
BAB 3
PELAKSANAAN KERJA MAGANG

3.1 Kedudukan dan Koordinasi

Pelaksanaan magang diselenggarakan pada PT Kalbe Farma Tbk,
perusahaan bergerak di sektor farmasi yang berfokus pada inovasi berbasis
teknologi kesehatan dan data. Kegiatan magang berlangsung di fungsi CDT
yang berperan dalam pengembangan infrastruktur sistem internal guna mendukung
efisiensi operasional dan pengelolaan pengetahuan perusahaan. Dalam struktur
departemen, pembimbing lapangan ditunjuk dari tim Software Engineer dengan
peran sebagai lead software engineer, Russell Otniel Tjakra, untuk proyek
pengembangan ELN. Pelaksanaan magang berlangsung penuh secara daring
menggunakan platform kolaborasi terpadu serta manajemen proyek berbasis web.
Seluruh komunikasi operasional dilakukan melalui aplikasi pesan instan real-time,
sementara diskusi teknis dan evaluasi berkala dilaksanakan dalam format pertemuan
jarak jauh (remote meeting). Koordinasi harian berpusat pada sistem manajemen
proyek yang mengintegrasikan backlog, progress tracking, serta dokumentasi teknis
sehingga supervisi dapat dilaksanakan secara konsisten meskipun tanpa tatap
muka langsung. Pendekatan kolaborasi daring juga memfasilitasi partisipasi pada
retrospective dan sprint planning yang memastikan penyelarasan tugas magang
dengan prioritas pengembangan proyek secara berkelanjutan. Keterlibatan aktif
pada diskusi teknis, tinjauan kode, serta testing kolaboratif juga menjadi bagian
dari proses koordinasi yang dilakukan selama masa magang.

3.2 Tugas yang Dilakukan

Selama masa pelaksanaan kerja magang, berbagai tugas telah dilaksanakan
sesuai dengan fase dan proyek yang ditugaskan, terutama pada pengembangan
sistem ELN dan AI Chatbot Internal di PT Kalbe Farma Tbk. Setiap tugas bersifat
eksploratif dan iteratif, dengan tujuan memastikan bahwa solusi yang dirancang
dapat diimplementasikan secara teknis serta memenuhi kebutuhan user. Adapun
uraian tugas yang dilaksanakan adalah sebagai berikut:

1. Kontribusi pada Electronic Lab Notebook (ELN)
Pada proyek ELN, kontribusi berfokus pada pengembangan dan penyempurnaan

8
Kontribusi pada Pengembangan..., Oscar Jiro Harlison, Universitas Multimedia Nusantara

modul-modul konfigurasi sistem, meliputi User & Roles Management, Admin
& Tenant Management, serta Formula List. Selain modul utama, terdapat
pula beberapa pekerjaan eksploratif berupa proof of concept (POC) dan fitur
yang tidak dilanjutkan ke tahap final, seperti text editor kolaborasi, POC
sistem konfigurasi Operator Management, POC View-Only Instrument Booking
Calendar, serta POC document editor baru. Seluruh pekerjaan ini dilakukan
secara iteratif dengan memperhatikan konsistensi arsitektur, keamanan akses
berdasarkan peran, serta efisiensi pengelolaan data dalam lingkungan multi-
tenant.

2. Kontribusi pada AI Chatbot Internal
Pada proyek AI Chatbot Internal, kontribusi mencakup pengembangan UI dan
integrasi fungsional sistem chatbot. Lingkup pekerjaan meliputi perbaikan dan
penyempurnaan UI pada halaman percakapan, integrasi fitur manual prompt
antara frontend dan backend, serta pengembangan halaman admin beserta
Prompt Form Editor untuk mendukung konfigurasi internal. Pekerjaan dilakukan
secara bertahap melalui perancangan UI, definisi skema data, pembuatan RPC
dan struktur database, hingga integrasi dan validasi akhir untuk memastikan
fungsi chatbot dapat dikonfigurasi dan dijalankan secara konsisten.

Penjabaran teknis mengenai kontribusi yang dilakukan disajikan
pada subbab berikutnya secara terstruktur berdasarkan timeline dan modul
pengembangan.

9
Kontribusi pada Pengembangan..., Oscar Jiro Harlison, Universitas Multimedia Nusantara

3.3 Uraian Pelaksanaan Magang

Pelaksanaan kerja magang diuraikan seperti pada Tabel 3.1.

Tabel 3.1. Pekerjaan yang dilakukan tiap minggu selama magang

Minggu Ke- Pekerjaan yang Dilakukan

1 28 Juli – 1 Agustus 2025

• Inisialisasi modul User & Roles Management dan struktur
konfigurasi awal.

• Implementasi server-side pagination dan column filtering
dasar.

• Integrasi awal kolaborasi real-time pada text editor.

2 4 Agustus – 8 Agustus 2025

• Melanjutkan implementasi inisialisasi modul User & Roles
Management.

• Perbaikan scrollbar bug pada chat page AI chatbot internal.

• Perbaikan bug lanjutan pada integrasi text editor kolaborasi.

3 11 Agustus – 15 Agustus 2025

• Implementasi fitur manual prompt pada AI chatbot internal.

• Perbaikan scroll-down button bug pada chat page AI chatbot
internal.

• Pengembangan dasar konfigurasi sistem POC Operator
Management.

4 18 Agustus – 22 Agustus 2025

• Implementasi fitur pembuatan user baru pada User & Roles
Management.

• Penyelarasan UI konfigurasi untuk konsistensi modul.

• Melanjutkan penyusunan konfigurasi sistem POC Operator
Management.

Lanjut pada halaman berikutnya

10
Kontribusi pada Pengembangan..., Oscar Jiro Harlison, Universitas Multimedia Nusantara

Tabel 3.1 Pekerjaan yang dilakukan tiap minggu selama magang (lanjutan)

Minggu Ke- Pekerjaan yang Dilakukan

5 25 Agustus – 29 Agustus 2025

• Penyelesaian halaman pembuatan user baru.

• Implementasi role filtering, optimasi pengambilan data, dan
perbaikan performa server actions.

• Pembersihan RPC, trigger, dan tabel yang tidak digunakan.

6 1 September – 5 September 2025

• Inisialisasi modul Admin & Tenant Management.

• Penyesuaian code convention untuk konsistensi antar modul.

• Pembuatan layout awal Admin Page pada AI chatbot
internal.

7 8 September – 12 September 2025

• Penamaan ulang modul User & Roles serta Admin & Tenant
Management sesuai fungsinya, refactoring server actions,
serta implementasi fitur disabling user.

• Penyusunan UI draggable serta interaktivitas dasar awal
untuk Prompt Form Editor.

8 15 September – 19 September 2025

• Penyempurnaan UI draggable dan interaktivitas Prompt
Form Editor.

• Perancangan skema data Prompt Form yang bersifat
dinamis.

• Penyusunan types dan RPC awal untuk Prompt Form Editor.

• Refactoring tipe data pada modul User & Roles
Management.

9 22 September – 26 September 2025

Lanjut pada halaman berikutnya

11
Kontribusi pada Pengembangan..., Oscar Jiro Harlison, Universitas Multimedia Nusantara

Tabel 3.1 Pekerjaan yang dilakukan tiap minggu selama magang (lanjutan)

Minggu Ke- Pekerjaan yang Dilakukan

• Implementasi fitur user editing dan refactoring form pada
User & Roles serta Admin & Tenant Management.

• Penyusunan DDL dan DML awal untuk data Prompt Form
dinamis.

• Eksplorasi awal tampilan kalender untuk View-Only

Instrument Booking Calendar (POC).

10 29 September – 3 Oktober 2025

• Integrasi database dengan frontend Prompt Form Editor
(pengambilan section, field, dan opsi dinamis).

• Implementasi awal kalender view-only booking management
(POC) serta integrasi dengan database.

• Eksplorasi fitur dan opsi untuk POC document editor baru.

11 6 Oktober – 10 Oktober 2025

• Melanjutkan integrasi database dengan Prompt Form Editor.

• Penyempurnaan UI Prompt Form Editor agar konsisten
dengan struktur dinamis.

• Implementasi dan setup lanjutan POC document editor.

12 13 Oktober – 17 Oktober 2025

• Penyesuaian lanjutan Prompt Form Editor dan konsolidasi
struktur frontend-backend.

• Eksplorasi dan perancangan struktur Formula List untuk
manajemen formula.

13 20 Oktober – 24 Oktober 2025

Lanjut pada halaman berikutnya

12
Kontribusi pada Pengembangan..., Oscar Jiro Harlison, Universitas Multimedia Nusantara

Tabel 3.1 Pekerjaan yang dilakukan tiap minggu selama magang (lanjutan)

Minggu Ke- Pekerjaan yang Dilakukan

• Perancangan dan implementasi mekanisme saving berbasis
tracking perubahan pada Prompt Form Editor.

• Penanganan bug dan penyesuaian perilaku saving.

• Implementasi tampilan list formula per proyek.

14 27 Oktober – 31 Oktober 2025

• Integrasi Prompt Form Editor dengan Prompt Form dinamis
pada AI chatbot internal.

• Penyempurnaan UI dan perbaikan bug integrasi Prompt
Form.

• Refactoring fitur copy formula pada Formula List.

15 3 November – 7 November 2025

• Audit skema, optimasi struktur, dan konsolidasi Prompt
Form Editor.

• Perancangan validation schema berbasis konfigurasi field.

• Perbaikan bug lanjutan pada Prompt Form Editor.

16 10 November – 14 November 2025

• Integrasi validation schema ke Prompt Form Editor dan
Prompt Form dinamis.

• Bug fixing generation chat pada Prompt Form baru.

• Penyesuaian implementasi Formula List menjadi tampilan
per product di Product Management.

3.3.1 Kontribusi pada ELN

Proyek ELN berada pada tahap pengembangan lanjutan dengan integrasi
bertahap ke lingkungan staging. Setiap backlog ditetapkan oleh lead software
engineer sesuai prioritas kebutuhan user yang terus berkembang. Pekerjaan
pada proyek ini berfokus pada pengembangan modul-modul konfigurasi sistem

13
Kontribusi pada Pengembangan..., Oscar Jiro Harlison, Universitas Multimedia Nusantara

yang menjadi pusat pengelolaan berbagai entitas dan hanya dapat diakses oleh
user dengan hak admin. Modul-modul tersebut mendukung operasi pembuatan,
pembaruan, pengarsipan, dan penghapusan entitas yang diperlukan dalam
pengelolaan data pada sistem ELN. Kontribusi utama meliputi pengembangan
modul User & Roles Management, Admin & Tenant Management, serta Formula
List. Selain itu, beberapa pekerjaan eksploratif berupa POC juga dilakukan, seperti
integrasi awal text editor kolaboratif, modul Operator Management, implementasi
View-Only Instrument Booking Calendar, dan integrasi document editor, meskipun
tidak dilanjutkan ke tahap final. Setiap fitur yang telah diselesaikan melalui proses
evaluasi oleh tim SWE dan PM sebelum digabungkan ke dalam lingkungan staging

untuk pengujian lebih lanjut.

A User & Roles Management (Week 1–9)

Modul User & Roles Management merupakan bagian dari konfigurasi sistem
yang memungkinkan admin untuk mengelola data user beserta roles masing-
masing. Pengelolaan ini dibatasi pada tenant yang menjadi ruang lingkup otoritas
admin. Modul ini dikembangkan dalam bentuk tabel data interaktif yang dilengkapi
dengan pagination dan filtering kolom untuk memudahkan navigasi serta pencarian
data user. Implementasi berfokus pada pembuatan struktur tabel, pengaturan server

actions, serta integrasi API requests untuk mendukung pemrosesan data secara
server-side agar sistem tetap efisien dan konsisten. Melalui modul ini, pengelolaan
akun user di setiap tenant dapat dilakukan secara terpusat dan aman.

A.1 Kontribusi Berdasarkan Timeline

Berikut adalah kontribusi pada modul User & Roles Management
berdasarkan timeline:

A.1.1 Week 1–2: Inisialisasi Modul

Tahap awal pengembangan difokuskan pada pembuatan tabel data
interaktif dengan dua kolom utama, yaitu username dan roles. Nilai roles

direpresentasikan sebagai array string yang ditampilkan sebagai comma-

separated list untuk menjaga readability. Filtering kolom diterapkan pada
username untuk mendukung pencarian server-side, sementara mekanisme
pagination diterapkan untuk membatasi jumlah data yang ditampilkan setiap

14
Kontribusi pada Pengembangan..., Oscar Jiro Harlison, Universitas Multimedia Nusantara

halaman. Tampilan tabel tersebut ditunjukkan pada Gambar 3.1, dengan judul
USER di atas tabel.

