BAB 2
TINJAUAN PUSTAKA

2.1 Adenokarsinoma Paru
2.1.1 Karakteristik Patologis dan Molekuler

Adenokarsinoma paru didefinisikan sebagai tumor ganas yang menunjukkan
diferensiasi kelenjar atau produksi musin, yang berasal dari sel-sel epitel di
bagian perifer paru-paru. Patogenesis molekulernya merupakan proses multi-
langkah yang kompleks dan heterogen, yang melibatkan akumulasi progresif dari
berbagai perubahan genetik dan epigenetik [7]. Perubahan ini secara kolektif
mengganggu jalur pensinyalan seluler normal, yang mengarah pada proliferasi
sel yang tidak terkendali, penghindaran kematian sel terprogram (apoptosis),
dan kemampuan untuk menginvasi jaringan sekitar serta bermetastasis ke organ
jauh. Landasan molekuler dari adenokarsinoma paru melibatkan alterasi pada
dua kelas utama gen: oncogenes dan tumor-suppressor genes (TSG). Oncogenes
adalah gen yang, ketika mengalami mutasi aktivasi, memperoleh fungsi baru
atau berlebih (gain-of-function) yang mendorong onkogenesis. Sebaliknya, TSG
adalah gen yang dalam kondisi normal berfungsi untuk menekan pertumbuhan
tumor; mutasi inaktivasi pada gen-gen ini menyebabkan hilangnya fungsi (loss-of-
function) tersebut, sehingga memungkinkan pertumbuhan kanker [8].

Secara histopatologis, adenokarsinoma paru menunjukkan heterogenitas
yang signifikan dalam pola pertumbuhannya. Klasifikasi dari World Health
Organization (WHO) edisi ke-5 (tahun 2021) mengkategorikan adenokarsinoma
invasif berdasarkan pola arsitektural predominan yang diamati di bawah mikroskop

[9]. Terdapat lima pola pertumbuhan utama yang diakui:

1. Pola Lepidik: Sel-sel tumor tumbuh melapisi dinding alveolus yang sudah ada
tanpa merusak arsitektur paru normal. Pola ini dikaitkan dengan prognosis

yang sangat baik.

2. Pola Asinar: Sel-sel tumor membentuk struktur kelenjar atau asinus yang
menyerupai kelenjar normal tetapi dengan atipia sitologis. Ini adalah pola

yang paling sering didiagnosis.

3. Pola Papiler: Sel-sel tumor tumbuh di sekitar inti fibrovaskular, menciptakan

struktur seperti jari atau papila.
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4. Pola Mikropapiler: Sel-sel tumor membentuk kelompok-kelompok kecil atau
tandan tanpa inti fibrovaskular, yang sering mengambang di dalam ruang

udara. Pola ini dikaitkan dengan prognosis yang lebih buruk.

5. Pola Solid: Sel-sel tumor tumbuh dalam lembaran padat tanpa membentuk
struktur kelenjar yang jelas. Pola ini juga dikaitkan dengan prognosis yang
lebih buruk.

Sebagian besar adenokarsinoma menunjukkan campuran dari beberapa
pola ini. Oleh karena itu, diagnosis didasarkan pada identifikasi pola yang
dominan, dan persentase setiap pola harus dilaporkan. Sebuah pembaruan
penting dalam klasifikasi WHO 2021 adalah pengenalan sistem grading baru untuk
adenokarsinoma non-musinosa invasif. Sebuah tumor sekarang diklasifikasikan
sebagai poorly differentiated (berdiferensiasi buruk) jika mengandung 20% atau
lebih dari pola high-grade (yaitu, pola solid atau mikropapiler), terlepas dari
pola predominannya. Sistem grading ini terbukti lebih baik dalam memprediksi

prognosis pasien dibandingkan dengan hanya mengandalkan pola predominan.

2.1.2 Perbandingan Paru-Paru Normal dan Adenokarsinoma Paru

Memahami perbedaan antara paru normal dan adenokarsinoma pada
tingkat histologis dan radiologis sangat penting untuk diagnosis dan pemahaman

patogenesis penyakit, perbedaan hasil CT scan dapat dilihat di Gambar 2.1.

Adenocarcinoma

Normal

Gambar 2.1. Perbedaan Paru-Paru Normal dan Adenokarsinoma Paru
Sumber: [10]

Jaringan paru-paru normal secara histologis, unit fungsional paru-paru

adalah alveolus, kantung udara kecil tempat pertukaran gas terjadi. Dinding alveolar
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yang tipis dilapisi oleh dua jenis sel utama, yaitu pneumosit tipe I, yang merupakan
sel skuamosa tipis yang menutupi sebagian besar permukaan untuk pertukaran
gas, dan pneumosit tipe II, yang merupakan sel kuboid yang bertanggung jawab
untuk memproduksi surfaktan dan perbaikan epitel. Arsitektur ini dirancang untuk
memaksimalkan luas permukaan untuk difusi gas yang efisien.

Spektrum Perkembangan Adenokarsinoma: Adenokarsinoma paru tidak
muncul secara tiba-tiba, melainkan berkembang melalui spektrum lesi prekursor

yang dapat diidentifikasi secara histologis dan seringkali radiologis [11].

