BAB 3
PELAKSANAAN KERJA MAGANG

3.1 Kedudukan dan Koordinasi

Selama periode magang, setiap tugas dan proyek dilaksanakan dengan
berfokus pada pemahaman sistem yang digunakan, pengembangan fitur, serta
pelaksanaan pengujian dan debugging untuk memastikan kualitas hasil kerja.
Koordinasi dilakukan secara rutin bersama Bpk. Darul Mukminin selaku Java
team lead dan pembimbing teknis yang memberikan arahan serta feedback untuk
menjaga kesesuaian antara hasil pekerjaan dan standar yang ditetapkan.

Seluruh kegiatan terdokumentasi secara sistematis sebagai bagian dari
proses evaluasi berkala. Dalam evaluasi tersebut, feam lead memberikan penilaian,
saran, dan rekomendasi untuk meningkatkan kemampuan teknis serta mutu hasil

kerja.

3.2 Tugas yang Dilakukan

Salah satu tugas yang dilakukan adalah merancang dan
mengimplementasikan sistem logging pada aplikasi E-Signing. Sistem ini berfungsi
untuk merekam seluruh aktivitas pengguna selama menggunakan aplikasi, seperti
proses autentikasi, pengunggahan dokumen, hingga penandatanganan digital.
Dalam implementasinya, sistem logging dirancang agar mampu menyimpan data
secara terstruktur, sehingga setiap aktivitas dapat ditelusuri dengan mudah apabila
terjadi kesalahan atau indikasi penyalahgunaan. Selain itu, penerapan sistem
ini juga mendukung prinsip transparansi dan akuntabilitas dalam pengelolaan
dokumen digital, karena memungkinkan pengembang maupun pihak berwenang

untuk melakukan audit terhadap riwayat tindakan yang tercatat.

3.3 Uraian Pelaksanaan Magang

Pelaksanaan kerja magang diuraikan seperti pada Tabel 3.1.

6

Pengembangan Logging System..., Dylan William, Universitas Multimedia Nusantara

Tabel 3.1. Pekerjaan yang dilakukan tiap minggu selama pelaksanaan kerja magang

Minggu Ke - | Pekerjaan yang dilakukan

1 Memulai pembuatan logging system untuk aplikasi E-
Signing: menyiapkan Request. java, RequestParser.Java,
Response. java

2 Membuat logging system untuk aplikasi E-Signing: dimulai
dari LogService. java

3 Implementasi alur dan logika dari logging system: struktur
penyimpanan, format penamaan, mekanisme backup

5 Testing dan debugging logging system

6 Revisi alur dan logika dari logging system: struktur folder
penyimpanan, penamaan log file

7 Testing dan debugging logging system

8 Implementasi alur dan logika dari logging system: struktur
penyimpanan, format penamaan, mekanisme backup

9 Revisi logika dan metode deteksi pergantian hari untuk
backup log file: tidak menggunakan logical threads dan
penyederhanaan trigger condition

10 Penyempurnaan fitur log rotation berbasis ukuran:
implementasi rotateActiveLog(), penanganan rotation
marker, dan pemindahan file ke direktori backuplogs dengan
format nama yang ditentukan

11 Pengembangan sistem penamaan alfabet berurutan untuk
file cadangan: implementasi incrementAlphabet () dan
compareSuffixes () yang mendukung pola A-Z, AA-ZZ,
dst.

12 Perbaikan dan optimasi proses pemulihan log yang tertinggal:

implementasi backupLeftoverActiveLogs () untuk
memindahkan active logs yang tidak sempat dirotasi saat
shutdown; penambahan penanda sesi baru pada file yang
dipindahkan

7

Pengembangan Logging System..., Dylan William, Universitas Multimedia Nusantara

Tabel 3.1. Pekerjaan yang dilakukan tiap minggu selama pelaksanaan kerja magang
(lanjutan)

Minggu Ke - | Pekerjaan yang dilakukan

13 Implementasi mekanisme pembersihan otomatis file .lck
pada direktori activelogs dan backuplogs. Implementasi
cleanupLockFiles () dan deleteLockFiles() untuk
mencegah konflik file handler

14 Integrasi kontrol sinkronisasi (synchronized(lock)) pada

seluruh proses penulisan log untuk memastikan thread safety
dan mencegah race condition pada rotasi harian serta rotasi
ukuran

15 Pengujian terhadap rotasi harian dan rotasi ukuran: simulasi
pergantian hari, stress-test penulisan log, dan validasi
keakuratan penamaan file cadangan dan konsistensi timestamp
16 Merapihkan codebase: penyederhanaan kode, penyesuaian
formatter log, peningkatan stabilitas saat inisialisasi ulang
FileHandler, implementasi shutdown () untuk memastikan
penutupan handler yang aman

3.3.1 E-Signing

E-Signing merupakan sistem penandatanganan dokumen secara digital
yang berfungsi untuk memverifikasi identitas, mengautentikasi dokumen, dan
memfasilitasi transaksi tanpa perlu pertemuan fisik. Pada subbab ini, uraian sistem
disajikan sebagai gambaran konseptual tingkat tinggi (high-level overview) yang
bertujuan untuk memberikan pemahaman terhadap alur kerja secara umum, dan
bukan sebagai dokumentasi teknis resmi maupun spesifikasi implementasi sistem.
Ilustrasi yang disajikan disusun berdasarkan observasi proses kerja serta penjelasan
lisan dari pihak terkait selama pelaksanaan kegiatan magang.

Secara umum, sistem ini dirancang untuk meningkatkan efisiensi dan
menjaga keamanan melalui pemanfaatan Hardware Security Module (HSM) sebagai
pengelola kunci kriptografi, serta mekanisme logging untuk mencatat aktivitas
pengguna guna mendukung transparansi, akuntabilitas, dan kebutuhan audit.

8

Pengembangan Logging System..., Dylan William, Universitas Multimedia Nusantara

Secara konseptual, alur proses aplikasi E-Signing sebagaimana
diilustrasikan pada Gambar 3.1 dapat dijelaskan sebagai berikut:

1. Proses diawali ketika end user mengunggah dokumen melalui aplikasi

internal yang digunakan dalam lingkungan kerja.

2. Dokumen yang diunggah diproses oleh aplikasi internal sebagai tahap

persiapan sebelum dilakukan proses penandatanganan secara digital.

3. Sistem AS400, sebagai sistem internal penghubung, membangun koneksi
dengan layanan E-Signing untuk memungkinkan pertukaran data secara

andal.

4. Setelah koneksi terbentuk, sisi AS400 mengirimkan request atau payload
yang memuat data dokumen ke aplikasi E-Signing.

5. Aplikasi E-Signing, sebagai layanan penandatanganan, meneruskan
permintaan tersebut ke Hardware Security Module (HSM) melalui antarmuka

layanan untuk melakukan proses kriptografi yang diperlukan.

6. HSM melakukan operasi kriptografi menggunakan kunci yang tersimpan
secara aman dan mengembalikan hasil tanda tangan digital ke aplikasi E-

Signing.

7. Aplikasi E-Signing menyisipkan nilai tanda tangan digital ke dalam struktur
tanda tangan elektronik yang digunakan (misalnya XML Digital Signature)
sebagai hasil pemrosesan.

8. Struktur tanda tangan yang telah terbentuk kemudian dikirimkan kembali ke

sistem AS400 sebagai keluaran proses penandatanganan.

9. Dokumen yang telah ditandatangani secara digital selanjutnya diterima oleh

end user sebagai hasil akhir dari proses E-Signing.