Gambar 3.1. Tabel User & Roles Management dengan kolom username dan roles

Seluruh proses pengambilan data mengikuti pola server-side dengan alur
sebagai berikut:

1. Melakukan autentikasi ke identity provider eksternal.

2. Mengambil seluruh daftar user melalui endpoint API.

3. Melakukan pemanggilan tambahan untuk setiap user guna memperoleh
informasi tenant dan roles (N+1 request).

4. Melakukan filtering in-memory berdasarkan hak akses tenant dan filter kolom.

5. Menghitung jumlah total data secara manual karena tidak tersedia endpoint

bawaan.

6. Memotong data sesuai parameter halaman sebelum dikirim ke UI.

Alur pemrosesan ini ditunjukkan pada Kode 3.1.

1 c o n s t f e t c h U s e r s R o l e s = async (params : Fe tchParams) : Promise<{
rows : User [] , t o t a l C o u n t : number }> => {

15
Kontribusi pada Pengembangan..., Oscar Jiro Harlison, Universitas Multimedia Nusantara

2 c o n s t { pageIndex , pageS ize , u s e r n a m e F i l t e r , c u r r e n t A d m i n T e n a n t
} = params ;

3

4 / / F e t c h a l l u s e r s
5 c o n s t u s e r s : User [] = a w a i t g e t A l l U s e r s (u s e r n a m e F i l t e r) ;
6

7 / / E n r i c h u s e r s wi th r o l e s and t e n a n t s
8 f o r (c o n s t u s e r o f u s e r s) {
9 u s e r . r o l e s = a w a i t g e t U s e r R o l e s (u s e r . i d) ;

10 u s e r . t e n a n t = a w a i t g e t U s e r T e n a n t (u s e r . i d) ;
11 }
12

13 / / Apply t e n a n t f i l t e r and g e t t o t a l c o u n t
14 c o n s t f i l t e r e d = u s e r s . f i l t e r (u s e r => u s e r . t e n a n t ===

c u r r e n t A d m i n T e n a n t) ;
15 c o n s t t o t a l C o u n t = f i l t e r e d . l e n g t h ;
16

17 / / P a g i n a t e
18 c o n s t rows = f i l t e r e d . s l i c e (page Index * pageS ize , (page Index +

1) * p a g e S i z e) ;
19

20 r e t u r n { rows , t o t a l C o u n t } ;
21 }

Kode 3.1: Alur pengambilan data modul User & Roles Management

Role assignment juga diinisialisasi pada tahap ini, yang dapat dilakukan
melalui dialog Assign Role yang menampilkan satu field username read-only dan
multiselect untuk memilih roles, dengan tombol konfirmasi yang menjalankan
server action dan memuat ulang tabel setelah perubahan tersimpan. Perubahan
roles tidak dilakukan dengan menghapus dan menulis ulang seluruh daftar roles,
namun dengan menghitung selisih antara roles lama dan roles baru sehingga hanya
perubahan yang dikirimkan.

A.1.2 Week 4–5: Penambahan Role Filtering, Optimasi Mekanisme
Fetching, Pembaruan UI, dan Fitur Pembuatan User Baru

Pada tahap ini dilakukan perluasan fitur filtering dengan menambahkan filter
berbasis role pada kolom roles, sehingga admin dapat melakukan pencarian user
tidak hanya berdasarkan username tetapi juga berdasarkan role yang dimiliki.
Perubahan ini berdampak langsung pada mekanisme pengambilan data, karena
identity provider tidak menyediakan endpoint bawaan untuk melakukan pagination

16
Kontribusi pada Pengembangan..., Oscar Jiro Harlison, Universitas Multimedia Nusantara

sekaligus filtering berdasarkan role. Akibatnya, logika server actions harus
diperluas agar dapat menangani dua mode pengambilan data yang berbeda.

Mode pertama berlaku ketika hanya kolom username yang difilter; pada
kasus ini masih dapat digunakan endpoint pencarian bawaan dengan server-side

pagination yang efisien. Mode kedua berlaku ketika terdapat filter role; pada
kondisi tersebut, pendekatan berubah menjadi progressive batched fetching untuk
mengambil user dalam batch kecil secara bertahap, memperkaya (enrich) tiap
entri dengan informasi role dan tenant, kemudian melakukan filtering in-memory.
Pendekatan ini memungkinkan penghentian dini (early termination) segera setelah
jumlah hasil yang dibutuhkan tercapai, sehingga mengurangi beban memori dan
biaya permintaan API yang tidak relevan dibandingkan mengambil seluruh user
sekaligus.

Implementasi progressive batched fetching menggunakan offset-based

pagination dalam batch kecil. Pendekatan ini menghindari pemuatan seluruh
dataset ke memori sekaligus dan memungkinkan penghentian dini segera setelah
jumlah hasil yang dibutuhkan untuk halaman aktif terpenuhi. Dengan strategi ini,
sistem hanya memroses data yang diperlukan tanpa melakukan enrichment dan
filtering terhadap seluruh dataset. Progressive batched fetching ini diperjelas pada
Kode 3.2.

1 async f u n c t i o n p r o g r e s s i v e B a s e d F e t c h (
2 f i l t e r s : F i l t e r P a r a m s ,
3 page Index : number ,
4 p a g e S i z e : number
5) : Promise<{ u s e r s : User [] ; t o t a l C o u n t : number }> {
6 c o n s t r e s u l t s : User [] = [] ;
7 l e t o f f s e t = 0 ;
8 c o n s t b a t c h S i z e = 5 0 ;
9 c o n s t t a r g e t E n d = (page Index + 1) * p a g e S i z e ;

10

11 w h i l e (r e s u l t s . l e n g t h < t a r g e t E n d) {
12 c o n s t b a t c h = a w a i t f e t c h U s e r s (o f f s e t , b a t c h S i z e) ;
13

14 i f (b a t c h . l e n g t h === 0) b r e a k ;
15

16 c o n s t e n r i c h e d = a w a i t e n r i c h W i t h R o l e s A n d T e n a n t s (b a t c h) ;
17 c o n s t f i l t e r e d = a p p l y F i l t e r s (e n r i c h e d , f i l t e r s) ;
18

19 r e s u l t s . push (. . . f i l t e r e d) ;
20 o f f s e t += b a t c h S i z e ;

17
Kontribusi pada Pengembangan..., Oscar Jiro Harlison, Universitas Multimedia Nusantara

21

22 i f (b a t c h . l e n g t h < b a t c h S i z e) b r e a k ;
23 }
24

25 c o n s t p a g i n a t e d U s e r s = r e s u l t s . s l i c e (
26 page Index * pageS ize ,
27 t a r g e t E n d
28) ;
29

30 r e t u r n { u s e r s : p a g i n a t e d U s e r s , t o t a l C o u n t : r e s u l t s . l e n g t h } ;
31 }

Kode 3.2: Progressive batched fetching dengan early termination

Dari sisi UI, kolom roles diperbarui agar tidak hanya menampilkan teks
berisi daftar role, tetapi menampilkan komponen expandable chips dengan dua chip

pertama terlihat dan sisanya tersembunyi. Selain meningkatkan keterbacaan, pola
penyajian ini juga konsisten dengan komponen tabel pada modul konfigurasi lain.
Dilakukan juga pembaruan layout modul konfigurasi, di mana struktur sebelumnya
menggunakan komponen accordion sehingga tabel hanya terlihat ketika dibuka
karena mengikuti UI preseden lama, tetapi accordion tersebut tidak memberikan
tujuan yang jelas. Komponen tersebut diganti menjadi tampilan statis dengan judul
dan kontainer tabel agar UI lebih konsisten dengan modul lain, termasuk Operator
Management yang masih dalam tahap awal pengembangan. Tampilan tabel setelah
pembaruan ini ditunjukkan pada Gambar 3.2.

Selain fitur filtering, ditambahkan pula fitur pembuatan user baru langsung
dari modul konfigurasi tanpa perlu menggunakan platform eksternal. Fitur
ini tersedia melalui tombol Add User dan membuka dialog berisi field seperti
username, email, password, serta role yang ingin ditugaskan. Selama proses
submit, server action membuat user baru di identity provider, menetapkan user ke
tenant milik admin, lalu menambahkan role yang dipilih. Dialog pembuatan user
juga memberi preview tenant user akan ditempatkan melalui sebuah disabled field,
dan melakukan validasi dasar seperti keunikan username serta keberadaan minimal
satu role sebelum submit.

18
Kontribusi pada Pengembangan..., Oscar Jiro Harlison, Universitas Multimedia Nusantara

A.1.3 Week 7–8: Penyesuaian Code Convention, Penamaan Ulang Modul,
Refactoring Server Action dan Type, serta Penambahan Fitur
Disabling User

Pada tahap ini dilakukan penyesuaian menyeluruh terhadap struktur kode
dan penamaan modul agar modul konfigurasi lebih konsisten dengan pola yang telah
digunakan pada konfigurasi sistem lain. Modul Role Assignment diubah menjadi
User & Roles Management karena fungsinya tidak lagi terbatas pada penetapan
role, melainkan mencakup pengelolaan user secara penuh. Demikian pula, modul
Tenant Assignment diubah menjadi Admin & Tenant Management karena modul
ini telah berkembang menjadi modul manajemen tenant dan admin, bukan hanya
penugasan tenant.

Penyesuaian code convention dilakukan pada beberapa aspek utama.
Pertama, struktur server actions dipisahkan ke dalam directory terdedikasi agar
setiap fungsi memiliki tanggung jawab tunggal dan dapat digunakan lintas modul
apabila diperlukan. Kedua, komponen form yang lama diganti dengan komponen
baru seperti untuk field yang mendukung aturan validasi terpusat, termasuk integrasi
dengan hook useFormDialog untuk penanganan dialog yang lebih terstruktur.
Ketiga, dilakukan penyelarasan penamaan, style UI, dan struktur directory agar
konsisten dengan modul konfigurasi lain seperti Material dan Product Management.

Selain penataan struktur kode, dilakukan refactoring tipe data pada modul
User & Roles Management. Sebelumnya, tipe user yang digunakan merupakan
tipe buatan sendiri. Refactoring dilakukan dengan mengganti tipe tersebut
menggunakan tipe representasi user bawaan identity provider agar lebih selaras
dengan struktur respons API dan menyediakan atribut tambahan seperti enabled,
yang diperlukan untuk fitur disabling user. Refactoring ini mencakup pembaruan
tipe pada komponen, fungsi server actions, serta penghapusan definisi tipe lama
yang sudah tidak relevan.

Pada tahap ini juga ditambahkan fitur disable user untuk memungkinkan
admin menonaktifkan akun user tanpa perlu menghapus data. Fitur ini disertai
penambahan kolom status pada tabel agar informasi enabled atau disabled

terlihat langsung di UI. Aksi disabling dilakukan melalui server action khusus yang
mengubah status enabled dan kemudian me-reload tabel. User yang berstatus
disabled juga tidak dapat diedit melalui dialog form untuk menjaga integritas
data. Tampilan tabel setelah penambahan kolom status dan tindakan disabling
ditunjukkan pada Gambar 3.2 berikut.

19
Kontribusi pada Pengembangan..., Oscar Jiro Harlison, Universitas Multimedia Nusantara

Gambar 3.2. Tabel User Management dengan kolom username, roles berbentuk chips,
dan status, masing-masing kolom dengan filter

A.1.4 Week 9: User Editing dan Refactoring Form (Bersama Admin &
Tenant Management)

Fitur pengeditan user ditambahkan agar admin dapat memperbarui informasi
user langsung melalui modul konfigurasi tanpa perlu menggunakan platform
eksternal. Implementasi dilakukan secara seragam pada modul User & Roles
Management dan Admin & Tenant Management sehingga kedua modul memiliki
perilaku UI dan alur pemrosesan data yang konsisten. Fitur ini melengkapi siklus
penuh manajemen user, yakni pembuatan akun, penyesuaian roles, disabling akun,
dan kini pembaruan atribut user.

Alur pengeditan dilakukan melalui dialog form yang ditampilkan setelah
admin memilih satu baris user pada tabel dan menekan tombol Edit User. Data
awal form diisi menggunakan informasi user yang sudah ada, sementara field

password bersifat opsional sehingga admin dapat memperbarui data profil tanpa
harus mengubah kata sandi. Setelah dikirim, perubahan diteruskan ke server

action khusus yang hanya mengirim atribut yang dimodifikasi ke identity provider

sehingga tidak seluruh data user ditimpa kembali.
Agar form dapat digunakan baik untuk operasi pembuatan maupun

pengeditan, dialog yang sebelumnya dipisahkan menjadi dua komponen digabung
menjadi satu komponen UserForm dengan parameter mode (add atau edit).
Pendekatan ini menghilangkan duplikasi logika validasi dan mengurangi

20
Kontribusi pada Pengembangan..., Oscar Jiro Harlison, Universitas Multimedia Nusantara

ketergantungan antar komponen. Struktur yang sudah di-refactor ini dapat dilihat
pada Kode 3.3 berikut:

1 / / BEFORE : S e p a r a t e u s e r forms
2 <AddUserForm />
3 <Edi tUserForm />
4

5 / / AFTER : U n i f i e d u s e r forms wi th mode prop
6 c o n s t UserForm = ({ mode , i n i t i a l D a t a } : UserFormProps) => {
7 c o n s t schema = mode === ’ add ’ ? addUserSchema : ed i tUse rSchema ;
8

9 c o n s t h a n d l e S u b m i t = async (d a t a : UserFormData) => {
10 i f (mode === ’ add ’) {
11 a w a i t c r e a t e U s e r (d a t a) ;
12 } e l s e {
13 a w a i t e d i t U s e r D e t a i l s ({ . . . da t a , u s e r I d : i n i t i a l D a t a . i d }) ;
14 }
15 } ;
16

17 r e t u r n (
18 / / Form UI
19) ;
20 }

Kode 3.3: Struktur unified form component dengan mode add dan edit

A.2 Outcome

Modul telah dinilai stabil dan konsisten dengan standar konvensi konfigurasi
sistem, dengan fungsi yang mencakup pengelolaan user dan roles secara terpusat.
Modul telah diintegrasikan ke lingkungan staging dan siap mendukung pengelolaan
user dan roles dalam ELN.