1. Atypical Adenomatous Hyperplasia (AAH): Ini adalah lesi prekursor paling
awal, didefinisikan sebagai proliferasi lokal berbatas tegas dari pneumosit
tipe II atau sel Clara yang atipikal secara ringan hingga sedang, biasanya
berukuran 5 mm atau kurang. Pada citra Computed Tomography (CT),
AAH biasanya muncul sebagai pure ground-glass nodule (GGN), yaitu area
peningkatan atenuasi yang kabur di mana struktur bronkial dan vaskular di
bawahnya masih terlihat.

2. Adenocarcinoma in Situ (AIS): Lesi ini dianggap sebagai karsinoma non-
invasif. AIS adalah tumor berbatas tegas berukuran 30 mm atau kurang yang
ditandai oleh pertumbuhan dengan pola lepidik murni, di mana sel-sel tumor
melapisi dinding alveolar tanpa invasi stroma, vaskular, atau pleura. Seperti
AAH, AIS secara klasik juga muncul sebagai GGN pada CT scan. Pasien
dengan AIS yang direseksi sepenuhnya memiliki tingkat kelangsungan hidup
mendekati 100%.

3. Minimally Invasive Adenocarcinoma (MIA): Ini adalah langkah selanjutnya
dalam spektrum, di mana invasi stroma kecil mulai terjadi. MIA didefinisikan
sebagai adenokarsinoma dengan predominan lepidik berukuran kurang
dari 30 mm dengan komponen invasif berukuran kurang dari 5 mm.
Secara radiologis, MIA sering muncul sebagai nodul part-solid, di mana
GGN (mewakili komponen lepidik) disertai dengan komponen solid kecil

(mewakili area invasi).

4. Adenokarsinoma Invasif: Ketika komponen invasif melebihi 5 mm,
tumor diklasifikasikan sebagai adenokarsinoma invasif. Secara histologis,
perbedaan utamanya dengan jaringan normal adalah penghancuran total
arsitektur alveolar normal. Ruang udara digantikan oleh pola pertumbuhan

ganas yang telah dijelaskan sebelumnya (asinar, papiler, solid, dll.). Ciri khas
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invasi adalah adanya stroma desmoplastik, yaitu respons jaringan ikat fibrosa
terhadap sel-sel tumor yang menginvasi. Secara imunohistokimia, studi
telah menunjukkan bahwa jaringan adenokarsinoma menunjukkan ekspresi
berlebih dari berbagai penanda kanker dibandingkan dengan jaringan paru
normal di sekitarnya. Penanda ini termasuk protein yang terkait dengan
mutasi (seperti TP53), proliferasi sel (PCNA), dan respons imun (CD45),

yang secara kolektif mencerminkan ciri khas kanker.

Perkembangan ini menunjukkan adanya sebuah konvergensi tripartit antara
penemuan molekuler, praktik klinis, dan inovasi dalam pencitraan dan klasifikasi.
Kebutuhan ini mendorong para ahli patologi dan radiologi untuk mencari korelasi
antara apa yang terlihat di bawah mikroskop dan apa yang tampak pada CT scan.
Studi-studi kemudian mengkonfirmasi bahwa lesi prekursor non-invasif seperti AIS,
yang secara histologis menunjukkan pola lepidik murni, secara konsisten muncul
sebagai GGN pada CT scan. Pengakuan akan hubungan erat antara tampilan
radiologis dan perilaku biologis ini sangat fundamental sehingga sistem staging
TNM edisi ke-8 secara eksplisit memasukkan aturan baru untuk mengukur nodul
subsolid, di mana hanya komponen solid (yang mewakili invasi) yang digunakan
untuk menentukan kategori T [9]. Ini menandakan sebuah feedback loop yang kuat:
penemuan molekuler mendorong kebutuhan klinis, yang memicu korelasi radio-
patologis, yang pada akhirnya merevolusi sistem staging global. Sistem TNM tidak
lagi murni anatomis; ia telah berevolusi untuk mencakup fenotipe radio-patologis
spesifik dari adenokarsinoma. Evolusi ini memberikan pembenaran yang kuat untuk
penelitian yang menggunakan kecerdasan buatan untuk menganalisis fitur citra
(radiomik). Tujuannya bukan hanya untuk mendeteksi keberadaan kanker, tetapi
untuk secara non-invasif memprediksi subtipe histologis, status molekuler, dan
tingkat invasi yang mendasarinya, yang semuanya memiliki implikasi prognostik

dan terapeutik langsung.

2.1.3 N-Stage Adenokarsinoma Paru

Dalam manajemen onkologi toraks, status kelenjar getah bening regional
atau N-stage pada pasien adenokarsinoma paru merupakan biomarker dinamis
yang merepresentasikan biologi tumor, potensi metastasis sistemik, serta respons
terhadap intervensi terapeutik multimodal. Sebagai subtipe non-small cell lung
cancer (NSCLC) yang paling prevalen, adenokarsinoma memiliki karakteristik

penyebaran limfatik yang unik dan cenderung terjadi lebih dini dibandingkan
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karsinoma sel skuamosa, meskipun pada ukuran tumor primer yang relatif
kecil. Akurasi dalam mendefinisikan klasifikasi status N, yang mencakup rentang
dari ketiadaan metastasis (NO) hingga penyebaran kontralateral (N3), menjadi
determinan paling kritis dalam pengambilan keputusan klinis. Hal ini menentukan
kelayakan pasien untuk menjalani reseksi bedah kuratif, terapi neoadjuvant berbasis
imunoterapi, maupun protokol kemoradiasi definitif.