9

Pengembangan Logging System..., Dylan William, Universitas Multimedia Nusantara

User upload
dokumen

[Aplikasi internal milik user]

mempersiapkan data

v

Aplikasi user
menghubungi E-Signing

Data dikirim ke
layanan E-Signing

E-Signing mengirim
request ke HSM
untuk ditandatangani

v

HSM mengembalikan
signature ke E-Signing

v

E-Signing membentuk
dokumen bertanda
tangan digital

Hasil dikirim
ke aplikasi
user

Dokumen
yang diproses
diterima oleh
end user

Selesai

Gambar 3.1. Ilustrasi/contoh konseptual alur aplikasi E-Signing

3.3.2 Logging System

Sistem logging pada aplikasi E-Signing berfungsi untuk mencatat seluruh
aktivitas yang terjadi selama penggunaan aplikasi, mulai dari koneksi client sampai
proses verifikasi dan penandatanganan dokumen. Pencatatan ini diimplementasikan
melalui LogService, yang secara otomatis membuat dan memperbarui catatan

aktivitas setiap kali terjadi interaksi pada sistem. Setiap log file merupakan text

10

Pengembangan Logging System..., Dylan William, Universitas Multimedia Nusantara

file yang disimpan di local storage dengan struktur penyimpanan yang terorganisir.

[lustrasi dari struktur penyimpanan ditunjukkan pada Gambar 3.2.

v D logs
v [0 activelogs
B YYYY-MM-DD.log
v [0 backuplogs
v 3 YYYY-MM-DD
B YYYY-MM-DD_HH-MM-SS_SUFFIX.log

Gambar 3.2. Struktur penyimpanan

Direktori utama dibagi menjadi dua bagian, yaitu active log dan
backup log. Pada masing-masing direktori tersebut, log file disimpan dalam
folder berdasarkan tanggal pembuatan (per hari) untuk memudahkan proses
penelusuran. File pada backup log menggunakan format penamaan khusus
berupa YYYY-MM-DD_HH-MM-SS_ALPHABET untuk memastikan kejelasan versi dan
mencegah duplikasi. Berikut adalah contoh penyimpanan log file pada Gambar 3.3.

11

Pengembangan Logging System..., Dylan William, Universitas Multimedia Nusantara

v [logs
v [J activelogs
B 2025-10-23.log
B 2025-10-23.Ick
v [0 backuplogs
v [0 2025-10-20
B 2025-10-20_16-12-27_A.log
v [0 2025-10-21
£ 2025-10-21_15-22-20_A.log
[E 2025-10-21_15-30-41_B.log
v [0 2025-10-22
£ 2025-10-22_13-20-32_A.log
B 2025-10-22_15-21-16_B.log
[E 2025-10-22_17-10-25_C.log

Gambar 3.3. Contoh penyimpanan log file

Logging system memiliki mekanisme log rotation atau backup yang

dijalankan berdasarkan tiga kondisi utama, yaitu:

* Pertama, apabila ukuran berkas log telah mencapai batas maksimum yaitu
10 MB, sistem akan secara otomatis melakukan proses backup dan membuat
folder dan file baru.

» Kedua, rotasi dilakukan setiap pergantian hari. Contohnya ketika perubahan
dari jam 23.59 ke 00.00, maka log file akan di-backup walaupun ukuran file
lebih kecil dari 10 MB.

» Ketiga, pada edge case, jika service/aplikasi dimatikan, kemudian dijalankan
kembali, sistem akan memeriksa keberadaan log aktif yang belum di-backup,
dan memindahkannya ke direktori backup sebelum membuat folder dan file

yang baru.

12

Pengembangan Logging System..., Dylan William, Universitas Multimedia Nusantara

3.3.3 Proses dan Alur Logging System

Uraian pada bagian ini bersifat konseptual dan disusun untuk memberikan
gambaran umum mengenai alur kerja logging system. Penyajian dalam bentuk
deskripsi dan flowchart tidak merepresentasikan spesifikasi teknis, rancangan
arsitektur, maupun dokumentasi resmi sistem. Diagram yang ditampilkan
merupakan abstraksi logika proses yang disusun berdasarkan perilaku sistem pada
tahap implementasi serta arahan yang diperoleh selama pelaksanaan kerja praktik,
tanpa mengubah atau menetapkan desain awal sistem.

Secara umum, proses logging system berjalan melalui rangkaian langkah
yang bertujuan menjaga konsistensi, ketertiban, dan kesinambungan data jejak
sistem. Mekanisme ini memastikan setiap aktivitas dicatat dalam berkas yang
sesuai, dipindahkan ketika terjadi pergantian waktu, serta dibackup apabila ukuran
berkas melampaui batas yang ditentukan. Dengan pendekatan tersebut, sistem tidak
hanya mempertahankan integritas log, tetapi juga mencegah penumpukan data yang
berpotensi memengaruhi kinerja.

Alur proses logging system dijelaskan secara konseptual sebagai berikut.
Tlustrasi flowchart pada Gambar 3.4 digunakan untuk menggambarkan alur kerja
sistem secara umum berdasarkan implementasi yang ada, dan tidak dimaksudkan

sebagai spesifikasi teknis maupun rancangan arsitektur sistem.

1. Proses logging diawali dengan pemeriksaan keberadaan folder active log.
Apabila folder tersebut belum tersedia, sistem akan membuatnya terlebih
dahulu.

2. Setelah itu, sistem memeriksa apakah di dalam folder active log telah terdapat
log file yang aktif.

3. Jika log file aktif belum tersedia, sistem membuat berkas log baru untuk

digunakan sebagai active log file.

4. Apabila log file aktif sudah tersedia, sistem membandingkan tanggal pada
berkas log dengan tanggal sistem saat ini.

5. Jika tanggal pada log file tidak sama dengan tanggal sistem, maka log file

lama dibackup dan sistem membuat log file baru untuk tanggal berjalan.

6. Setelah active log file yang sesuai siap digunakan, sistem menuliskan entri

log ke dalam berkas tersebut.

13

Pengembangan Logging System..., Dylan William, Universitas Multimedia Nusantara

7. Selanjutnya, sistem melakukan pemeriksaan terhadap ukuran log file.

8. Apabila ukuran log file telah mencapai atau melebihi batas maksimum yang
ditentukan, sistem melakukan proses backup terhadap berkas log. Jika ukuran
belum mencapai batas, proses logging dilanjutkan pada active log file yang

sama.

Periksa folder
active log

Folder
active log
ada?

Buat folder
active log

Periksa file
active log

Buat file
active log

File active
log ada?

Bandingkan
tanggal log file
dengan tanggal
sistem

Tanggal log
sama dengan
tanggal
Sistem?

Tulis entri log ke Buat log file
active log file baru

Cek ukuran
log file

Backup log

Tidak
file yang lama

.

Tidak

Ukuran log >=
max size?

Backup log
file

Selesai

Gambar 3.4. Ilustrasi konseptual alur proses logging system

Pada saat terjadi pergantian hari, sistem tidak hanya melanjutkan proses

pencatatan, tetapi juga melakukan pengelolaan log file agar data dari hari yang

14

Pengembangan Logging System..., Dylan William, Universitas Multimedia Nusantara

berbeda tidak tercampur. Penjelasan berikut menguraikan tahapan proses logging

yang berlangsung ketika terjadi transisi tanggal dalam sistem.

1.

Pada kondisi operasi normal (running system), aplikasi secara berkelanjutan
melakukan pencatatan data (ongoing logging) ke dalam satu active log file.
Selama tanggal sistem belum berubah, seluruh entri log akan terus ditulis ke

berkas yang sama.

Skenario pergantian hari ditandai ketika entri log terakhir tercatat pada pukul
23.59.59, yang merepresentasikan batas akhir hari berjalan. Pada tahap ini,

sistem masih menyimpan data pada active log file yang sedang digunakan.

. Ketika terdapat entri log baru yang masuk setelah pergantian hari, yaitu

pada pukul 00.00.00, sistem melakukan pemeriksaan terhadap tanggal saat
ini. Perbedaan tanggal antara entri sebelumnya dan entri yang baru

diinterpretasikan sebagai indikator terjadinya pergantian hari.

. Berdasarkan kondisi tersebut, sistem mengeksekusi proses backup terhadap

current log file. Proses ini bertujuan memisahkan data log hari sebelumnya
agar tidak tercampur dengan data log hari yang baru, serta menjaga integritas

dan keterlacakan informasi.

. Setelah proses backup selesai, sistem membuat log file baru yang dikhususkan

untuk tanggal yang baru. Seluruh entri log berikutnya, termasuk entri pada
pukul 00.00.00 dan setelahnya, ditulis ke dalam berkas log yang baru.

Sistem kemudian kembali ke kondisi ongoing logging normal dengan

menggunakan active log file yang sesuai dengan tanggal berjalan.