B Admin & Tenant Management (Week 6–9)

Modul Admin & Tenant Management dirancang untuk mendukung fungsi
admin tingkat tinggi yang hanya dapat diakses oleh superadmin, yakni peran dengan
hak akses penuh terhadap seluruh tenant. Modul ini memungkinkan pengelolaan
tenant dan admin dari semua tenant. Sebagaimana modul konfigurasi sistem
lainnya, UI dikembangkan dalam bentuk tabel data dengan fitur pagination dan
filtering kolom. Implementasi dilakukan dengan membangun mekanisme server

21
Kontribusi pada Pengembangan..., Oscar Jiro Harlison, Universitas Multimedia Nusantara

actions dan API requests yang mendukung operasi create, update, dan disable baik
untuk akun admin maupun entitas tenant.

B.1 Kontribusi Berdasarkan Timeline

Berikut adalah kontribusi pada modul Admin & Tenant Management
berdasarkan timeline:

B.1.1 Week 6: Inisialisasi Modul

Tahap awal pengembangan modul Admin & Tenant Management
difokuskan pada pembuatan tabel data untuk menampilkan daftar admin beserta
tenant yang mereka kelola. Dua kolom utama yang ditampilkan adalah username

dan tenant, dilengkapi dengan mekanisme filtering kolom dan pagination. Seluruh
proses pengambilan data dilakukan melalui server actions karena API yang
tersedia tidak menyediakan endpoint pagination ataupun filtering terstruktur untuk
kebutuhan ini. Tampilan tabel ini secara final dapat dilihat pada Gambar 3.3.

Alur pengambilan data dilakukan secara server-side melalui fungsi
pemrosesan yang menerima parameter pageIndex, pageSize, dan filter kolom.
Fungsi tersebut mengambil daftar admin, memetakan tenant yang terkait,
menerapkan filter berdasarkan username dan tenant, menghitung total data yang
memenuhi kriteria, kemudian memotong array hasil filtering sesuai offset dan
pageSize. Alur ini ditunjukkan pada Kode 3.4 berikut.

1 c o n s t f e t c h A d m i n s T e n a n t s = async (params : Fe tchParams) : Promise<{
rows : Admin [] ; t o t a l C o u n t : number }> => {

2 c o n s t { pageIndex , pageS ize , u s e r n a m e F i l t e r , c u r r e n t A d m i n T e n a n t
} = params ;

3

4 c o n s t admins = a w a i t f e t c h A l l A d m i n s (u s e r n a m e F i l t e r) ;
5

6 f o r (c o n s t admin o f admins) {
7 admin . t e n a n t s = a w a i t f e t c h T e n a n t s (admin) ;
8 }
9

10 c o n s t f i l t e r e d = admins . f i l t e r (admin => admin . t e n a n t s . i n c l u d e s (
c u r r e n t A d m i n T e n a n t)) ;

11 c o n s t t o t a l C o u n t = f i l t e r e d . l e n g t h ;
12

22
Kontribusi pada Pengembangan..., Oscar Jiro Harlison, Universitas Multimedia Nusantara

13 c o n s t rows = f i l t e r e d . s l i c e (page Index * pageS ize , (page Index +
1) * p a g e S i z e) ;

14

15 r e t u r n { rows , t o t a l C o u n t } ;
16 }

Kode 3.4: Alur pemrosesan server-side untuk modul Admin & Tenant

Pada tahap ini juga diimplementasikan fitur pembuatan admin user baru
melalui dialog yang dapat diakses dari tombol Add Admin. Dialog ini memuat field

untuk username, email, password, serta pemilihan tenant yang akan di-assign

kepada admin tersebut. Validasi dasar diterapkan untuk memastikan keunikan
username dan kelengkapan data sebelum submit.

Selain itu, fitur pembuatan tenant baru juga diimplementasikan pada tahap
ini melalui dialog terpisah yang dapat diakses dari tombol Add Tenant. Dialog
ini hanya berisi field untuk tenant name. Setelah tenant berhasil dibuat, tenant
tersebut dapat langsung di-assign ke admin melalui dialog pengeditan admin atau
dialog pembuatan admin baru.

B.1.2 Week 7–8: Penyesuaian Code Convention, Penamaan Ulang Modul,
Refactoring Server Action dan Type, Disabling User (Bersama User &
Roles Management)

Penamaan ulang modul dilakukan dari Tenant Assignment menjadi Admin

& Tenant Management untuk mencerminkan ruang lingkup yang meluas, yaitu
dari sekadar penugasan tenant menjadi pengelolaan entitas admin dan tenant secara
penuh. Pada tahap ini dilakukan penyesuaian konvensi kode, pemindahan ulang
server actions ke dalam directory terpisah berdasarkan tanggung jawab, serta
penyelarasan struktur direktori agar identik dengan pola yang telah diterapkan pada
modul User & Roles Management.

Refactoring tipe juga dilakukan untuk menghapus tipe user buatan
sebelumnya dan menggantinya dengan StandardizedUser standar yang sudah
mendukung atribut enabled. Perubahan ini diperlukan agar fungsi disabling user
dapat diterapkan secara seragam pada kedua modul.

Fitur disable user ditambahkan dengan pola yang sama seperti pada modul
User & Roles Management: status user ditentukan oleh atribut enabled, sebuah
kolom status ditampilkan pada tabel, dan baris user yang berada pada keadaan
nonaktif dibatasi dari operasi pengeditan. Dengan pendekatan ini, kedua modul
berbagi sistem perilaku yang konsisten tanpa duplikasi implementasi. Tampilan

23
Kontribusi pada Pengembangan..., Oscar Jiro Harlison, Universitas Multimedia Nusantara

tabel Admin & Tenant Management setelah penamaan ulang dan penambahan
kolom status beserta fitur disable/enable user ditunjukkan pada Gambar 3.3.

Gambar 3.3. Tabel Admin & Tenant Management dengan kolom username, tenants, dan
status serta menu aksi Disable/Enable

B.1.3 Week 9: User Editing & Refactoring Form (bersama User & Roles
Management)

Fitur pengeditan admin ditambahkan untuk memungkinkan pembaruan data
user dan tenant secara langsung melalui tabel konfigurasi. Implementasinya
mengikuti pola umum yang telah digunakan pada modul User & Roles
Management, yaitu penggunaan komponen form tunggal dengan mode add dan
edit yang diatur melalui properti mode. Pendekatan ini menghilangkan kebutuhan
untuk memelihara dua komponen terpisah dan memastikan validasi, struktur field,
dan perilaku dialog tetap konsisten.

Refactoring dilakukan terhadap keseluruhan dialog form, termasuk
pemanfaatan useFormDialog untuk pengendalian state dan konfirmasi, serta
penggunaan komponen field yang telah diperbarui untuk mendukung validasi skema
dan pesan kesalahan terpusat. Perbedaan utama dibandingkan modul User & Roles
Management terletak pada kebutuhan pemilihan tenant. Pada mode pengeditan,
nilai tenant awal dipetakan kembali ke pilihan dropdown dan selalu ditampilkan
secara sinkron dengan data user yang sedang diedit.

Selain itu, seperti di User & Roles Management, setelah melakukan seleksi

24
Kontribusi pada Pengembangan..., Oscar Jiro Harlison, Universitas Multimedia Nusantara

admin, pengeditan informasi admin dapat dilakukan dengan mengeklik tombol Edit

Admin untuk membuka dialog form dengan field username (read-only), email,
name, password opsional, dan tenant select.

Dengan perubahan ini, kedua modul kini berbagi pola form yang identik,
dapat dipelihara secara paralel, dan memungkinkan penambahan fitur lanjutan
seperti perubahan tenant, perubahan password opsional, serta penyelarasan tombol
aksi tanpa memengaruhi konsistensi UI.

B.2 Outcome

Modul telah dinilai stabil dan konsisten dengan standar konvensi konfigurasi
sistem, dengan fungsi yang mencakup pengelolaan admin dan tenant secara
terpusat. Modul telah diintegrasikan ke lingkungan staging dan siap mendukung
pengelolaan admin dan tenant dalam ELN.

C Formula List (Week 12–16)

Fitur Formula List merupakan komponen konfigurasi sistem yang dirancang
untuk memudahkan user dalam meninjau seluruh formula yang terkait dengan
suatu produk tertentu. Dalam konteks logika bisnis, formula dapat dipahami
sebagai variasi atau susunan tahapan pembuatan suatu produk beserta material yang
digunakan pada setiap tahapnya. Secara struktural, sebuah formula berada dalam
suatu eksperimen, yang kemudian berada dalam sebuah proyek, yang kemudian
berada dalam sebuah produk. Pada tahap awal, kebutuhan user mengarah pada
penyajian daftar formula dalam cakupan proyek. Selanjutnya, terjadi penyesuaian
kebutuhan lanjutan yang mengarahkan pengembangan pada tampilan daftar formula
per produk untuk memberikan akses cepat terhadap seluruh formula yang relevan
dalam satu tempat. Penyesuaian berlapis ini menjadi dasar pengembangan Formula
List sehingga fitur yang dihasilkan selaras dengan kebutuhan user dan mendukung
efisiensi proses peninjauan formula.

C.1 Kontribusi Berdasarkan Timeline

Berikut adalah kontribusi pada Formula List berdasarkan timeline:

25
Kontribusi pada Pengembangan..., Oscar Jiro Harlison, Universitas Multimedia Nusantara

C.1.1 Week 12: Eksplorasi dan Definisi Struktur

Tahap ini difokuskan pada eksplorasi kebutuhan bisnis dan penentuan
struktur tampilan untuk fitur Formula List. Proses dimulai melalui diskusi untuk
memastikan alur data yang harus ditampilkan: produk → proyek → eksperimen →
formula → tahap → material. Tahap ini juga berfungsi sebagai fase pembelajaran
domain, karena pemahaman struktur hierarki tersebut menjadi syarat utama
sebelum merancang tampilan dan pola interaksi.

Dari sisi kebutuhan UI, daftar formula tidak ditampilkan sebagai halaman
tersendiri, melainkan muncul sebagai dialog ketika user memilih sebuah proyek
pada halaman daftar proyek. Dialog ini harus menampilkan seluruh formula dalam
ruang lingkup proyek tersebut tanpa kehilangan konteks asalnya. Berdasarkan
hasil evaluasi beberapa alternatif tampilan (tabel nested, tab-based navigation, baris
expandable), struktur nested accordion dipilih sebagai solusi paling sesuai karena
mampu menampilkan hierarki multi-level tanpa membebani ruang tampilan utama.
Struktur akhir yang disepakati adalah sebagai berikut: lapisan pertama adalah daftar
eksperimen dalam proyek, setiap eksperimen menampilkan daftar formula, setiap
formula berisi daftar tahapan, dan setiap tahap menampilkan tabel material yang
digunakan.

C.1.2 Week 13: Implementasi Tampilan List Formula Per Proyek

Struktur nested accordion yang telah dikonfirmasi pada tahap sebelumnya
mulai diimplementasikan pada minggu ini. Implementasi mencakup pembuatan
remote procedure call (RPC) baru untuk mengambil data formula dalam lingkup
proyek secara hierarkis, penyusunan server action dengan pemetaan tipe data
berlapis, serta pembangunan dialog UI yang menampilkan data tersebut dalam
bentuk nested accordion. Seluruh proses ditujukan agar struktur bisnis formula
dapat ditampilkan secara lengkap dalam satu tampilan tanpa perlu membuka
halaman detail eksperimen.

Pada lapisan database, ditambahkan RPC get project formula list

yang menghasilkan sebuah struktur JSONB berisi daftar eksperimen dan seluruh
formula beserta tahap serta materialnya. Untuk menghindari masalah N+1 query,
seluruh struktur dihimpun dalam satu eksekusi fungsi tersebut. Pseudocode struktur
logika pengambilan data ditunjukkan pada Kode 3.5.