Tabel 2.1 berikut menyajikan sintesis data perbandingan antara klasifikasi
edisi ke-8 dan usulan edisi ke-9, serta data survival terkait berdasarkan literatur
TASLC 2024 [12].

Tabel 2.1. Deskriptor N Kanker Paru: Definisi, Prognosis (Edisi 8 & 9), dan Terapi

Deskriptor | Definisi Anatomis Sub-Klasifikasi | HR* Median OS | Implikasi Terapi

NO Tidak ada metastasis - Ref (1.00) | > 60 —90 Reseksi Bedah
regional (+ Adjuvant jika 7 > 4cm)

N1 Ipsilateral peribronkial, N1 Tunggal 2.40 ~ 45 - 60 Reseksi + Adjuvant
hilar, intrapulmoner (tetap) (vs NO) (TKI/Chemo)

N2 Ipsilateral mediastinal / N2a 1.45 ~20.0 Neoadjuvant Chemo-I0
subkarinal (Single Station) | (vs N1) — Bedah

N2 Ipsilateral mediastinal / N2b 1.27 ~14.5 Kemoradiasi Definitif /
subkarinal (Multi Station) | (vs N2a) Neoadjuvant Selektif

N3 Kontralateral mediastinum / | - 1.62 ~10-12 Kemoradiasi Definitif
Supraclavicular (vs N2b) + Durvalumab

2.2 Segmentasi TotalSegmentator

TotalSegmentator adalah alat segmentasi otomatis canggih yang dibangun di
atas fondasi kerangka kerja nnU-Net (no-new-Net), sebuah arsitektur deep learning
berbasis 3D U-Net yang diakui sebagai standar emas karena kemampuannya
mengonfigurasi diri secara otomatis untuk kinerja optimal pada dataset biomedis.
Dikembangkan oleh Jakob Wasserthal dan tim peneliti dari University Hospital
Basel, Swiss, alat ini dilatih menggunakan dataset yang sangat besar dan heterogen,
terdiri dari 1.204 pemeriksaan CT klinis rutin yang mencakup berbagai variasi
patologi berat, jenis pemindai, dan protokol pencitraan, yang membedakannya dari
model lain yang sering kali hanya dilatih pada data terkurasi [13]. Keandalan
dan ketangguhan (robustness) pada data dunia nyata inilah yang menjadikan
TotalSegmentator dipercaya secara luas oleh radiolog global sebagai solusi untuk

kuantifikasi anatomi otomatis yang presisi.
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Dalam hal kinerja kuantitatif, TotalSegmentator telah membuktikan
akurasinya melalui publikasi di jurnal Radiology: Artificial Intelligence, di mana
model ini mencapai skor Dice Similarity Coefficient (DSC) rata-rata global yang
sangat tinggi sebesar 0,943 (95% CI: 0.938, 0.947) untuk 104 struktur anatomi,
secara signifikan mengungguli model kompetitor lainnya. Keunggulan ini sangat
menonjol pada organ paru-paru; studi validasi independen terbaru menunjukkan
bahwa TotalSegmentator mencapai akurasi DSC hingga 0,95 untuk segmentasi
lobus paru pada kasus standar, dan secara statistik lebih unggul (p ; 0.001)
dibandingkan alat open-source populer lainnya seperti MOOSE dan LungMask,
terutama dalam menangani variasi fisura pada kasus patologis [14]. Selain itu,
untuk mendukung deteksi dini kanker, alat ini mengintegrasikan modul khusus
dari BLUEMIND AI untuk segmentasi nodul paru yang dilatih pada 1.353
subjek—termasuk dataset standar emas LIDC-IDRI—memungkinkan delineasi

nodul yang akurat dan konsisten untuk analisis volumetrik.

2.3 Rekayasa Fitur
2.3.1 Ekstraksi Fitur

Ekstraksi fitur bertujuan untuk menciptakan representasi data yang lebih
padat dan bermakna dengan mentransformasikan fitur-fitur asli. Fitur-fitur ini
umumnya dikategorikan ke dalam beberapa kelompok utama berdasarkan properti

yang mereka kuantifikasi [15]:

1. Fitur Orde Pertama (Statistik Histogram): Fitur-fitur ini menggambarkan
distribusi intensitas nilai voxel di dalam ROI tanpa mempertimbangkan
hubungan spasial antar voxel. Mereka dihitung dari histogram intensitas
voxel. Contohnya termasuk ukuran tendensi sentral (mean, median),
dispersi (varians, standar deviasi, rentang), dan bentuk distribusi (skewness,
yang mengukur asimetri, dan kurtosis, yang mengukur “’keruncingan” atau

“kepuncakan” distribusi).

2. Fitur Bentuk (Shape-based): Fitur-fitur ini secara eksklusif berasal dari kontur
geometris ROI dan tidak bergantung pada nilai intensitas voxel di dalamnya.
Mereka mengkuantifikasi bentuk dan ukuran 3D tumor. Contohnya termasuk
Volume, Luas Permukaan, Sphericity (mengukur seberapa bulat objek),

Compactness, Elongation (mengukur seberapa memanjang objek), dan
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Flatness. Fitur-fitur ini dapat menangkap karakteristik morfologis kasar dari

tumor.