Pada kondisi tertentu, pergantian hari dapat terjadi ketika aplikasi atau server

tidak sedang berjalan. Dalam skenario ini, sistem tetap harus memastikan bahwa

berkas log dari hari sebelumnya tidak digunakan kembali pada hari yang baru.

Oleh karena itu, pada saat aplikasi dijalankan ulang, sistem melakukan pemeriksaan

terhadap log file yang tersisa dari sesi sebelumnya sebelum melanjutkan proses

pencatatan. Alur proses logging pada kondisi restart di hari yang berbeda dijelaskan

sebagai berikut:

1.

Ketika aplikasi dijalankan kembali, sistem terlebih dahulu memeriksa

keberadaan active log file dari sesi sebelumnya di dalam direktori logging.

15

Pengembangan Logging System..., Dylan William, Universitas Multimedia Nusantara

2. Jika active log file ditemukan, sistem melakukan pembacaan metadata atau

informasi tanggal yang terkait dengan berkas tersebut.

3. Sistem kemudian membandingkan tanggal log file terakhir dengan tanggal

sistem saat aplikasi dijalankan.

4. Apabila tanggal pada log file berbeda dengan tanggal saat ini, kondisi tersebut
diinterpretasikan sebagai pergantian hari yang terjadi selama aplikasi tidak
aktif.

5. Berdasarkan hasil pemeriksaan tersebut, sistem mengeksekusi proses backup
terhadap active log file dari hari sebelumnya, sehingga data log lama
dipisahkan dan diamankan.

6. Setelah proses backup selesai, sistem menghasilkan log file baru yang

disesuaikan dengan tanggal saat ini.

7. Seluruh proses pencatatan berikutnya kemudian dilanjutkan ke dalam log
file yang baru, dan sistem kembali beroperasi pada kondisi ongoing logging

normal.

3.3.4 Request Class

Kelas Request pada Kode 3.1 digunakan sebagai representasi struktur data
permintaan yang dipertukarkan dalam sistem. Struktur dasar kelas ini telah tersedia
pada implementasi awal dan mencakup metode utilitas untuk konversi data digest.
Oleh karena itu, pengembangan pada bagian ini tidak mencakup perancangan
arsitektur kelas secara keseluruhan, melainkan difokuskan pada penyempurnaan
struktur data dan optimasi pemrosesan.

Kontribusi yang dilakukan pada kelas ini meliputi penataan atribut utama
pesan serta penambahan mekanisme penyimpanan sementara (caching) untuk
hasil konversi digest. Secara spesifik, atribut header, trxCode, reference,
digestHex, signatureBase64, dan flag digunakan sebagai kontainer langsung
bagi elemen pesan yang diterima sistem. Selain itu, variabel cachedDigestBytes
dan cachedDigestBase64 ditambahkan untuk menyimpan hasil konversi agar
tidak dilakukan perhitungan ulang pada pemanggilan berikutnya.

Metode getDigestBytes diimplementasikan sebagai bagian dari kontribusi

untuk mengonversi nilai digestHex dari representasi heksadesimal ke dalam

16

Pengembangan Logging System..., Dylan William, Universitas Multimedia Nusantara

bentuk byte array. Metode ini menerapkan mekanisme lazy initialization, yaitu
proses konversi hanya dilakukan ketika nilai pertama kali dibutuhkan dan hasilnya
disimpan di dalam cache. Pendekatan ini bertujuan meningkatkan efisiensi
pemrosesan tanpa mengubah alur logika utama sistem.

Bagian lain dari kelas, termasuk metode getDigestBase64 dan metode
utilitas hexStringToByteArray, merupakan bagian dari implementasi awal sistem
yang sudah ada. Kode tersebut ditampilkan untuk memberikan konteks integrasi

antara komponen yang dikembangkan dengan struktur kelas yang telah ada.

1 public class Request
2 {
public String header, trxCode, reference , digestHex,

signatureBase64 , flag;

5 private byte[] cachedDigestBytes;
6 private String cachedDigestBase64;

s public byte[] getDigestBytes () {
9 if (cachedDigestBytes == null) {
10 cachedDigestBytes = hexStringToByteArray (digestHex);

T

12 return cachedDigestBytes;

5}

14

15 public String getDigestBase64 ()

o {

7 if (cachedDigestBase64 == null) {

I8 cachedDigestBase64 = Base64.getEncoder().encodeToString (
getDigestBytes ());

o}

20 return cachedDigestBase64;

C)

23 private static byte[] hexStringToByteArray (String hex)

24 {

25 int len = hex.length();

26 byte[] data = new byte[len / 2];

27 for (int i = 0; i < len; i += 2)

29 data[i / 2] = (byte)((Character.digit(hex.charAt(i), 16) <<
4) + Character.digit (hex.charAt(i + 1), 16));

30 }

17

Pengembangan Logging System..., Dylan William, Universitas Multimedia Nusantara

1

return data;

Kode 3.1: Request.java

3.3.5 RequestParser Class

Kelas RequestParser pada Kode 3.2 berfungsi untuk memecah
pesan mentah (raw message) menjadi objek Request berdasarkan format
protokol yang telah ditentukan. Struktur dasar kelas ini—termasuk pemetaan
segmen pesan menggunakan indeks karakter tetap serta pembentukan objek
Request—merupakan bagian dari implementasi awal sistem yang kemudian
disempurnakan pada tahap pengembangan lanjutan.

Pengembangan pada kelas ini diawali dengan penyusunan rancangan awal,
yang kemudian direfaktor dan distandarisasi oleh pengembang senior sebagai
pembimbing teknis pada versi akhir sistem. Kode yang ditampilkan pada laporan
merepresentasikan implementasi final yang digunakan dalam sistem, sedangkan
kontribusi pada tahap awal difokuskan pada perumusan struktur pemrosesan dan
penambahan mekanisme validasi format data sebelum pesan diteruskan ke tahap
berikutnya.

Validasi dilakukan terhadap dua komponen utama, yaitu digestHex dan
signature. Metode isValidHexString memastikan bahwa nilai digestHex
memiliki panjang 64 karakter dan hanya terdiri dari karakter heksadesimal yang sah.
Sementara itu, metode isValidBase64String memverifikasi bahwa nilai tanda
tangan digital dapat didekode menggunakan skema Base64, sehingga mencegah

pemrosesan data yang tidak valid atau rusak.

public class RequestParser

> {

public static Request parse(String message)

{

String header = message.substring (0, 4);
String trxCode = message.substring (4, 8);

String reference message . substring (8, 43);

message . substring (43, 107);
message . substring (107, 619).replaceAll(”\\s

String digestHex

String signature
+$7” ’7’7);
String flag = message.substring (619, 620);

18

Pengembangan Logging System..., Dylan William, Universitas Multimedia Nusantara

return new Request(header, trxCode, reference , digestHex,

signature , flag);

}

private static boolean isValidHexString (String hex)

{

if (hex == null || hex.length() != 64) {
return false;

}

return hex.matches (”[0-9A-Fa—-f]+");

private static boolean isValidBase64String(String base64)

{
if (base64 == null || base64.isEmpty()) {

return false;

try

{
Base64 . getDecoder () . decode (base64) ;

return true;

}

catch (IllegalArgumentException e) {

return false;

Kode 3.2: RequestParser.java

3.3.6 Response Class

Kelas Response pada Kode 3.3 digunakan untuk membentuk pesan balasan
dalam format fixed-length sesuai dengan protokol komunikasi sistem. Struktur kelas
ini, termasuk penentuan urutan field dan spesifikasi panjang setiap komponen pesan,
telah ditetapkan dalam implementasi awal sistem dan pada tahap akhir direfaktor
serta distandarisasi oleh pengembang senior.

