sistem Ritra Logistics, sebagaimana ditunjukkan pada Gambar

13
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

3.2. Proses diawali ketika pengguna memasukkan data registrasi berupa email
dan kata sandi melalui antarmuka aplikasi. Setelah data diinput, sistem frontend

melakukan validasi awal untuk memastikan seluruh data telah diisi dengan
benar dan memenuhi ketentuan yang ditetapkan, seperti panjang karakter dan
kelengkapan field. Apabila data tidak lolos validasi, pengguna akan diminta untuk
memperbaiki atau melengkapi kembali data hingga sesuai dengan aturan yang
berlaku.

Apabila proses validasi pada sisi frontend berhasil, data registrasi
akan dikirimkan ke backend melalui request API untuk diproses lebih lanjut.
Backend kemudian melakukan pengecekan terhadap email yang digunakan dengan
mencocokkannya pada basis data. Jika email tersebut telah terdaftar sebelumnya,
sistem akan mengembalikan respons berupa pesan kesalahan yang menandakan
bahwa proses registrasi tidak dapat dilanjutkan.

Jika email belum terdaftar, backend akan melanjutkan proses dengan
melakukan hashing terhadap kata sandi pengguna sebagai langkah pengamanan
data sebelum penyimpanan. Setelah itu, data pengguna baru akan disimpan ke
dalam basis data dan sistem akan mengirimkan respons success beserta informasi
data pengguna kepada frontend. Dengan alur tersebut, proses registrasi dapat
berjalan secara aman, terstruktur, dan sesuai dengan rancangan sistem.

14
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

B Flowchart Login User

Gambar 3.3. Flowchart login user

Flowchart proses login pengguna menggambarkan alur autentikasi
pengguna pada sistem Ritra Logistics, sebagaimana ditunjukkan pada Gambar 3.3.
Proses dimulai ketika pengguna memasukkan kredensial login berupa email dan
kata sandi melalui antarmuka aplikasi. Selanjutnya, sistem frontend melakukan
validasi awal terhadap input yang diberikan, seperti pengecekan format email,
panjang kata sandi, serta memastikan tidak ada field yang kosong. Apabila
validasi ini tidak terpenuhi, pengguna akan diminta untuk memperbaiki data yang
dimasukkan hingga sesuai dengan ketentuan yang berlaku.

Jika data login telah lolos validasi pada sisi frontend, permintaan login akan
dikirimkan ke backend untuk diproses lebih lanjut. Backend kemudian mengambil
data pengguna berdasarkan email yang dikirimkan pada request. Apabila data
pengguna tidak ditemukan dalam basis data, sistem akan mengembalikan respons
berupa pesan kesalahan autentikasi kepada frontend.

Apabila data pengguna berhasil ditemukan, backend akan melakukan proses
verifikasi kata sandi dengan mencocokkannya terhadap data yang tersimpan di

15
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

dalam basis data. Jika kata sandi tidak sesuai, sistem akan mengirimkan pesan
kesalahan autentikasi ke frontend. Sebaliknya, jika proses verifikasi berhasil,
backend akan mengirimkan respons berupa status success beserta data pengguna
kepada frontend. Dengan alur ini, proses login dapat berjalan secara aman dan
terkontrol sesuai dengan rancangan sistem.

C Flowchart Get All Color Code

Gambar 3.4. Flowchart get all color code

Flowchart proses pengambilan seluruh data color code menggambarkan
alur pengambilan data kode area yang digunakan dalam sistem Ritra Logistics,
sebagaimana ditunjukkan pada Gambar 3.4. Dalam sistem ini, color code

digunakan sebagai penanda area tertentu yang direpresentasikan dalam bentuk

16
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

nama warna. Proses dimulai ketika frontend mengirimkan permintaan (request)
bertipe GET untuk mengambil seluruh data color code yang tersedia pada sistem.

Setelah permintaan diterima, backend akan melakukan proses autentikasi
dengan memeriksa token JWT yang dikirimkan bersama request. Apabila token
tidak ditemukan atau tidak valid, sistem akan mengembalikan respons berupa
pesan kesalahan yang menyatakan bahwa autentikasi gagal. Jika token dinyatakan
valid, backend kemudian melanjutkan ke tahap otorisasi dengan memeriksa apakah
pengguna memiliki hak akses atau permission yang sesuai untuk mengakses data
color code. Apabila pengguna tidak memiliki izin yang diperlukan, sistem akan
mengembalikan pesan kesalahan berupa missing permission kepada frontend.

Jika proses autentikasi dan otorisasi berhasil, backend akan mengambil
seluruh data color code yang tersimpan di dalam basis data. Data tersebut kemudian
dikirimkan kembali ke frontend dalam bentuk respons sukses. Dengan alur ini,
sistem memastikan bahwa hanya pengguna yang terautentikasi dan memiliki izin
yang sesuai yang dapat mengakses data color code, sehingga keamanan dan kontrol
akses tetap terjaga sesuai dengan rancangan sistem.

17
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

D Flowchart Get Color Code By UUID

Gambar 3.5. Flowchart get color code by uuid

Flowchart proses pengambilan data color code berdasarkan UUID
menggambarkan alur pengambilan data spesifik dari sistem Ritra Logistics,
sebagaimana ditunjukkan pada Gambar 3.5. Proses dimulai ketika frontend

mengirimkan permintaan (request) bertipe GET dengan menyertakan UUID dari
color code yang ingin diambil. Permintaan ini kemudian diterima oleh backend

untuk diproses lebih lanjut.
Setelah menerima request, backend melakukan proses autentikasi dengan

memeriksa token JWT yang dikirimkan. Apabila token tidak valid atau tidak
ditemukan, sistem akan mengembalikan respons kesalahan berupa missing or

invalid token. Jika autentikasi berhasil, backend melanjutkan dengan proses
otorisasi untuk memastikan bahwa pengguna memiliki hak akses yang sesuai.

18
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

Apabila pengguna tidak memiliki izin yang diperlukan, sistem akan mengirimkan
respons berupa missing permission kepada frontend.

Jika proses autentikasi dan otorisasi berhasil, backend akan melakukan
pencarian data color code berdasarkan UUID yang diterima dari request. Apabila
data tidak ditemukan di dalam basis data, sistem akan mengembalikan respons
berupa pesan color code not found. Namun, jika data ditemukan, backend akan
mengambil data tersebut dan mengirimkan respons keberhasilan beserta detail
color code yang diminta kepada frontend. Dengan alur ini, sistem memastikan
pengambilan data dilakukan secara aman dan terkontrol sesuai dengan hak akses
pengguna.

E Flowchart Create Color Code

Gambar 3.6. Flowchart create color code

Flowchart proses pembuatan color code baru menggambarkan alur
penambahan data kode area ke dalam sistem Ritra Logistics, sebagaimana
ditunjukkan pada Gambar 3.6. Proses dimulai ketika frontend mengirimkan

19
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

permintaan (request) bertipe POST yang berisi data color code baru yang akan
ditambahkan ke dalam sistem. Permintaan ini kemudian diterima oleh backend

untuk diproses lebih lanjut.
Setelah menerima request, backend melakukan proses autentikasi dengan

memeriksa token JWT yang dikirimkan. Apabila token tidak valid atau
tidak ditemukan, sistem akan mengembalikan respons berupa pesan kesalahan
autentikasi. Jika proses autentikasi berhasil, backend akan melanjutkan ke tahap
otorisasi untuk memastikan bahwa pengguna memiliki hak akses yang sesuai.
Apabila pengguna tidak memiliki izin yang diperlukan, sistem akan mengembalikan
respons berupa missing permission kepada frontend.

Jika proses autentikasi dan otorisasi berhasil, backend akan melanjutkan
dengan menyimpan data color code baru ke dalam basis data. Setelah proses
penyimpanan berhasil dilakukan, sistem akan mengirimkan respons keberhasilan
beserta data color code yang baru dibuat kepada frontend. Dengan alur ini, proses
penambahan color code dapat dilakukan secara aman dan terkontrol sesuai dengan
hak akses pengguna.

20
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

F Flowchart Update Color Code

Gambar 3.7. Flowchart update color code

21
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

Flowchart proses pembaruan color code menggambarkan alur perubahan
data color code yang telah ada pada sistem Ritra Logistics, sebagaimana
ditunjukkan pada Gambar 3.7. Proses dimulai ketika frontend mengirimkan
permintaan (request) bertipe PUT yang berisi data color code terbaru yang akan
diperbarui. Permintaan ini kemudian diterima oleh backend untuk diproses lebih
lanjut.

Setelah menerima request, backend melakukan proses autentikasi dengan
memeriksa token JWT yang dikirimkan. Apabila token tidak valid atau
tidak ditemukan, sistem akan mengembalikan respons berupa pesan kesalahan
autentikasi. Jika autentikasi berhasil, backend akan melanjutkan ke tahap otorisasi
untuk memastikan bahwa pengguna memiliki hak akses yang sesuai. Apabila
pengguna tidak memiliki izin yang diperlukan, sistem akan mengembalikan respons
berupa missing permission kepada frontend.

Jika proses autentikasi dan otorisasi berhasil, backend akan melakukan
pencarian data color code berdasarkan UUID yang diterima dari request. Apabila
data tidak ditemukan, sistem akan mengembalikan respons berupa pesan color code

not found. Namun, jika data ditemukan, backend akan memperbarui data color code

yang lama dengan data baru yang dikirimkan dari frontend, tanpa menambahkan
baris data baru pada basis data. Setelah proses pembaruan berhasil dilakukan,
sistem akan mengirimkan respons keberhasilan beserta data color code terbaru
kepada frontend.

22
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

G Flowchart Delete Color Code

Gambar 3.8. Flowchart delete color code

Flowchart proses penghapusan color code menggambarkan alur
penghapusan data color code dari sistem Ritra Logistics, sebagaimana ditunjukkan
pada Gambar 3.8. Proses dimulai ketika frontend mengirimkan permintaan
(request) bertipe DELETE yang berisi UUID dari color code yang akan dihapus.

23
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

Permintaan ini kemudian diterima oleh backend untuk diproses lebih lanjut.
Setelah menerima request, backend melakukan proses autentikasi dengan

memeriksa token JWT yang dikirimkan. Apabila token tidak valid atau
tidak ditemukan, sistem akan mengembalikan respons berupa pesan kesalahan
autentikasi. Jika autentikasi berhasil, backend melanjutkan ke tahap otorisasi untuk
memastikan bahwa pengguna memiliki hak akses yang sesuai. Apabila pengguna
tidak memiliki izin yang diperlukan, sistem akan mengembalikan respons berupa
missing permission kepada frontend.

Jika proses autentikasi dan otorisasi berhasil, backend akan melakukan
pencarian data color code berdasarkan UUID yang diterima dari request. Apabila
data tidak ditemukan, sistem akan mengembalikan respons berupa pesan color code

not found. Namun, jika data ditemukan, backend akan menghapus data color code

tersebut dari basis data. Setelah proses penghapusan berhasil dilakukan, sistem
akan mengirimkan respons keberhasilan kepada frontend sebagai penanda bahwa
data telah berhasil dihapus.

24
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

H Flowchart Get All Vendor

Gambar 3.9. Flowchart get all vendor

Flowchart proses pengambilan seluruh data vendor menggambarkan
alur pengambilan data vendor yang tersimpan dalam sistem Ritra Logistics,
sebagaimana ditunjukkan pada Gambar 3.9. Proses dimulai ketika frontend

mengirimkan permintaan (request) bertipe GET untuk mengambil seluruh data
vendor yang tersedia pada sistem. Permintaan ini kemudian diterima oleh backend

untuk diproses lebih lanjut.
Setelah menerima request, backend melakukan proses autentikasi dengan

memeriksa token JWT yang dikirimkan. Apabila token tidak valid atau
tidak ditemukan, sistem akan mengembalikan respons berupa pesan kesalahan
autentikasi. Jika autentikasi berhasil, backend melanjutkan ke tahap otorisasi untuk

25
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

memastikan bahwa pengguna memiliki hak akses yang sesuai. Apabila pengguna
tidak memiliki izin yang diperlukan, sistem akan mengembalikan respons berupa
missing permission kepada frontend.

Jika proses autentikasi dan otorisasi berhasil, backend akan mengambil
seluruh data vendor yang tersimpan di dalam basis data. Data tersebut kemudian
dikirimkan kembali ke frontend dalam bentuk respons keberhasilan beserta daftar
vendor yang tersedia. Dengan alur ini, sistem memastikan bahwa data vendor

hanya dapat diakses oleh pengguna yang telah terautentikasi dan memiliki izin yang
sesuai.

26
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

I Flowchart Get Vendor By UUID

Gambar 3.10. Flowchart get vendor by uuid

Flowchart proses pengambilan data vendor berdasarkan UUID
menggambarkan alur pengambilan data vendor tertentu dalam sistem Ritra

Logistics, sebagaimana ditunjukkan pada Gambar 3.10. Proses dimulai ketika
frontend mengirimkan permintaan (request) bertipe GET yang berisi UUID dari

27
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

vendor yang ingin diambil. Permintaan ini kemudian diterima oleh backend untuk
diproses lebih lanjut.

Setelah menerima request, backend melakukan proses autentikasi dengan
memeriksa token JWT yang dikirimkan. Apabila token tidak valid atau
tidak ditemukan, sistem akan mengembalikan respons berupa pesan kesalahan
autentikasi. Jika autentikasi berhasil, backend melanjutkan ke tahap otorisasi untuk
memastikan bahwa pengguna memiliki hak akses yang sesuai. Apabila pengguna
tidak memiliki izin yang diperlukan, sistem akan mengembalikan respons berupa
missing permission kepada frontend.

Jika proses autentikasi dan otorisasi berhasil, backend akan melakukan
pencarian data vendor berdasarkan UUID yang diterima dari request. Apabila data
tidak ditemukan, sistem akan mengembalikan respons berupa pesan vendor not

found. Namun, jika data ditemukan, backend akan mengambil data vendor tersebut
dan mengirimkan respons keberhasilan beserta detail data vendor kepada frontend.

28
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

J Flowchart Create Vendor

Gambar 3.11. Flowchart create vendor

Flowchart proses pembuatan vendor baru menggambarkan alur
penambahan data vendor ke dalam sistem Ritra Logistics, sebagaimana ditunjukkan
pada Gambar 3.11. Proses dimulai ketika frontend mengirimkan permintaan
(request) bertipe POST yang berisi data vendor baru yang akan ditambahkan ke
dalam sistem. Permintaan ini kemudian diterima oleh backend untuk diproses lebih
lanjut.

Setelah menerima request, backend melakukan proses autentikasi dengan
memeriksa token JWT yang dikirimkan. Apabila token tidak valid atau
tidak ditemukan, sistem akan mengembalikan respons berupa pesan kesalahan
autentikasi. Jika autentikasi berhasil, backend melanjutkan ke tahap otorisasi untuk

29
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

memastikan bahwa pengguna memiliki hak akses yang sesuai. Apabila pengguna
tidak memiliki izin yang diperlukan, sistem akan mengembalikan respons berupa
missing permission kepada frontend.

Jika proses autentikasi dan otorisasi berhasil, backend akan menyimpan data
vendor baru ke dalam basis data. Setelah proses penyimpanan berhasil dilakukan,
sistem akan mengirimkan respons keberhasilan beserta data vendor yang baru
ditambahkan kepada frontend. Dengan alur ini, proses penambahan data vendor

dapat dilakukan secara aman dan terkontrol sesuai dengan kebijakan akses sistem.

30
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

K Flowchart Update Vendor

Gambar 3.12. Flowchart update vendor

31
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

Flowchart proses pembaruan data vendor menggambarkan alur perubahan
data vendor yang telah tersimpan di dalam sistem Ritra Logistics, sebagaimana
ditunjukkan pada Gambar 3.12. Proses dimulai ketika frontend mengirimkan
permintaan (request) bertipe PUT yang berisi data vendor terbaru yang akan
digunakan untuk memperbarui data sebelumnya. Permintaan ini kemudian diterima
oleh backend untuk diproses lebih lanjut.

Setelah menerima request, backend melakukan proses autentikasi dengan
memeriksa token JWT yang dikirimkan. Apabila token tidak valid atau
tidak ditemukan, sistem akan mengembalikan respons berupa pesan kesalahan
autentikasi. Jika autentikasi berhasil, backend melanjutkan ke tahap otorisasi untuk
memastikan bahwa pengguna memiliki hak akses yang sesuai. Apabila pengguna
tidak memiliki izin yang diperlukan, sistem akan mengembalikan respons berupa
missing permission kepada frontend.