26
Kontribusi pada Pengembangan..., Oscar Jiro Harlison, Universitas Multimedia Nusantara

1 CREATE OR REPLACE FUNCTION get_project_formula_list(p_project_id

UUID)

2 RETURNS JSONB AS $$

3 BEGIN

4 RETURN (

5 -- Build project object

6 SELECT jsonb_build_object(

7 ’project_id’, pr.project_id ,

8 ’experiments’, (

9 -- Build experiments array

10 SELECT jsonb_agg(exp_data ORDER BY e.created_at DESC)

11 FROM (

12 SELECT jsonb_build_object(

13 ’experiment_id’, e.experiment_id ,

14 ’formulas’, (

15 -- Build formulas array , then stages , then materials

...

16)

17) AS exp_data

18 FROM experiment e

19 WHERE e.project_id = pr.project_id

20) experiments

21)

22)

23 FROM project pr

24 WHERE pr.project_id = p_project_id

25);

26 END;

27 $$ LANGUAGE plpgsql;

Kode 3.5: RPC get project formula list untuk struktur hierarkis

Pada halaman daftar proyek, setelah user memilih satu baris proyek, muncul
tombol aksi View Formula List yang ketika ditekan membuka dialog tersebut.
Dialog Formula List yang muncul menampilkan struktur nested accordion yang
sudah disepakati sebelumnya: eksperimen sebagai accordion tingkat pertama,
formula pada tingkat kedua, tahap pada tingkat ketiga, dan tabel material pada
bagian terdalam. Struktur tabel dipilih untuk material karena data material memiliki
kolom numerik, unit, status stok, serta informasi batch yang lebih mudah dipindai
dalam bentuk tabel. Dialog ini secara final ditunjukkan pada Gambar 3.4.

27
Kontribusi pada Pengembangan..., Oscar Jiro Harlison, Universitas Multimedia Nusantara

C.1.3 Week 14: Refactoring Fitur Copy Formula

Fitur Copy Formula pada modul lain dalam sistem memiliki struktur
tampilan dan hierarki data yang serupa dengan Formula List, yaitu menampilkan
formula beserta tahap dan material dalam susunan nested accordion. Perbedaannya
terletak pada kemampuan pemilihan formula sebagai template, serta adanya
pagination dan filtering untuk membantu memilih formula dalam jumlah besar.
Karena terdapat tumpang tindih yang signifikan dalam struktur UI serta pemetaan
data, dilakukan refactoring menyeluruh agar logika tampilan, pengelolaan state

accordion, dan mekanisme pengambilan data dapat digunakan kembali secara
konsisten oleh kedua fitur.

Proses refactoring dilakukan dengan mengekstraksi seluruh logika utama
menjadi satu komponen dasar BaseFormulaDialog yang dapat dikonfigurasi,
sementara kedua dialog hanya berperan sebagai wrapper yang menentukan mode
dan sumber data. Dengan pendekatan ini, komponen Formula List dalam
konteks proyek menggunakan mode tampilan read-only, sedangkan fitur Copy

Formula tetap mendukung pemilihan dan aksi lanjutan. Secara keseluruhan,
BaseFormulaDialog tersebut mengelola hal-hal berikut secara terpusat:

1. State ekspansi accordion pada tingkat formula dan tahap.

2. State pemilihan formula (hanya aktif pada mode copy).

3. Pagination (pageIndex, pageSize, totalCount).

4. Filtering berdasarkan nama formula.

Dengan abstraksi ini, baik komponen Formula List per proyek maupun Copy

Formula hanya melakukan konfigurasi cukup dengan menggunakan komponen
BaseFormulaListDialog dan menyesuaikan melalui props. Refactoring ini
menurunkan ukuran kode pada kedua dialog secara signifikan, menghilangkan
duplikasi logika, memastikan konsistensi UI serupa antar fitur, serta membawa
fitur pagination dan filtering ke Formula List per proyek. Selain itu, komponen
hasil refactoring tetap kompatibel dengan struktur respons RPC sebelumnya
sehingga tidak memerlukan perubahan pada sisi database. Tampilan dialog setelah
refactoring ditunjukkan pada Gambar 3.4, tetap dengan struktur nested accordions

namun sekarang dengan tambahan filtering dan pagination.

28
Kontribusi pada Pengembangan..., Oscar Jiro Harlison, Universitas Multimedia Nusantara

Gambar 3.4. Dialog Formula List berbentuk nested accordions setelah refactoring dengan
pagination dan search field

C.1.4 Week 16: Revisi Akhir ke Tampilan Per Produk di Konfigurasi Sistem
Product Management

Perubahan kebutuhan user menyebabkan daftar formula tidak lagi
ditampilkan per proyek, melainkan langsung pada konteks produk untuk
mempermudah akses informasi tanpa harus membuka halaman eksperimen atau
proyek terlebih dahulu. Oleh karena itu, integrasi Formula List dipindahkan ke
modul Product Management dan diimplementasikan sebagai halaman terpisah,
bukan dialog. Dengan pendekatan ini, user dapat memilih satu baris produk
dan memilih aksi View Formula List, kemudian diarahkan ke halaman dengan
breadcrumb yang menunjukkan konteks navigasi konfigurasi sistem.

Tampilan baru menggunakan tabel data dengan server-side pagination,
filtering, dan sorting berdasarkan nama formula, nama eksperimen, serta tanggal
pembuatan. Seluruh data diperoleh melalui RPC yang telah tersedia sebelumnya,
sehingga tidak diperlukan perubahan struktur basis data. Struktur halaman
dirancang sebagai berikut:

1. Aksi View Formula List pada modul Product Management.

2. Routing menuju halaman /product-management/[product-id]/formula.

29
Kontribusi pada Pengembangan..., Oscar Jiro Harlison, Universitas Multimedia Nusantara

3. Penampilan tabel daftar formula disertai kolom nama formula, eksperimen, dan
created at.

4. Filtering per kolom dan pagination berbasis server.

Pada halaman Product Management, setelah user memilih satu baris produk,
muncul tombol aksi View Formula List. Setelah tombol ditekan, user diarahkan
ke halaman Formula List dengan breadcrumb yang menunjukkan navigasi dari
Product Management ke produk spesifik. Halaman menampilkan tabel formula
dengan pagination dan filtering. Tampilan halaman ini ditunjukkan pada Gambar
3.5 berikut.

Gambar 3.5. Halaman Formula List dengan breadcrumbs, tabel formula, pagination, dan
filter

Tahap berikutnya adalah untuk menampilkan rincian tahap dan material
dalam bentuk grid setelah user memilih suatu baris formula pada tabel. Bagian ini
belum diimplementasikan pada saat penulisan ini, namun struktur data penelitian
telah disiapkan sehingga integrasi lanjutan dapat dilakukan tanpa perubahan
signifikan pada data flow di sisi server maupun client.

Pendekatan ini menutup pengembangan Formula List pada konteks proyek,
menyatukan sumber informasi ke dalam satu modul konfigurasi sistem, serta
menyederhanakan proses pemeriksaan hubungan antara produk dan seluruh formula
yang memanfaatkannya.

30
Kontribusi pada Pengembangan..., Oscar Jiro Harlison, Universitas Multimedia Nusantara

C.2 Outcome

Fitur ini masih berada dalam tahap pengembangan lanjutan, namun struktur
kebutuhan dan cakupan fungsional telah dikonfirmasi melalui evaluasi bersama
user. Perubahan iteratif yang terjadi merupakan hasil penyesuaian kebutuhan yang
masih dalam batas wajar pengembangan fitur.

D POC/Fitur yang Dihentikan atau Ditahan

Selain pengembangan fitur utama, terdapat beberapa pekerjaan eksploratif
berupa POC dan pengembangan modul awal yang tidak dilanjutkan hingga
tahap final. Seluruh POC ini dikembangkan sebagai bagian dari proses
evaluasi kebutuhan sistem, baik untuk menguji kelayakan solusi teknis maupun
untuk menilai kesesuaian dengan kebutuhan user. Penghentian masing-masing
POC umumnya dipengaruhi perubahan prioritas pengembangan akibat adanya
penyesuaian kebutuhan user serta ditemukannya redundansi fitur dengan modul
yang telah ada. Meskipun tidak dirilis sebagai fitur akhir, rangkaian pekerjaan
ini memberikan kontribusi penting dalam memahami batasan teknis, arah
pengembangan modul di tahap selanjutnya, serta keputusan sistematis terkait fitur
yang layak dilanjutkan.

Terkecuali untuk POC Document Editor (Week 10–11), dokumentasi visual
untuk fitur-fitur POC berikut tidak dapat disertakan karena seluruh implementasi
telah mengalami breaking changes dan tidak lagi dapat diakses pada lingkungan
pengembangan saat penulisan dokumentasi dilakukan.

D.1 Text Editor Kolaborasi (Week 1–2)

Text Editor Kolaborasi merupakan POC editor teks real-time yang telah
dikembangkan sebelumnya sebagai modul terpisah. Pada tahap ini, fokus pekerjaan
bukan pada pembangunan editor dari awal, melainkan pada proses integrasi editor
tersebut ke dalam sistem ELN dan penyelarasan mekanisme sinkronisasi agar sesuai
dengan struktur data yang telah digunakan pada platform.

Pada Week 1 dilakukan penyesuaian skema integrasi, termasuk format
penamaan dokumen kolaboratif dan pemisahan ruang dokumen per bagian laporan.
Setiap instansi editor diidentifikasi dengan pola <section>:<entityId>.

Alur integrasi kolaborasi dirancang sebagai berikut:

31
Kontribusi pada Pengembangan..., Oscar Jiro Harlison, Universitas Multimedia Nusantara

1. Inisialisasi client text editor.

2. Inisialisasi objek collabDoc untuk menyimpan state dokumen yang akan
disinkronisasi.

3. Penghubungan dengan server kolaborasi (WebSocket server) untuk sinkronisasi
dokumen melalui objek collabDoc dan nama <section>:<entityId>.

4. Pengkaitan editor dengan objek collabDoc untuk sinkronisasi konten.

5. Pelacakan dan sinkronisasi state kehadiran dan posisi user ke collabDoc

melalui editor.

6. Penyimpanan state dokumen secara berkala ke server kolaborasi setiap terjadi
pembaruan di editor.

Pada Week 2 ditemukan beberapa kendala teknis yang muncul setelah proses
penyatuan dengan backend ELN, antara lain:

1. Mekanisme penyimpanan pada server kolaborasi belum disesuaikan untuk
identifikasi dengan pola baru (dipisah per bagian laporan), sehingga persistensi
di database belum terjalin.

2. Objek sinkronisasi dan koneksi real-time kembali dibuat setiap kali komponen
di-render ulang, menyebabkan kebocoran koneksi, konsumsi memori berlebih,
dan gagal terjadinya sinkronisasi multi-user.

Permasalahan tersebut diselesaikan dengan penyesuaian kode di server
kolaborasi untuk penyimpanan dan penambahan mekanisme memoisasi objek
dokumen dan provider kolaborasi. Contoh penyelarasan penyimpanan ditunjukkan
berikut:

Sebelum pengerjaan dihentikan, editor kolaborasi telah berfungsi stabil,
termasuk tampilan user aktif yang sedang mengedit secara bersamaan. Pekerjaan
dihentikan karena modul-modul lanjutan yang direncanakan menggunakan editor
kolaboratif mengalami penjadwalan ulang. Dengan terselesaikannya perbaikan
integrasi, penyelarasan format penyimpanan, dan sinkronisasi state, POC
dinyatakan siap dipakai kembali ketika fase pengembangan berikutnya dimulai.

32
Kontribusi pada Pengembangan..., Oscar Jiro Harlison, Universitas Multimedia Nusantara

D.2 POC Operator Management (Week 3–4)

Operator Management dirancang sebagai modul konfigurasi sistem yang
menampilkan daftar operator beserta eksperimen yang pernah atau sedang
ditugaskan kepada masing-masing operator dalam bentuk tabel data, seperti
konfigurasi sistem lainnya, yang memiliki kolom operator name, yang
menampilkan nama user operator, serta kolom assigned experiments, yang
menampilkan daftar eksperimen yang ditugaskan kepada operator dalam bentuk
array string terpisah koma. Tujuan awal pengembangan adalah menyediakan
tampilan terpusat yang berorientasi pada operator (operator-centric view). Operator
Management ini juga hanya bersifat view-only.

Alur pengambilan data mengikuti pola server-side sebagai berikut:

1. Mengambil seluruh daftar operator dengan eksperimen yang
ditugaskannya melalui server action yang memanggil dan mengolah RPC
fetch operators with experiments.

2. Melakukan filtering berdasarkan filter kolom, jika ada.

3. Menghitung jumlah total data.

4. Memotong data sesuai parameter tabel sebelum dikirim ke UI.

UI dirancang menggunakan tabel server-side dengan filtering pada kolom
operator name. Karena sifat modul ini hanya menampilkan informasi, tidak
terdapat aksi penugasan ulang maupun penghapusan.