3. Fitur Tekstur (Orde Kedua dan Orde Tinggi): Fitur-fitur ini merupakan
inti dari analisis radiomik karena mereka mengkuantifikasi heterogenitas
intratumoral dengan menganalisis pola dan hubungan spasial antar voxel
dengan intensitas yang berbeda. Mereka memberikan wawasan tentang
kompleksitas arsitektur internal tumor. Beberapa matriks tekstur yang paling

umum digunakan adalah:

* Gray-Level Co-occurrence Matrix (GLCM): Matriks ini menangkap
hubungan spasial antara pasangan voxel dengan menghitung frekuensi
kemunculan bersama dari tingkat keabuan tertentu pada jarak dan arah
yang ditentukan. Fitur yang diturunkan dari GLCM termasuk Kontras
(mengukur variasi lokal), Korelasi (mengukur dependensi linear
tingkat keabuan), Energi atau Angular Second Moment (mengukur

homogenitas), dan Homogenitas.

* Gray-Level Run Length Matrix (GLRLM): Matriks ini
mengkuantifikasi panjang rangkaian voxel berturut-turut yang memiliki
tingkat keabuan yang sama dalam arah tertentu. Ini dapat menangkap

kekasaran tekstur.

* Gray-Level Size Zone Matrix (GLSZM): Matriks ini mengukur ukuran
zona 3D dari voxel yang terhubung yang memiliki tingkat keabuan yang

sama. Ini berguna untuk mengukur heterogenitas regional.

* Neighboring Gray Tone Difference Matrix (NGTDM): Matriks ini
mengukur perbedaan antara intensitas suatu voxel dan rata-rata

intensitas tetangganya, yang memberikan ukuran kekasaran tekstur.

4. Fitur Berbasis Transformasi (Transform-based): Sebelum mengekstraksi fitur
orde pertama atau tekstur, citra dapat di-filter atau di-transformasi terlebih
dahulu untuk menonjolkan pola pada skala atau frekuensi yang berbeda.
Contoh yang paling umum adalah penggunaan transformasi Wavelet, yang
menguraikan citra menjadi komponen frekuensi yang berbeda (misalnya,
low-pass dan high-pass), memungkinkan analisis tekstur pada berbagai skala

spasial.
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2.3.2 SMOTE

Untuk mengatasi keterbatasan metode random over-sampling konvensional
yang hanya menduplikasi data (dan menyebabkan overfitting) terciptalah metode
SMOTE (Synthetic Minority Over-sampling Technique) [16]. SMOTE merupakan
teknik augmentasi data yang bekerja di ruang fitur (feature space), bukan di
ruang data. Inti dari inovasi SMOTE adalah pembentukan sampel sintetis melalui
interpolasi linear, yang memperkaya variasi data pelatihan tanpa sekadar mengulang
informasi yang sudah ada.

SMOTE beroperasi berdasarkan prinsip k-Nearest Neighbors (k-NN).
Algoritma ini mengasumsikan bahwa fitur-fitur dari kelas yang sama akan
berkumpul berdekatan dalam ruang vektor multidimensi. Proses pembentukan data

sintetis dilakukan dengan langkah-langkah sistematis sebagai berikut.

1. Identifikasi Sampel Referensi: Algoritma memilih satu sampel dari kelas

minoritas, sebut saja x;, sebagai basis untuk pembuatan data baru.

2. Seleksi Tetangga: Memilih salah satu dari k tetangga tersebut secara acak,

yang dinotasikan sebagai x;;.

3. Interpolasi Linear: Membuat sampel sintetis baru x,., di sepanjang garis

lurus yang menghubungkan x; dan x,; dalam ruang fitur.

Secara matematis, proses interpolasi dalam SMOTE dapat dijelaskan
melalui aljabar vektor. Misalkan x; € R¢ adalah vektor fitur dari sampel minoritas
yang dipilih, dan x,; € R? adalah vektor fitur dari salah satu tetangga terdekatnya.

Sampel sintetis X, dihasilkan menggunakan Rumus 2.1.

Xpew = Xi + 0 - (X — X;) 2.1)

Rumus di atas menjamin bahwa x,,,, selalu terletak pada segmen garis antara
x; dan x;;. Karena § adalah skalar acak antara O dan 1, posisi x,,, dapat berada di
mana saja di sepanjang garis tersebut. Secara geometris, ini berarti SMOTE mengisi
“kekosongan” di antara sampel-sampel minoritas yang ada, sehingga membuat
decision boundary kelas minoritas menjadi lebih padat dan kontinu, mengurangi

fragmentasi yang sering terjadi pada dataset kecil [2].
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2.3.3 Seleksi Fitur

Ekstraksi fitur radiomik seringkali menghasilkan ribuan fitur kandidat.
Menggunakan semua fitur ini untuk melatih model dapat menyebabkan dua masalah
utama: (1) “kutukan dimensionalitas” (curse of dimensionality), di mana jumlah
fitur jauh lebih besar daripada jumlah sampel, membuat model sulit untuk dilatih;
dan (2) overfitting, di mana model belajar dari noise acak dalam data pelatihan
alih-alih sinyal biologis yang sebenarnya, yang mengakibatkan kinerja yang buruk
pada data baru [17]. Oleh karena itu, seleksi fitur adalah langkah krusial untuk
mengidentifikasi dan memilih subset fitur yang paling relevan dan non-redundan,
sehingga meningkatkan performa dan generalisasi model. Terdapat tiga strategi

utama untuk seleksi fitur:

1. Metode Filter: Metode ini mengevaluasi fitur secara independen dari model
machine learning yang akan digunakan. Fitur diberi peringkat berdasarkan
karakteristik statistik intrinsiknya, seperti varians, korelasi dengan variabel
target (misalnya, koefisien korelasi Pearson), atau signifikansi statistik dalam
membedakan antar kelas (misalnya, uji-t, ANOVA). Fitur dengan peringkat
di bawah ambang batas tertentu kemudian dibuang. Metode filter sangat
cepat secara komputasi dan tidak bias terhadap model tertentu, tetapi karena
mereka tidak mempertimbangkan interaksi antar fitur atau bias dari model
pembelajaran, subset fitur yang dipilih mungkin bukan yang optimal untuk

performa prediktif. .