Jika proses autentikasi dan otorisasi berhasil, backend akan melakukan
pencarian data vendor berdasarkan UUID yang diterima dari request. Apabila
data tidak ditemukan, sistem akan mengembalikan respons berupa pesan vendor

not found. Namun, jika data ditemukan, backend akan memperbarui data vendor

lama dengan data yang baru, kemudian menyimpannya kembali ke dalam basis data.
Setelah proses pembaruan berhasil, sistem akan mengirimkan respons keberhasilan
beserta data vendor terbaru kepada frontend.

32
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

L Flowchart Delete Vendor

Gambar 3.13. Flowchart delete vendor

Flowchart proses penghapusan data vendor menggambarkan alur
penghapusan data vendor dari sistem Ritra Logistics, sebagaimana ditunjukkan
pada Gambar 3.13. Proses dimulai ketika frontend mengirimkan permintaan
(request) bertipe DELETE yang berisi UUID dari vendor yang akan dihapus.

33
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

Permintaan tersebut kemudian diterima oleh backend untuk diproses lebih lanjut.
Setelah menerima request, backend melakukan proses autentikasi dengan

memeriksa token JWT yang dikirimkan. Apabila token tidak valid atau
tidak ditemukan, sistem akan mengembalikan respons berupa pesan kesalahan
autentikasi. Jika autentikasi berhasil, backend melanjutkan ke tahap otorisasi untuk
memastikan bahwa pengguna memiliki hak akses yang sesuai. Apabila pengguna
tidak memiliki izin yang diperlukan, sistem akan mengembalikan respons berupa
missing permission kepada frontend.

Jika proses autentikasi dan otorisasi berhasil, backend akan melakukan
pencarian data vendor berdasarkan UUID yang diterima dari request. Apabila
data tidak ditemukan, sistem akan mengembalikan respons berupa pesan vendor

not found. Namun, jika data ditemukan, backend akan menghapus data vendor

tersebut dari basis data. Setelah proses penghapusan berhasil dilakukan, sistem
akan mengirimkan respons keberhasilan kepada frontend sebagai tanda bahwa data
telah berhasil dihapus.

34
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

M Flowchart Get All Incoming

Gambar 3.14. Flowchart get all incoming

Flowchart proses pengambilan seluruh data incoming menggambarkan alur
pengambilan data barang masuk yang tersimpan dalam sistem Ritra Logistics,
sebagaimana ditunjukkan pada Gambar 3.14. Proses dimulai ketika frontend

mengirimkan permintaan (request) bertipe GET untuk mengambil seluruh data
incoming yang tersedia pada sistem. Permintaan ini kemudian diterima oleh
backend untuk diproses lebih lanjut.

Setelah menerima request, backend melakukan proses autentikasi dengan
memeriksa token JWT yang dikirimkan. Apabila token tidak valid atau
tidak ditemukan, sistem akan mengembalikan respons berupa pesan kesalahan

35
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

autentikasi. Jika autentikasi berhasil, backend melanjutkan ke tahap otorisasi untuk
memastikan bahwa pengguna memiliki hak akses yang sesuai. Apabila pengguna
tidak memiliki izin yang diperlukan, sistem akan mengembalikan respons berupa
missing permission kepada frontend.

Jika proses autentikasi dan otorisasi berhasil, backend akan mengambil
seluruh data incoming yang tersimpan di dalam basis data. Data tersebut kemudian
dikirimkan kembali ke frontend dalam bentuk respons keberhasilan beserta daftar
data incoming yang tersedia. Dengan alur ini, sistem memastikan bahwa data
incoming hanya dapat diakses oleh pengguna yang telah terautentikasi dan memiliki
izin yang sesuai.

36
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

N Flowchart Get Incoming By UUID

Gambar 3.15. Flowchart get incoming by uuid

Flowchart proses pengambilan data incoming berdasarkan UUID
menggambarkan alur pengambilan data barang masuk tertentu dalam sistem
Ritra Logistics, sebagaimana ditunjukkan pada Gambar 3.15. Proses dimulai ketika
frontend mengirimkan permintaan (request) bertipe GET yang berisi UUID dari

37
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

data incoming yang ingin diambil. Permintaan tersebut kemudian diterima oleh
backend untuk diproses lebih lanjut.

Setelah menerima request, backend melakukan proses autentikasi dengan
memeriksa token JWT yang dikirimkan. Apabila token tidak valid atau
tidak ditemukan, sistem akan mengembalikan respons berupa pesan kesalahan
autentikasi. Jika autentikasi berhasil, backend melanjutkan ke tahap otorisasi untuk
memastikan bahwa pengguna memiliki hak akses yang sesuai. Apabila pengguna
tidak memiliki izin yang diperlukan, sistem akan mengembalikan respons berupa
missing permission kepada frontend.

Jika proses autentikasi dan otorisasi berhasil, backend akan melakukan
pencarian data incoming berdasarkan UUID yang diterima dari request. Apabila
data tidak ditemukan, sistem akan mengembalikan respons berupa pesan incoming

not found. Namun, jika data ditemukan, backend akan mengambil data tersebut dan
mengirimkan respons keberhasilan beserta detail data incoming kepada frontend.
Dengan alur ini, sistem memastikan bahwa pengambilan data dilakukan secara
aman dan sesuai dengan hak akses pengguna.

38
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

O Flowchart Create Incoming

Gambar 3.16. Flowchart create incoming

39
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

Flowchart proses pembuatan data incoming menggambarkan alur
penambahan data barang masuk ke dalam sistem Ritra Logistics, sebagaimana
ditunjukkan pada Gambar 3.16. Proses dimulai ketika frontend mengirimkan
permintaan (request) bertipe POST yang berisi data incoming baru. Permintaan ini
kemudian diterima oleh backend untuk diproses lebih lanjut.

Setelah menerima request, backend melakukan proses autentikasi dengan
memeriksa token JWT yang dikirimkan. Apabila token tidak valid atau
tidak ditemukan, sistem akan mengembalikan respons berupa pesan kesalahan
autentikasi. Jika autentikasi berhasil, backend melanjutkan ke tahap otorisasi untuk
memastikan bahwa pengguna memiliki hak akses yang sesuai. Apabila pengguna
tidak memiliki izin yang diperlukan, sistem akan mengembalikan respons berupa
missing permission kepada frontend.

Jika proses autentikasi dan otorisasi berhasil, backend akan melakukan
pengecekan terhadap purchase order (PO) berdasarkan PO UUID yang dikirimkan
pada request. Hal ini dilakukan karena setiap data incoming harus memiliki relasi
dengan data purchase order. Apabila data PO tidak ditemukan, sistem akan
mengembalikan respons berupa pesan PO not found. Jika data PO ditemukan,
backend akan menyimpan data incoming baru ke dalam basis data.

Setelah data incoming berhasil disimpan, backend akan melakukan
pengecekan terhadap field images. Apabila field tersebut tidak berisi data,
sistem akan langsung mengirimkan respons keberhasilan beserta data incoming

ke frontend. Namun, apabila field images tersedia, backend akan terlebih dahulu
menyimpan data gambar tersebut ke dalam basis data, kemudian mengirimkan
respons keberhasilan beserta data incoming yang telah tersimpan. Dengan alur ini,
proses pencatatan data barang masuk dapat berjalan secara fleksibel dan terintegrasi
sesuai kebutuhan sistem.

40
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

P Flowchart Update Incoming

Gambar 3.17. Flowchart update incoming

41
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

Flowchart proses pembaruan data incoming menggambarkan alur
perubahan data barang masuk yang telah tersimpan dalam sistem Ritra Logistics,
sebagaimana ditunjukkan pada Gambar 3.17. Proses dimulai ketika frontend

mengirimkan permintaan (request) bertipe PUT yang berisi data incoming terbaru
untuk dilakukan pembaruan. Permintaan ini kemudian diterima oleh backend untuk
diproses lebih lanjut.

Setelah menerima request, backend melakukan proses autentikasi dengan
memeriksa token JWT yang dikirimkan. Apabila token tidak valid atau
tidak ditemukan, sistem akan mengembalikan respons berupa pesan kesalahan
autentikasi. Jika autentikasi berhasil, backend melanjutkan ke tahap otorisasi untuk
memastikan bahwa pengguna memiliki hak akses yang sesuai. Apabila pengguna
tidak memiliki izin yang diperlukan, sistem akan mengembalikan respons berupa
missing permission kepada frontend.

Jika proses autentikasi dan otorisasi berhasil, backend akan melakukan
pencarian data incoming berdasarkan UUID yang diterima dari request. Apabila
data incoming tidak ditemukan, sistem akan mengembalikan respons berupa pesan
incoming not found. Selanjutnya, backend akan melakukan pengecekan terhadap
purchase order (PO) berdasarkan PO UUID yang dikirimkan. Apabila data PO

tidak ditemukan, sistem akan mengembalikan respons berupa pesan PO not found.
Jika seluruh data valid, backend akan memperbarui data incoming dengan

informasi terbaru yang diterima dari request. Setelah itu, backend akan
menghapus data images lama yang sebelumnya terasosiasi dengan incoming

tersebut. Selanjutnya, sistem akan melakukan pengecekan terhadap field images.
Apabila tidak terdapat data gambar, sistem akan langsung mengirimkan respons
keberhasilan beserta data incoming terbaru kepada frontend. Namun, apabila field

images tersedia, backend akan menyimpan data gambar tersebut ke dalam basis data
dan kemudian mengirimkan respons keberhasilan beserta data incoming terbaru ke
frontend.

42
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

Q Flowchart Delete Incoming

Gambar 3.18. Flowchart delete incoming

43
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

Flowchart proses penghapusan data incoming menggambarkan alur
penghapusan data barang masuk dari sistem Ritra Logistics, sebagaimana
ditunjukkan pada Gambar 3.18. Proses dimulai ketika frontend mengirimkan
permintaan (request) bertipe DELETE yang berisi UUID dari data incoming yang
akan dihapus. Permintaan tersebut kemudian diterima oleh backend untuk diproses
lebih lanjut.

Setelah menerima request, backend melakukan proses autentikasi dengan
memeriksa token JWT yang dikirimkan. Apabila token tidak valid atau
tidak ditemukan, sistem akan mengembalikan respons berupa pesan kesalahan
autentikasi. Jika autentikasi berhasil, backend melanjutkan ke tahap otorisasi untuk
memastikan bahwa pengguna memiliki hak akses yang sesuai. Apabila pengguna
tidak memiliki izin yang diperlukan, sistem akan mengembalikan respons berupa
missing permission kepada frontend.

Jika proses autentikasi dan otorisasi berhasil, backend akan melakukan
pencarian data incoming berdasarkan UUID yang diterima dari request. Apabila
data incoming tidak ditemukan, sistem akan mengembalikan respons berupa pesan
incoming not found. Namun, jika data ditemukan, backend akan menghapus data
incoming tersebut dari basis data. Selanjutnya, sistem juga akan menghapus data
images yang terasosiasi dengan incoming apabila data tersebut tersedia. Setelah
seluruh proses penghapusan berhasil dilakukan, sistem akan mengirimkan respons
keberhasilan kepada frontend sebagai tanda bahwa data telah berhasil dihapus.

44
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

R Flowchart Get HU By UUID

Gambar 3.19. Flowchart get HU by uuid

45
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

Flowchart proses pengambilan data handling unit (HU) berdasarkan UUID
menggambarkan alur pengambilan informasi HU beserta data purchase order (PO)
yang terkait di dalam sistem Ritra Logistics, sebagaimana ditunjukkan pada Gambar
3.19. Proses dimulai ketika frontend mengirimkan permintaan (request) bertipe
GET yang berisi UUID dari HU yang ingin diambil. Permintaan tersebut kemudian
diterima oleh backend untuk diproses lebih lanjut.

Setelah menerima request, backend melakukan proses autentikasi dengan
memeriksa token JWT yang dikirimkan. Apabila token tidak valid atau
tidak ditemukan, sistem akan mengembalikan respons berupa pesan kesalahan
autentikasi. Jika autentikasi berhasil, backend melanjutkan ke tahap otorisasi untuk
memastikan bahwa pengguna memiliki hak akses yang sesuai. Apabila pengguna
tidak memiliki izin yang diperlukan, sistem akan mengembalikan respons berupa
missing permission kepada frontend.

Jika proses autentikasi dan otorisasi berhasil, backend akan melakukan
pencarian data handling unit berdasarkan UUID yang diterima dari request. Apabila
data HU tidak ditemukan, sistem akan mengembalikan respons berupa pesan HU

not found. Namun, jika data HU ditemukan, backend akan mengambil seluruh
data purchase order (PO) yang terhubung dengan HU tersebut. Seluruh data
tersebut kemudian digabungkan menjadi satu struktur respons yang berisi informasi
HU beserta daftar PO yang terkait. Setelah itu, sistem mengirimkan respons
keberhasilan beserta data HU dan PO kepada frontend.

46
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

S Flowchart Get PO by PO Number

Gambar 3.20. Flowchart get PO by PO number

Flowchart proses pengambilan data purchase order (PO) berdasarkan
nomor PO menggambarkan alur pengambilan data PO tertentu dalam sistem Ritra

Logistics, sebagaimana ditunjukkan pada Gambar 3.20. Proses dimulai ketika
frontend mengirimkan permintaan (request) bertipe GET yang berisi nomor PO

47
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

yang ingin dicari. Permintaan tersebut kemudian diterima oleh backend untuk
diproses lebih lanjut.

Setelah menerima request, backend melakukan proses autentikasi dengan
memeriksa token JWT yang dikirimkan. Apabila token tidak valid atau
tidak ditemukan, sistem akan mengembalikan respons berupa pesan kesalahan
autentikasi. Jika autentikasi berhasil, backend melanjutkan ke tahap otorisasi untuk
memastikan bahwa pengguna memiliki hak akses yang sesuai. Apabila pengguna
tidak memiliki izin yang diperlukan, sistem akan mengembalikan respons berupa
missing permission kepada frontend.

Jika proses autentikasi dan otorisasi berhasil, backend akan melakukan
pencarian data purchase order berdasarkan nomor PO yang diterima dari request.
Apabila data PO tidak ditemukan, sistem akan mengembalikan respons berupa
pesan PO not found. Namun, jika data PO ditemukan, backend akan mengambil
data tersebut dan mengirimkan respons keberhasilan beserta informasi PO kepada
frontend. Dengan alur ini, proses pencarian data PO dapat dilakukan secara aman
dan terkontrol sesuai dengan ketentuan sistem.

3.3.3 Pembuatan Model dan Data Transfer Object (DTO)

Model dan Data Transfer Object (DTO) merupakan komponen penting
dalam perancangan backend sistem Ritra Logistics. Model digunakan sebagai
representasi struktur tabel pada basis data, sedangkan DTO berfungsi sebagai
perantara dalam pertukaran data antara client dan server. Penggunaan DTO
bertujuan untuk memastikan data yang dikirim dan diterima sesuai dengan
kebutuhan sistem, sekaligus menjaga keamanan dan konsistensi data yang diproses.

Setiap model dalam sistem memiliki sejumlah field utama yang secara
otomatis dihasilkan oleh backend tanpa memerlukan input dari sisi frontend. Field

tersebut meliputi ID, UUID, CreatedAt, CreatedBy, UpdatedAt, dan UpdatedBy.
Keberadaan field-field ini berperan penting dalam proses identifikasi data, pelacakan
perubahan, serta pengelolaan relasi antar entitas dalam sistem.

A Model dan DTO User

Dalam model user, field yang disimpan ke database adalah nama user, email,
password, dan role. Cuplikan kode model user dapat dilihat pada 3.1.