Kontribusi pengembangan pada kelas ini dilakukan pada tahap awal,
khususnya dalam perapihan struktur atribut dan penyesuaian mekanisme
pemformatan agar setiap elemen pesan berada pada posisi (offser) yang sesuai
dengan spesifikasi protokol. Setiap atribut—header, trxCode, reference,

digestBase64, signatureBase64, dan f1ag—mewakili komponen pesan dengan

19

Pengembangan Logging System..., Dylan William, Universitas Multimedia Nusantara

panjang tetap. Untuk menjaga kesesuaian format tersebut, digunakan fungsi
padRightWithSpaces (), yang memastikan nilai string tidak melebihi batas
panjang dan akan dipenuhi dengan karakter spasi apabila lebih pendek. Pendekatan
ini mencegah pergeseran struktur data yang berpotensi menimbulkan kesalahan
pada proses pembacaan di sisi penerima.

Metode serialize () menyusun seluruh atribut ke dalam satu rangkaian
teks sesuai urutan protokol, dengan setiap field diproses menggunakan
padRightWithSpaces () agar panjangnya konsisten dengan spesifikasi. Kode
yang ditampilkan pada laporan merepresentasikan implementasi final yang
digunakan dalam sistem. Sementara itu, kontribusi pada tahap awal difokuskan
pada penyusunan struktur data dan penyesuaian mekanisme pemformatan, yang
selanjutnya disempurnakan dan diintegrasikan pada versi akhir oleh pengembang

Senior.

public class Response

> {

public String header, trxCode, reference , digestBase64 ,
signatureBase64 , flag;

private static String padRightWithSpaces(String input, int
totalLength)

{

99 99

if (input == null) input = ;
if (input.length() >= totalLength) {
return input.substring (0, totalLength);

99 o 9

return String.format(’%-" + totalLength + ”s”, input);

public String serialize ()

{
StringBuilder response = new StringBuilder ();
response . append (header) ;
response . append (padRight(trxCode , 4));
response . append (padRight(reference , 35));
response . append (padRight(digestBase64 , 64));
response . append (padRight(signatureBase64 , 512));
response . append (padRight(flag, 1));

return response.toString () ;

Kode 3.3: Response.java

20

Pengembangan Logging System..., Dylan William, Universitas Multimedia Nusantara

1

3.3.7 LogService Class

Bagian awal kelas LogService berisi deklarasi variabel inti yang
mengatur seluruh proses pencatatan dan rotasi log. Variabel seperti LOG_SIZE,
activeLogFile, dan fileHandler digunakan untuk mengatur batas ukuran log,
lokasi penyimpanan, dan mekanisme penulisan. Objek lock memastikan operasi
pencatatan berjalan aman dalam konteks multithreading.

Blok static menjalankan proses inisialisasi ketika kelas pertama kali
dimuat. Prosedurnya mencakup pembuatan direktori logs jika belum tersedia,
pembersihan berkas kunci lama melalui cleanupLockFiles (), serta penentuan
tanggal dan akhiran alfabet yang berlaku untuk rotasi. Setelah itu, metode
backupLeftoverActivelogs () memindahkan log aktif dari hari sebelumnya, dan
initializeActiveLog () menyiapkan berkas log baru untuk digunakan. Dengan
langkah-langkah ini, sistem memastikan lingkungan pencatatan berada dalam

kondisi stabil sebelum proses logging berjalan.

public class LogService

2 {

private static final Logger logger = Logger.getLogger(LogService
.class .getName ()) ;

private static final int LOGSIZE = 2 x 1024,

private static File activeLogFile;

private static FileHandler fileHandler;

private static String currentDate;

private static String currentAlphabet;

private static LocalDateTime lastLogTimestamp ;
private static final Object lock = new Object();

static
{
File logsDir = new File(”logs”);
if (!logsDir.exists()) {
logsDir . mkdirs () ;
}
cleanupLockFiles () ;
currentDate = LocalDate.now() .format(DATEFORMATTER) ;
currentAlphabet = getNextAvailableSuffix (currentDate);
backupLeftoverActiveLogs () ;

initializeActiveLog ();

21

Pengembangan Logging System..., Dylan William, Universitas Multimedia Nusantara

Kode 3.4: LogService.java

3.3.8 Metode dalam LogService Class

Dalam kelas LogService terdapat berbagai macam metode yang dirancang
untuk memastikan fungsionalitas dari logging system berjalan dengan seharusnya
dan menghasilkan log file yang konsisten. Berikut adalah beberapa dari metode-

metode yang ada di dalam kelas LogService.

A Metode deleteLockFiles()

Potongan kode deleteLockFiles() dirancang untuk menghapus lock
files jika masih ada yang tersisa di direktori activelogs. lock file tersebut
dapat tertinggal jika misalnya, aplikasi/servis crash atau server dimatikan. Java
FileHandler secara otomatis membuat berkas lock dengan ekstensi .lck pada
direktori tempat activelogs. Lock file berfungsi sebagai pengunci agar tidak
terjadi write bersamaan jika ada lebih dari satu instance FileHandler.

Fungsi deleteLockFiles(directory) melakukan pembersihan secara
rekursif pada dua direktori utama: activelogs dan backuplogs. Metode ini
membaca seluruh isi direktori melalui 1istFiles (), kemudian menelusuri setiap
entri. Jika entri adalah subdirektori, fungsi dipanggil kembali untuk melakukan
pemeriksaan mendalam. Jika entri adalah berkas dengan akhiran . 1ck, maka berkas
tersebut dihapus karena dianggap sebagai residu yang tidak lagi relevan. Dengan
pendekatan ini, seluruh lock file yang tersisa dari eksekusi sebelumnya dapat
dibersihkan secara menyeluruh sebelum FileHandler dipasang ulang, sehingga
sistem dapat menjalankan proses pencatatan tanpa hambatan dan tanpa risiko gagal

membuka berkas log.

i private static void deleteLockFiles(File directory)
: {
for (int i = 0; i < files.length; i++) {
4 File file = files[i];
; if (file.isDirectory ()) {
6 deleteLockFiles (file);

}

8 else if (file.getName().endsWith(”.Ick”)) {

22

Pengembangan Logging System..., Dylan William, Universitas Multimedia Nusantara

1

file . delete () ;

Kode 3.5: Metode cleanupLockFiles() dan deleteLockFiles()

B Metode backupLeftoverA ctiveLogs

Metode backupLeftoverActiveLogs () memindai seluruh file di direktori
logs/activelogs dan menangani log yang tidak lagi berasal dari tanggal
berjalan. Setiap file diproses satu per satu. Jika pembacaan waktu
modifikasi gagal, file dilewati. Timestamp terakhir file diambil menggunakan
Files.getLastModifiedTime (), kemudian dikonversi ke LocalDateTime. Bila
tanggalnya sama dengan currentDate, file dianggap masih aktif dan tidak
disentuh.

Untuk file yang tanggalnya berbeda, fungsi menyiapkan direktori
cadangan logs/backuplogs/<tanggal> dan membuatnya bila belum ada.
Sebelum dipindahkan, fungsi menambahkan penanda sesi baru dengan
StandardOpenOption.APPEND untuk memberikan batas yang jelas antara sesi
pencatatan. Nama file cadangan dibuat berdasarkan timestamp asli file ditambah
suffix unik yang diperoleh melalui getNextAvailableSuffix (fileDate).

Terakhir, file dipindahkan menggunakan Files.move () dengan opsi
penggantian bila file tujuan sudah ada. Setiap kegagalan—baik saat membaca
metadata file maupun saat pemindahan—dicatat melalui 1ogger. Dengan alur
ini, sistem memastikan log lama tersimpan rapi dalam struktur harian tanpa

mengganggu log aktif hari berjalan.

private static void backupLeftoverActiveLogs ()

> {

for (int i = 0; i < logFiles.length; i++)

{
File logFile = logFiles[i];

LocalDateTime fileTime ;

fileTime = LocalDateTime.ofInstant(Files.getLastModifiedTime (
logFile .toPath()).tolnstant(), java.time.Zoneld.systemDefault ()
)

23

Pengembangan Logging System..., Dylan William, Universitas Multimedia Nusantara

24

}

String fileDate = fileTime.toLocalDate (). format(DATELFORMATTER
IE
if (fileDate.equals(currentDate)) {

continue ;

File backupDir = new File(”logs/backuplogs”, fileDate);
if (!backupDir.exists()) {
backupDir. mkdirs () ;

File backupFile = new File (backupDir, backupName) ;
Files .move(logFile .toPath (), backupFile.toPath (),
StandardCopyOption . REPLACE_EXISTING) ;

}

Kode 3.6: backupLeftoverActiveLogs()

C Metode performDayRotation

Metode performDayRotation() pada Kode 3.7 berfungsi menjalankan
proses rotasi harian pada sistem pencatatan log. Operasi ini dibungkus dalam blok
synchronized untuk memastikan bahwa rotasi tidak mengalami kondisi balapan
ketika diakses secara bersamaan oleh beberapa thread. Langkah pertama yang
dilakukan adalah memastikan direktori cadangan sesuai tanggal aktif tersedia;
jika belum ada, direktori tersebut dibuat. Bila berkas log aktif masih ada dan
memiliki isi, sistem menuliskan penanda rotasi harian, menentukan waktu rotasi
berdasarkan lastLogTimestamp atau fimestamp saat ini, lalu membangun nama
berkas cadangan menggunakan String.format () dengan pola waktu dan akhiran
alfabet yang sedang digunakan. Setelah penulis log ditutup, berkas log aktif
dipindahkan ke direktori cadangan menggunakan Files.move () agar tidak hilang
atau tertimpa.