2. Metode Wrapper: Metode ini menggunakan performa prediktif dari model
machine learning spesifik sebagai kriteria untuk mengevaluasi kegunaan
suatu subset fitur. Sebuah algoritma pencarian (misalnya, seleksi maju,
eliminasi mundur, atau recursive feature elimination - RFE) secara iteratif
menghasilkan subset fitur kandidat, melatih model pada setiap subset, dan
mengevaluasi performanya (misalnya, menggunakan akurasi atau AUC pada
set validasi). Subset yang memberikan performa terbaik akan dipilih. Metode
wrapper cenderung menghasilkan performa model yang superior karena
secara langsung mengoptimalkan fitur untuk model yang diberikan dan
dapat menangkap interaksi antar fitur. Namun, kelemahannya adalah biaya
komputasi yang sangat tinggi, terutama dengan jumlah fitur yang besar, dan

risiko overfitting pada proses seleksi itu sendiri.

3. Metode Embedded: Metode ini mengintegrasikan proses seleksi fitur ke
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dalam proses pelatihan model itu sendiri, menawarkan kompromi antara
efisiensi metode filter dan performa metode wrapper. Model secara inheren
belajar fitur mana yang paling penting selama proses fitting. Contoh klasik

termasuk:

* Regularisasi L1 (LASSO): Menambahkan penalti yang sebanding
dengan nilai absolut dari koefisien model ke fungsi kerugian. Penalti
ini dapat menyusutkan koefisien fitur yang tidak penting menjadi tepat

nol, sehingga secara efektif melakukan seleksi fitur.

* Model Berbasis Pohon: Algoritma seperti Random Forest dan XGBoost
secara alami menghitung skor pentingnya fitur (feature importance)
berdasarkan seberapa besar setiap fitur berkontribusi pada pengurangan
ketidakmurnian (impurity) atau kerugian di seluruh pohon dalam

ensemble. Fitur dengan skor pentingnya rendah dapat dihilangkan.

2.4 XGBoost

Extreme Gradient Boosting (XGBoost) adalah sebuah algoritma machine
learning yang didasarkan pada kerangka kerja gradient boosting, yang dirancang
untuk kecepatan, efisiensi, dan performa tinggi [18]. Sejak diperkenalkan,
XGBoost telah menjadi salah satu algoritma yang paling dominan dan populer
untuk tugas-tugas klasifikasi dan regresi pada data terstruktur atau tabular,
seperti data fitur radiomik [19]. Keberhasilannya sebagian besar disebabkan oleh
implementasinya yang sangat dioptimalkan, yang mencakup pemrosesan paralel,
penanganan nilai yang hilang, dan yang terpenting, regularisasi untuk mengontrol
overfitting. Kerangka kerja XGBoost didasarkan pada dua pilar utama: model
additive boosting dan fungsi objektif yang dioptimalkan menggunakan ekspansi

Taylor orde kedua.

Model Matematika XGBoost adalah sebagai berikut.

1. Model Prediksi Ensemble

Misalkan sebuah dataset ¥ memiliki n sampel, dengan Rumus 2.2.

2 = {(xi,yi) Yimy (2.2)
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Prediksi akhir (y;) untuk sampel x; adalah hasil penjumlahan dari K fungsi
pohon keputusan independen (CART - Classification and Regression Trees)

menggunakan Rumus 2.3.

K
Ji=0(x) =Y filxi), fieZ (2.3)

Fungsi f; adalah fungsi yang merepresentasikan struktur pohon ke-k
(termasuk bobot di setiap daunnya) dan .# adalah ruang dari semua

kemungkinan pohon [7].

2. Fungsi Objektif
Tujuan dari XGBoost adalah untuk meminimalkan fungsi objektif .Z(¢)
yang menggabungkan loss function / (yang mengukur seberapa baik model
memprediksi data) dan regularization term € (yang mengukur kompleksitas

model untuk mencegah overfitting) seperti yang terdapat di Rumus 2.4.

n K

2(0)=Y 1vi,3)+ Y, Q(f) (2.4)

i=1 k=1

Komponen regularisasi  adalah yang membedakan XGBoost secara
signifikan dari GBM standar. Q didefinisikan di Rumus 2.5

1 T
QU =1+ 34 K v] 25)

3. Optimalisasi Aditif dan Ekspansi Taylor

Model dioptimalkan melalui skema pelatihan aditif, di mana pada setiap
iterasi ke-7, algoritma berupaya menentukan fungsi f; yang paling optimal
untuk meminimalkan fungsi objektif. Proses pembentukan prediksi pada
langkah ke- dilakukan dengan menambahkan fungsi baru ke hasil prediksi

dari iterasi sebelumnya, sebagaimana dinyatakan dalam Rumus 2.6:

3 =5 1 fi) (2.6)
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Fungsi objektif pada langkah ke-f sebagaimana dinyatakan di Rumus 2.7.