1 package models
2

48
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

3 i m p o r t (
4 ” t ime ”
5)
6

7 t y p e User s t r u c t {
8 ID u i n t ‘ gorm : ” pr imaryKey ; a u t o I n c r e m e n t ” ‘
9 UUID s t r i n g ‘ gorm : ” t y p e : c h a r (3 6) ; u n i q u e I n d e x ” ‘

10 Name s t r i n g ‘ gorm : ” s i z e : 5 0 ; n o t n u l l ” ‘
11 Email s t r i n g ‘ gorm : ” s i z e : 1 0 0 ; u n i q u e I n d e x ; n o t n u l l ” ‘
12 Password s t r i n g ‘ gorm : ” s i z e : 2 5 5 ; n o t n u l l ” ‘
13 RoleID * u i n t
14 Role * Role ‘ gorm : ” f o r e i g n K e y : RoleID ; c o n s t r a i n t : OnUpdate :

CASCADE, OnDele te : SET NULL; ” ‘
15

16 C r e a t e d A t t ime . Time ‘ gorm : ” a u t o C r e a t e T i m e ” ‘
17 Crea tedBy * u i n t
18 UpdatedAt t ime . Time ‘ gorm : ” autoUpdateTime ” ‘
19 UpdatedBy * u i n t
20 }

Kode 3.1: Cuplikan kode model User

Untuk kebutuhan komunikasi data antara frontend dan backend, digunakan Data
Transfer Object (DTO) yang dibedakan berdasarkan jenis permintaan. Pada
proses autentikasi, terdapat dua jenis DTO request, yaitu RegisterRequest dan
LoginRequest. DTO RegisterRequest digunakan saat proses pendaftaran pengguna
baru dan memerlukan data nama, email, serta kata sandi. Sementara itu,
LoginRequest hanya membutuhkan email dan kata sandi. Cuplikan kode DTO
request dapat dilihat pada Kode 3.2.

1 package r e q u e s t s
2

3 t y p e R e g i s t e r R e q u e s t s t r u c t {
4 Name s t r i n g j s o n : ”name” v a l i d a t e : ” r e q u i r e d , min =3 ,max=50 ”
5 Email s t r i n g j s o n : ” e m a i l ” v a l i d a t e : ” r e q u i r e d , e m a i l ”
6 Password s t r i n g j s o n : ” password ” v a l i d a t e : ” r e q u i r e d , min=6”
7 }
8

9 t y p e Log inReques t s t r u c t {
10 Email s t r i n g j s o n : ” e m a i l ” v a l i d a t e : ” r e q u i r e d , e m a i l ”
11 Password s t r i n g j s o n : ” password ” v a l i d a t e : ” r e q u i r e d ”
12 }

Kode 3.2: Cuplikan kode DTO request user

49
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

Selain request, sistem juga memiliki DTO response yang digunakan
untuk mengirimkan data pengguna kembali ke frontend setelah proses autentikasi
berhasil. DTO ini hanya memuat informasi yang diperlukan oleh sisi klien, yaitu
UUID, nama, dan email pengguna. Cuplikan kode DTO response dapat dilihat pada
Kode 3.3.

1 package r e s p o n s e s
2

3 t y p e AuthResponse s t r u c t {
4 UUID s t r i n g j s o n : ” uu id ”
5 Name s t r i n g j s o n : ”name”
6 Email s t r i n g j s o n : ” e m a i l ”
7 }

Kode 3.3: Cuplikan kode DTO response user

B Model dan DTO ColorCode

Model Color Code digunakan untuk merepresentasikan data kode area
yang digunakan dalam sistem Ritra Logistics. Model ini menyimpan informasi
terkait identitas warna, area, serta atribut tambahan yang berkaitan dengan lokasi
dan klasifikasi barang. Selain itu, model ini juga memiliki atribut audit seperti
waktu pembuatan dan pembaruan data yang dikelola secara otomatis oleh sistem.
Cuplikan kode model Color Code dapat dilihat pada Kode 3.4.

1 package models
2

3 i m p o r t (
4 ” t ime ”
5

6 ” g i t h u b . com / goo g l e / uu id ”
7 ” gorm . i o / gorm ”
8

9

10)
11

12 t y p e ColorCode s t r u c t {
13 ID u i n t j s o n : ” i d ” gorm : ” pr imaryKey ; a u t o I n c r e m e n t ”
14 UUID s t r i n g j s o n : ” uu id ” gorm : ” t y p e : c h a r (3 6) ; u n i q u e I n d e x ; n o t

n u l l ”
15 Name s t r i n g j s o n : ”name” gorm : ” t y p e : v a r c h a r (1 0 0) ; n o t n u l l ”
16 Code s t r i n g j s o n : ” code ” gorm : ” t y p e : v a r c h a r (5 0) ; n o t n u l l ”
17 High land boo l j s o n : ” h i g h l a n d ” gorm : ” n o t n u l l ; d e f a u l t : f a l s e ”

50
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

18 D e s c r i p t i o n s t r i n g j s o n : ” d e s c r i p t i o n ” gorm : ” t y p e : t e x t ”
19 Bloc s t r i n g j s o n : ” b l o c ” gorm : ” t y p e : v a r c h a r (1 0 0) ”
20 C r e a t e d A t t ime . Time j s o n : ” c r e a t e d a t ” gorm : ” a u t o C r e a t e T i m e ”
21 Crea tedBy * u i n t j s o n : ” c r e a t e d b y ”
22 UpdatedAt t ime . Time j s o n : ” u p d a t e d a t ” gorm : ” autoUpdateTime ”
23 UpdatedBy * u i n t j s o n : ” u p d a t e d b y ”
24 D e l e t e d A t gorm . D e l e t e d A t j s o n : ”−” gorm : ” i n d e x ”
25 }

Kode 3.4: Cuplikan kode model Color Code

Untuk kebutuhan komunikasi data antara frontend dan backend, digunakan
Data Transfer Object (DTO) sebagai perantara pengiriman data. DTO request
digunakan saat proses pembuatan atau pembaruan data color code. Struktur DTO
ini hanya memuat field yang diperlukan dari sisi klien, sehingga dapat menjaga
validasi dan keamanan data. Cuplikan kode DTO request dapat dilihat pada Kode
3.5.

1 package r e q u e s t s
2

3 t y p e ColorCodeReques t s t r u c t {
4 ColorCode s t r i n g j s o n : ” c o l o r c o d e ” v a l i d a t e : ” r e q u i r e d ”
5 Area s t r i n g j s o n : ” a r e a ” v a l i d a t e : ” r e q u i r e d ”
6 High land boo l j s o n : ” h i g h l a n d ”
7 D e s c r i p t i o n s t r i n g j s o n : ” d e s c r i p t i o n ”
8 Sloc s t r i n g j s o n : ” s l o c ”
9 }

Kode 3.5: Cuplikan kode DTO request Color Code

Selain DTO request, sistem juga menggunakan DTO response untuk
mengirimkan data color code kembali ke frontend. DTO ini berisi informasi
utama yang diperlukan untuk ditampilkan pada sisi klien, tanpa menyertakan atribut
internal yang tidak diperlukan. Cuplikan kode DTO response dapat dilihat pada
Kode 3.6.

1 package r e s p o n s e s
2

3 t y p e ColorCodeResponse s t r u c t {
4 UUID s t r i n g j s o n : ” uu id ”
5 ColorCode s t r i n g j s o n : ” c o l o r c o d e ”
6 Area s t r i n g j s o n : ” a r e a ”
7 High land boo l j s o n : ” h i g h l a n d ”
8 D e s c r i p t i o n s t r i n g j s o n : ” d e s c r i p t i o n ”
9 Sloc s t r i n g j s o n : ” s l o c ”

51
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

10 }
Kode 3.6: Cuplikan kode DTO response Color Code

C Model dan DTO Vendor

Model Vendor digunakan untuk merepresentasikan data pemasok atau pihak
penyedia barang dalam sistem Ritra Logistics. Model ini menyimpan informasi
identitas vendor seperti nama, alamat, nomor telepon, nomor faks, serta alamat
email. Selain itu, model Vendor juga memiliki atribut pendukung berupa informasi
waktu pembuatan dan pembaruan data yang dikelola secara otomatis oleh sistem.
Cuplikan kode model Vendor dapat dilihat pada Kode 3.7.

1 package models
2

3 i m p o r t (
4 ” t ime ”
5 ” gorm . i o / gorm ”
6)
7

8 t y p e Vendor s t r u c t {
9 ID u i n t gorm : ” pr imaryKey ” j s o n : ” i d ”

10 UUID s t r i n g gorm : ” t y p e : c h a r (3 6) ; u n i q u e I n d e x ” j s o n : ” uu id ”
11 Name s t r i n g gorm : ” t y p e : v a r c h a r (2 5 5) ; n o t n u l l ” j s o n : ”name”
12 Address s t r i n g gorm : ” t y p e : t e x t ” j s o n : ” a d d r e s s ”
13 Phone s t r i n g gorm : ” t y p e : v a r c h a r (5 0) ” j s o n : ” phone ”
14 FaxNumber s t r i n g gorm : ” t y p e : v a r c h a r (5 0) ” j s o n : ” fax number ”
15 Email s t r i n g gorm : ” t y p e : v a r c h a r (2 5 5) ” j s o n : ” e m a i l ”
16

17 C r e a t e d A t t ime . Time ‘ j s o n : ” c r e a t e d a t ” gorm : ”
a u t o C r e a t e T i m e ” ‘

18 Crea tedBy u i n t ‘ j s o n : ” c r e a t e d b y ” gorm : ” column :
c r e a t e d b y ” ‘

19 UpdatedAt t ime . Time ‘ j s o n : ” u p d a t e d a t ” gorm : ”
autoUpdateTime ” ‘

20 UpdatedBy u i n t ‘ j s o n : ” u p d a t e d b y ” gorm : ” column :
u p d a t e d b y ” ‘

21

22 D e l e t e d A t gorm . D e l e t e d A t ‘ j s o n :” −” gorm : ” i n d e x ” ‘
23 }

Kode 3.7: Cuplikan kode model Vendor

52
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

Untuk kebutuhan pertukaran data antara frontend dan backend, digunakan
Data Transfer Object (DTO) yang berfungsi membatasi serta memvalidasi data
yang diterima dan dikirimkan oleh sistem. DTO request digunakan pada proses
pembuatan maupun pembaruan data vendor, sedangkan DTO response digunakan
untuk mengirimkan informasi vendor yang telah diproses kepada frontend.
Cuplikan kode DTO request dapat dilihat pada Kode 3.8.

1 package r e q u e s t s
2

3 t y p e VendorReques t s t r u c t {
4 Name s t r i n g j s o n : ”name” v a l i d a t e : ” r e q u i r e d , min =3 ,max=255 ”
5 Address s t r i n g j s o n : ” a d d r e s s ” v a l i d a t e : ” r e q u i r e d ”
6 Phone s t r i n g j s o n : ” phone ” v a l i d a t e : ” r e q u i r e d ”
7 FaxNumber s t r i n g j s o n : ” fax number ”
8 Email s t r i n g j s o n : ” e m a i l ” v a l i d a t e : ” r e q u i r e d , e m a i l ”
9 }

Kode 3.8: Cuplikan kode DTO request Vendor

Selain DTO request, sistem juga menggunakan DTO response untuk
mengirimkan data vendor ke sisi frontend setelah proses berhasil dilakukan. DTO
ini hanya memuat informasi yang relevan untuk ditampilkan, tanpa menyertakan
atribut internal sistem. Cuplikan kode DTO response dapat dilihat pada Kode 3.9.

1 package r e s p o n s e s
2

3 t y p e VendorResponse s t r u c t {
4 UUID s t r i n g j s o n : ” uu id ”
5 Name s t r i n g j s o n : ”name”
6 Address s t r i n g j s o n : ” a d d r e s s ”
7 Phone s t r i n g j s o n : ” phone ”
8 FaxNumber s t r i n g j s o n : ” fax number ”
9 Email s t r i n g j s o n : ” e m a i l ”

10 }
Kode 3.9: Cuplikan kode DTO response Vendor

D Model dan DTO Incoming

Model Incoming digunakan untuk merepresentasikan data barang masuk
(incoming goods) dalam sistem Ritra Logistics. Data ini merekam informasi
penerimaan barang yang berkaitan dengan Purchase Order (PO), termasuk status
pemeriksaan, catatan tambahan, serta dokumentasi berupa gambar. Model ini juga

53
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

memiliki relasi dengan beberapa entitas lain seperti PO, User, dan IncomingImage.
Cuplikan kode model Incoming dapat dilihat pada Kode 3.10.

1 package models
2

3 i m p o r t (
4 ” t ime ”
5 ” g i t h u b . com / goo g l e / uu id ”
6 ” gorm . i o / gorm ”
7)
8

9 t y p e Incoming s t r u c t {
10 ID u i n t j s o n : ” i d ” gorm : ” pr imaryKey ; a u t o I n c r e m e n t ”
11 UUID s t r i n g j s o n : ” uu id ” gorm : ” t y p e : c h a r (3 6) ; u n i q u e I n d e x ; n o t

n u l l ”
12 POID * u i n t j s o n : ” p o i d ”
13 CheckBy * u i n t j s o n : ” check by ”
14 S t a t u s s t r i n g j s o n : ” s t a t u s ” gorm : ” t y p e : v a r c h a r (1 0) ; n o t n u l l ;

d e f a u l t : ’ p a s s ’ ”
15 Notes * s t r i n g j s o n : ” n o t e s ” gorm : ” t y p e : t e x t ”
16

17 PO PO ‘ j s o n : ” po ” gorm : ” f o r e i g n K e y :
POID ; c o n s t r a i n t : OnUpdate :CASCADE, OnDele te : SET NULL; ” ‘

18 IncomingImages [] IncomingImage ‘ j s o n : ” i n c o m i n g i m a g e s ” gorm : ”
f o r e i g n K e y : IncomingID ; c o n s t r a i n t : OnUpdate :CASCADE, OnDele te :
CASCADE; ” ‘

19 CheckByUser * User ‘ j s o n : ” c h e c k b y u s e r , omitempty ”
gorm : ” f o r e i g n K e y : CheckBy ; r e f e r e n c e s : ID ; c o n s t r a i n t : OnUpdate :

CASCADE, OnDele te : SET NULL; ” ‘
20

21 C r e a t e d A t t ime . Time ‘ j s o n : ” c r e a t e d a t ” gorm : ”
a u t o C r e a t e T i m e ” ‘

22 Crea tedBy * u i n t ‘ j s o n : ” c r e a t e d b y ” ‘
23 UpdatedAt t ime . Time ‘ j s o n : ” u p d a t e d a t ” gorm : ”

autoUpdateTime ” ‘
24 UpdatedBy * u i n t ‘ j s o n : ” u p d a t e d b y ” ‘
25 D e l e t e d A t gorm . D e l e t e d A t ‘ j s o n :” −” gorm : ” i n d e x ” ‘
26 }

Kode 3.10: Cuplikan kode model Incoming

Untuk menerima data dari frontend, digunakan DTO request yang berfungsi
sebagai validasi awal terhadap data yang dikirimkan. DTO ini mencakup UUID
dari Purchase Order, catatan tambahan, serta daftar gambar yang berkaitan dengan

54
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

proses incoming. Cuplikan kode DTO request dapat dilihat pada Kode 3.11.

1 package r e q u e s t s
2

3 t y p e IncomingReques t s t r u c t {
4 POUUID s t r i n g j s o n : ” p o u u i d ” v a l i d a t e : ” r e q u i r e d , uu id4 ”
5 Notes * s t r i n g j s o n : ” n o t e s ”
6 Images [] IncomingImageReques t j s o n : ” images ”
7 }

Kode 3.11: Cuplikan kode DTO request Incoming

Sebagai respons terhadap permintaan dari frontend, sistem mengembalikan
data dalam bentuk DTO response. DTO ini berisi informasi utama incoming beserta
relasi terkait seperti data PO, pemeriksa (checker), dan daftar gambar jika tersedia.
Cuplikan kode DTO response dapat dilihat pada Kode 3.12.

1 package r e s p o n s e s
2

3 i m p o r t ” t ime ”
4

5 t y p e IncomingResponse s t r u c t {
6 UUID s t r i n g j s o n : ” uu id ”
7 POUUID s t r i n g j s o n : ” p o u u i d ”
8 PO * POResponse j s o n : ” po , omitempty ”
9 CheckBy * CheckByResponse j s o n : ” check by , omitempty ”

10 S t a t u s s t r i n g j s o n : ” s t a t u s ”
11 Notes * s t r i n g j s o n : ” n o t e s , omitempty ”
12 Images [] IncomingImageResponse j s o n : ” images , omitempty ”
13 C r e a t e d A t t ime . Time j s o n : ” c r e a t e d a t ”
14 UpdatedAt t ime . Time j s o n : ” u p d a t e d a t ”
15 }

Kode 3.12: Cuplikan kode DTO response Incoming

E Model dan DTO HU

Handling Unit (HU) digunakan untuk merepresentasikan satuan kemasan
atau unit logistik yang digunakan dalam proses distribusi barang. Dalam sistem
Ritra Logistics, struktur HU dibagi menjadi dua bagian utama, yaitu HU sebagai
entitas induk dan HU Detail sebagai rincian isi dari HU tersebut. Pendekatan ini
digunakan untuk memisahkan informasi umum HU dengan detail dimensi atau
karakteristik fisik dari setiap unit yang terkandung di dalamnya.