Setelah melalui evaluasi fungsional, modul dinilai mengalami redundansi.
Informasi yang ditampilkan identik dengan data yang sudah tersedia pada modul
eksperimen, hanya berbeda sudut pandang (operator-centric vs. experiment-

centric). Selain itu, seluruh mekanisme penugasan operator terhadap eksperimen
telah sepenuhnya dikelola oleh modul eksperimen sehingga modul ini hanya bersifat
tampilan pasif tanpa nilai tambah operasional. Dengan pertimbangan tersebut,
Operator Management dihentikan pada tahap POC dan tidak diteruskan ke tahap
final.

D.3 POC View-Only Instrument Booking Calendar (Week 9–10)

POC ini dikembangkan untuk menyediakan tampilan kalender terpusat yang
menampilkan jadwal penggunaan instrumen penelitian secara visual. Sebelum POC

33
Kontribusi pada Pengembangan..., Oscar Jiro Harlison, Universitas Multimedia Nusantara

ini dibuat, informasi jadwal hanya tersedia dalam bentuk daftar tabel sehingga
menyulitkan user untuk memahami keterpakaian instrumen dan mendeteksi konflik
waktu.

Struktur data dirancang agar setiap entri pemakaian instrumen memuat
rentang waktu, identitas instrumen, serta konteks eksperimen dan tahapnya, menjadi
sebuah event kalender. Transformasi data dilakukan di sisi server melalui RPC
dengan mengambil daftar booking dan mengubahnya menjadi struktur umum
kalender dengan kolom:

1. start time dan end time sebagai penanda rentang reservasi.

2. instrument sebagai objek ringkas berisi informasi instrumen.

3. experiment name, stage name, dan procedure name sebagai informasi
tambahan yang ditampilkan ketika event diklik.

Komponen kalender dibangun menggunakan library kalender open-source

yang mendukung tampilan bulanan dan mingguan, navigasi tanggal, serta
interaksi klik pada event, lalu di-styling menyesuaikan template dan style

guideline ELN. Karena modul ini hanya bersifat view-only, seluruh komponen
interaktif seperti pembuatan event baru, drag-and-drop, ataupun perubahan jadwal
dinonaktifkan. Kalender dibuat menjadi komponen reusable yang dibuat dari
berbagai subkomponen yang ditunjukkan pada Kode 3.6.

1 const ReusableCalendar = (props: ReusableCalendarProps) => {

2 // ...

3

4 return (

5 <>

6 <SidebarComponent />

7 <Calendar />

8 <AddEventSidebar />

9 </>

10);

11 }

Kode 3.6: Komponen kalender custom yang dibuat di atas library open-source

State data kalender pun dikelola menggunakan Redux karena struktur
kalender dan interaksi antar komponen yang kompleks, terutama apabila ingin
dikembangkan untuk CRUD. Hook useInstrumentCalendar dibuat khusus untuk

34
Kontribusi pada Pengembangan..., Oscar Jiro Harlison, Universitas Multimedia Nusantara

digunakan untuk kalender booking, dengan penggunaannya yang dapat dilihat di
Kode 3.7.

1 const InstrumentBookingCalendarPage = () => {

2 const { calendarStore , loading , error } = useInstrumentCalendar

();

3

4 return (

5 <>

6 // Other UI...

7

8 {!loading && !error && (

9 <ReusableCalendar

10 storeSelector ={() => calendarStore}

11 // Other props...

12 />

13)}

14 </>

15);

16 }

Kode 3.7: Komponen kalender custom yang dibuat di atas library open-source

Evaluasi internal menunjukkan bahwa tampilan kalender memberikan
peningkatan keterbacaan dibandingkan daftar berbasis teks, terutama dalam
melihat tumpang tindih jadwal instrumen. Namun, pengembangan modul
diberhentikan sementara karena fitur booking instrumen tidak termasuk dalam
prioritas pengembangan fase ini. Komponen kalender dan struktur transformasi data
tetap dipertahankan sebagai referensi untuk pengembangan fitur booking interaktif
pada tahap mendatang.

D.4 POC Document Editor (Week 10–11)

POC ini dikembangkan sebagai respons terhadap kebutuhan user yang
menginginkan pengalaman pengeditan dokumen yang lebih menyerupai aplikasi
pengolah dokumen konvensional. Berbeda dengan editor teks ringan yang
sebelumnya digunakan, solusi ini menggunakan sebuah document engine lengkap,
terdiri dari server yang dijalankan sendiri dan client editor-nya, yang menyediakan
fitur pengaturan paragraf, tabel, gambar, riwayat perubahan dokumen, serta ekspor
ke format dokumen umum. Selain itu, object storage eksternal juga diintegrasikan
untuk menyimpan dokumen. Alur pengambilan dan penyimpanan dokumen di POC

35
Kontribusi pada Pengembangan..., Oscar Jiro Harlison, Universitas Multimedia Nusantara

ini dapat diringkas sebagai berikut:

1. Client membuat konfigurasi editor untuk dokumen tertentu; apabila belum
disediakan ID dokumen, maka dibuat yang baru berdasarkan template yang
ditentukan, jika sudah maka dibuat yang baru di storage.

2. UI memuat editor berdasarkan konfigurasi dalam bentuk embedded frame yang
terhubung langsung dengan server, editor mengambil dokumen melalui URL
terautentikasi.

3. Ketika user melakukan penyimpanan, server editor mengirimkan callback ke
aplikasi untuk mengunggah dokumen yang telah diperbarui.

Alur pengambilan dan penyimpanan dokumen juga dapat dilihat di halaman
komponen pada Kode 3.8 berikut.

1 const DocumentEditorPage = ({ params }: DocumentEditorPageProps)

=> {

2 const {’doc-id’: docId} = params;

3 const filename = ‘${docId}.docx‘;

4

5 const { data: files } = await getDocStorage().search(filename);

6

7 // If document doesn’t exist , create one from template

8 if (!files || files.length === 0) {

9 await createDocumentFromTemplate(documentsStorage , filename);

10 }

11

12 // Get signed URL for the document , 1 hour expiry

13 const { data: urlData } = await getDocStorage().createSignedUrl(

filename , 3600);

14

15 // Build document config

16 const config = buildDocConfig({ docId , urlData , ... });

17

18 return (

19 <>

20 <Title >Document Editor </Title >

21 <DocumentEditor config={config} />

22 </>

23);

24 }

Kode 3.8: Alur pemuatan dan penyimpanan komponen DocumentEditorPage

36
Kontribusi pada Pengembangan..., Oscar Jiro Harlison, Universitas Multimedia Nusantara

Tampilan dari DocumentEditorPage tersebut pun dapat dilihat di Gambar
3.6, yang menunjukkan judul halaman Document Editor dan editor di bawahnya
yang sudah memuat suatu dokumen dari document storage.

Gambar 3.6. Document editor dengan toolbar lengkap dan area konten

Hasil pengujian menunjukkan bahwa integrasi dasar berhasil, termasuk
pembuatan dokumen awal dari template, pemuatan ulang dokumen tersimpan, serta
pengiriman callback penyimpanan otomatis. Namun, terdapat anomali pada muatan
awal dokumen di mana editor menampilkan pesan kegagalan memuat meskipun
dokumen berhasil ditampilkan, yang memerlukan penelusuran sumber masalah
lebih lanjut.

Setelah evaluasi, solusi dinilai tidak sejalan dengan kebutuhan ELN, karena:

1. Penyimpanan konten berbasis dokumen lengkap (.docx) tidak sesuai dengan
kebutuhan yang hanya memerlukan konten teks tersimpan.

2. Document engine bersifat monolitik dan tidak modular, sehingga modifikasi
logika penyimpanan sesuai kebutuhan memerlukan penanganan custom yang
kompleks.

3. Kebutuhan menjalankan server sendiri memperkenalkan kompleksitas
konfigurasi tambahan dan tidak sebanding manfaat fitur tambahan selain
pengeditan teks.

37
Kontribusi pada Pengembangan..., Oscar Jiro Harlison, Universitas Multimedia Nusantara

Dengan demikian, POC dihentikan dan tidak dilanjutkan ke tahap
implementasi penuh. Catatan teknis dan konfigurasi lingkungan tetap disimpan
sebagai referensi apabila kebutuhan pengeditan dokumen berformat lengkap
muncul kembali di masa mendatang.

3.3.2 Kontribusi pada AI Chatbot Internal

Proyek AI Chatbot Internal merupakan sebuah chatbot yang digunakan
secara internal untuk mendukung efisiensi kerja dan manajemen pengetahuan di
perusahaan. Proyek berada pada tahap pengembangan dengan integrasi bertahap
ke lingkungan staging, sementara backlog ditetapkan sesuai kebutuhan user yang
terus berkembang. Kontribusi dalam proyek ini mencakup perbaikan bug UI pada
chat page, integrasi fitur manual prompt yang menghubungkan frontend dengan
API dan backend yang telah tersedia, serta pengembangan halaman Admin Page
yang meliputi dari perancangan UI serta implementasi Prompt Form Editor.

A Perbaikan Bug UI (Week 2–3)

Perbaikan bug UI difokuskan pada peningkatan konsistensi tampilan
dan kenyamanan user pada chat page. Pekerjaan mencakup identifikasi serta
penanganan perilaku UI yang tidak sesuai dengan ekspektasi user, khususnya terkait
mekanisme scrollbar dan scroll-down button pada chat page.

A.1 Kontribusi Berdasarkan Timeline

Berikut adalah kontribusi pada perbaikan bug UI berdasarkan timeline:

A.1.1 Week 2: Perbaikan Scrollbar Bug pada Chat Page

Masalah pada tahap ini berkaitan dengan tidak munculnya scrollbar internal
pada area chat sehingga user tidak dapat menilai posisi scroll maupun menavigasi
chat dengan tepat. Implementasi awal menyebabkan scrollbar muncul pada
tingkat window aplikasi, bukan pada container chat. Hal ini terjadi karena
elemen chat tidak memiliki batasan dimensi dan mekanisme overflow yang
eksplisit, sehingga browser menerapkan perilaku scroll pada level halaman secara
keseluruhan. Perbaikan dilakukan dengan menambahkan batas ketinggian dan

38
Kontribusi pada Pengembangan..., Oscar Jiro Harlison, Universitas Multimedia Nusantara

pengaturan overflow-y pada container chat sehingga elemen tersebut menjadi
satu-satunya area yang dapat di-scroll.

Perbandingan tampilan UI sebelum perbaikan (atas) dan sesudah perbaikan
(bawah) ditunjukkan pada Gambar 3.7, di mana scrollbar pada kondisi sebelum
perbaikan muncul pada level window sedangkan setelah perbaikan muncul pada
container chat.

Gambar 3.7. Perbandingan UI scrollbar - atas: sebelum (scrollbar di window), bawah:
setelah (scrollbar di chat container)

Hasil perbaikan menghasilkan scrollbar yang tidak tersembunyi di belakang
chatbox dan diposisikan secara sesuai di sebelah container chat.

39
Kontribusi pada Pengembangan..., Oscar Jiro Harlison, Universitas Multimedia Nusantara

A.1.2 Week 3: Perbaikan Scroll-Down Button Bug pada Chat Page

Masalah berikutnya terkait tombol scroll-down arrow yang digunakan untuk
membawa user kembali ke bagian bawah chat. Sebelum perbaikan, tombol ini
bergantung pada perhitungan posisi absolut layar, sehingga posisinya berubah-ubah
bergantung pada lebar halaman, keberadaan sidebar, dan tinggi konten. Akibatnya
tombol tidak sejajar tengah dengan container chat, tetapi dengan window aplikasi.

Perbaikan dilakukan dengan:

1. Menempatkan tombol dalam container yang mengikuti lebar elemen chat utama,
bukan posisi absolut window

2. Mengubah orientasi posisi menjadi berbasis flex layout agar tombol selalu berada
di tengah container secara horizontal

3. Menambahkan jarak vertikal tetap dari kotak input untuk menjaga keterbacaan
dan aksesibilitas

Perbandingan tampilan tombol scroll sebelum perbaikan (kiri) dan sesudah
perbaikan (kanan) ditunjukkan pada Gambar 3.8 berikut, di mana sebelum
perbaikan tombol berada di tengah relatif terhadap lebar window aplikasi,
sedangkan setelah perbaikan berada di tengah relatif terhadap lebar container chat.

Gambar 3.8. Perbandingan tombol scroll - kiri: sebelum (posisi tidak konsisten), kanan:
sesudah (posisi center konsisten)

40
Kontribusi pada Pengembangan..., Oscar Jiro Harlison, Universitas Multimedia Nusantara

Hasil perbaikan memastikan bahwa tombol selalu berada di tengah
container chat seiring perubahan ukuran layar dan memiliki jarak konsisten dan
cukup dari chatbox.

A.2 Outcome

Seluruh perbaikan bug UI yang dilakukan telah diintegrasikan ke lingkungan
staging dan tervalidasi melalui pengujian visual dan fungsional. Penyempurnaan ini
meningkatkan konsistensi UI dan memastikan pengalaman user yang lebih stabil
pada halaman chat.