Setelah proses pemindahan selesai atau jika tidak ada berkas log aktif
yang perlu dipindahkan, sistem memperbarui tanggal operasi ke newDate dan
menghitung akhiran alfabet baru melalui getNextAvailableSuffix (). Sebuah
berkas log baru kemudian disiapkan pada direktori logs/activelogs dengan
nama sesuai tanggal yang diperbarui. Jika berkas tersebut belum ada, maka

sistem membuatnya dan menginisialisasi kembali penulis log. Tahap akhir adalah

24

Pengembangan Logging System..., Dylan William, Universitas Multimedia Nusantara

pencatatan penanda sesi log baru sebagai indikasi bahwa sistem telah memulai

siklus pencatatan harian yang baru.

I public static void performDayRotation(String newDate)
2 {
3 synchronized (lock)

+ A

5 try

o

7 File backupDir = new File(”logs/backuplogs”, currentDate);

9 if (activeLogFile != null && activeLogFile.exists () &&
activeLogFile.length () > 0)

{

B LocalDateTime rotationTime ;

2 if (lastLogTimestamp != null) {

13 rotationTime = lastLogTimestamp ;

14 }

15 else {

16 rotationTime = LocalDateTime .now() ;

" }

18 String backupName = String.format("%s_-%s.log”,
rotationTime . format (DATETIME FORMATTER) , currentAlphabet);

19

20 closeLogWriter () ;

21 File backupLogFile = new File (backupDir, backupName) ;

2 Files .move(activeLogFile.toPath (), backupLogFile.toPath (),

StandardCopyOption . REPLACE_EXISTING) ;

}

2 else {

25 closeLogWriter () ;

}

v}

28 catch (IOException e) {

29 logger.log(Level .SEVERE, "Day rotation failed”, e);

o}

0}

32 }

Kode 3.7: performDayRotation()

25

Pengembangan Logging System..., Dylan William, Universitas Multimedia Nusantara

1

2 {

D Metode initializeActiveLog

Metode initializeActiveLog() pada Kode 3.8 bertugas untuk
memastikan bahwa berkas log harian aktif siap digunakan sebelum proses
pencatatan dimulai. Sistem pertama-tama memverifikasi keberadaan direktori
logs/activelogs dan membuatnya apabila belum tersedia. Setelah itu, metode
menentukan berkas log aktif berdasarkan currentDate. Jika berkas sudah ada
dan ukurannya mencapai atau melampaui batas yang ditentukan oleh LOG_SIZE,
sistem segera memicu rotation melalui pemanggilan rotateActiveLog () untuk
mencegah penumpukan data yang berlebihan dalam satu berkas.

Apabila berkas belum ada atau ukurannya masih dalam batas yang wajar,
sistem membuka penulis log melalui initializeLogWriter(). Jika berkas
tersebut merupakan berkas baru, metode turut menuliskan penanda awal sesi
menggunakan writeRotationMarker ("NEW LOG SESSION STARTED"). Dengan
demikian, prosedur ini memastikan bahwa setiap sesi pencatatan dimulai dengan

struktur log yang bersih dan sesuai standar manajemen log yang telah ditetapkan.

private static void initializeActiveLog ()

File activeLogsDir = new File(”logs/activelogs”™);
activeLogFile = new File (activeLogsDir, currentDate + 7.log”);
try
{
boolean newFile = !activeLogFile.exists ();
if (!newFile & activeLogFile.length () >= LOG.SIZE) {
rotateActiveLog () ;
}
else {
initializeLogWriter () ;
}
}
catch (IOException e) {
throw new RuntimeException(”Failed to init active log”, e);
}

Kode 3.8: initialize ActiveLog()

26

Pengembangan Logging System..., Dylan William, Universitas Multimedia Nusantara

E Metode rotateActiveLog

Fungsi rotateActiveLog () pada Kode 3.9 melakukan rotasi terhadap log
file aktif ketika ukuran atau kondisi tertentu mengharuskan pembuatan sesi log
baru. Seluruh proses dijalankan dalam blok synchronized untuk memastikan
rotasi tidak dilakukan bersamaan oleh thread lain.

Pertama, fungsi memeriksa apakah log file aktif valid. Jika tidak ada atau
tidak lagi tersedia, proses dihentikan. Bila valid, sistem menuliskan penanda
rotasi menggunakan writeRotationMarker (). Waktu rotasi ditentukan dari
lastLogTimestamp jika tersedia, atau dari LocalDateTime.now (). Nama log file
cadangan disusun menggunakan timestamp tersebut dan suffix alfabet saat ini.

Direktori logs/backuplogs/<tanggal> kemudian dipastikan ada; jika
belum dibuat, direktori akan diinisialisasi. Setelah writer ditutup, log file
aktif dipindahkan ke direktori backup menggunakan Files.move () dengan opsi
penggantian bila sudah ada file lama.

Setelah pemindahan berhasil, suffix alfabet diperbarui melalui
incrementAlphabet (). Sistem kemudian membuat log file baru untuk
melanjutkan pencatatan log, membuka wrifer baru, dan menambahkan penanda
bahwa sesi log baru telah dimulai. Jika terjadi kesalahan I/O di tengah proses,

fungsi melempar Runt imeException untuk memastikan eror tidak terabaikan.

I private static void rotateActiveLog ()

2 {
synchronized (lock)

o

5 try

o

7 LocalDateTime rotationTime ;

8 if (lastLogTimestamp != null) {

9 rotationTime = lastLogTimestamp;

}

1 else {

12 rotationTime = LocalDateTime .now () ;

}

14 closeLogWriter () ;

15 Files .move(activeLogFile.toPath (), backupLogFile.toPath (),
StandardCopyOption . REPLACE_EXISTING) ;

16 activeLogFile.createNewFile () ;

17 initializeLogWriter () ;

s}

27

Pengembangan Logging System..., Dylan William, Universitas Multimedia Nusantara

catch (IOException e) {

throw new RuntimeException(”Rotation failed”, e);

Kode 3.9: rotateActiveLog()

F Metode writeToActiveLog

Metode writeToActiveLog() pada Kode 3.10 bertanggung jawab
menuliskan entri log baru sekaligus memastikan bahwa siklus rotasi harian dan
rotasi ukuran berkas berjalan dengan benar. Seluruh proses ditempatkan di dalam
blok synchronized untuk mencegah akses bersamaan yang dapat menyebabkan
inkonsistensi data. Sistem terlebih dahulu memperoleh waktu saat ini dan
mem-formatnya menggunakan DATE_FORMATTER. Jika tanggal baru berbeda dari
currentDate, metode memicu rotasi harian melalui performDayRotation () agar
pencatatan dipisahkan berdasarkan hari. Setelah itu, nilai lastLogTimestamp
diperbarui untuk menjaga history waktu log.