55
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

Model HU menyimpan informasi utama seperti nomor seri, kode klien,
nomor OF, total berat, serta relasi terhadap Color Code dan Purchase Order. Selain
itu, model ini juga memiliki relasi satu-ke-banyak dengan model HU Detail, yang
memungkinkan satu HU memiliki beberapa detail item di dalamnya. Cuplikan kode
model HU dapat dilihat pada Kode 3.13.

1 package models
2

3 i m p o r t (
4 ” t ime ”
5 ” g i t h u b . com / goo g l e / uu id ”
6 ” gorm . i o / gorm ”
7

8

9)
10

11 t y p e HU s t r u c t {
12 ID u i n t j s o n : ” i d ” gorm : ” pr imaryKey ; a u t o I n c r e m e n t ”
13 UUID s t r i n g j s o n : ” uu id ” gorm : ” t y p e : c h a r (3 6) ; u n i q u e I n d e x ; n o t

n u l l ”
14 S e r i e s s t r i n g j s o n : ” s e r i e s ” gorm : ” t y p e : v a r c h a r (1 0 0) ; n o t n u l l ”
15 C l i e n t S e r i e s s t r i n g j s o n : ” c l i e n t s e r i e s ” gorm : ” t y p e : v a r c h a r

(1 0 0) ; n o t n u l l ”
16 OF s t r i n g j s o n : ” o f ” gorm : ” t y p e : v a r c h a r (5 0) ; n o t n u l l ”
17 T o t a l W e i g h t f l o a t 6 4 j s o n : ” t o t a l w e i g h t ” gorm : ” t y p e : d e c i m a l

(1 0 , 2) ”
18

19 IsFM boo l ‘ j s o n : ” i s f m ” gorm : ” n o t n u l l ; d e f a u l t : f a l s e ”
‘

20 ColorCodeID * u i n t ‘ j s o n : ” c o l o r c o d e i d ” gorm : ” i n d e x ” ‘
21

22 D e t a i l s [] HUDetai l ‘ j s o n : ” d e t a i l s ” gorm : ” f o r e i g n K e y : HUID ;
c o n s t r a i n t : OnUpdate :CASCADE, OnDele te :CASCADE” ‘

23 POs [] PO ‘ j s o n : ” po ” gorm : ” f o r e i g n K e y : HUID ; c o n s t r a i n t
: OnUpdate :CASCADE, OnDele te : SET NULL; ” ‘

24

25 C r e a t e d A t t ime . Time ‘ j s o n : ” c r e a t e d a t ” gorm : ”
a u t o C r e a t e T i m e ” ‘

26 Crea tedBy * u i n t ‘ j s o n : ” c r e a t e d b y ” ‘
27 UpdatedAt t ime . Time ‘ j s o n : ” u p d a t e d a t ” gorm : ”

autoUpdateTime ” ‘
28 UpdatedBy * u i n t ‘ j s o n : ” u p d a t e d b y ” ‘
29 D e l e t e d A t gorm . D e l e t e d A t ‘ j s o n :” −” gorm : ” i n d e x ” ‘

56
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

30 }
Kode 3.13: Cuplikan kode model HU

HU Detail berfungsi untuk menyimpan informasi rinci dari setiap unit
barang yang terdapat di dalam satu HU. Data yang disimpan meliputi dimensi fisik,
berat, jenis satuan, serta deskripsi tambahan. Setiap HU Detail terhubung langsung
dengan satu HU melalui foreign key. Cuplikan kode model HU Detail dapat dilihat
pada Kode 3.14.

1 t y p e HUDetai l s t r u c t {
2 ID u i n t j s o n : ” i d ” gorm : ” pr imaryKey ; a u t o I n c r e m e n t ”
3 HUID u i n t j s o n : ” h u i d ” gorm : ” n o t n u l l ; i n d e x ”
4 UUID s t r i n g j s o n : ” uu id ” gorm : ” t y p e : c h a r (3 6) ; u n i q u e I n d e x ; n o t

n u l l ”
5

6 Length f l o a t 6 4 ‘ j s o n : ” l e n g t h ” gorm : ” t y p e : d e c i m a l (1 0 , 2) ; n o t
n u l l ” ‘

7 Width f l o a t 6 4 ‘ j s o n : ” wid th ” gorm : ” t y p e : d e c i m a l (1 0 , 2) ; n o t
n u l l ” ‘

8 H ei gh t f l o a t 6 4 ‘ j s o n : ” h e i g h t ” gorm : ” t y p e : d e c i m a l (1 0 , 2) ; n o t
n u l l ” ‘

9 Weight * f l o a t 6 4 ‘ j s o n : ” we igh t ” gorm : ” t y p e : d e c i m a l (1 0 , 2) ” ‘
10

11 U n i t s s t r i n g ‘ j s o n : ” u n i t s ” gorm : ” t y p e : v a r c h a r (2 0) ; n o t
n u l l ” ‘

12 HU s t r i n g ‘ j s o n : ” hu ” gorm : ” t y p e : v a r c h a r (5 0) ; n o t
n u l l ” ‘

13 Dimension f l o a t 6 4 ‘ j s o n : ” d imens ion ” gorm : ” t y p e : d e c i m a l
(1 0 , 2) ; n o t n u l l ” ‘

14 HUDesc r ip t ion s t r i n g ‘ j s o n : ” h u d e s c r i p t i o n ” gorm : ” t y p e :
v a r c h a r (2 5 5) ” ‘

15

16 C r e a t e d A t t ime . Time ‘ j s o n : ” c r e a t e d a t ” gorm : ”
a u t o C r e a t e T i m e ” ‘

17 UpdatedAt t ime . Time ‘ j s o n : ” u p d a t e d a t ” gorm : ”
autoUpdateTime ” ‘

18 D e l e t e d A t gorm . D e l e t e d A t ‘ j s o n :” −” gorm : ” i n d e x ” ‘
19 }

Kode 3.14: Cuplikan kode model HU Detail

Untuk pertukaran data antara frontend dan backend, digunakan DTO yang
memisahkan kebutuhan input dan output. DTO request digunakan saat pembuatan
HU baru, yang berisi data utama HU serta daftar detailnya. Sementara itu, DTO

57
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

response digunakan untuk mengembalikan data HU beserta detail dan relasi lain
seperti PO dan informasi pembaruan. Cuplikan kode DTO request dapat dilihat
pada Kode 3.15.

1 package r e q u e s t s
2

3 t y p e HUDeta i lReques t s t r u c t {
4 Length f l o a t 6 4 j s o n : ” l e n g t h ” v a l i d a t e : ” r e q u i r e d ”
5 Width f l o a t 6 4 j s o n : ” wid th ” v a l i d a t e : ” r e q u i r e d ”
6 H ei gh t f l o a t 6 4 j s o n : ” h e i g h t ” v a l i d a t e : ” r e q u i r e d ”
7 Weight * f l o a t 6 4 j s o n : ” we igh t ”
8

9 U n i t s s t r i n g ‘ j s o n : ” u n i t s ” v a l i d a t e : ” r e q u i r e d ” ‘
10 HU s t r i n g ‘ j s o n : ” hu ” v a l i d a t e : ” r e q u i r e d ” ‘
11 Dimension f l o a t 6 4 ‘ j s o n : ” d imens ion ” v a l i d a t e : ” r e q u i r e d ” ‘
12 HUDesc r ip t ion * s t r i n g ‘ j s o n : ” h u d e s c r i p t i o n ” ‘
13 }
14

15 t y p e HURequest s t r u c t {
16 S e r i e s s t r i n g j s o n : ” s e r i e s ” v a l i d a t e : ” r e q u i r e d ”
17 C l i e n t S e r i e s * s t r i n g j s o n : ” c l i e n t s e r i e s ” v a l i d a t e : ” r e q u i r e d ”
18 OF s t r i n g j s o n : ” o f ” v a l i d a t e : ” r e q u i r e d ”
19 D e t a i l s [] HUDeta i lReques t j s o n : ” d e t a i l s ” v a l i d a t e : ” r e q u i r e d ,

d i v e ”
20 }

Kode 3.15: Cuplikan kode DTO request HU

Sebagai hasil akhir, sistem akan mengembalikan DTO response yang
memuat informasi lengkap mengenai HU, termasuk detail barang dan relasi
terhadap PO. DTO ini digunakan oleh frontend untuk menampilkan data secara
terstruktur kepada pengguna. Cuplikan kode DTO response dapat dilihat pada Kode
3.16.

1 package r e s p o n s e s
2

3 t y p e HUDeta i lResponse s t r u c t {
4 UUID s t r i n g j s o n : ” uu id ”
5 Length f l o a t 6 4 j s o n : ” l e n g t h ”
6 Width f l o a t 6 4 j s o n : ” wid th ”
7 H ei gh t f l o a t 6 4 j s o n : ” h e i g h t ”
8 Weight * f l o a t 6 4 j s o n : ” we igh t ”
9 U n i t s s t r i n g j s o n : ” u n i t s ”

10 HU s t r i n g j s o n : ” hu ”
11 Dimension f l o a t 6 4 j s o n : ” d imens ion ”

58
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

12 HUDesc r ip t ion s t r i n g j s o n : ” h u d e s c r i p t i o n ”
13 }
14

15 t y p e HUResponse s t r u c t {
16 UUID s t r i n g j s o n : ” uu id ”
17 S e r i e s s t r i n g j s o n : ” s e r i e s ”
18 C l i e n t S e r i e s s t r i n g j s o n : ” c l i e n t s e r i e s ”
19 OF s t r i n g j s o n : ” o f ”
20 IsFM boo l j s o n : ” i s f m ”
21 ColorCode s t r i n g j s o n : ” c o l o r c o d e ”
22

23 D e t a i l s [] HUDeta i lResponse ‘ j s o n : ” d e t a i l s ” ‘
24 POs [] POResponse ‘ j s o n : ” po ” ‘
25

26 UpdatedBy * UpdateHUResponse ‘ j s o n : ” updatedBy ” ‘
27 }

Kode 3.16: Cuplikan kode DTO response HU

F Model dan DTO PO

Purchase Order (PO) merupakan entitas utama dalam proses operasional
Ritra Logistics yang merepresentasikan permintaan atau pesanan barang dari
vendor. PO menjadi pusat keterkaitan berbagai proses lanjutan seperti incoming,
pemeriksaan barang (article check), wrapping, hingga stuffing. Oleh karena itu,
model PO memiliki banyak relasi dengan entitas lain seperti Vendor, Color Code,
HU, dan berbagai proses operasional lainnya.

Model PO menyimpan informasi dasar seperti nomor PO, tanggal, vendor,
serta berbagai atribut operasional seperti status FM, posisi barang, dan estimasi
waktu proses. Selain itu, model ini juga menyimpan relasi ke beberapa tabel turunan
seperti POProduct, Incoming, ArticleCheck, Wrapping, dan Stuffing. Cuplikan
kode model PO dapat dilihat pada Kode 3.17.

1 t y p e PO s t r u c t {
2 ID u i n t j s o n : ” i d ” gorm : ” pr imaryKey ; a u t o I n c r e m e n t ”
3 UUID s t r i n g j s o n : ” uu id ” gorm : ” t y p e : c h a r (3 6) ; u n i q u e I n d e x ; n o t

n u l l ”
4 PONumber s t r i n g j s o n : ” po number ” gorm : ” t y p e : v a r c h a r (1 0 0) ; n o t

n u l l ”
5

6 VendorID u i n t ‘ j s o n : ” v e n d o r i d ” gorm : ” n o t n u l l ” ‘

59
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

7 Vendor * Vendor ‘ j s o n : ” vendor ” gorm : ” f o r e i g n K e y : VendorID ;
c o n s t r a i n t : OnUpdate :CASCADE, OnDele te : RESTRICT” ‘

8

9 ColorCodeID u i n t ‘ j s o n : ” c o l o r c o d e i d ” ‘
10 ColorCode * ColorCode ‘ j s o n : ” c o l o r c o d e ” gorm : ” f o r e i g n K e y :

ColorCodeID ; c o n s t r a i n t : OnUpdate :CASCADE, OnDele te : SET NULL” ‘
11

12 I n c o m i n g D u r a t i o n * f l o a t 6 4 ‘ j s o n : ” i n c o m i n g d u r a t i o n ” gorm : ”
t y p e : do ub l e p r e c i s i o n ” ‘

13 A r t i c l e C h e c k D u r a t i o n * f l o a t 6 4 ‘ j s o n : ” a r t i c l e c h e c k d u r a t i o n ”
gorm : ” t y p e : do ub l e p r e c i s i o n ” ‘

14 Wrapp ingDura t ion * f l o a t 6 4 ‘ j s o n : ” w r a p p i n g d u r a t i o n ” gorm : ”
t y p e : do ub l e p r e c i s i o n ” ‘

15 S t o r a g e D u r a t i o n * f l o a t 6 4 ‘ j s o n : ” s t o r a g e d u r a t i o n ” gorm : ”
t y p e : do ub l e p r e c i s i o n ” ‘

16 S t u f f i n g D u r a t i o n * f l o a t 6 4 ‘ j s o n : ” s t u f f i n g d u r a t i o n ” gorm : ”
t y p e : do ub l e p r e c i s i o n ” ‘

17 Tota lLeadTime * f l o a t 6 4 ‘ j s o n : ” t o t a l l e a d t i m e ” gorm : ”
t y p e : do ub l e p r e c i s i o n ” ‘

18

19 StorageEndAt * t ime . Time ‘ j s o n : ” s t o r a g e e n d a t ” ‘
20

21 HUID * u i n t ‘ j s o n : ” h u i d ” ‘
22 HU *HU ‘ j s o n : ” hu ” gorm : ” f o r e i g n K e y : HUID ; c o n s t r a i n t :

OnUpdate :CASCADE, OnDele te : SET NULL” ‘
23

24 POProducts [] POProduct ‘ j s o n : ” p o p r o d u c t s ” gorm : ”
f o r e i g n K e y : POID ; c o n s t r a i n t : OnUpdate :CASCADE, OnDele te :CASCADE” ‘

25 Incomings [] Incoming ‘ j s o n : ” incomings ” gorm : ”
f o r e i g n K e y : POID ; c o n s t r a i n t : OnUpdate :CASCADE, OnDele te : SET NULL” ‘

26 A r t i c l e C h e c k s [] A r t i c l e C h e c k ‘ j s o n : ” a r t i c l e c h e c k s ” gorm : ”
f o r e i g n K e y : POID ; c o n s t r a i n t : OnUpdate :CASCADE, OnDele te : SET NULL” ‘

27 Wrappings [] Wrapping ‘ j s o n : ” wrapp ings ” gorm : ”
f o r e i g n K e y : POID ; c o n s t r a i n t : OnUpdate :CASCADE, OnDele te : SET NULL” ‘

28 S t u f f i n g s [] S t u f f i n g ‘ j s o n : ” s t u f f i n g s ” gorm : ”
f o r e i g n K e y : POID ; c o n s t r a i n t : OnUpdate :CASCADE, OnDele te : SET NULL” ‘

29

30 Date t ime . Time ‘ j s o n : ” d a t e ” gorm : ” n o t n u l l ” ‘
31 FM boo l ‘ j s o n : ” fm” gorm : ” d e f a u l t : f a l s e ” ‘
32 DG s t r i n g ‘ j s o n : ” dg ” gorm : ” t y p e : v a r c h a r (5 0) ” ‘
33 Ver i fyBy * u i n t ‘ j s o n : ” v e r i f y b y ” ‘
34 P o s i t i o n s t r i n g ‘ j s o n : ” p o s i t i o n ” gorm : ” t y p e : v a r c h a r (1 0 0)

” ‘

60
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

35 Note s t r i n g ‘ j s o n : ” n o t e ” gorm : ” t y p e : t e x t ” ‘
36 AvgLeadTime f l o a t 6 4 ‘ j s o n : ” a v g l e a d t i m e ” gorm : ” t y p e : d e c i m a l

(1 0 , 2) ; d e f a u l t : 0 ” ‘
37 QueueNumber i n t ‘ j s o n : ” queue number ” gorm : ” n o t n u l l ” ‘
38

39 C r e a t e d A t t ime . Time ‘ j s o n : ” c r e a t e d a t ” gorm : ”
a u t o C r e a t e T i m e ” ‘

40 Crea tedBy * u i n t ‘ j s o n : ” c r e a t e d b y ” ‘
41 UpdatedAt t ime . Time ‘ j s o n : ” u p d a t e d a t ” gorm : ”

autoUpdateTime ” ‘
42 UpdatedBy * u i n t ‘ j s o n : ” u p d a t e d b y ” ‘
43 D e l e t e d A t gorm . D e l e t e d A t ‘ j s o n :” −” gorm : ” i n d e x ” ‘
44 }

Kode 3.17: Cuplikan kode model PO

Untuk menerima data dari frontend, digunakan DTO request yang berfungsi
sebagai representasi data input saat pembuatan atau pembaruan PO. DTO ini
memastikan bahwa data yang masuk telah tervalidasi sesuai kebutuhan sistem,
seperti validasi UUID dan format tanggal. Cuplikan kode DTO request dapat dilihat
pada Kode 3.18.