B Integrasi Fitur Manual Prompt (Week 3)

Fitur manual prompt dikembangkan sebagai alternatif mekanisme interaksi
dengan AI Chatbot internal selain prompt form terstruktur yang telah tersedia
sebelumnya. Jika form prompt mengharuskan user mengisi sejumlah field

terdefinisi, manual prompt memungkinkan user mengetikkan pesan bebas layaknya
sistem chat umum. Pada tahap ini API backend untuk pembuatan session sudah
tersedia, namun belum terdapat implementasi UI maupun integrasi logika pada sisi
frontend. Kontribusi utama meliputi pembangunan halaman input manual prompt,
penyusunan server actions untuk membuat session chat baru melalui API, serta
penyesuaian komponen UI agar mendukung skenario pembuatan session tanpa
conversationId awal.

Proses integrasi dapat diringkas sebagai berikut:

1. Pembuatan halaman manual prompt sebagai entry point pembuatan session chat
baru

2. Penyesuaian komponen Chatbox agar dapat beroperasi tanpa conversationId

3. Implementasi server action untuk membuat chat baru dan meneruskan pesan
pertama ke API

4. Navigasi otomatis ke halaman chat setelah session berhasil dibuat

Implementasi inti dari fitur ini ditunjukkan pada Kode 3.9.

1 // Client -side: ManualPrompt component

2 const ManualPrompt = () => {

3 const handleMessageSent = async (message: string) => {

41
Kontribusi pada Pengembangan..., Oscar Jiro Harlison, Universitas Multimedia Nusantara

4 const result = await createManualConversation(message);

5

6 if (result.success) {

7 router.push(‘/chat/${result.conversationId}‘);

8 }

9 };

10

11 return <Chatbox onMessageSent={handleMessageSent} />;

12 };

13

14 // Server action: Create conversation and process with API

15 async function createManualConversation(message: string) {

16 // Create conversation record

17 const conversation = await db.insertConversation({ message , ...

});

18

19 // Process through AI API

20 await processMessage(conversation.id, { message , userId ,

conversationId: conversation.id });

21

22 return { success: true , conversationId: conversation.id };

23 }

Kode 3.9: Implementasi integrasi manual prompt

Tampilan UI sesudah integrasi ditunjukkan pada Gambar 3.9, yang
menunjukkan halaman simpel dengan judul Prompt Manual, sebuah caption

sederhana, serta Chatbox yang dapat diketik langsung layaknya sistem chat umum.

42
Kontribusi pada Pengembangan..., Oscar Jiro Harlison, Universitas Multimedia Nusantara

Gambar 3.9. Tampilan halaman chat manual prompt yang sudah berfungsi

Perubahan teknis yang dilakukan mencakup:

1. Refactoring logika pemrosesan pesan menjadi satu utility yang digunakan baik
oleh manual prompt maupun session chat biasa

2. Penyesuaian struktur Chatbox sehingga parameter conversationId bersifat
opsional dan dapat mengembalikan isi pesan pertama melalui callback

3. Implementasi mekanisme loading state agar pengiriman prompt tidak
dieksekusi ganda

4. Penanganan fallback error, sehingga apabila terjadi kegagalan pemrosesan oleh
API, session tetap dibuat dan pesan sistem dicatat sebagai penanda gagal

Hasil integrasi memastikan bahwa user dapat memulai sebuah chat
dengan metode manual prompt dengan hasil struktur chat, pencatatan metadata,
penyimpanan pesan, serta pembuatan session yang selaras dengan standar sistem
chat dan metode yang sudah ada (form prompt).

B.1 Outcome

Fitur Manual Prompt telah berhasil diintegrasikan dengan frontend dan
backend secara konsisten, serta telah melalui proses evaluasi internal sebelum
digabungkan ke lingkungan staging. Integrasi ini memastikan bahwa user dapat
mengirimkan prompt langsung melalui UI chat dengan struktur respons yang selaras
dengan sistem yang sudah ada.

43
Kontribusi pada Pengembangan..., Oscar Jiro Harlison, Universitas Multimedia Nusantara

C Pengembangan Admin Page (Week 6–16)

Fitur Admin Page dikembangkan dari awal sebagai bagian dari perluasan
fungsi konfigurasi internal pada sistem chatbot. Pengembangan mencakup
perancangan UI, penataan konteks dan layout admin, serta penyusunan struktur
fungsionalitas utama yang akan digunakan untuk mendukung pengelolaan
konfigurasi internal. Pada tahap ini, halaman admin dirancang untuk memiliki dua
fitur inti, yaitu halaman Prompt Form Editor serta User Management. Adapun
komponen User Management belum diimplementasikan pada saat penulisan
laporan ini sehingga fokus pengembangan berada pada perancangan dan integrasi
Prompt Form Editor.

C.1 Kontribusi Berdasarkan Timeline

Berikut adalah kontribusi pada Admin Page berdasarkan timeline:

C.1.1 Week 6: UI Awal Admin Page

Tahap ini berfokus pada penyusunan struktur dasar Admin Page sebagai
landasan untuk pengembangan fitur-fitur konfigurasi internal. Admin Page
dirancang sebagai halaman terpisah dengan layout khusus, sehingga diperlukan
pemisahan konteks UI, penyusunan ulang navigasi, serta adaptasi komponen
agar konsisten dengan gaya visual aplikasi yang sudah ada. Pada tahap ini
belum terdapat logika bisnis maupun integrasi data; implementasi dipusatkan pada
kerangka tampilan dan arsitektur navigasi.

Struktur dasar dikembangkan melalui pembuatan admin layout yang
membungkus seluruh halaman di bawah rute /admin. Layout ini memuat
sidebar khusus admin, area konten utama, serta mekanisme responsif yang
mengatur perilaku sidebar pada tampilan desktop dan mobile. Sidebar disiapkan
dengan navigasi menuju dua fitur inti, yaitu Prompt Form Editor dan User
Management, dengan halaman kedua masih berupa placeholder. Mekanisme
navigasi diatur melalui struktur rute bertingkat sehingga setiap halaman admin
dapat memanfaatkan layout bersama.

Halaman beranda admin disiapkan sebagai titik masuk utama, berisi kartu
navigasi menuju fitur-fitur yang tersedia. Struktur awal ini memastikan bahwa
modul Prompt Form Editor dapat diintegrasikan secara bertahap tanpa mengubah

44
Kontribusi pada Pengembangan..., Oscar Jiro Harlison, Universitas Multimedia Nusantara

fondasi layout. Tampilan awal halaman admin dengan sidebar, header dinamis, dan
kartu navigasi diperlihatkan pada Gambar 3.10.

Gambar 3.10. Admin Page dengan sidebar kiri, header, dan kartu navigasi ke Prompt Form
Editor dan User Management

C.1.2 Week 7–16: Kontribusi pada Prompt Form Editor

Kontribusi pada rentang waktu ini sepenuhnya berkaitan dengan
pengembangan Prompt Form Editor, mencakup perancangan UI, penyesuaian
dan pembentukan skema database, integrasi editor dengan database, penyusunan
mekanisme save, integrasi editor dengan Prompt Form yang tersedia, hingga
penyusunan mekanisme validasi. Penjelasan rinci mengenai pengembangan
Prompt Form Editor akan disampaikan pada subbagian berikutnya.

C.2 Outcome

Kontribusi yang telah direalisasikan pada Admin Page, terutama pada
Prompt Form Editor, telah melalui evaluasi internal dan sudah terintegrasi ke
lingkungan staging. Struktur halaman dan mekanisme penyusunan form dinamis
telah berfungsi sebagaimana dirancang. Namun, fitur User Management belum
memulai pengembangan pada fase ini dan direncanakan untuk tahap berikutnya.

45
Kontribusi pada Pengembangan..., Oscar Jiro Harlison, Universitas Multimedia Nusantara

D Prompt Form Editor (Week 7–16)

Prompt Form Editor merupakan salah satu dari dua fitur utama yang
dikembangkan pada Admin Page dan menjadi fokus utama kontribusi dalam rentang
pengembangan ini. Sebelumnya, sistem chatbot hanya memiliki satu jenis Prompt
Form statis, yaitu formulir terstruktur berisi sejumlah field tetap yang harus diisi
user sebelum mengirimkan permintaan ke backend. Prompt Form digunakan
sebagai alternatif dari mekanisme manual prompt dan bertujuan memastikan bahwa
permintaan user memiliki struktur, kelengkapan, dan konsistensi sesuai metode
prompt tertentu. Namun, karena seluruh struktur Prompt Form masih bersifat statis
dan didefinisikan langsung di dalam kode, proses perubahan maupun penambahan
field harus dilakukan melalui modifikasi manual di sisi pengembangan.

Prompt Form Editor dikembangkan untuk menjadikan konfigurasi Prompt
Form bersifat dinamis dengan memindahkan seluruh definisi field, struktur, dan
pengaturan validasi ke dalam database. Melalui fitur ini, admin yang berwenang
dapat menambah, mengubah, menghapus, serta mengatur urutan field secara
langsung melalui UI editor, dan perubahan tersebut akan tercermin pada Prompt
Form yang digunakan user tanpa perlu modifikasi kode. Proses pengembangan
fitur ini memerlukan analisis menyeluruh terhadap struktur Prompt Form yang
kompleks, perancangan skema data dan mekanisme penyimpanan, hingga integrasi
UI dan penyelarasan perilaku antara sistem lama dan sistem baru agar transisi terjadi
secara mulus.

D.1 Kontribusi Berdasarkan Timeline

Berikut adalah kontribusi pada fitur Prompt Form Editor untuk Admin Page
berdasarkan timeline:

D.1.1 Week 7: Mock-Up Draggable dan Interaktivitas Dasar

Tahap awal pengembangan Prompt Form Editor difokuskan pada pembuatan
struktur visual dasar editor dan implementasi mekanisme drag-and-sort untuk
menyusun urutan field. Pada fase ini, seluruh perubahan masih bersifat lokal,
belum terhubung dengan mekanisme penyimpanan maupun struktur data akhir yang
digunakan pada sistem produksi. Field disusun menggunakan data dummy, namun
struktur komponen, tipe data, serta interaksi utama telah merepresentasikan perilaku
yang diharapkan.

46
Kontribusi pada Pengembangan..., Oscar Jiro Harlison, Universitas Multimedia Nusantara

Fungsionalitas utama yang berhasil diimplementasikan pada tahap ini
meliputi:

1. Drag-and-drop untuk menyusun urutan field dalam satu section

2. Inline field editing untuk nama field, tipe field, dan parameter dasar lainnya

3. Struktur komponen modular untuk memisahkan FieldBlock (komponen field

individu), SectionBlock (komponen section yang berisi kumpulan field), dan
wrapper Sortable (komponen wrapper yang mengelola dan memungkinkan
isinya di-drag-and-drop)

4. Sistem tipe awal menggunakan discriminated union untuk menjaga
konsistensi struktur data

Tampilan umum editor dengan field yang dapat di-drag ditunjukkan pada
Gambar 3.11 berikut dengan FieldBlock yang berbentuk draggable block, dengan
field-field yang memungkinkan pengubahan field name, field type, opsi, dsb. Dapat
dilihat juga FieldBlock pertama field yang sedang dalam proses drag untuk
mendemonstrasikan fungsi drag-and-drop, sehingga terlihat sedikit tergeser ke
kanan.

Gambar 3.11. Prompt Form Editor dengan beberapa field dan satu field sedang di-drag

47
Kontribusi pada Pengembangan..., Oscar Jiro Harlison, Universitas Multimedia Nusantara

Sistem drag-and-drop dibangun menggunakan third-party library

yang menyediakan mekanisme reordering dengan dukungan aksesibilitas
penuh. Implementasi ditunjukkan pada Kode 3.10, menampilkan komponen
SectionBlock yang mengelola state lokal daftar field dan menangani
event perpindahan posisi. Komponen ini membungkus setiap field dalam
SortableWrapper yang secara internal meneruskan drag listeners hanya ke
komponen DragHandle, memastikan bahwa elemen input dan tombol lain tetap
dapat berinteraksi secara normal tanpa memicu operasi drag.