Setelah penulisan dilakukan, sistem memeriksa ukuran berkas log aktif. Jika
ukuran telah mencapai batas LOG_SIZE, maka rotasi ukuran dieksekusi melalui
rotateActiveLog () agar berkas tidak melampaui kapasitas yang ditetapkan.
Seluruh prosedur dibungkus dalam blok try-catch untuk memastikan jika ada

kegagalan penulisan, maka akan tercatat melalui logger.log().

private static void writeToActiveLog(String level , String message)

> {

synchronized (lock)
{
try
{
LocalDateTime now = LocalDateTime .now() ;
String newDate = now.format (DATE_ FORMATTER) ;
if (!newDate.equals(currentDate)) {
performDayRotation (newDate) ;
}
lastLogTimestamp = now;
if (activeLogFile != null && activeLogFile.length () >=
LOG_SIZE) {
rotateActiveLog () ;
}
28

Pengembangan Logging System..., Dylan William, Universitas Multimedia Nusantara

}

catch (Exception e) {
logger.log(Level .SEVERE, ”Write failed”, e);

Kode 3.10: writeToActiveL.og()

3.3.9 Hasil

Berikut adalah contoh-contoh untuk isi dari log file saat pencatatan event
atau transaction. Contoh ini disajikan untuk memberikan gambaran menyeluruh
mengenai bagaimana sistem mendokumentasikan setiap aktivitas operasional,
mulai dari proses inisialisasi layanan hingga interaksi yang terjadi antara client dan
service. Melalui keluaran log tersebut, pola pencatatan, struktur informasi, serta
parameter-parameter penting yang dicatat—seperti identifikasi peristiwa, waktu

kejadian, dan detail koneksi—dapat diamati secara jelas.

A Inisialisasi Log File

Logging system mencatat rangkaian peristiwa sejak layanan E-Signing
pertama kali diaktifkan. Saat aplikasi dijalankan, sistem menghasilkan entri awal
yang menandai dimulainya sesi pencatatan log baru, diikuti dengan informasi
bahwa layanan telah siap menerima koneksi. Ketika client kemudian terhubung,
log merekam source IP address koneksi dan setiap pencatatan ditetapkan sebuah
event ID yang unik. Setelah koneksi diterima, sistem menuliskan detail awal
proses permintaan (request) yang menunjukkan bahwa komunikasi antara client dan

service telah resmi dimulai. Hasil dari log file terdapat pada Gambar 3.5.

[2025-10-26 15:05:28.515] [INFO] ###### NEW LOG SESSION STARTED #if####
[2025-10-26 15:05:28.517] [INFO] Service is Listening on Port 9201...
[2025-10-26 15:05:45.001] [INFO] Client connected: /127.0.0.1:59077 [event=f5ac0771]
[2025-10-26 15:05:45.006] [INFO] [£5ac0771] [CONNECTION]
from=/127.0.0.1:59077
-> Request started

[LV, I S VAR N

Gambar 3.5. Inisialisasi log file

29

Pengembangan Logging System..., Dylan William, Universitas Multimedia Nusantara

B Logging untuk Request dan Response

Setelah koneksi berhasil dibuka, sistem mencatat tahap pemrosesan
permintaan secara terstruktur. Log pertama menunjukkan bahwa aplikasi
berhasil melakukan parsing terhadap request yang diterima, termasuk informasi
transaksi SIGN, reference, serta flag yang diberikan. Tahap berikutnya, proses
penandatanganan (signing) diselesaikan dan direkam sebagai SIGN_COMPLETE. Log
ini memuat durasi total pemrosesan, status keberhasilan (200), serta rincian waktu
operasional internal, seperti eksekusi operasi dan interaksi dengan HSM. Setelah
seluruh proses selesai, sistem menutup sesi dengan mencatat CONNECTION_END,
yang menandai bahwa permintaan dari client telah dipenuhi sepenuhnya dan
koneksi dapat diakhiri. Pada Gambar 3.6 adalah hasil dari log file saat client

mengirim request untuk tanda tangan (SIGN).

7 [2025-10-26 15:06:39.133] [INFO] [£f5ac0771] [PARSE]

8 trx=SIGN, ref=REFABREFABREFABREFABREFABREFAB, flag=1

9 duration=2ms, from=/127.0.0.1:59077

10 -> Request parsed successfully

11 [2025-10-26 15:06:39.169] [INFO] [f5ac@771] [SIGN_COMPLETE]
12 trx=SIGN, ref=REFABREFABREFABREFABREFABREFAB, flag=1

13 duration=54151ms, status=200, from=/127.0.0.1:59077

14 -> Sign completed (operation=22ms, hsm=19ms)

15 [2025-10-26 15:06:39.295] [INFO] [£f5ac0771] [CONNECTION_END]
16 duration=54295ms, from=/127.0.0.1:59077

17 -> Request completed

Gambar 3.6. Hasil log file untuk request dan response

C Logging untuk Request Verifikasi

Selain SIGN, client juga dapat memverifikasi signature dengan
cara mengirim permintaan verification, sistem mencatat tahap awal PARSE
yang menunjukkan bahwa permintaan dengan transaksi VERI dan referensi
REFABREFABREFABREFABREFABREFAB. Proses kemudian berlanjut ke tahap
VERIFY_COMPLETE, di mana service menyelesaikan pemeriksaan tanda tangan
digital dan memastikan bahwa data yang diterima bersifat authentic dan unmodified.
Log ini juga memuat status keberhasilan 200. Setelah verifikasi selesai tanpa
kendala, sistem menutup sesi dengan mencatat CONNECTION_END, menandakan
bahwa seluruh proses permintaan telah selesai ditangani dan koneksi dengan client

dapat diakhiri. Hasil dari log file saat proses verifikasi ada pada Gambar 3.7.

30

Pengembangan Logging System..., Dylan William, Universitas Multimedia Nusantara

44 [2025-10-26 15:11:41.853] [INFO] Client connected: /127.0.0.1:59223 [event=b8af6965]
45 [2025-10-26 15:11:41.853] [INFO] [b8af6965] [CONNECTION]

46 from=/127.0.0.1:59223

47 -> Request started

48 [2025-10-26 15:11:44.387] [INFO] [b8af6965] [PARSE]

49 trx=VERI, ref=REFABREFABREFABREFABREFABREFAB, flag=1

50 duration=1ms, from=/127.0.0.1:59223

51 -> Request parsed successfully

52 [2025-10-26 15:11:44.403] [INFO] [b8af6965] [VERIFY_COMPLETE]

53 trx=VERI, ref=REFABREFABREFABREFABREFABREFAB, flag=1

54 duration=2548ms, status=200, from=/127.0.0.1:59223

55 -> Signature verification passed: data is AUTHENTIC and UNMODIFIED (operation=0ms, hsm=0ms)
56 [2025-10-26 15:11:44.403] [INFO] [b8af6965] [CONNECTION_END]

57 duration=2549ms, from=/127.0.0.1:59223

58 -> Request completed

Gambear 3.7. Hasil log file saat verifikasi

D Struktur Request dan Response

Pada Gambar 3.8 adalah contoh saat client mengirim request untuk SIGN.
Struktur request yang dikirim oleh client memiliki format dan spesifikasi yang
sudah ditetapkan. Sistem ini menggunakan format fixed-width dengan panjang
tetap 620 karakter untuk setiap request dan response. Struktur request terdiri dari

beberapa bagian:

1. Header: Berisi kode 026C yang merepresentasikan panjang pesan dalam

format big-endian.

2. Transaction Code: Menentukan jenis operasi yang diminta. Terdapat dua

jenis operasi:

e SIGN: Untuk melakukan penandatanganan digital terhadap digest

dokumen.

* VERI: Untuk melakukan verifikasi terhadap tanda tangan digital yang
sudah ada.

3. Reference: Nomor referensi transaksi yang dapat digunakan untuk pelacakan
dan audit trail. Contoh: REFABREFABREFABREFABREFABREFAB

4. Digest: Hash kriptografis dari dokumen dalam format heksadesimal. Contoh:
AAAAQO0Q0BBBB1111CCCC2222DDDD3333EEEE4444FFFFL55556666777788889999.

5. Signature: Tanda tangan digital dalam format Base64. Untuk operasi SIGN,
bagian ini diisi dengan spasi kosong karena tanda tangan akan dihasilkan
oleh Hardware Security Module (HSM). Untuk operasi VERI, bagian ini harus

berisi tanda tangan yang akan diverifikasi.