1 package r e q u e s t
2

3 t y p e PORequest s t r u c t {
4 PONumber s t r i n g j s o n : ” po number ” v a l i d a t e : ” r e q u i r e d ”
5 VendorUUID s t r i n g j s o n : ” v e n d o r u u i d ” v a l i d a t e : ” r e q u i r e d , uu id4 ”
6 Date s t r i n g j s o n : ” d a t e ” v a l i d a t e : ” r e q u i r e d , d a t e t i m e =2006 −01 −02

”
7 ColorCodeUUID s t r i n g j s o n : ” c o l o r c o d e u u i d ” v a l i d a t e : ”

omitempty , uu id4 ”
8 FM boo l j s o n : ”fm”
9 DG s t r i n g j s o n : ” dg ” v a l i d a t e : ” omitempty ”

10 Ver i fyBy * u i n t j s o n : ” v e r i f y b y ” v a l i d a t e : ” omitempty ”
11 P o s i t i o n s t r i n g j s o n : ” p o s i t i o n ” v a l i d a t e : ” omitempty ”
12 Note s t r i n g j s o n : ” n o t e ” v a l i d a t e : ” omitempty ”
13 HUUUID s t r i n g j s o n : ” h u u u i d ” v a l i d a t e : ” omitempty , uu id4 ”
14 P r o d u c t s [] POProduc tReques t j s o n : ” p r o d u c t s ” v a l i d a t e : ”

omitempty , d i v e ”
15 }

Kode 3.18: Cuplikan kode DTO request PO

Sebagai respons, sistem mengembalikan DTO yang berisi informasi lengkap
terkait PO, termasuk relasi terhadap vendor, HU, serta seluruh proses lanjutan yang

61
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

terhubung. DTO ini digunakan oleh frontend untuk menampilkan status dan detail
PO secara komprehensif. Cuplikan kode DTO response dapat dilihat pada Kode
3.19.

1 package r e s p o n s e s
2

3 t y p e POResponse s t r u c t {
4 UUID s t r i n g j s o n : ” uu id ”
5 PONumber s t r i n g j s o n : ” po number ”
6 Date s t r i n g j s o n : ” d a t e ”
7 ColorCodeUUID s t r i n g j s o n : ” c o l o r c o d e u u i d , omitempty ”
8 ColorCode * ColorCodeResponse j s o n : ” c o l o r c o d e , omitempty ”
9 FM boo l j s o n : ”fm”

10 DG s t r i n g j s o n : ” dg , omitempty ”
11 Ver i fyBy * u i n t j s o n : ” v e r i f y b y , omitempty ”
12 P o s i t i o n s t r i n g j s o n : ” p o s i t i o n , omitempty ”
13 P o s i t i o n S t r i n g s t r i n g j s o n : ” p o s i t i o n s t r i n g , omitempty ”
14 Note s t r i n g j s o n : ” note , omitempty ”
15 VendorUUID s t r i n g j s o n : ” v e n d o r u u i d , omitempty ”
16 Vendor * VendorResponse j s o n : ” vendor , omitempty ”
17 HUUUID s t r i n g j s o n : ” hu uu id , omitempty ”
18 HU *HUResponse j s o n : ” hu , omitempty ”
19 QueueNumber i n t j s o n : ” queue number ”
20

21 P r o d u c t s [] POProductResponse ‘ j s o n : ” p r o d u c t s , omitempty ” ‘
22

23 Incoming * POIncomingResponse ‘ j s o n : ” incoming , omitempty
” ‘

24 A r t i c l e C h e c k * POAr t i c l eCheckResponse ‘ j s o n : ” a r t i c l e c h e c k ,
omitempty ” ‘

25 Wrapping * POWrappingResponse ‘ j s o n : ” wrapping , omitempty
” ‘

26 S t o r a g e * S t o r a g e R e s p o n s e ‘ j s o n : ” s t o r a g e , omitempty ”
‘

27 S t u f f i n g * P O S t u f f i n g R e s p o n s e ‘ j s o n : ” s t u f f i n g , omitempty
” ‘

28

29 Tota lLeadTime s t r i n g ‘ j s o n : ” t o t a l l e a d t i m e , omitempty ” ‘
30 }

Kode 3.19: Cuplikan kode DTO response PO

62
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

3.3.4 Pembuatan Rute

A Rute Authentication

Route autentikasi digunakan untuk menangani proses pendaftaran dan
autentikasi pengguna dalam sistem Ritra Logistics. Seluruh endpoint autentikasi
dikelompokkan dalam satu route group dengan prefix /auth untuk memudahkan
pengelolaan dan menjaga konsistensi struktur API. Pada bagian ini, tersedia dua
endpoint utama, yaitu register dan login, yang masing-masing menangani proses
pembuatan akun pengguna baru serta proses autentikasi pengguna yang telah
terdaftar.

Cuplikan kode pendefinisian route autentikasi dapat dilihat pada Kode 3.20.

1 a u t h := r o u t e r . Group (” / a u t h ”)
2

3 a u t h . P o s t (” / r e g i s t e r ” , a u t h H a n d l e r . R e g i s t e r)
4 a u t h . P o s t (” / l o g i n ” , a u t h H a n d l e r . Login)

Kode 3.20: Cuplikan kode route autentikasi

B Rute ColorCode

Route Color Code digunakan untuk mengelola data kode warna yang
merepresentasikan area atau klasifikasi tertentu dalam sistem Ritra Logistics.
Seluruh endpoint pada modul ini berada dalam satu grup dengan prefix /color-codes
dan dilindungi oleh authentication middleware untuk memastikan hanya pengguna
yang telah terautentikasi yang dapat mengaksesnya. Selain itu, setiap endpoint
juga dilengkapi dengan pemeriksaan permission sesuai dengan jenis operasi yang
dilakukan.

Cuplikan kode pendefinisian route Color Code dapat dilihat pada Kode 3.21.

1 c o l o r := r o u t e r . Group (” / c o l o r − codes ” , midd l eware s . AuthMiddleware ()
)

2

3 c o l o r . Get (” / ge t − a l l ” ,
4 midd leware s . R e q u i r e P e r m i s s i o n (db , ” c o l o r c o d e . view ”) ,
5 c o l o r H a n d l e r . GetAl l ,
6)
7

8 c o l o r . Get (” / g e t / : uu id ” ,
9 midd leware s . R e q u i r e P e r m i s s i o n (db , ” c o l o r c o d e . view ”) ,

63
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

10 c o l o r H a n d l e r . GetByUUID ,
11)
12

13 c o l o r . P o s t (” / c r e a t e ” ,
14 midd leware s . R e q u i r e P e r m i s s i o n (db , ” c o l o r c o d e . c r e a t e ”) ,
15 c o l o r H a n d l e r . C rea t e ,
16)
17

18 c o l o r . Pu t (” / u p d a t e / : uu id ” ,
19 midd leware s . R e q u i r e P e r m i s s i o n (db , ” c o l o r c o d e . u p d a t e ”) ,
20 c o l o r H a n d l e r . Update ,
21)
22

23 c o l o r . D e l e t e (” / d e l e t e / : uu id ” ,
24 midd leware s . R e q u i r e P e r m i s s i o n (db , ” c o l o r c o d e . d e l e t e ”) ,
25 c o l o r H a n d l e r . De l e t e ,
26)

Kode 3.21: Cuplikan kode route Color Code

C Rute Vendor

Route Vendor digunakan untuk mengelola data pemasok yang terdaftar
dalam sistem Ritra Logistics. Seluruh endpoint pada modul ini dikelompokkan
dalam satu route group dengan prefix /vendors dan dilindungi oleh authentication
middleware untuk memastikan bahwa hanya pengguna yang telah terautentikasi
yang dapat mengakses layanan ini. Setiap operasi juga dibatasi menggunakan
mekanisme permission sesuai dengan hak akses pengguna.

Cuplikan kode pendefinisian route Vendor dapat dilihat pada Kode 3.22.

1 vendor := r o u t e r . Group (” / v e n d o r s ” , midd l eware s . AuthMiddleware ())
2

3 vendor . Get (” / ge t − a l l ” ,
4 midd leware s . R e q u i r e P e r m i s s i o n (db , ” vendor . view ”) ,
5 v e n d o r H a n d l e r . GetAl l ,
6)
7

8 vendor . Get (” / g e t / : uu id ” ,
9 midd leware s . R e q u i r e P e r m i s s i o n (db , ” vendor . view ”) ,

10 v e n d o r H a n d l e r . GetByUUID ,
11)
12

13 vendor . P o s t (” / c r e a t e ” ,

64
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

14 midd leware s . R e q u i r e P e r m i s s i o n (db , ” vendor . c r e a t e ”) ,
15 v e n d o r H a n d l e r . C rea t e ,
16)
17

18 vendor . Pu t (” / u p d a t e / : uu id ” ,
19 midd leware s . R e q u i r e P e r m i s s i o n (db , ” vendor . u p d a t e ”) ,
20 v e n d o r H a n d l e r . Update ,
21)
22

23 vendor . D e l e t e (” / d e l e t e / : uu id ” ,
24 midd leware s . R e q u i r e P e r m i s s i o n (db , ” vendor . d e l e t e ”) ,
25 v e n d o r H a n d l e r . De l e t e ,
26)

Kode 3.22: Cuplikan kode route Vendor

D Rute Incoming

Route Incoming digunakan untuk menangani proses pencatatan dan
pengelolaan data barang masuk (incoming goods) dalam sistem Ritra Logistics.
Seluruh endpoint pada modul ini berada dalam satu grup dengan prefix /incoming
dan dilindungi oleh authentication middleware untuk memastikan hanya pengguna
yang telah terautentikasi yang dapat mengaksesnya. Setiap endpoint juga
dilengkapi dengan pengecekan permission sesuai dengan jenis operasi yang
dilakukan.

Cuplikan kode pendefinisian route Incoming dapat dilihat pada Kode 3.23.

1 incoming := r o u t e r . Group (” / incoming ” , midd l eware s . AuthMiddleware ()
)

2

3 incoming . Get (” / ge t − a l l ” ,
4 midd leware s . R e q u i r e P e r m i s s i o n (db , ” incoming . view ”) ,
5 i n comin gHand le r . GetAl l ,
6)
7

8 incoming . Get (” / g e t / : uu id ” ,
9 midd leware s . R e q u i r e P e r m i s s i o n (db , ” incoming . view ”) ,

10 i n comin gHand le r . GetByUUID ,
11)
12

13 incoming . P o s t (” / c r e a t e ” ,
14 midd leware s . R e q u i r e P e r m i s s i o n (db , ” incoming . c r e a t e ”) ,

65
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

15 i n comin gHand le r . C rea t e ,
16)
17

18 incoming . Pu t (” / u p d a t e / : uu id ” ,
19 midd leware s . R e q u i r e P e r m i s s i o n (db , ” incoming . u p d a t e ”) ,
20 i n comin gHand le r . Update ,
21)
22

23 incoming . D e l e t e (” / d e l e t e / : uu id ” ,
24 midd leware s . R e q u i r e P e r m i s s i o n (db , ” incoming . d e l e t e ”) ,
25 i n comin gHand le r . De l e t e ,
26)

Kode 3.23: Cuplikan kode route Incoming

E Rute HU

Route Handling Unit (HU) digunakan untuk mengambil data detail HU
berdasarkan UUID tertentu. Endpoint ini digunakan untuk menampilkan informasi
lengkap terkait HU, termasuk detail unit dan relasi dengan data lain seperti
PO. Seluruh akses ke route ini dilindungi oleh authentication middleware dan
pengecekan permission agar hanya pengguna dengan hak akses yang sesuai yang
dapat mengakses data tersebut.

Cuplikan kode pendefinisian route HU dapat dilihat pada Kode 3.24.

1 hu := r o u t e r . Group (” / hu ” , midd l eware s . AuthMiddleware ())
2

3 hu . Get (” / g e t / : uu id ” ,
4 midd leware s . R e q u i r e P e r m i s s i o n (db , ” hu . view ”) ,
5 huHand le r . GetByUUID ,
6)

Kode 3.24: Cuplikan kode route HU

F Rute PO

Route Purchase Order (PO) digunakan untuk mengambil data PO
berdasarkan nomor PO yang diberikan. Endpoint ini berfungsi untuk menampilkan
informasi detail terkait satu PO beserta relasi yang dimilikinya, seperti vendor,
HU, dan proses operasional lainnya. Akses terhadap route ini dilindungi oleh
authentication middleware serta pengecekan permission untuk memastikan hanya
pengguna dengan hak akses yang sesuai yang dapat menggunakannya.

66
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

Cuplikan kode pendefinisian route PO dapat dilihat pada Kode 3.25.

1 po := r o u t e r . Group (” / po ” , midd l eware s . AuthMiddleware ())
2

3 po . Get (” / ge t −by−number / : po number ” ,
4 midd leware s . R e q u i r e P e r m i s s i o n (db , ” po . view ”) ,
5 poHand le r . GetByPONumber ,
6)

Kode 3.25: Cuplikan kode route PO

3.3.5 Pembuatan Handlers, Services, dan Repositories

Dalam pengembangan sistem backend pada aplikasi Ritra Logistics, struktur
kode dibagi ke dalam tiga lapisan utama, yaitu handler, service, dan repository.
Pembagian ini bertujuan untuk menerapkan prinsip pemisahan tanggung jawab
(separation of concerns) sehingga kode menjadi lebih terstruktur, mudah dipelihara,
serta lebih mudah dikembangkan di kemudian hari.

Lapisan handler berfungsi sebagai titik masuk pertama ketika sebuah
endpoint diakses oleh pengguna. Pada bagian ini, sistem menangani proses
yang berkaitan langsung dengan HTTP request, seperti membaca parameter URL,
mengambil data dari body request, melakukan validasi awal, serta membentuk
respons HTTP yang akan dikirimkan kembali ke klien. Handler tidak berisi
logika bisnis yang kompleks, melainkan hanya berperan sebagai penghubung antara
permintaan dari client dan proses internal sistem.

Selanjutnya, lapisan service bertanggung jawab terhadap seluruh logika
bisnis aplikasi. Pada bagian ini dilakukan pengolahan data, validasi lanjutan,
pengambilan keputusan bisnis, serta pengaturan alur proses sesuai kebutuhan
sistem. Oleh karena itu, kode pada layer service umumnya lebih kompleks dan
menjadi pusat dari aturan bisnis aplikasi.

Adapun lapisan repository berfungsi sebagai penghubung langsung dengan
basis data. Layer ini bertugas melakukan operasi penyimpanan, pembacaan,
pembaruan, dan penghapusan data tanpa melibatkan logika bisnis. Dengan
pemisahan ini, proses akses data menjadi lebih terorganisir dan mudah untuk diuji
maupun dikembangkan di kemudian hari.

Struktur pemisahan antara handler, service, dan repository ini diterapkan
secara konsisten pada seluruh modul sistem, seperti autentikasi, color code, vendor,
incoming, handling unit, dan purchase order, sehingga arsitektur backend menjadi
lebih modular, terstruktur, dan mudah dipelihara.