100,37 + £(x1) + Q(f) 2.7)

=

) —
i=1

Guna mempercepat proses optimasi, XGBoost menerapkan aproksimasi
ekspansi Taylor orde kedua pada fungsi kerugian (loss function) /. Dalam
mekanisme ini, g; didefinisikan sebagai turunan pertama atau gradien
berdasarkan Rumus 2.8, sementara /; merupakan turunan kedua atau Hessian

terhadap prediksi $~1) sebagaimana ditunjukkan pada Rumus 2.9.

gi = Ayl (3, 3*Y) (2.8)

=%, y10,3) 29)

Maka, fungsi objektif dapat diaproksimasi (setelah menghilangkan suku

konstan) sebagaimana terdapat di Rumus 2.10.
L0 ~ Y [eifi (i) + Shif ()] + Q(f) (2.10)
i=1

Dengan mendefinisikan /; = {i|g(x;) = j} sebagai himpunan indeks sampel
yang berada di daun ke-j, dan w; sebagai skor pada daun tersebut (f;(x) =
Wy (x))s fungsi objektif dapat ditulis ulang sebagai penjumlahan atas 7" daun di
Rumus 2.11.

9T (2.11)

gl

iEIj iEIj

. Skor Optimal Daun dan Kualitas Struktur
Untuk struktur pohon ¢(x) yang tetap, bobot optimal w;‘- untuk daun ke-j
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yang meminimalkan .Z(") dapat dihitung secara analitis (dengan mengambil
turunan .Z*) terhadap w; dan menyamakannya dengan nol) seperti di Rumus
2.12.

Yier, 8i

Dengan mensubstitusikan wj kembali ke ¥ (’), kita mendapatkan skor
kualitas (atau structure score) -£* untuk struktur pohon g(x) seperti pada
Rumus 2.13.

Zlel gl

Y +9T (2.13)
16

g )
M e

J=1

Skor ini digunakan oleh algoritma XGBoost untuk secara serakah (greedy)
membangun pohon. Saat mencari split (pemisahan) terbaik, algoritma
mengevaluasi gain (keuntungan) dari pemisahan tersebut. Gain dari satu

pemisahan didefinisikan pada Rumus 2.14.

(ZIGIL gt) + (Zielk gi)z (Zzelgi)z

Gain =
ZIEILh +l Zzeth +A Zlelh +A

—y (2.14)

di mana [; dan Iz adalah himpunan sampel di cabang kiri dan kanan setelah
split, dan / adalah himpunan sebelum split. Pemisahan dengan nilai Gain
tertinggi akan dipilih. Penggunaan g; dan A; inilah yang memungkinkan
XGBoost mendukung loss function kustom apa pun yang dapat diturunkan

(diferensial) sebanyak dua kali.

2.5 Support Vector Machine (SVM)

Support Vector Machine (SVM) merupakan algoritma supervised learning
yang dikembangkan berdasarkan Statistical Learning Theory (SLT) oleh Vapnik.
Berbeda dengan metode yang berbasis pada Empirical Risk Minimization (ERM)
semata, SVM mengadopsi prinsip Structural Risk Minimization (SRM) [20].
Prinsip ini bertujuan untuk meminimalkan batas atas dari kesalahan generalisasi

(generalization error bound) daripada sekadar meminimalkan kesalahan pada data
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latih, sehingga model memiliki ketahanan (robustness) yang lebih tinggi terhadap
overfitting.

Konsep fundamental SVM adalah konstruksi hyperplane optimal yang
memisahkan dua kelas data dengan margin maksimal. Margin didefinisikan sebagai
jarak tegak lurus antara hyperplane pemisah dengan data terdekat dari masing-
masing kelas, yang disebut sebagai support vectors. Posisi hyperplane hanya
ditentukan oleh support vectors ini, sehingga data lain yang berada jauh dari batas

keputusan tidak mempengaruhi model.

1. Definisi Hyperplane
Sebuah hyperplane dalam ruang fitur dimensi tinggi didefinisikan oleh Rumus
2.15.
w-x+b=0 (2.15)

2. Kendala Klasifikasi (Primal Constraints)
Untuk dataset yang terpisah secara linier, aturan keputusan untuk setiap

sampel i dengan label y; € {—1,+1} terdapat di Rumus 2.16.

yilw-xi+b)>1, Vi=1,...,n (2.16)

Rumus ini menjamin bahwa seluruh data terklasifikasi dengan benar dan

berada di luar margin yang didefinisikan oleh w-x+ b = £1.

3. Fungsi Objektif (Optimasi)
Lebar margin secara geometris diberikan oleh ﬁ Memaksimalkan margin
ekuivalen dengan meminimalkan norma Euclidean dari vektor bobot ||w||.
Untuk kemudahan komputasi matematis (agar fungsi menjadi konveks dan

diferensiabel), fungsi objektif dirumuskan sebagai Rumus 2.17.

. W,
3 2.17
fain > [[w] (2.17)

Masalah ini diselesaikan menggunakan metode Lagrange Multipliers,
yang mengubah masalah primal menjadi masalah dual, memungkinkan

penggunaan fungsi kernel.
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4. Kernel Trick pada Data Non-Linier
Untuk data yang tidak terpisah secara linier, SVM memetakan ruang input ke
ruang fitur berdimensi lebih tinggi (7) menggunakan fungsi pemetaan ¢ (x).
Produk skalar di ruang fitur dihitung menggunakan fungsi Kernel K (x;,x;).
Kernel yang paling umum digunakan dalam literatur terkini adalah Radial
Basis Function (RBF) yang terdapat di Rumus 2.18.