31

Pengembangan Logging System..., Dylan William, Universitas Multimedia Nusantara

6. Flag: Indikator status, 1 jika proses berhasil dan O jika proses mengalami

error.

Dalam contoh ini, bagian signature (512 karakter) diisi dengan spasi kosong
karena tanda tangan belum ada dan akan dihasilkan oleh HSM. Lalu response
mengembalikan tampilan protokol/format dengan digest dokumen yang sudah
diubah menjadi Base64 dan dilengkapi dengan signature yang dihasilkan oleh HSM.
Flag mengembalikan nilai 1 yang menandakan proses berhasil.

C:\Users\dylan>nc localhost 9201
026CSIGNREFABREFABREFABREFABREFABREFAB AAAAOO0OBBBB1111CCCC2222DDDD3333EEEE4444FFFF55556666777788889999

1
026CSIGNREFABREFABREFABREFABREFABREFAB qqoAALU7ERHMzCIi3d0zM+7uRET//1VVZnZ3d4iImZk=
TTsBIWGCOXiyAIuriC/41Rhyy+LRyzja0908 fABTceW9IkAVaVI1xtGA9esXLXyGOxsuQT/VZ1LozimGA+T7k]zmxv]i9y/K9+VOvj/IVRILB
9AACkwxqdUIPXmV1yVjYrVQA211zqLckGI9LOJOEICh7T rOCfAaZpEa7Fg7STItBN+mvulbXSclprl1C37LLYCZYdzWIMpidZ8MiljV7n8V
ZITITtPS5VhrITtv/79G]+Smp84ZPkrtczskEeq+ZUuQ2Vv8dnkFIL2021SW9szjUGFKNiuoj+LpugxFyc82S3vT3sy6tYcguIRdgM7mlTip
q+Q7N7wSaH8VD7pAulIMg==

1

Gambar 3.8. Struktur request dan response

E Struktur Request Verifikasi

Untuk contoh verifikasi (VERI) pada Gambar 3.9, digest dapat dikirim dalam
format Base64 (hasil konversi dari HSM) atau tetap dalam format heksadesimal.
Parser akan secara otomatis mendeteksi format yang digunakan. Proses verifikasi
tanda tangan digital melibatkan beberapa tahap yang memastikan integritas data dan
keaslian penandatangan:

1. Pengiriman Request Verifikasi: Client mengirim request VERI yang berisi
digest dokumen dan tanda tangan digital yang akan diverifikasi. Request ini
menggunakan format yang sama dengan request penandatanganan, yaitu 620
karakter dengan struktur fixed-width.

2. Konversi Digest ke Base64: Setelah digest tersimpan dalam format
heksadesimal secara internal, server mengkonversi digest tersebut ke format
base64 melalui metode getDigestBase64 (). Proses ini melibatkan:

» Konversi string heksadesimal menjadi array of bytes.

* Encoding array of bytes tersebut menggunakan Base64 encoder.

32

Pengembangan Logging System..., Dylan William, Universitas Multimedia Nusantara

3. Pembentukan Dokumen XMLDSig: Digest dalam format base64
dimasukkan ke dalam femplate XML Digital Signature (XMLDSig)
yang sudah disiapkan.

4. Verifikasi oleh HSM: HSM (Hardware Security Module) melakukan operasi
verifikasi kriptografis dengan langkah-langkah berikut:

Menerima dokumen XML yang berisi digest dan tanda tangan digital

yang akan diverifikasi

Menggunakan public key yang berkorespondensi dengan private key

yang digunakan saat penandatanganan

Melakukan operasi dekripsi asimetris terhadap tanda tangan untuk

mendapatkan hash asli
Menghitung ulang hash dari dokumen XML yang diterima
Membandingkan hash hasil dekripsi dengan hash yang dihitung ulang

5. Penentuan Hasil Verifikasi: Berdasarkan hasil operasi HSM, server

menentukan status verifikasi:

Jika kedua hash identik: verifikasi berhasil (f1ag=1), yang berarti tanda

tangan valid dan data tidak mengalami modifikasi sejak ditandatangani

Jika hash berbeda: verifikasi gagal (flag=0), yang mengindikasikan

bahwa data telah dimodifikasi atau tanda tangan tidak sesuai

6. Pengiriman Response: Server membentuk response dengan struktur 620

karakter yang berisi:

Digest dalam format Base64 (sama dengan yang diverifikasi)
Tanda tangan digital yang sama dengan yang dikirim dalam request

Flag yang menunjukkan hasil verifikasi (1 untuk berhasil, 0 untuk gagal)

33

Pengembangan Logging System..., Dylan William, Universitas Multimedia Nusantara

C:\Users\dylan>nc localhost 9201
026CVERIREFABREFABREFABREFABREFABREFAB QQOAALU7ERHMzCIi3d0zM+7uRET//1VVZmZ3d4iImZk=
TTsBIwGcOXiyAIuriC/41Rhyy+LRyzja0908fABTceWIkAVaVI1lxtGA9esXLXyGOxsuQT/VZ1LozimGA+T7kJzmxvj9y/K9+VOvj/IVRILB
9AACkwxqdUIPXmV1yV]iYrVQA211zqLckGIOLOJOEICh7TrOCTAaZpEa7Fg7STItBN+mvulbXSclprl1C37LLYCZYdzWIMpidZ8MiljV7ngV
ZIFITtP5VhrITtv/79Gj+Smp84ZPkrtczskEeq+ZUuQ2Vv8dnkFIL2021SW9szjUGFkNiuoj+LpugxFyc82S3vf3sy6tYcquIRdgMmlTip
q+g7N7wSaH8VD7pAu0IMg==

1
026CVERIREFABREFABREFABREFABREFABREFAB qQqOAALU7ERHMzCIi3d0zM+7uRET//1VVZmZ3d4iImZk=
TTsBIwGcOXiyAIuriC/41Rhyy+LRyzja0908fABTceWIkAVaVI1lxtGA9esXLXyGOxsuQT/VZ1LozimGA+T7kJzmxvj9y/K9+VOvj/IVRILB
9AACkwxqdUIPXmV1yV]iYrVQA211zqLckGIOLOJOEICh7TrOCTAaZpEa7Fg7STItBN+mvulbXSclprl1C37LLYCZYdzWIMpidZ8MiljV7ngV
ZIFITtP5VhrITtv/79Gj+Smp84ZPkrtczskEeq+ZUuQ2Vv8dnkFIL2021SW9szjUGFkNiuoj+LpugxFyc82S3vf3sy6tYcquIRdgMmlTip
q+g7N7wSaH8VD7pAu0IMg==

1

Gambar 3.9. Struktur request dan response saat verify

F Contoh Log File Saat Error Handling

Sebagai contoh untuk error handling, pada Gambar 3.10
ditampilkan ketika tahap PARSE gagal karena nilai fransaction code
yang diterima tidak sesuai dengan spesifikasi. Log menampilkan pesan
ERROR: IllegalArgumentException: Invalid transaction code: IGas.
Hal ini menunjukkan bahwa client mengirimkan kode transaksi yang tidak dikenali
oleh sistem. Sesuai desain, hanya dua nilai yang valid, yaitu SIGN dan VERI. Setiap
nilai di luar itu dianggap tidak sah dan mengakibatkan respons status=400 dengan
jenis kesalahan PARSE_ERROR. Sistem kemudian menutup koneksi setelah mencatat

bahwa permintaan tidak dapat diproses.