67
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

A Register

Pada bagian handler, fungsi Register akan dijalankan ketika endpoint
registrasi diakses. Fungsi ini bertugas membaca data dari request body, mengambil
informasi tambahan seperti alamat IP dan user agent, lalu meneruskan data tersebut
ke service untuk diproses lebih lanjut.

1 func (h *AuthHandler) Register(c *fiber.Ctx) error {

2 var request requests.RegisterRequest

3

4 if err := c.BodyParser(&request); err != nil {

5 return c.Status(http.StatusBadRequest).JSON(fiber.Map{

6 "error": "invalid request body",

7 })

8 }

9

10 ip := c.IP()

11 userAgent := c.Get("User -Agent")

12

13 _, userDTO , err := h.authService.Register(request , ip, userAgent

)

14 if err != nil {

15 return c.Status(http.StatusInternalServerError).JSON(fiber.Map

{

16 "error": err.Error(),

17 })

18 }

19

20 return c.Status(http.StatusCreated).JSON(responses.

MessageResponse{

21 Message: "registration successful",

22 Data: userDTO ,

23 })

24 }

Setelah data diterima oleh handler, proses dilanjutkan ke lapisan service.
Pada tahap ini dilakukan berbagai proses inti seperti hashing password, pembuatan
UUID, penyimpanan data pengguna, pembuatan token JWT, serta pencatatan
aktivitas pengguna.

1 func (s *authService) Register(request requests.RegisterRequest ,

ip, userAgent string)

2 (string , responses.AuthResponse , error) {

3

68
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

4 hashedPassword , err := bcrypt.GenerateFromPassword(

5 []byte(request.Password), bcrypt.DefaultCost ,

6)

7 if err != nil {

8 return "", responses.AuthResponse{}, err

9 }

10

11 createdBy := uint(0)

12

13 newUser := models.User{

14 UUID: uuid.New().String(),

15 Name: request.Name ,

16 Email: request.Email ,

17 Password: string(hashedPassword),

18 CreatedBy: &createdBy ,

19 }

20

21 err = s.authRepo.Create(&newUser)

22 if err != nil {

23 return "", responses.AuthResponse{}, err

24 }

25

26 token , err := pkg.GenerateJWT(newUser.ID, newUser.UUID)

27 if err != nil {

28 return "", responses.AuthResponse{}, err

29 }

30

31 _ = s.logService.CreateLog(

32 newUser.ID, "REGISTER", "auth", ip, userAgent , "", "",

33)

34

35 return token , responses.AuthResponse{

36 UUID: newUser.UUID ,

37 Name: newUser.Name ,

38 Email: newUser.Email ,

39 }, nil

40 }

Lapisan service berfungsi sebagai pusat pengambilan keputusan dan
memastikan seluruh proses bisnis berjalan sesuai aturan yang telah ditetapkan.

Lapisan repository merupakan lapisan paling bawah yang berinteraksi
langsung dengan database. Fungsi ini bertanggung jawab menyimpan data
pengguna menggunakan ORM GORM serta mengelola context dan timeout untuk

69
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

keamanan eksekusi query.

1 func (r *authRepository) Create(user *models.User) error {

2 ctx, cancel := context.WithTimeout(context.Background(),

dbTimeout)

3 defer cancel()

4

5 return r.db.WithContext(ctx).Create(user).Error

6 }

Repository tidak memiliki logika bisnis dan hanya berfokus pada operasi
database, sehingga struktur kode menjadi lebih bersih dan mudah dipelihara.

B Login

Handler login bertanggung jawab untuk menerima permintaan dari klien,
melakukan parsing data request, serta mengatur respons HTTP yang dikembalikan.
Selain itu, handler juga menyimpan token hasil autentikasi ke dalam cookie agar
dapat digunakan pada permintaan berikutnya.

1 func (h *AuthHandler) Login(c *fiber.Ctx) error {

2 var request requests.LoginRequest

3

4 if err := c.BodyParser(&request); err != nil {

5 return c.Status(fiber.StatusBadRequest).JSON(fiber.Map{

6 "error": "Invalid request body",

7 })

8 }

9

10 ip := c.IP()

11 userAgent := c.Get("User -Agent")

12

13 token , user , err := h.authService.Login(

14 request.Email , request.Password , ip, userAgent ,

15)

16 if err != nil {

17 return c.Status(fiber.StatusUnauthorized).JSON(fiber.Map{

18 "error": err.Error(),

19 })

20 }

21

22 c.Cookie(&fiber.Cookie{

23 Name: "token",

24 Value: token ,

70
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

25 Expires: time.Now().Add(24 * time.Hour),

26 HTTPOnly: true ,

27 Secure: true ,

28 SameSite: "None",

29 Path: "/",

30 })

31

32 return c.Status(http.StatusOK).JSON(responses.MessageResponse{

33 Message: "login successful",

34 Data: user ,

35 })

36 }

Handler hanya bertugas sebagai penghubung antara klien dan service, tanpa
menyentuh proses validasi bisnis maupun akses database secara langsung.

Lapisan service menangani proses autentikasi utama, termasuk pencarian
data pengguna, validasi kata sandi menggunakan bcrypt, pembuatan token JWT,
serta pencatatan aktivitas login ke dalam sistem log.

1 func (s *authService) Login(email , password , ip, userAgent string)

2 (string , responses.AuthResponse , error) {

3

4 user , err := s.authRepo.GetByEmail(email)

5 if err != nil {

6 return "", responses.AuthResponse{}, errors.New("invalid email

or password")

7 }

8

9 if err := bcrypt.CompareHashAndPassword(

10 []byte(user.Password), []byte(password),

11); err != nil {

12 return "", responses.AuthResponse{}, errors.New("invalid email

or password")

13 }

14

15 token , err := pkg.GenerateJWT(user.ID, user.UUID)

16 if err != nil {

17 return "", responses.AuthResponse{}, err

18 }

19

20 authResponse := responses.AuthResponse{

21 UUID: user.UUID ,

22 Name: user.Name ,

71
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

23 Email: user.Email ,

24 }

25

26 updatedBy := uint(0)

27 if user.UpdatedBy != nil {

28 updatedBy = *user.UpdatedBy

29 }

30

31 _ = s.logService.CreateLog(

32 user.ID, "LOGIN", "auth", ip, userAgent ,

33 fmt.Sprintf("%d", updatedBy), "",

34)

35

36 return token , authResponse , nil

37 }

Service berfungsi sebagai pusat logika autentikasi, termasuk verifikasi
kredensial dan pembuatan token akses yang akan digunakan pada permintaan
berikutnya.

Repository bertugas melakukan komunikasi langsung dengan basis data.
Pada proses login, repository hanya mengambil data pengguna berdasarkan email
yang diberikan.

1 func (r *authRepository) GetByEmail(email string) (*models.User ,

error) {

2 ctx, cancel := context.WithTimeout(context.Background(),

dbTimeout)

3 defer cancel()

4

5 var user models.User

6 if err := r.db.WithContext(ctx).

7 Where("email = ?", email).

8 First(&user).Error; err != nil {

9 return nil, err

10 }

11

12 return &user , nil

13 }

72
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

C Create Color Code

Handler bertugas menerima data dari request, melakukan validasi awal, serta
mengambil informasi pengguna yang sedang login dari konteks. Jika seluruh data
valid, handler akan memanggil service untuk membuat data color code baru.

1 func (h *ColorCodeHandler) Create(c *fiber.Ctx) error {

2 var req requests.ColorCodeRequest

3 if err := c.BodyParser(&req); err != nil {

4 return c.Status(fiber.StatusBadRequest).JSON(responses.

ErrorResponse{

5 Error: "invalid request body",

6 })

7 }

8

9 userID , ok := c.Locals("user_id").(uint)

10 if !ok || userID == 0 {

11 return c.Status(fiber.StatusUnauthorized).JSON(responses.

ErrorResponse{

12 Error: "unauthorized",

13 })

14 }

15

16 colorCode , err := h.service.Create(req, &userID)

17 if err != nil {

18 return c.Status(http.StatusInternalServerError).JSON(responses

.ErrorResponse{

19 Error: err.Error(),

20 })

21 }

22

23 return c.Status(http.StatusCreated).JSON(responses.

MessageResponse{

24 Message: "color code created successfully",

25 Data: colorCode ,

26 })

27 }

Service bertanggung jawab membentuk entitas ColorCode berdasarkan data
request, sekaligus menetapkan nilai CreatedBy. Setelah itu, data diteruskan ke
repository untuk disimpan ke database.

1 func (s *colorCodeService) Create(

2 req requests.ColorCodeRequest ,

73
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

3 createdBy *uint ,

4) (responses.ColorCodeResponse , error) {

5

6 colorCode := models.ColorCode{

7 Name: req.Area ,

8 Code: req.ColorCode ,

9 Highland: req.Highland ,

10 Description: req.Description ,

11 Bloc: req.Sloc ,

12 CreatedBy: createdBy ,

13 }

14

15 if err := s.repo.Create(&colorCode); err != nil {

16 return responses.ColorCodeResponse{}, err

17 }

18

19 return responses.ColorCodeResponse{

20 UUID: colorCode.UUID ,

21 ColorCode: colorCode.Code ,

22 Area: colorCode.Name ,

23 Highland: colorCode.Highland ,

24 Description: colorCode.Description ,

25 Sloc: colorCode.Bloc ,

26 }, nil

27 }

Repository menangani proses penyimpanan data color code ke dalam
database menggunakan ORM. Proses ini dilakukan dalam konteks dengan batas
waktu tertentu untuk menjaga stabilitas koneksi.

1 func (r *colorCodeRepository) Create(colorCode *models.ColorCode)

error {

2 ctx, cancel := context.WithTimeout(context.Background(),

dbTimeout)

3 defer cancel()

4

5 return r.db.WithContext(ctx).Create(colorCode).Error

6 }

D Get All Color Code

Handler bertugas menerima permintaan dari endpoint dan memanggil fungsi
service untuk mengambil seluruh data color code. Jika terjadi kesalahan selama

74
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

proses, handler akan mengembalikan respons error, sedangkan jika berhasil, data
akan dikembalikan dalam format respons yang telah ditentukan.

1 func (h *ColorCodeHandler) GetAll(c *fiber.Ctx) error {

2 colorCodes , err := h.service.GetAll()

3 if err != nil {

4 return c.Status(http.StatusInternalServerError).JSON(responses

.ErrorResponse{

5 Error: err.Error(),

6 })

7 }

8

9 return c.Status(http.StatusOK).JSON(responses.MessageResponse{

10 Message: "color codes retrieved successfully",

11 Data: colorCodes ,

12 })

13 }

Pada bagian service, data color code diambil dari repository, kemudian
dilakukan proses transformasi dari model database menjadi bentuk response yang
akan dikirim ke frontend. Proses ini memastikan hanya data yang diperlukan saja
yang dikirimkan.

1 func (s *colorCodeService) GetAll() ([]responses.ColorCodeResponse

, error) {

2 colorCodes , err := s.repo.GetAll()

3 if err != nil {

4 return nil, err

5 }

6

7 var res []responses.ColorCodeResponse

8 for _, c := range colorCodes {

9 res = append(res, responses.ColorCodeResponse{

10 UUID: c.UUID ,

11 ColorCode: c.Code ,

12 Area: c.Name ,

13 Highland: c.Highland ,

14 Description: c.Description ,

15 Sloc: c.Bloc ,

16 })

17 }

18

19 return res, nil

20 }

75
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

Repository bertanggung jawab mengambil seluruh data color code dari
database menggunakan ORM. Hasil query kemudian dikembalikan ke service untuk
diproses lebih lanjut.

1 func (r *colorCodeRepository) GetAll() ([]models.ColorCode , error)

{

2 ctx, cancel := context.WithTimeout(context.Background(),

dbTimeout)

3 defer cancel()

4

5 var colorCodes []models.ColorCode

6 if err := r.db.WithContext(ctx).Find(&colorCodes).Error; err !=

nil {

7 return nil, err

8 }

9 return colorCodes , nil

10 }

E Get Color Code By UUID

Handler bertugas mengambil parameter uuid dari URL dan meneruskannya
ke service. Jika service mengembalikan error, handler akan mengirimkan respons
not found ke frontend.

1 func (h *ColorCodeHandler) GetByUUID(c *fiber.Ctx) error {

2 uuid := c.Params("uuid")

3 colorCode , err := h.service.GetByUUID(uuid)

4 if err != nil {

5 return c.Status(http.StatusNotFound).JSON(responses.

ErrorResponse{

6 Error: err.Error(),

7 })

8 }

9

10 return c.Status(http.StatusOK).JSON(responses.MessageResponse{

11 Message: "color code retrieved successfully",

12 Data: colorCode ,

13 })

14 }

Service bertugas memanggil repository untuk mengambil data color code
berdasarkan UUID. Jika data ditemukan, service akan memetakan hasilnya ke
dalam bentuk response yang dikirimkan ke frontend.

76
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

1 func (s *colorCodeService) GetByUUID(uuid string) (responses.

ColorCodeResponse , error) {

2 c, err := s.repo.GetByUUID(uuid)

3 if err != nil {

4 return responses.ColorCodeResponse{}, err

5 }

6

7 return responses.ColorCodeResponse{

8 UUID: c.UUID ,

9 ColorCode: c.Code ,

10 Area: c.Name ,

11 Highland: c.Highland ,

12 Description: c.Description ,

13 Sloc: c.Bloc ,

14 }, nil

15 }

Repository melakukan pencarian data color code berdasarkan UUID di
dalam database. Jika data tidak ditemukan, repository akan mengembalikan error
yang menandakan bahwa data tidak tersedia.

1 func (r *colorCodeRepository) GetByUUID(uuid string) (models.

ColorCode , error) {

2 ctx, cancel := context.WithTimeout(context.Background(),

dbTimeout)

3 defer cancel()

4

5 var colorCode models.ColorCode

6 if err := r.db.WithContext(ctx).Where("uuid = ?", uuid).First(&

colorCode).Error; err != nil {

7 if errors.Is(err, gorm.ErrRecordNotFound) {

8 return colorCode , errors.New("color code not found")

9 }

10 return colorCode , err

11 }

12 return colorCode , nil

13 }

F Update Color Code

Handler bertugas mengambil parameter UUID, membaca data pembaruan
dari request body, serta mengambil informasi pengguna yang sedang login. Setelah
itu, handler memanggil service untuk melakukan proses pembaruan data.

77
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

1 func (h *ColorCodeHandler) Update(c *fiber.Ctx) error {

2 uuid := c.Params("uuid")

3

4 var req requests.ColorCodeRequest

5 if err := c.BodyParser(&req); err != nil {

6 return c.Status(fiber.StatusBadRequest).JSON(responses.

ErrorResponse{

7 Error: "invalid request body",

8 })

9 }

10

11 userID , ok := c.Locals("user_id").(uint)

12 if !ok || userID == 0 {

13 return c.Status(fiber.StatusUnauthorized).JSON(responses.

ErrorResponse{

14 Error: "unauthorized",

15 })

16 }

17

18 colorCode , err := h.service.Update(uuid , req, &userID)

19 if err != nil {

20 return c.Status(fiber.StatusNotFound).JSON(responses.

ErrorResponse{

21 Error: err.Error(),

22 })

23 }

24

25 return c.Status(http.StatusOK).JSON(responses.MessageResponse{

26 Message: "color code updated successfully",

27 Data: colorCode ,

28 })

29 }

Service melakukan pencarian data color code berdasarkan UUID untuk
memastikan data tersedia. Jika ditemukan, data lama diperbarui dengan nilai baru
dari request, kemudian disimpan kembali melalui repository.

1 func (s *colorCodeService) Update(

2 uuid string ,

3 req requests.ColorCodeRequest ,

4 updatedBy *uint ,

5) (responses.ColorCodeResponse , error) {

6

7 existing , err := s.repo.GetByUUID(uuid)

78
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

8 if err != nil {

9 return responses.ColorCodeResponse{}, errors.New("color code

not found")

10 }

11

12 existing.Name = req.Area

13 existing.Code = req.ColorCode

14 existing.Highland = req.Highland

15 existing.Description = req.Description

16 existing.Bloc = req.Sloc

17 existing.UpdatedBy = updatedBy

18

19 if err := s.repo.Update(&existing); err != nil {

20 return responses.ColorCodeResponse{}, err

21 }

22

23 return responses.ColorCodeResponse{

24 UUID: existing.UUID ,

25 ColorCode: existing.Code ,

26 Area: existing.Name ,

27 Highland: existing.Highland ,

28 Description: existing.Description ,

29 Sloc: existing.Bloc ,

30 }, nil

31 }

Repository melakukan pembaruan data color code di database berdasarkan
UUID. Proses ini memastikan bahwa hanya data dengan UUID yang sesuai yang
diperbarui.