K(xj,x;) :exp(—ny,-—xsz) (2.18)

Parameter ¥ > 0 mengontrol jangkauan pengaruh dari setiap sampel pelatihan
[21].

2.6 TabNet (Attentive Interpretable Tabular Learning)

TabNet adalah arsitektur Deep Learning kanonik yang dirancang khusus
untuk data tabular. — Arsitektur ini menggabungkan keunggulan representasi
pembelajaran end-to-end dari jaringan saraf tiruan dengan interpretabilitas dan
mekanisme pemilihan fitur (feature selection) dari Decision Trees. Inti dari
TabNet adalah penggunaan Sequential Attention Mechanism yang beroperasi secara
iteratif. Pada setiap langkah keputusan (decision step), model menggunakan
mekanisme atensi untuk memilih subset fitur yang relevan untuk diproses, meniru
perilaku pemecahan simpul pada pohon keputusan. Hal ini memungkinkan
alokasi kapasitas pembelajaran yang efisien dan memberikan interpretabilitas instan

melalui visualisasi feature masking [22].

1. Masking dengan Sparsemax
Pemilihan fitur dilakukan oleh Attentive Transformer menggunakan fungsi
aktivasi Sparsemax, bukan Softmax. Sparsemax memproyeksikan vektor
input ke simpleks probabilitas Euclidean, yang cenderung menghasilkan
bobot nol murni untuk fitur yang tidak relevan (sifat sparsity). Masker fitur
M(i] pada langkah ke-i dihitung denghan Rumus 2.19.

M(i] = sparsemax (P[i — 1] - h;(ali — 1])) (2.19)

Dimana afi — 1] adalah fitur yang diproses dari langkah sebelumnya, dan
Pli — 1] adalah Prior Scale.
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2. Prior Scale (Mekanisme Kontrol Redundansi)
Untuk memastikan model mengeksplorasi fitur baru dan tidak terjebak
pada fitur yang sama di setiap langkah, digunakan parameter Prior Scale
PJi], seperti yang terlihat di Rumus 2.20. Parameter ini mengakumulasi

penggunaan fitur di langkah-langkah sebelumnya.

i

Pli] = [J(r—MLj]) (2.20)

j=1

3. Feature Transformer dengan GLU
Pemrosesan fitur pada arsitektur ini memanfaatkan blok Feature Transformer
yang mengintegrasikan Gated Linear Unit (GLU). Mekanisme GLU
berfungsi mengontrol aliran informasi melalui gerbang non-linear, sehingga
memungkinkan model untuk mempelajari dependensi fitur yang kompleks.

Formulasi dari unit ini dinyatakan dalam Rumus 2.21.

GLU(X) = G(W1x+b1) . (WzX—I—bz) (2.21)

2.7 Hyperparameter Tuning

Dalam lanskap pengembangan model, pencapaian kinerja prediktif yang
superior tidak semata-mata bergantung pada pemilihan algoritma yang canggih
atau ketersediaan data berskala besar (big data). Salah satu determinan paling
kritis yang sering menjadi pembeda antara model yang berkinerja “cukup baik”
dan model yang “optimal” adalah konfigurasi internal yang mengatur perilaku
algoritma tersebut, yang dikenal sebagai hiperparameter (hyperparameters).
Literatur ilmiah kontemporer secara konsisten menempatkan proses penyesuaian
hiperparameter, atau hyperparameter tuning, sebagai tahapan fundamental dalam
pipeline pengembangan model yang valid dan robust [23]. Salah satu algoritma
untuk pencarian hyperparameter adalah GridSearchCV, metode ini mengevaluasi
kinerja model untuk setiap kombinasi titik dalam grid parameter yang didefinisikan

oleh pengguna.

1. Ruang Pencarian Grid (Hyperparameter Grid Space)
Optimasi  dilakukan terhadap vektor A = (A(D A3 A@) yang
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merepresentasikan d jenis hiperparameter. Untuk setiap hiperparameter
AU, ditentukan sebuah himpunan nilai kandidat diskrit AU) sebagaimana
didefinisikan dalam Rumus 2.22.

A(l) - {vl,lavl,Zw"vvl,ml} (222)

Ruang pencarian total, ¢, merupakan produk Kartesius dari seluruh

himpunan nilai kandidat yang dinyatakan melalui Rumus 2.23.

g =AD x A@ x ... x A@D (2.23)

Adapun total kombinasi atau ukuran ruang pencarian tersebut dihitung

berdasarkan Rumus 2.24.

d
91=T1] IAD)] (2.24)
j=1

Berdasarkan Rumus 2.24, setiap elemen g € 4 merepresentasikan satu
set konfigurasi hiperparameter unik yang akan dievaluasi melalui proses

pengujian.