1 // SectionBlock.tsx - manages field reordering

2 const SectionBlock = ({ fields }: Props) => {

3 const [localFields , setLocalFields] = useState(fields);

4 const { listeners , ...rest } = useSortableContext();

5

6 const handleDrag = (event: DragEvent) => {

7 const { active , over } = event;

8 if (!over || active.id === over.id) return;

9

10 const oldIndex = localFields.findIndex(f => f.id === active.id

);

11 const newIndex = localFields.findIndex(f => f.id === over.id);

12 setLocalFields(arrayMove(localFields , oldIndex , newIndex));

13 };

14

15 return (

16 <SortableContext onDrag={handleDrag}>

17 {localFields.map(field => (

18 <SortableWrapper key={field.id} id={field.id}>

19 <FieldBlock fieldInfo={field} dragListeners={listeners}

/>

20 </SortableWrapper >

21))}

22 </SortableContext >

23);

24 };

Kode 3.10: Implementasi mekanisme drag-and-drop field editor

Setiap field individual dikelola oleh komponen FieldBlock yang berfungsi
sebagai editor interaktif dengan kemampuan pengeditan properti secara inline.
Komponen ini mengelola state internal untuk nilai-nilai field dan menyediakan
UI visual yang terbagi menjadi tiga area: DragHandle untuk operasi reordering,
editable content area untuk pengeditan properti, dan action buttons untuk operasi

48
Kontribusi pada Pengembangan..., Oscar Jiro Harlison, Universitas Multimedia Nusantara

duplicate dan delete. Di dalam editable content area, DynamicFieldEditor

bertanggung jawab me-render kontrol tambahan secara dinamis berdasarkan tipe
field yang dipilih, misal untuk tipe select, komponen menampilkan editor daftar
opsi dengan kemampuan menambah dan menghapus item. Mekanisme rendering
kondisional ini memungkinkan editor beradaptasi terhadap perubahan tipe field

tanpa memerlukan pembaruan manual pada struktur UI. Struktur komponen
FieldBlock ditunjukkan pada Kode 3.11.

1 // FieldBlock.tsx - interactive field editor

2 const FieldBlock = ({ fieldData , dragListeners }: FieldBlockProps)

=> {

3 return (

4 <div>

5 {/* Drag handle for reordering */}

6 <DragHandle {... dragListeners} />

7

8 {/* Editable content area */}

9 <div>

10 <NameField />

11 <TypeSelectField />

12 <DynamicFieldEditor fieldType={fieldData.type} /> {/*

Dynamic based on field type */}

13 </div>

14

15 {/* Action buttons */}

16 <div className=’field -actions’>

17 <DuplicateButton />

18 <DeleteButton />

19 </div>

20 </div>

21);

22 };

Kode 3.11: Implementasi komponen FieldBlock untuk editing field individual

Fondasi ini memungkinkan pengembangan tahap berikutnya untuk fokus
pada persistensi data, sinkronisasi dengan backend, serta implementasi fungsional
penuh dari aksi editor seperti penambahan, penghapusan, dan duplikasi field.

D.1.2 Week 8–9: Skema Data, Types, RPCs, DDL, dan DML

Tahap ini berfokus pada penyusunan skema data dinamis yang menjadi dasar
arsitektur Prompt Form Editor. Struktur Prompt Form statis yang sebelumnya

49
Kontribusi pada Pengembangan..., Oscar Jiro Harlison, Universitas Multimedia Nusantara

tertanam langsung pada kode dianalisis ulang untuk dipetakan menjadi model
tiga lapis, yaitu section, daftar field, dan opsi tambahan bagi field yang
membutuhkannya. Dengan desain ini, konfigurasi form tidak lagi bergantung
pada struktur hard-coded, melainkan dapat diambil, diubah, dan disimpan melalui
mekanisme data terpusat.

Perancangan skema database dilakukan dengan mempertimbangkan
fleksibilitas terhadap tujuh tipe field yang digunakan dalam sistem, termasuk dua
tipe yang memiliki karakteristik khusus. Setiap field dapat menyimpan metadata
tambahan sesuai kebutuhannya, misalnya opsi terstruktur atau batasan nilai.
Pendekatan ini memastikan bahwa representasi data di backend dan representasi
data di frontend tetap konsisten.

Struktur tabel disusun untuk mengakomodasi kebutuhan tersebut yang dapat
dilihat sebagai skema DDL pada Kode 3.12.

1 CREATE TABLE form_section (

2 id UUID PRIMARY KEY DEFAULT gen_random_uuid(),

3 name TEXT NOT NULL ,

4 position INTEGER NOT NULL ,

5 is_active BOOLEAN NOT NULL DEFAULT TRUE ,

6);

7

8 CREATE TABLE form_field (

9 id UUID PRIMARY KEY DEFAULT gen_random_uuid(),

10 section_id UUID NOT NULL REFERENCES form_section(id) ON DELETE

CASCADE ,

11 field_type TEXT NOT NULL ,

12 name TEXT NOT NULL ,

13 placeholder TEXT ,

14 position INTEGER NOT NULL ,

15 metadata JSONB DEFAULT ’{}’, -- konfigurasi per tipe field

16);

17

18 CREATE TABLE field_option (

19 id UUID PRIMARY KEY DEFAULT gen_random_uuid(),

20 field_id UUID NOT NULL REFERENCES form_field(id) ON DELETE

CASCADE ,

21 value TEXT NOT NULL ,

22 parent_option_id UUID REFERENCES field_option(id),

23 position INTEGER NOT NULL ,

24);

Kode 3.12: Struktur tabel inti Prompt Form

50
Kontribusi pada Pengembangan..., Oscar Jiro Harlison, Universitas Multimedia Nusantara

Selanjutnya disusun tipe data pada sisi frontend yang merepresentasikan
konfigurasi form dalam bentuk objek statis. Setiap tipe field memiliki struktur
metadata tertentu, dan seluruhnya disatukan dalam tipe union yang digunakan oleh
editor untuk melakukan rendering dinamis. Struktur tipe data ditunjukkan pada
Kode 3.13.

1 interface BaseField {

2 id: string

3 name: string

4 placeholder?: string

5 position: number

6 }

7

8 interface TextField extends BaseField {

9 type: ’text’

10 }

11

12 // Other field types extending from BaseField...

13

14 type FormField =

15 | TextField

16 | SelectField

17 | CheckboxField

18 | DateRangeField

19 | NumberField

20 | CompositeSelectField

21 | NestedSelectField

Kode 3.13: Struktur tipe data dinamis untuk field Prompt Form

Agar frontend dapat mengambil data form secara terstruktur, disusun sebuah
RPC awal yang mengembalikan hierarki section, field, dan opsi sebagai satu objek
JSON. Tujuannya adalah menyederhanakan proses pemanggilan data pada sisi
frontend dan mengurangi kebutuhan query berulang. RPC ini ditunjukkan pada
Kode 3.14.

1 CREATE FUNCTION get_prompt_form_structure()

2 RETURNS JSON

3 AS $$

4 DECLARE

5 sections JSON;

6 BEGIN

7 SELECT json_agg(section_data ORDER BY position)

8 INTO sections

51
Kontribusi pada Pengembangan..., Oscar Jiro Harlison, Universitas Multimedia Nusantara

9 FROM (

10 SELECT

11 s.*,

12 (SELECT json_agg(field_data ORDER BY position)

13 FROM (

14 SELECT

15 f.*,

16 (SELECT json_agg(o ORDER BY position)

17 FROM field_option o

18 WHERE o.field_id = f.id) AS options

19 FROM form_field f

20 WHERE f.section_id = s.id

21) field_data) AS fields

22 FROM form_section s

23) section_data;

24

25 RETURN sections;

26 END;

27 $$ LANGUAGE plpgsql;

Kode 3.14: RPC pengambilan struktur form

Tahap berikutnya adalah penyusunan DML awal untuk menghasilkan seed

data. Seed ini merekonstruksi Prompt Form statis yang sebelumnya tertulis sebagai
konfigurasi hard-coded pada kode frontend. Data tersebut mencakup seluruh
section, seluruh field dari masing-masing section, serta daftar opsi yang jumlahnya
paling banyak berasal dari tipe select dan checkbox. Proses ini memastikan bahwa
editor dapat menampilkan form lengkap tanpa perlu kembali pada implementasi
statis lama.

D.1.3 Week 10–12: Integrasi Database dengan Frontend Editor

Tahap ini berfokus pada penghubungan editor Prompt Form dengan data
nyata yang tersimpan dalam database. Dengan skema, tipe data, dan RPC
yang telah tersedia pada tahap sebelumnya, struktur form tidak lagi bersumber
dari dummy data, tetapi dibangun secara dinamis berdasarkan hasil pembacaan
tabel form section, form field, dan field option yang relevan. Integrasi
ini membutuhkan penyesuaian pada hierarki data, normalisasi tipe field, koreksi
struktur nested field khusus, serta mekanisme pembaruan state agar perubahan yang
dilakukan pada UI terselaraskan dengan representasi data backend.

Pada tingkat pengambilan data, editor kini melakukan pemanggilan RPC

52
Kontribusi pada Pengembangan..., Oscar Jiro Harlison, Universitas Multimedia Nusantara

untuk memperoleh struktur form secara hierarkis dalam satu kali request sehingga
mengurangi kompleksitas penggabungan data di frontend. Pada sisi representasi
data, setiap field dinormalisasi menjadi bentuk internal yang konsisten sehingga
dapat diproses oleh komponen-komponen editor tanpa perlu bergantung pada
format asli tabel. Mekanisme pengubahan field kemudian direvisi untuk menangani
seluruh tipe yang didukung, termasuk dua tipe field unik yang memiliki struktur
nested. Alur state form dari database ke UI ditunjukkan pada Kode 3.15, yang
menampilkan pola server action untuk pengambilan data serta normalisasi field

dengan discriminated union.

1 // Server action: fetch and normalize form data

2 async function loadEditorState(): Promise <FormSection[]> {

3 const rawSections = await rpc(’get_form_structure’);

4

5 return rawSections.map(section => ({

6 id: section.id,

7 name: section.name ,

8 position: section.position ,

9 fields: section.fields.map(normalizeField)

10 }));

11 }

12

13 // Normalize field based on discriminated union type

14 function normalizeField(raw: RawField): FormField {

15 const base = {

16 id: raw.id,

17 name: raw.name ,

18 type: raw.type ,

19 position: raw.position

20 };

21

22 switch (raw.type) {

23 case ’text’:

24 return { ...base , type: ’text’, placeholder: raw.placeholder

};

25 // Other cases for different field types

26 }

27 }

Kode 3.15: Integrasi data form dengan normalisasi tipe field

Integrasi ini menghasilkan editor yang mampu membaca, menampilkan,
dan menyusun ulang struktur form secara dinamis dari database. Implementasi

53
Kontribusi pada Pengembangan..., Oscar Jiro Harlison, Universitas Multimedia Nusantara

type-safe dengan discriminated union memastikan konsistensi tipe data. Tampilan
editor setelah integrasi ini ditunjukkan pada Gambar 3.12, di mana field-field yang
ditampilkan kini berasal dari database, dengan masing-masing field berbentuk
collapsible block yang dapat diperluas untuk menampilkan properti serta dapat
diatur posisinya, dikelompokkan sesuai dengan form section-nya.

Gambar 3.12. Prompt Form Editor setelah integrasi database dengan field dari database

D.1.4 Week 13–14: Mekanisme Saving dan Integrasi Editor dengan Prompt
Form

Tahap ini berfokus pada implementasi mekanisme penyimpanan dengan
deteksi perubahan otomatis. Pendekatan autosave tidak diterapkan karena frekuensi
perubahan yang tinggi (misal saat mengetik nama field) akan menyebabkan beban
kueri berlebihan, sementara editor tidak menargetkan kolaborasi real-time. Sebagai
gantinya, diterapkan pola edit-lock dengan tombol save manual yang dilengkapi
deteksi perubahan otomatis melalui perbandingan deep equality antara state saat ini
dengan state tersimpan.

Mekanisme ini menyimpan representasi pristine state saat initial load,
kemudian membandingkannya secara kontinu dengan working state menggunakan
useMemo. Ketika terdeteksi perbedaan, UI menampilkan indikator unsaved changes

dan mengaktifkan tombol save. Penyimpanan dilakukan secara transaksional
dengan validasi sebelumnya, memastikan konsistensi data. Implementasi deteksi

54
Kontribusi pada Pengembangan..., Oscar Jiro Harlison, Universitas Multimedia Nusantara

perubahan ditunjukkan pada Kode 3.16.

1 // Change detection with deep equality comparison

2 const FormEdit = ({ initialFormBlocks }: Props) => {

3 const [formBlocks , setFormBlocks] = useState(initialFormBlocks);

4 const [savedFormBlocks , setSavedFormBlocks] = useState(

initialFormBlocks);

5

6 // Detect unsaved changes via JSON comparison

7 const hasUnsavedChanges = useMemo(

8 () => JSON.stringify(formBlocks) !== JSON.stringify(

savedFormBlocks),

9 [formBlocks , savedFormBlocks]

10);

11

12 const handleSave = async () => {

13 // 1. Validate form structure

14 const validation = validateForm(formBlocks);

15 if (!validation.isValid) {

16 showErrors(validation.errors);

17 return;

18 }

19

20 // 2. Save entire state transactionally

21 const result = await saveFormData(formBlocks);

22

23 if (result.success) {

24 // 3. Refetch to sync with database

25 const refetched = await getAllFormSectionsWithFields();

26 setSavedFormBlocks(refetched.data);

27 setFormBlocks(refetched.data);

28 }

29 };

30

31 const handleRevert = () => {

32 setFormBlocks(savedFormBlocks); // Reset to pristine state

33 };

34

35 return (

36 // Form Editor UI

37);

38 };

Kode 3.16: Deteksi perubahan dan alur penyimpanan

55
Kontribusi pada Pengembangan..., Oscar Jiro Harlison, Universitas Multimedia Nusantara

Mekanisme deep equality melalui JSON.stringify pada Kode 3.16
memungkinkan deteksi perubahan otomatis tanpa perlu melacak setiap properti
secara manual. Ketika user mengetik kembali nilai asli (manual revert),
perbandingan JSON akan mendeteksi kesamaan dan menonaktifkan indikator
perubahan. Penyimpanan dilakukan secara transaksional melalui RPC
save form data transaction yang menangani upsert section, field, dan opsi
dalam satu transaksi database, memastikan konsistensi data dan memungkinkan
rollback otomatis jika terjadi kesalahan.