1 func (r *colorCodeRepository) Update(colorCode *models.ColorCode)

error {

2 ctx, cancel := context.WithTimeout(context.Background(),

dbTimeout)

3 defer cancel()

4

5 return r.db.WithContext(ctx).

6 Model(&models.ColorCode{}).

7 Where("uuid = ?", colorCode.UUID).

8 Updates(colorCode).Error

9 }

79
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

G Delete Color Code

Handler bertugas mengambil parameter UUID dari URL dan
meneruskannya ke service untuk diproses. Jika terjadi kesalahan, seperti
data tidak ditemukan, handler akan mengembalikan respons error ke frontend.

1 func (h *ColorCodeHandler) Delete(c *fiber.Ctx) error {

2 uuid := c.Params("uuid")

3 if err := h.service.Delete(uuid); err != nil {

4 return c.Status(fiber.StatusNotFound).JSON(responses.

ErrorResponse{

5 Error: err.Error(),

6 })

7 }

8

9 return c.Status(http.StatusOK).JSON(responses.

MessageOnlyResponse{

10 Message: "color code deleted successfully",

11 })

12 }

Service berfungsi sebagai perantara untuk meneruskan permintaan
penghapusan ke repository. Pada tahap ini tidak dilakukan proses tambahan selain
pemanggilan fungsi repository.

1 func (s *colorCodeService) Delete(uuid string) error {

2 return s.repo.Delete(uuid)

3 }

Repository bertanggung jawab untuk menghapus data color code dari
database berdasarkan UUID. Jika tidak ada data yang terhapus, repository akan
mengembalikan error yang menandakan bahwa data tidak ditemukan.

1 func (r *colorCodeRepository) Delete(uuid string) error {

2 ctx, cancel := context.WithTimeout(context.Background(),

dbTimeout)

3 defer cancel()

4

5 result := r.db.WithContext(ctx).Where("uuid = ?", uuid).Delete(&

models.ColorCode{})

6 if result.RowsAffected == 0 {

7 return errors.New("color code not found")

8 }

9 return result.Error

10 }

80
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

H Create Vendor

Handler menerima data vendor dari request body, mengambil informasi
pengguna yang sedang login, lalu meneruskan data tersebut ke service. Jika terjadi
kesalahan pada proses validasi atau penyimpanan, handler akan mengembalikan
respons error ke frontend.

1 func (h *VendorHandler) Create(c *fiber.Ctx) error {

2 fmt.Println("Handler Create START")

3

4 var req requests.VendorRequest

5 if err := c.BodyParser(&req); err != nil {

6 fmt.Println("BodyParser error:", err)

7 return c.Status(fiber.StatusBadRequest).JSON(responses.

ErrorResponse{

8 Error: "invalid request body",

9 })

10 }

11

12 userID , ok := c.Locals("user_id").(uint)

13 fmt.Println("userID:", userID , "OK?", ok)

14

15 fmt.Println("Request:", req)

16

17 vendor , err := h.service.Create(req, userID)

18 if err != nil {

19 fmt.Println("Service.Create error:", err)

20 return c.Status(http.StatusInternalServerError).JSON(responses

.ErrorResponse{

21 Error: err.Error(),

22 })

23 }

24

25 fmt.Println("Vendor created:", vendor)

26

27 return c.Status(http.StatusCreated).JSON(responses.

MessageResponse{

28 Message: "vendor created successfully",

29 Data: vendor ,

30 })

31 }

Service bertanggung jawab membentuk objek vendor berdasarkan data dari

81
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

request, termasuk menetapkan nilai UUID dan informasi pembuat data. Setelah itu,
data diteruskan ke repository untuk disimpan ke database.

1 func (s *vendorService) Create(req requests.VendorRequest ,

createdBy uint) (responses.VendorResponse , error) {

2

3 fmt.Println("Create Vendor by user:", createdBy)

4

5 vendor := models.Vendor{

6 UUID: uuid.NewString(),

7 Name: req.Name ,

8 Address: req.Address ,

9 Phone: req.Phone ,

10 FaxNumber: req.FaxNumber ,

11 Email: req.Email ,

12 CreatedBy: createdBy ,

13 }

14

15 if err := s.repo.Create(&vendor); err != nil {

16 return responses.VendorResponse{}, err

17 }

18

19 return responses.VendorResponse{

20 UUID: vendor.UUID ,

21 Name: vendor.Name ,

22 Address: vendor.Address ,

23 Phone: vendor.Phone ,

24 FaxNumber: vendor.FaxNumber ,

25 Email: vendor.Email ,

26 }, nil

27 }

Repository bertugas menyimpan data vendor ke dalam database
menggunakan ORM. Proses ini dilakukan dalam konteks yang dibatasi waktu
untuk menjaga stabilitas koneksi.

1 func (r *vendorRepository) Create(vendor *models.Vendor) error {

2 ctx, cancel := context.WithTimeout(context.Background(),

dbTimeout)

3 defer cancel()

4

5 return r.db.WithContext(ctx).Create(vendor).Error

6 }

82
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

I Get All Vendor

Handler bertugas menerima request GET, memanggil service untuk
mengambil semua data vendor, dan mengembalikan hasilnya ke frontend. Jika
terjadi error, handler akan mengirimkan respons error.

1 func (h *VendorHandler) GetAll(c *fiber.Ctx) error {

2 vendors , err := h.service.GetAll()

3 if err != nil {

4 return c.Status(http.StatusInternalServerError).JSON(responses

.ErrorResponse{

5 Error: err.Error(),

6 })

7 }

8

9 return c.Status(http.StatusOK).JSON(responses.MessageResponse{

10 Message: "vendors retrieved successfully",

11 Data: vendors ,

12 })

13 }

Service memanggil repository untuk mengambil semua data vendor dari
database, lalu mengubahnya menjadi format respons yang sesuai agar bisa dikirim
ke frontend.

1 func (s *vendorService) GetAll() ([]responses.VendorResponse ,

error) {

2 vendors , err := s.repo.GetAll()

3 if err != nil {

4 return nil, err

5 }

6

7 var res []responses.VendorResponse

8 for _, v := range vendors {

9 res = append(res, responses.VendorResponse{

10 UUID: v.UUID ,

11 Name: v.Name ,

12 Address: v.Address ,

13 Phone: v.Phone ,

14 FaxNumber: v.FaxNumber ,

15 Email: v.Email ,

16 })

17 }

18 return res, nil

83
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

19 }

Repository melakukan query ke database untuk mengambil semua data
vendor. Proses ini menggunakan konteks dengan batas waktu agar koneksi tetap
stabil.

1 func (r *vendorRepository) GetAll() ([]models.Vendor , error) {

2 ctx, cancel := context.WithTimeout(context.Background(),

dbTimeout)

3 defer cancel()

4

5 var vendors []models.Vendor

6 if err := r.db.WithContext(ctx).Find(&vendors).Error; err != nil

{

7 return nil, err

8 }

9 return vendors , nil

10 }

J Get Vendor By UUID

Handler menerima uuid dari parameter URL, lalu memanggil service. Jika
vendor tidak ditemukan, handler mengirimkan respons error Not Found. Jika
berhasil, data vendor dikirimkan ke frontend.

1 func (h *VendorHandler) GetByUUID(c *fiber.Ctx) error {

2 uuid := c.Params("uuid")

3 vendor , err := h.service.GetByUUID(uuid)

4 if err != nil {

5 return c.Status(http.StatusNotFound).JSON(responses.

ErrorResponse{

6 Error: err.Error(),

7 })

8 }

9

10 return c.Status(http.StatusOK).JSON(responses.MessageResponse{

11 Message: "vendor retrieved successfully",

12 Data: vendor ,

13 })

14 }

Service memanggil repository untuk mendapatkan data vendor berdasarkan
UUID. Setelah data diperoleh, service membungkusnya menjadi respons yang
sesuai dengan format DTO.

84
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

1 func (s *vendorService) GetByUUID(uuid string) (responses.

VendorResponse , error) {

2 v, err := s.repo.GetByUUID(uuid)

3 if err != nil {

4 return responses.VendorResponse{}, err

5 }

6

7 return responses.VendorResponse{

8 UUID: v.UUID ,

9 Name: v.Name ,

10 Address: v.Address ,

11 Phone: v.Phone ,

12 FaxNumber: v.FaxNumber ,

13 Email: v.Email ,

14 }, nil

15 }

Repository mengeksekusi query ke database untuk mencari vendor
berdasarkan UUID. Jika tidak ditemukan, akan mengembalikan error yang
diteruskan ke service.

1 func (r *vendorRepository) GetByUUID(uuid string) (*models.Vendor ,

error) {

2 ctx, cancel := context.WithTimeout(context.Background(),

dbTimeout)

3 defer cancel()

4

5 var vendor models.Vendor

6 if err := r.db.WithContext(ctx).Where("uuid = ?", uuid).First(&

vendor).Error; err != nil {

7 return nil, err

8 }

9 return &vendor , nil

10 }

K Update Vendor

Handler mem-parsing body request, mengambil UUID dari parameter URL,
dan memvalidasi user yang melakukan update. Jika valid, handler memanggil
service untuk melakukan update. Hasilnya dikirim ke frontend.

1 func (h *VendorHandler) Update(c *fiber.Ctx) error {

2 uuid := c.Params("uuid")

85
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

3

4 var req requests.VendorRequest

5 if err := c.BodyParser(&req); err != nil {

6 return c.Status(fiber.StatusBadRequest).JSON(responses.

ErrorResponse{

7 Error: "invalid request body",

8 })

9 }

10

11 userID , ok := c.Locals("user_id").(uint)

12 if !ok || userID == 0 {

13 return c.Status(fiber.StatusUnauthorized).JSON(responses.

ErrorResponse{

14 Error: "unauthorized",

15 })

16 }

17

18 vendor , err := h.service.Update(uuid , req, userID)

19 if err != nil {

20 return c.Status(http.StatusNotFound).JSON(responses.

ErrorResponse{

21 Error: err.Error(),

22 })

23 }

24

25 return c.Status(http.StatusOK).JSON(responses.MessageResponse{

26 Message: "vendor updated successfully",

27 Data: vendor ,

28 })

29 }

Service memeriksa apakah vendor dengan UUID yang dimaksud ada di
database. Jika ada, service memperbarui seluruh field dengan data baru dan
memanggil repository untuk menyimpan perubahan. Data vendor yang diperbarui
dikembalikan dalam format DTO.

1 func (s *vendorService) Update(uuid string , req requests.

VendorRequest , updatedBy uint) (responses.VendorResponse , error

) {

2 existing , err := s.repo.GetByUUID(uuid)

3 if err != nil {

4 return responses.VendorResponse{}, errors.New("vendor not

found")

5 }

86
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

6

7 existing.Name = req.Name

8 existing.Address = req.Address

9 existing.Phone = req.Phone

10 existing.FaxNumber = req.FaxNumber

11 existing.Email = req.Email

12 existing.UpdatedBy = updatedBy

13

14 if err := s.repo.Update(existing); err != nil {

15 return responses.VendorResponse{}, err

16 }

17

18 return responses.VendorResponse{

19 UUID: existing.UUID ,

20 Name: existing.Name ,

21 Address: existing.Address ,

22 Phone: existing.Phone ,

23 FaxNumber: existing.FaxNumber ,

24 Email: existing.Email ,

25 }, nil

26 }

Repository mengeksekusi query untuk menyimpan data vendor yang sudah
diperbarui. Fungsi ini memanfaatkan GORM Save() sehingga seluruh field yang
diubah akan tersimpan.

1 func (r *vendorRepository) Update(vendor *models.Vendor) error {

2 ctx, cancel := context.WithTimeout(context.Background(),

dbTimeout)

3 defer cancel()

4 return r.db.WithContext(ctx).Save(vendor).Error

5 }

L Delete Vendor

Handler mengambil UUID vendor dari parameter URL dan memanggil
service untuk melakukan penghapusan. Jika UUID tidak ditemukan, respons error
dikembalikan, jika berhasil, pesan sukses dikirim ke frontend.

1 func (h *VendorHandler) Delete(c *fiber.Ctx) error {

2 uuid := c.Params("uuid")

3 if err := h.service.Delete(uuid); err != nil {

4 return c.Status(http.StatusNotFound).JSON(responses.

ErrorResponse{

87
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

5 Error: err.Error(),

6 })

7 }

8

9 return c.Status(http.StatusOK).JSON(responses.

MessageOnlyResponse{

10 Message: "vendor deleted successfully",

11 })

12 }

Service memeriksa apakah vendor dengan UUID yang dimaksud ada di
database. Jika ada, service memanggil repository untuk menghapus berdasarkan
ID vendor. Error dikembalikan jika vendor tidak ditemukan.

1 func (s *vendorService) Delete(uuid string) error {

2 vendor , err := s.repo.GetByUUID(uuid)

3 if err != nil {

4 return errors.New("vendor not found")

5 }

6 return s.repo.Delete(vendor.ID)

7 }

Repository mengeksekusi query hapus menggunakan GORM berdasarkan
ID vendor. Fungsi ini hanya berfokus pada interaksi database dan mengembalikan
error jika terjadi kegagalan.

1 func (r *vendorRepository) Delete(id uint) error {

2 ctx, cancel := context.WithTimeout(context.Background(),

dbTimeout)

3 defer cancel()

4 return r.db.WithContext(ctx).Delete(&models.Vendor{}, id).Error

5 }

M Create Incoming

Handler bertugas parsing request body dan memanggil service. Jika request
valid dan user terotentikasi, service akan dijalankan, dan respons success dikirim
ke frontend.

1 func (h *IncomingHandler) Create(c *fiber.Ctx) error {

2 var req requests.IncomingRequest

3 if err := c.BodyParser(&req); err != nil {

4 return c.Status(fiber.StatusBadRequest).JSON(responses.

ErrorResponse{

88
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

5 Error: "invalid request body",

6 })

7 }

8

9 userID := c.Locals("user_id").(uint)

10 if userID == 0 {

11 return c.Status(fiber.StatusUnauthorized).JSON(responses.

ErrorResponse{

12 Error: "unauthorized",

13 })

14 }

15 inc, err := h.service.Create(req, &userID)

16 if err != nil {

17 return c.Status(http.StatusInternalServerError).JSON(responses

.ErrorResponse{

18 Error: err.Error(),

19 })

20 }

21

22 return c.Status(http.StatusCreated).JSON(responses.

MessageResponse{

23 Message: "Incoming created successfully",

24 Data: inc,

25 })

26 }

Service menangani seluruh logika bisnis: memvalidasi keberadaan PO,
membuat data incoming, menyimpan optional images jika ada, mengubah posisi
PO, dan melakukan commit transaksi database. Jika terjadi kesalahan di tengah
proses, transaksi di-rollback.

1 func (s *incomingService) Create(req requests.IncomingRequest ,

createdBy *uint) (responses.IncomingResponse , error) {

2 tx := s.db.Begin()

3

4 po, err := s.poRepo.GetByUUID(req.POUUID)

5 if err != nil {

6 tx.Rollback()

7 return responses.IncomingResponse{}, errors.New("po not found"

)

8 }

9

10 incoming := models.Incoming{

11 POID: &po.ID,

89
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

12 CheckBy: createdBy ,

13 Status: "pass",

14 Notes: req.Notes ,

15 CreatedBy: createdBy ,

16 }

17

18 if err := tx.Create(&incoming).Error; err != nil {

19 tx.Rollback()

20 return responses.IncomingResponse{}, err

21 }

22

23 if len(req.Images) > 0 {

24 var images []models.IncomingImage

25 for _, img := range req.Images {

26 images = append(images , models.IncomingImage{

27 ImagePath: img.ImagePath ,

28 IncomingID: incoming.ID,

29 CreatedBy: createdBy ,

30 })

31 }

32

33 if err := s.imageRepo.CreateBulkTx(tx, images); err != nil {

34 tx.Rollback()

35 return responses.IncomingResponse{}, err

36 }

37 }

38

39 if err := s.poRepo.UpdatePositionTx(tx, po.UUID , 2, *createdBy);

err != nil {

40 return responses.IncomingResponse{}, err

41 }

42

43 if err := tx.Commit().Error; err != nil {

44 return responses.IncomingResponse{}, err

45 }

46

47 created , _ := s.repo.GetByUUID(incoming.UUID)

48 return mapToIncomingResponse(*created), nil

49 }

Repository berfokus menyimpan data incoming ke database menggunakan
GORM. Fungsi ini hanya menangani transaksi database tanpa logika bisnis.