2. Formulasi Optimasi Bilevel
Masalah optimasi yang diselesaikan oleh GridSearchCV  dapat
diformulasikan sebagai pencarian konfigurasi g* yang memaksimalkan

ekspektasi kinerja validasi:

¢* = argmax (E;swm@w g<xy~k>>> (2.25)

ge(j train’

Penting untuk dicatat bahwa dalam Rumus 2.25, terdapat proses optimasi
implisit (pelatihan model) di dalam setiap evaluasi fungsi f. Inilah yang
disebut sebagai struktur optimasi dua tingkat (bilevel optimization): optimasi
hiperparameter (tingkat atas) bergantung pada hasil optimasi parameter

model (tingkat bawah).

3. Mekanisme Refit (Pelatihan Ulang)
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Salah satu fitur penting namun sering terabaikan dari GridSearchCV adalah
mekanisme refit. Setelah kombinasi hiperparameter terbaik g* ditemukan
berdasarkan skor rata-rata validasi silang tertinggi, algoritma secara otomatis
melatih ulang model baru menggunakan g* pada seluruh dataset awal ¥
(100% data).Model final inilah yang dikembalikan kepada pengguna sebagai
best_estimator_. Secara matematis, model final fy;,, terdapat pada Rumus
2.26.

ffinat = Train(2,g") (2.26)

Langkah ini penting karena, secara statistik, model yang dilatih pada lebih
banyak data akan memiliki varians parameter yang lebih rendah dan kinerja
generalisasi yang lebih baik. Validasi silang hanya digunakan untuk memilih

hyperparameter, bukan untuk menghasilkan model akhir.

2.8 Metriks Evaluasi

Metrik evaluasi (evaluation metrics) merupakan instrumen pengukuran yang
digunakan untuk menganalisis dan menilai performa model dalam menjalankan
tugas klasifikasi tertentu. Untuk tugas klasifikasi seperti memprediksi stadium
kanker, evaluasi didasarkan pada kemampuan model untuk menetapkan label
yang benar ke setiap sampel. Kinerja model biasanya diringkas dalam sebuah
Confusion Matrix, yang membandingkan prediksi model dengan label sebenarnya
dan mengkategorikannya ke dalam True Positives (TP), True Negatives (TN), False
Positives (FP), dan False Negatives (FN) [24].

1. Akurasi (Accuracy): Metrik ini mengukur proporsi total prediksi yang benar

dari keseluruhan sampel, dengan menggunakan Rumus 2.27.

Accuracy = 'S 2.27)
Y= TP+TN{FP+FN '

2. Presisi (Precision): =~ Parameter ini, yang juga dikenal sebagai Positive
Predictive Value (PPV), merepresentasikan rasio antara prediksi positif yang
benar (True Positives/TP) terhadap keseluruhan hasil yang diprediksi sebagai
positif, baik benar (True Positives/TP) maupun salah (False Positives/FP).
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Penghitungan nilai presisi dilakukan berdasarkan Rumus 2.28.

TP
Precision = ——— (2.28)
TP+ FP

. Recall (Sensitivity): Parameter ini, yang juga dikenal sebagai True Positive
Rate (TPR), mengukur efektivitas model dalam mengidentifikasi seluruh
sampel yang secara faktual termasuk dalam kategori kelas positif. Dalam
konteks diagnosis medis, recall memiliki signifikansi yang krusial karena
dampak false negative atau kegagalan deteksi kondisi stadium lanjut dapat
berakibat fatal. Penghitungan metrik ini dilakukan melalui Rumus 2.29.

TP

R = —— 2.2
ecall TPTFN (2.29)

. F1-Macro:  Menghitung F1 untuk setiap kelas lalu dirata-rata tanpa
mempedulikan jumlah data per kelas. Ini membuat kelas minoritas (data
sedikit) dianggap sama pentingnya dengan kelas mayoritas. Penghitungan

metrik ini dilakukan dengan Rumus 2.30.

FlkelasA + Flkelasﬁ +...+ FlkelasJV
N

(2.30)

. Confusion Matrix: Alat evaluasi kinerja model machine learning yang
menunjukkan hasil prediksi terhadap kelas yang sebenarnya. Untuk masalah
klasifikasi multiclass, confusion matrix memperluas konsep yang awalnya
hanya digunakan untuk klasifikasi biner. Sebuah confusion matrix multiclass
memperlihatkan bagaimana setiap prediksi model dibandingkan dengan kelas
sebenarnya di berbagai kelas yang ada. Pada Gambar 2.2, terlihat contoh
confusion matrix untuk masalah klasifikasi dengan tiga kelas (Class 1, Class
2, dan Class 3). Gambar ini menggambarkan hubungan antara kelas yang

diprediksi oleh model dan kelas sebenarnya.
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Gambar 2.2. Confusion Matrix Multiclass
Sumber: [25]

Deskripsi elemen-elemen dalam confusion matrix multiclass:

* True Positives (TP): Jumlah prediksi yang benar untuk kelas yang
sesuai. Dalam gambar, nilai-nilai TP untuk setiap kelas ditunjukkan

pada sel hijau.

* False Positives (FP): Jumlah prediksi yang salah, di mana model salah
memprediksi kelas yang berbeda sebagai kelas yang benar. Nilai FP
ditunjukkan pada sel merah.

» False Negatives (FN): Jumlah kesalahan di mana model gagal untuk
memprediksi kelas yang benar dan malah memprediksi kelas yang salah.

Nilai FN ditunjukkan pada sel merah.

* True Negatives (TN): Jumlah prediksi yang benar, di mana model
berhasil memprediksi kelas yang tidak sesuai sebagai kelas yang tidak

sesuai juga. Nilai TN ditunjukkan pada sel hijau.
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