[2025-10-28 14:06:28.489] [INFO] Client connected: /127.0.0.1:38775 [event=aad4f507]
[2025-10-28 14:06:28.489] [INFO] [aad4f507] [CONNECTION]
from=/127.0.0.1:38775
-> Request started
[2025-10-28 14:06:29.327] [SEVERE] [2ad4f507] [PARSE]
status=400, error=PARSE_ERROR, from=/127.0.0.1:38775
-> Failed to parse or process request
ERROR: IllegalArgumentException: Invalid transaction code: IGas
[2025-10-28 14:06:29.327] [INFO] [aad4f507] [CONNECTION_END]
duration=832ms, from=/127.0.0.1:38775
-> Request completed

Gambar 3.10. Error transaction code

Contoh kedua pada Gambar 3.11 adalah saat terjadi kegagalan pada
tahap VALIDATION. Sistem mendeteksi bahwa pesan yang diterima tidak
memenuhi panjang yang ditetapkan, yaitu 620 karakter. Log mencatat
Incomplete message: expected 620 chars, received 615. Error ini
menunjukkan bahwa client mengirim pesan yang lebih pendek dari format fixed-
width yang diwajibkan. Karena setiap field harus menempati posisi dan panjang

tertentu, kekurangan satu karakter saja langsung membuat pesan tidak dapat

34

Pengembangan Logging System..., Dylan William, Universitas Multimedia Nusantara

diparsing dengan benar. Sistem memberikan respons status=400 dengan error
MSG_LENGTH_MISMATCH. Koneksi ditutup setelah proses dianggap gagal.

18 [2025-10-26 15:08:45.802] [INFO] Client connected: /127.0.0.1:59194 [event=2555766d]
19 [2025-10-26 15:08:45.805] [INFO] [2555766d] [CONNECTION]

20 from=/127.0.0.1:59194

21 -> Request started

22 [2025-10-26 15:08:49.354] [SEVERE] [2555766d] [VALIDATION]

23 status=400, error=MSG_LENGTH_MISMATCH, from=/127.0.0.1:59194
24 -> Incomplete message: expected 620 chars, received 615

25 ERROR: IllegalArgumentException: Message length mismatch

26 [2025-10-26 15:08:49.355] [INFO] [2555766d] [CONNECTION_END]

27 duration=3550ms, from=/127.0.0.1:59194

28 -> Request completed

Gambar 3.11. Error message length

Contoh berikutnya adalah pada Gambar 3.12 dimana ada indikasi bahwa
signature yang dikirim client tidak cocok dengan digest dan public key yang
terkait. Proses tercatat dengan hasil VERIFY_COMPLETE yang menandakan bahwa
proses verifikasi dan pengecekan sudah selesai, namun hasil akhirnya tetap
tertulis DATA MAY BE TAMPERED OR SIGNATURE MISMATCH. Kegagalan ini dapat

disebabkan oleh beberapa kemungkinan, contohnya seperti:
* Tanda tangan digital telah berubah atau rusak.
* Digest tidak sesuai dengan dokumen asli.

* Client mengirimkan signature yang tidak dihasilkan oleh HSM yang sama.

[2025-10-26 15:12:320.854] [INFO] Client connected: /127.0.0.1:59234 [event=82e240b2]
[2025-10-26 15:12:30.854] [INFO] [82e240b2] [CONNECTION]

from=/127.0.0.1:59234

-> Request started
[2025-10-26 15:12:28.033] [INFO] [82e240b2] [PARSE]

trx=VERI, ref=-REFABREFABREFABREFABREFABREFAB, flag=1

duration=1ms, from=/127.0.0.1:59234

-> Request parsed successfully
[2025-10-26 15:12:28.040] [INFO] [82e240b2] [VERIFY_COMPLETE]

trx=VERI, ref=REFABREFABREFABREFABREFABREFAB, flag=0

duration=7182ms, status=200, from=/127.0.0.1:59234

-> Signature verification failed: DATA MAY BE TAMPERED OR SIGNATURE MISMATCH (operation=0ms, hsm=0ms)
[2025-10-26 15:12:38.042] [INFO] #####t# LOG ROTATION #i##iH

Gambar 3.12. Error saat verifikasi

3.4 Kendala dan Solusi yang Ditemukan

Berbagai kendala ditemukan selama proses perancangan, implementasi,

dan pengujian sistem, yang berpotensi memengaruhi keandalan serta konsistensi

35

Pengembangan Logging System..., Dylan William, Universitas Multimedia Nusantara

layanan. Kendala tersebut mencakup aspek teknis pada pengelolaan logging,
keandalan sistem dalam menghadapi kondisi tidak normal, serta konsistensi data
pendukung seperti timestamp dan mekanisme backup. Setiap permasalahan
dianalisis berdasarkan dampaknya terhadap stabilitas sistem, kemudian diikuti
dengan solusi yang diterapkan tanpa menambah kompleksitas arsitektur.
Pendekatan ini bertujuan memastikan bahwa sistem tetap berjalan secara konsisten,
aman, dan mudah dipelihara dalam lingkungan operasional yang bersifat
multithreaded.

3.4.1 Thread Safety dan Race Condition

Salah satu kendala yang menjadi perhatian dalam perancangan sistem ini
adalah potensi terjadinya race condition serta isu thread safety pada pengelolaan
berkas log.

* Kendala: Kondisi ini dapat muncul ketika beberapa thread berjalan
secara paralel dan secara bersamaan mencoba menulis atau melakukan
rotasi terhadap berkas log. Pada beberapa build awal, sistem
masih menggunakan FileWriter untuk penulisan log serta thread Java
terpisah untuk mendeteksi pergantian hari, misalnya melalui mekanisme
new Thread(() -> { while (running) { ... } }). Pendekatan ini
meningkatkan risiko akses bersamaan terhadap berkas log. Tanpa
pengendalian akses yang memadai, kondisi tersebut berpotensi menyebabkan

inkonsistensi data atau kegagalan proses backup.

* Solusi: Sistem pencatatan dimodifikasi dengan menggunakan FileHandler
dari Java Logging API sebagai pengganti FileWriter. FileHandler
menyediakan mekanisme penguncian berkas (file locking) dan pengelolaan
penulisan yang lebih terkontrol, sehingga akses simultan dari beberapa thread
dapat ditangani secara aman. Selain itu, deteksi pergantian hari diubah untuk
tidak menggunakanthread Java ataupun kode lain yang memicu pembuatan

proses baru.

3.4.2 Konsistensi Timestamp

» Kendala: Perbedaan waktu pencatatan antar entri di dalam log dan di nama
log file berpotensi menimbulkan ambiguitas dalam proses analisis dan audit,

terutama ketika sistem menangani banyak permintaan secara paralel.

36

Pengembangan Logging System..., Dylan William, Universitas Multimedia Nusantara

* Solusi: Timestamp pada penamaan berkas log ditentukan berdasarkan waktu
(tanggal dan jam) dari entri log terakhir yang tercatat, sehingga nama berkas
merepresentasikan periode aktual aktivitas pencatatan dan memudahkan

proses pelacakan serta audit.

3.4.3 Log File Backup Handling

» Kendala: Permasalahan utama pada backup berkas log terletak pada
penentuan waktu pemicu proses. Rancangan awal melakukan backup
otomatis saat pergantian hari (23.59—00.00) dengan pemantauan waktu aktif,
yang berpotensi menimbulkan isu thread safety dan konflik dengan proses
penulisan log. Selain itu, belum tersedia mekanisme backup ketika aplikasi
atau server dimatikan, sehingga berkas log berisiko tidak tersimpan dengan
baik.

* Solusi: Kebijakan backup diubah menjadi berbasis kondisi deterministik
tanpa pemantauan waktu aktif. Pergantian hari dipicu oleh adanya entri log
baru. Jika tanggal entri berbeda dari log file aktif, berkas lama dibackup dan
log file baru dibuat. Mekanisme ini juga dijalankan saat aplikasi dinyalakan
kembali, sehingga log dari hari sebelumnya dibackup sebelum sesi pencatatan

baru dimulai.

37

Pengembangan Logging System..., Dylan William, Universitas Multimedia Nusantara

	BAB 3 Pelaksanaan Kerja Magang
	3.1 Kedudukan dan Koordinasi
	3.2 Tugas yang Dilakukan
	3.3 Uraian Pelaksanaan Magang
	3.3.1 E-Signing
	3.3.2 Logging System
	3.3.3 Proses dan Alur Logging System
	3.3.4 Request Class
	3.3.5 RequestParser Class
	3.3.6 Response Class
	3.3.7 LogService Class
	3.3.8 Metode dalam LogService Class
	3.3.9 Hasil

	3.4 Kendala dan Solusi yang Ditemukan
	3.4.1 Thread Safety dan Race Condition
	3.4.2 Konsistensi Timestamp
	3.4.3 Log File Backup Handling