Pada UI editor, ketika user melakukan perubahan pada field, sistem
mendeteksi dan menampilkan indikator bahwa terdapat perubahan yang belum
disimpan. Tampilan editor dengan indikator unsaved changes ditunjukkan
pada Gambar 3.13. User dapat memilih untuk menyimpan perubahan atau
membatalkannya. Ketika tombol revert ditekan, perubahan yang belum disimpan
dikembalikan ke state awal.

Gambar 3.13. Editor dengan indikator unsaved changes aktif

Integrasi dengan Prompt Form memerlukan transformasi struktur editor
menjadi format yang dapat di-render oleh komponen form. Editor menyimpan
data dalam struktur flat (section dengan array field, opsi sebagai array terpisah),
sedangkan Prompt Form memerlukan struktur nested untuk beberapa tipe unik.
Transformasi ini dilakukan melalui buildPromptForm() yang memetakan setiap
field ke komponen UI yang sesuai berdasarkan field type, seperti ditunjukkan
pada Kode 3.17.

1 // Transform database structure to Prompt Form props

56
Kontribusi pada Pengembangan..., Oscar Jiro Harlison, Universitas Multimedia Nusantara

2 function buildPromptForm(formSections: FormSection[]):

ReactElement[] {

3 return formSections.map(section => (

4 <FormSection key={section.id} title={section.name}>

5 {section.fields.map(field => {

6 const baseProps = {

7 key: field.id,

8 name: field.name ,

9 placeholder: field.placeholder ,

10 required: field.validation_type === ’required’

11 };

12

13 // Map field type to appropriate component

14 switch (field.field_type) {

15 case ’text’:

16 return <TextField {...baseProps} />;

17

18 // Other cases for different field types

19 }

20 })}

21 </FormSection >

22));

23 }

Kode 3.17: Adapter struktur editor ke Prompt Form

Dengan ini, Prompt Form telah dimodifikasi untuk selalu memuat data dari
database. Penyelarasan visual memastikan versi dinamis tetap identik dengan versi
statis dalam hal UI dan perilaku komponen. Dengan integrasi ini, Prompt Form
beroperasi sepenuhnya menggunakan konfigurasi dari editor, memungkinkan admin
mengubah struktur form tanpa modifikasi kode. Tampilan Prompt Form dinamis
setelah integrasi ini ditunjukkan pada Gambar 3.14, dengan field-field di setiap
form section, dipetakan sesuai dengan state yang dikonfigurasi di editor.

57
Kontribusi pada Pengembangan..., Oscar Jiro Harlison, Universitas Multimedia Nusantara

Gambar 3.14. Prompt Form dinamis yang terintegrasi dengan konfigurasi dari editor

D.1.5 Week 15–16: Validation Schema & Fix Bug Chat Generation dari
Prompt Form Integrasi

Tahap ini berfokus pada implementasi skema validasi dinamis
yang tersimpan sebagai JSONB di database. Setiap field menyimpan
validation schema yang berisi aturan validasi spesifik per tipe:
minLength/maxLength untuk teks, min/max untuk angka, earliest/latest
untuk tanggal, dan minItems/maxItems untuk opsi. Struktur ini memungkinkan
konfigurasi validasi dari editor tanpa perubahan kode, dengan aturan yang konsisten
antara editor dan Prompt Form.

Konfigurasi validasi ditampilkan sebagai UI tambahan di FieldBlock

editor, memungkinkan admin mengatur batasan dan status wajib isi untuk setiap
field. Tampilan field dengan pengaturan validasi ditunjukkan pada Gambar 3.15,
dengan pengaturan umum seperti nama field, pengaturan spesifik berdasarkan tipe
seperti nilai min dan max, serta properti umum baru seperti placeholder dan help

text.

58
Kontribusi pada Pengembangan..., Oscar Jiro Harlison, Universitas Multimedia Nusantara

Gambar 3.15. FieldBlock dengan section settings validasi (required, min, max, dll)

Mekanisme validasi diimplementasikan melalui builder yang mengonversi
validation schema JSONB menjadi runtime validator menggunakan validator

library. Konversi ini ditunjukkan pada Kode 3.18, yang membaca aturan dari
database dan membentuk validator sesuai tipe field.

1 // Convert ValidationSchema JSONB to runtime validator

2 const buildValidator = (schema: ValidationSchema): Validator => {

3 const { type , rules , messages } = schema;

4 let validator: Validator;

5

6 // Build type -specific validators

7 switch (type) {

8 case ’string’:

9 validator = createStringValidator();

10 if (rules?.pattern) {

11 validator.addValidation(rules.pattern , messages?.pattern);

12 }

13 // Other rules to consider...

14 break;

15

16 // Other cases for different types of fields

17 }

18

19 return validator;

20 }

Kode 3.18: Konversi validation schema ke runtime validator

59
Kontribusi pada Pengembangan..., Oscar Jiro Harlison, Universitas Multimedia Nusantara

Validator yang dihasilkan diterapkan pada Prompt Form, memungkinkan
validasi real-time sebelum submit. Pesan kesalahan yang ditampilkan diambil dari
messages dalam validation schema, memastikan konsistensi antara konfigurasi
editor dan user feedback.

Tahap ini juga mencakup perbaikan bug pada proses pembuatan chat baru.
API chat mengharuskan seluruh payload berupa string, namun field bertipe angka
menghasilkan nilai numerik setelah validasi.

Dengan implementasi skema validasi JSONB, konversi ke runtime

validator, dan normalisasi payload, integrasi Prompt Form dinamis berhasil
diselesaikan secara menyeluruh.

D.2 Outcome

Fitur Prompt Form Editor telah dinilai berfungsi dengan baik dan telah
digabungkan ke lingkungan staging setelah melalui proses evaluasi internal.
Seluruh integrasi inti, termasuk penyusunan struktur form dinamis, mekanisme
penyimpanan, dan pemetaan data ke Prompt Form baru telah berjalan sesuai
kebutuhan. Fitur ini telah siap digunakan oleh admin untuk mengelola struktur
form secara langsung tanpa perlu modifikasi kode.

3.4 Kendala dan Solusi yang Ditemukan

Selama proses pengembangan sistem, sejumlah tantangan teknis ditemukan
pada implementasi fitur-fitur terkait ELN dan AI Chatbot internal. Kendala tersebut
mencakup permasalahan pada desain data, integrasi UI, mekanisme penyimpanan,
hingga konsistensi perilaku API. Berikut merupakan rangkuman kendala utama
beserta solusi yang diterapkan untuk mengatasinya.

3.4.1 Implementasi Server-Side Pagination

Tantangan muncul ketika menerapkan mekanisme pagination pada modul User
& Roles serta Admin & Tenant Management. API dari penyedia identitas tidak
menyediakan dukungan pagination yang fleksibel, terutama ketika permintaan data
disertai parameter pencarian ataupun filtering kolom secara simultan. Penggunaan
offset-based pagination juga terbukti tidak efisien untuk dataset berukuran besar.

60
Kontribusi pada Pengembangan..., Oscar Jiro Harlison, Universitas Multimedia Nusantara

Solusi: Dilakukan evaluasi terhadap berbagai pendekatan fetching, dan metode
progressive batched fetching dipilih karena lebih efisien serta konsisten dalam
menangani volume data besar. Pengujian dilakukan dengan berbagai variasi
parameter pencarian dan filtering untuk memastikan perilaku API tetap stabil pada
seluruh skenario.

3.4.2 Struktur Dinamis Prompt Form

Kompleksitas tinggi muncul ketika merancang Prompt Form Editor yang harus
mendukung struktur formulir dinamis dengan berbagai tipe field, termasuk opsi
bertingkat dan relasi antaropsi. Beberapa field memiliki struktur yang lebih
kompleks dibandingkan select umum, sehingga generalisasi tipe data menjadi tidak
stabil dan menghasilkan inkonsistensi representasi antarfield. Hal ini menyulitkan
penyusunan skema data serta integrasi frontend dengan struktur dinamis tersebut.

Solusi: Skema data dirancang ulang menggunakan konfigurasi berbasis JSONB agar
setiap field dapat menyimpan struktur dan metadata secara fleksibel. Pendekatan
ini memudahkan penyimpanan opsi bertingkat serta aturan tambahan tiap field

tanpa membebani struktur database inti. Setelah konsultasi dan evaluasi, ditetapkan
bahwa dua field dengan struktur kompleks akan diperlakukan sebagai tipe unik
tersendiri, bukan diturunkan dari tipe select dasar. Pendekatan ini mengurangi
kompleksitas generalisasi serta meningkatkan konsistensi data dalam editor.

3.4.3 Perancangan Mekanisme Penyimpanan pada Prompt Form Editor

Tantangan signifikan muncul ketika merancang mekanisme penyimpanan
perubahan pada Prompt Form Editor. Pendekatan autosave tidak
diimplementasikan karena berpotensi menghasilkan beban query tinggi ke
database, meskipun telah menggunakan debounce. Selain itu, editor tidak memiliki
kebutuhan kolaborasi real-time yang biasanya menjadi alasan utama penggunaan
autosave. Pendekatan manual save sederhana juga tidak ideal karena berisiko
menyebabkan penyimpanan ulang seluruh struktur formulir meskipun perubahan
yang dilakukan bersifat minimal, terutama karena data tersebar pada banyak tabel
dan baris.

Solusi: Dirancang mekanisme tracking perubahan yang mampu mendeteksi

61
Kontribusi pada Pengembangan..., Oscar Jiro Harlison, Universitas Multimedia Nusantara

selisih antara state awal dan state baru. Sistem ini memungkinkan user
menunda penyimpanan jika diperlukan, mendukung opsi revert, dan hanya
mengirimkan perubahan aktual dalam satu operasi simpan ketika tombol save

ditekan. Pendekatan ini mengurangi overhead API, menghindari upsert tidak perlu,
serta menghasilkan alur penyimpanan yang lebih efisien dan aman. Mekanisme ini
diuji secara iteratif mengingat banyaknya skenario perubahan pada struktur dinamis
editor, namun berhasil distabilkan dan disetujui setelah serangkaian evaluasi.

3.4.4 Bug pada Proses Generasi Chat dari Prompt Form Dinamis

Setelah integrasi skema validasi pada Prompt Form dinamis, sebuah bug muncul
ketika sistem mencoba menghasilkan sesi percakapan baru dari formulir tersebut.
Proses gagal pada sisi backend dan hanya menampilkan pesan kesalahan generik,
sehingga sulit menelusuri penyebabnya. Pengujian menunjukkan bahwa formulir
statis lama tetap berfungsi dengan baik, mengindikasikan bahwa masalah muncul
dari perbedaan struktur payload yang dihasilkan oleh Prompt Form dinamis.

Solusi: Setelah membandingkan payload antara versi statis dan dinamis melalui
serangkaian percobaan, ditemukan bahwa salah satu nilai pada payload dihasilkan
sebagai tipe numerik, sedangkan backend mengharapkan seluruh nilai dikirim
dalam bentuk string. Perbedaan kecil ini menyebabkan proses pembuatan chat
gagal pada sisi API. Setelah seluruh nilai distandardisasi menjadi string sebelum
pengiriman, proses generasi chat kembali berjalan normal. Pengalaman ini juga
memberikan pelajaran betapa pentingnya error logging yang deskriptif untuk masa
mendatang.

62
Kontribusi pada Pengembangan..., Oscar Jiro Harlison, Universitas Multimedia Nusantara

	BAB 3 Pelaksanaan Kerja Magang
	3.1 Kedudukan dan Koordinasi
	3.2 Tugas yang Dilakukan
	3.3 Uraian Pelaksanaan Magang
	3.3.1 Kontribusi pada ELN
	3.3.2 Kontribusi pada AI Chatbot Internal

	3.4 Kendala dan Solusi yang Ditemukan
	3.4.1 Implementasi Server-Side Pagination
	3.4.2 Struktur Dinamis Prompt Form
	3.4.3 Perancangan Mekanisme Penyimpanan pada Prompt Form Editor
	3.4.4 Bug pada Proses Generasi Chat dari Prompt Form Dinamis