1 func (r *incomingRepository) Create(incoming *models.Incoming)

90
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

error {

2 ctx, cancel := context.WithTimeout(context.Background(),

dbTimeout)

3 defer cancel()

4

5 return r.db.WithContext(ctx).Create(incoming).Error

6 }

N Get All Incoming

Handler berfungsi menerima request GET dan memanggil service. Jika
terjadi error saat pengambilan data, handler akan mengembalikan status internal
server error, sebaliknya akan mengirim data incoming beserta pesan sukses.

1 func (h *IncomingHandler) GetAll(c *fiber.Ctx) error {

2 incomings , err := h.service.GetAll()

3 if err != nil {

4 return c.Status(http.StatusInternalServerError).JSON(responses

.ErrorResponse{

5 Error: err.Error(),

6 })

7 }

8

9 return c.Status(http.StatusOK).JSON(responses.MessageResponse{

10 Message: "Incomings retrieved successfully",

11 Data: incomings ,

12 })

13 }

Service memanggil repository untuk mendapatkan seluruh data incoming,
kemudian memetakan setiap record ke bentuk response yang telah ditentukan agar
sesuai dengan DTO.

1 func (s *incomingService) GetAll() ([]responses.IncomingResponse ,

error) {

2 incomings , err := s.repo.GetAll()

3 if err != nil {

4 return nil, err

5 }

6

7 var res []responses.IncomingResponse

8 for _, inc := range incomings {

9 res = append(res, mapToIncomingResponse(inc))

91
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

10 }

11 return res, nil

12 }

Repository bertugas mengeksekusi query untuk mengambil seluruh data
incoming dari database. Fungsi ini menggunakan query dasar yang sudah termasuk
relasi terkait jika diperlukan.

1 func (r *incomingRepository) GetAll() ([]models.Incoming , error) {

2 ctx, cancel := context.WithTimeout(context.Background(),

dbTimeout)

3 defer cancel()

4

5 var incomings []models.Incoming

6 err := r.baseQuery(ctx).Find(&incomings).Error

7 return incomings , err

8 }

O Get Incoming By UUID

Handler menerima request GET dengan parameter UUID, lalu memanggil
service untuk mengambil data incoming. Jika terjadi error, handler merespon
dengan error not found.

1 func (h *IncomingHandler) GetByUUID(c *fiber.Ctx) error {

2 uuid := c.Params("uuid")

3 inc, err := h.service.GetByUUID(uuid)

4 if err != nil {

5 return c.Status(http.StatusNotFound).JSON(responses.

ErrorResponse{

6 Error: err.Error(),

7 })

8 }

9

10 return c.Status(http.StatusOK).JSON(responses.MessageResponse{

11 Message: "Incoming retrieved successfully",

12 Data: inc,

13 })

14 }

Service memanggil repository untuk mengambil data berdasarkan UUID.
Setelah data didapat, service memetakan data tersebut ke bentuk response sesuai
DTO.

92
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

1 func (s *incomingService) GetByUUID(uuid string) (responses.

IncomingResponse , error) {

2 inc, err := s.repo.GetByUUID(uuid)

3 if err != nil {

4 return responses.IncomingResponse{}, err

5 }

6 return mapToIncomingResponse(*inc), nil

7 }

Repository mengeksekusi query untuk mencari incoming berdasarkan
UUID. Jika record tidak ditemukan, repository mengembalikan error dengan pesan
”incoming not found”.

1 func (r *incomingRepository) GetByUUID(uuid string) (*models.

Incoming , error) {

2 ctx, cancel := context.WithTimeout(context.Background(),

dbTimeout)

3 defer cancel()

4

5 var incoming models.Incoming

6 err := r.baseQuery(ctx).

7 Where("uuid = ?", uuid).

8 First(&incoming).Error

9

10 if errors.Is(err, gorm.ErrRecordNotFound) {

11 return nil, errors.New("incoming not found")

12 }

13

14 return &incoming , err

15 }

P Update Incoming

Handler menerima parameter UUID dan body request. Selanjutnya, handler
memanggil service Update dan merespon hasilnya ke frontend. Error seperti body
invalid atau user tidak authorized langsung dikembalikan dari handler.

1 func (h *IncomingHandler) Update(c *fiber.Ctx) error {

2 uuid := c.Params("uuid")

3

4 var req requests.IncomingRequest

5 if err := c.BodyParser(&req); err != nil {

6 return c.Status(fiber.StatusBadRequest).JSON(responses.

ErrorResponse{

93
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

7 Error: "invalid request body",

8 })

9 }

10

11 userID := c.Locals("user_id").(uint)

12 if userID == 0 {

13 return c.Status(fiber.StatusUnauthorized).JSON(responses.

ErrorResponse{

14 Error: "unauthorized",

15 })

16 }

17 inc, err := h.service.Update(uuid , req, &userID)

18 if err != nil {

19 return c.Status(http.StatusNotFound).JSON(responses.

ErrorResponse{

20 Error: err.Error(),

21 })

22 }

23

24 return c.Status(http.StatusOK).JSON(responses.MessageResponse{

25 Message: "Incoming updated successfully",

26 Data: inc,

27 })

28 }

Service melakukan transaksi database (tx.Begin()) untuk memastikan
integritas data. Service memvalidasi apakah incoming dan PO terkait ada,
memperbarui field utama, menghapus image lama, menambahkan image baru, dan
akhirnya commit transaksi. Jika terjadi error di tengah proses, transaksi di-rollback.

1 func (s *incomingService) Update(uuid string , req requests.

IncomingRequest , updatedBy *uint) (responses.IncomingResponse ,

error) {

2 tx := s.db.Begin()

3 if tx.Error != nil {

4 return responses.IncomingResponse{}, tx.Error

5 }

6

7 defer func() {

8 if r := recover(); r != nil {

9 tx.Rollback()

10 }

11 }()

12

94
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

13 existing , err := s.repo.GetByUUIDTx(tx, uuid)

14 if err != nil {

15 tx.Rollback()

16 return responses.IncomingResponse{}, errors.New("incoming not

found")

17 }

18

19 po, err := s.poRepo.GetByUUID(req.POUUID)

20 if err != nil {

21 tx.Rollback()

22 return responses.IncomingResponse{}, errors.New("po not found"

)

23 }

24

25 existing.POID = &po.ID

26 existing.CheckBy = updatedBy

27 existing.Notes = req.Notes

28 existing.UpdatedBy = updatedBy

29

30 if err := tx.Save(&existing).Error; err != nil {

31 tx.Rollback()

32 return responses.IncomingResponse{}, err

33 }

34

35 if err := s.imageRepo.DeleteByIncomingIDTx(tx, existing.ID); err

!= nil {

36 tx.Rollback()

37 return responses.IncomingResponse{}, err

38 }

39

40 if len(req.Images) > 0 {

41 var newImages []models.IncomingImage

42 for _, img := range req.Images {

43 newImages = append(newImages , models.IncomingImage{

44 ImagePath: img.ImagePath ,

45 IncomingID: existing.ID,

46 CreatedBy: updatedBy ,

47 })

48 }

49

50 if err := s.imageRepo.CreateBulkTx(tx, newImages); err != nil

{

51 tx.Rollback()

95
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

52 return responses.IncomingResponse{}, err

53 }

54 }

55

56 if err := tx.Commit().Error; err != nil {

57 return responses.IncomingResponse{}, err

58 }

59

60 updated , _ := s.repo.GetByUUID(existing.UUID)

61 return mapToIncomingResponse(*updated), nil

62 }

Repository melakukan eksekusi update di database dengan menggunakan
UUID sebagai filter. Semua perubahan field incoming dikirim ke database melalui
method Updates.

1 func (r *incomingRepository) Update(incoming *models.Incoming)

error {

2 ctx, cancel := context.WithTimeout(context.Background(),

dbTimeout)

3 defer cancel()

4

5 return r.db.WithContext(ctx).

6 Model(&models.Incoming{}).

7 Where("uuid = ?", incoming.UUID).

8 Updates(incoming).Error

9 }

Q Delete Incoming

Fungsi delete incoming digunakan untuk menghapus data existing

berdasarkan UUID. Handler menerima request dari frontend, memanggil service,
lalu service meneruskan ke repository untuk melakukan eksekusi delete di
database.

Handler menerima parameter UUID dan langsung memanggil service

Delete. Jika UUID tidak ditemukan atau terjadi error, handler mengembalikan
respons error.

1 func (h *IncomingHandler) Delete(c *fiber.Ctx) error {

2 uuid := c.Params("uuid")

3 if err := h.service.Delete(uuid); err != nil {

4 return c.Status(http.StatusNotFound).JSON(responses.

ErrorResponse{

96
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

5 Error: err.Error(),

6 })

7 }

8

9 return c.Status(http.StatusOK).JSON(responses.

MessageOnlyResponse{

10 Message: "Incoming deleted successfully",

11 })

12 }

Service bertugas meneruskan UUID ke repository untuk melakukan
penghapusan. Tidak ada logika tambahan selain validasi sederhana dari repository.

1 func (s *incomingService) Delete(uuid string) error {

2 return s.repo.Delete(uuid)

3 }

Repository melakukan query delete di database menggunakan UUID
sebagai filter. Jika UUID tidak ditemukan, repository mengembalikan error

”incoming not found”.

1 func (r *incomingRepository) Delete(uuid string) error {

2 ctx, cancel := context.WithTimeout(context.Background(),

dbTimeout)

3 defer cancel()

4

5 result := r.db.WithContext(ctx).

6 Where("uuid = ?", uuid).

7 Delete(&models.Incoming{})

8

9 if result.RowsAffected == 0 {

10 return errors.New("incoming not found")

11 }

12

13 return result.Error

14 }

R Get HU By UUID

Handler membaca parameter UUID dari URL, memanggil service
GetByUUID, dan mengembalikan response ke frontend. Jika UUID tidak
ditemukan, handler mengembalikan error 404 Not Found.

1 func (h *HUHandler) GetByUUID(c *fiber.Ctx) error {

97
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

2 uuid := c.Params("uuid")

3 hu, err := h.service.GetByUUID(uuid)

4 if err != nil {

5 return c.Status(http.StatusNotFound).JSON(responses.

ErrorResponse{

6 Error: err.Error(),

7 })

8 }

9

10 return c.Status(http.StatusOK).JSON(responses.MessageResponse{

11 Message: "HU retrieved successfully",

12 Data: hu,

13 })

14 }

Service memanggil repository untuk mengambil HU berdasarkan UUID,
lalu melakukan mapping ke response DTO (HUResponse) melalui helper
mapHUToResponse.

1 func (s *huService) GetByUUID(uuid string) (responses.HUResponse ,

error) {

2 h, err := s.repo.GetByUUID(uuid)

3 if err != nil {

4 return responses.HUResponse{}, err

5 }

6 return mapHUToResponse(h, s.userRepo , s.poRepo)

7 }

Repository mengeksekusi query database menggunakan GORM. Selain
memfilter berdasarkan UUID, repository juga melakukan Preload untuk memuat
relasi Details dan POs. Jika record tidak ditemukan, akan mengembalikan error
khusus.

1 func (r *huRepository) GetByUUID(uuid string) (models.HU, error) {

2 var hu models.HU

3 if err := r.db.

4 Preload("Details").

5 Preload("POs").

6 Where("uuid = ?", uuid).

7 First(&hu).Error; err != nil {

8

9 if errors.Is(err, gorm.ErrRecordNotFound) {

10 return hu, errors.New("HU not found")

11 }

98
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

12 return hu, err

13 }

14 return hu, nil

15 }

S Get PO By PO Number

Handler memeriksa apakah po number disediakan, memanggil service
GetByPONumber, dan mengembalikan response atau error yang sesuai.

1 func (h *POHandler) GetByPONumber(c *fiber.Ctx) error {

2 poNumber := c.Params("po_number")

3 if poNumber == "" {

4 return c.Status(fiber.StatusBadRequest).JSON(responses.

ErrorResponse{

5 Error: "PO number is required",

6 })

7 }

8

9 po, err := h.service.GetByPONumber(poNumber)

10 if err != nil {

11 status := fiber.StatusNotFound

12 if !strings.Contains(err.Error(), "not found") {

13 status = fiber.StatusInternalServerError

14 }

15 return c.Status(status).JSON(responses.ErrorResponse{

16 Error: err.Error(),

17 })

18 }

19

20 return c.Status(fiber.StatusOK).JSON(responses.MessageResponse{

21 Message: "PO retrieved successfully",

22 Data: po,

23 })

24 }

Service memanggil repository untuk mencari PO berdasarkan po number.
Setelah data diperoleh, service memetakan model PO ke response DTO
(POResponse) menggunakan helper mapToPOResponse.

1 func (s *poService) GetByPONumber(poNumber string) (responses.

POResponse , error) {

2 po, err := s.repo.GetByPONumber(poNumber)

99
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

3 if err != nil {

4 return responses.POResponse{}, err

5 }

6

7 return mapToPOResponse(po), nil

8 }

Repository mengeksekusi query ke database dengan filter po number. Jika
PO tidak ditemukan, akan mengembalikan error khusus ”PO not found”.

1 func (r *poRepository) GetByPONumber(poNumber string) (models.PO,

error) {

2 ctx, cancel := context.WithTimeout(context.Background(),

dbTimeout)

3 defer cancel()

4

5 var po models.PO

6 err := r.baseQuery(ctx).Where("po_number = ?", poNumber).First(&

po).Error

7

8 if err != nil {

9 if errors.Is(err, gorm.ErrRecordNotFound) {

10 return po, errors.New("PO not found")

11 }

12 return po, err

13 }

14 return po, nil

15 }

3.4 Kendala dan Solusi yang Ditemukan

3.4.1 Kendala

Dalam proses pengembangan sistem, berbagai kendala sering muncul baik
dari sisi teknis maupun non-teknis. Bagian ini akan menjelaskan kendala-kendala
yang dihadapi selama implementasi dan langkah-langkah solusi yang diterapkan
untuk mengatasinya.

1. Perubahan flow dari klien yang sering terjadi, sehingga beberapa modul dan
fitur harus dirombak berkali-kali dan mempengaruhi progres pengembangan.

2. Kurangnya konsistensi antar modul, yang menimbulkan kebingungan dalam
implementasi karena perbedaan pendekatan atau standar pengembangan antar

100
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

file modul.

3.4.2 Solusi

Untuk mengatasi kendala-kendala tersebut, beberapa langkah solusi
diterapkan agar proses pengembangan tetap efisien dan konsisten.

1. Mengadakan daily meeting dengan tim dan pihak klien untuk memastikan
setiap perubahan yang diminta sudah jelas, tercatat, dan disepakati sebelum
diterapkan pada sistem.

2. Menjaga konsistensi antar modul dengan melakukan koordinasi rutin bersama
supervisor, serta meminta supervisor melakukan pengecekan setiap kali
terjadi perubahan pada modul sebelum diintegrasikan ke sistem utama.

101
Pembuatan Website Logistik..., Russel Shivah Budiarto, Universitas Multimedia Nusantara

	BAB 3 Pelaksanaan Kerja Magang
	3.1 Kedudukan dan Koordinasi
	3.2 Tugas yang Dilakukan
	3.3 Uraian Pelaksanaan Magang
	3.3.1 Gambaran Umum Arsitektur Sistem
	3.3.2 Analisis Perancangan Sistem
	3.3.3 Pembuatan Model dan Data Transfer Object (DTO)
	3.3.4 Pembuatan Rute
	3.3.5 Pembuatan Handlers, Services, dan Repositories

	3.4 Kendala dan Solusi yang Ditemukan
	3.4.1 Kendala
	3.4.2 Solusi

