BAB 3
PELAKSANAAN KERJA MAGANG

3.1 Kedudukan dan Koordinasi

Selama pelaksanaan magang di PT Entrefine Data Indonesia, posisi yang
dijalankan adalah Data Engineer Intern dengan fokus utama pada pengelolaan
data yang diterima dari klien. Intern Data Engineer berada di bawah pengawasan
langsung oleh supervisor Developer IT dan bertanggung jawab untuk memastikan
bahwa setiap proses pengolahan data berjalan sesuai standar dan kebutuhan klien,
strukturnya seperti yang sudah ditunjukkan pada Gambar 2.2. Hal yang dilakukan
adalah mengerjakan alur dari cara penginputan data mentah klien, memasukkan
data klien ke data warehourse Google Bigquery, pemrosesan data dari data mentah
dan ditransformasi menggunakan DBT (Data Build Tool) sehingga menjadi data
yang terstruktur dan siap digunakan untuk di consume BI tools.

Proses pembelajaran di lingkungan kerja dilakukan melalui pendekatan
praktik langsung di lapangan, di mana pemahaman alur kerja dilakukan melalui
sesi briefing dan bimbingan teknis singkat. Apabila terdapat kendala selama
proses pengerjaan, supervisor turut memberikan pendampingan dan solusi agar
kegiatan pengolahan data tetap berjalan efektif dan sesuai dengan target yang
telah ditetapkan. Pelaporan aktivitas kerja dilaksanakan secara sistematis melalui
platform Trello yang berfungsi sebagai media pencatatan tugas harian bagi seluruh
anggota tim. Setiap hasil pekerjaan yang telah diselesaikan akan diperiksa oleh
Project Manager untuk memastikan kesesuaian dengan kebutuhan proyek. Selain
itu, dilakukan diskusi rutin pada awal dan akhir hari kerja untuk membahas
perkembangan tugas, hambatan yang dihadapi, serta rencana pekerjaan berikutnya.
Proses pelaporan ini tidak memerlukan presentasi formal, melainkan dilakukan

secara interaktif melalui pembaruan status tugas dan komunikasi singkat.

3.2 Tugas yang Dilakukan

Selama masa pelaksanaan magang di PT Entrefine Data Indonesia, tugas
utama yang dilaksanakan berfokus pada kegiatan pengelolaan dan pemrosesan data
klien. Peran sebagai Data Engineer Intern mencakup beberapa tahapan pekerjaan
mulai dari proses penerimaan data mentah, pembersihan data, transformasi, hingga

penyimpanan data ke dalam data warehouse berbasis Google BigQuery. Data yang

8

Perancangan dan Implementasi..., Hosea, Universitas Multimedia Nusantara

diterima dari klien umumnya masih dalam bentuk mentah dan tidak terstruktur,
sehingga diperlukan proses penyesuaian format serta validasi agar dapat digunakan
pada tahap analisis selanjutnya.

Proses pengolahan data dilakukan dengan membangun dan
mengimplementasikan data pipeline otomatis menggunakan layanan Google
Cloud Platform (GCP). Pipeline ini dirancang untuk mengatur alur proses mulai
dari ekstraksi data, transformasi, hingga pemuatan (ETL process). Dalam
pelaksanaannya, Data Build Tool (DBT) digunakan untuk melakukan transformasi
data di dalam BigQuery, sehingga data mentah dapat diolah menjadi tabel-tabel
terstruktur sesuai kebutuhan proyek.

Untuk mendukung otomatisasi, proses orkestrasi pipeline memanfaatkan
Google Workflow sebagai pengendali utama yang mengatur urutan eksekusi setiap
komponen pipeline. Eksekusi tugas-tugas pemrosesan dilakukan melalui Google
Cloud Run Job, yang menjalankan skrip transformasi atau pemrosesan data dalam
lingkungan terisolasi dan efisien. Selain itu, Cloud Scheduler digunakan sebagai
pemicu otomatis untuk menjalankan Google Workflow sesuai dengan jadwal yang
telah ditentukan, sehingga proses pengolahan data dapat berjalan secara terjadwal
tanpa intervensi manual. Untuk lebih ringkasnya pekerjaan yang dilakukan dapat
dilihat pada Gambar 3.1

p Ya]
Mem'\ntaé‘;ant\:ple Data Membuat Folder Drive Mim::t?;nl(ggs ;g_:rUk Cek data yang sudah
. Atau File untuk Input Ui P ——— dimasukkan dan Data Bermasalah?
Client Data transform
(Revisi? mm Q h h h‘rldak
Revisi dari Feedback dari Client Buat Infrastrukt
Feedback Konsum Data ke Bl SR INC S AT AR
T Geiss Tools (Looker Studio) Pipeline
v
Handover [End)

Gambar 3.1. Alur Pekerjaan

Selain bertanggung jawab pada proses teknis, kegiatan magang juga
melibatkan koordinasi harian melalui platform Trello yang digunakan untuk
mencatat daily task dan memantau perkembangan pekerjaan. Setiap tugas yang

telah diselesaikan diverifikasi oleh Supervisor Developer IT dan Project Manager

9

Perancangan dan Implementasi..., Hosea, Universitas Multimedia Nusantara

untuk evaluasi akhir. Diskusi harian dilakukan pada awal dan akhir jam kerja untuk
membahas progres, hambatan teknis, serta langkah-langkah perbaikan apabila
ditemukan kendala dalam proses pengolahan data. Dengan sistem kerja tersebut,
setiap tahapan pengerjaan dapat terpantau dengan baik dan hasil akhir yang

dihasilkan sesuai dengan standar kualitas yang diterapkan perusahaan.

3.3 Uraian Pelaksanaan Magang

Kegiatan magang dilaksanakan dengan fokus pada pengelolaan data,
pengembangan sistem, serta penerapan teknologi berbasis cloud. Setiap minggu
memiliki tujuan dan tanggung jawab yang berbeda, menyesuaikan dengan
kebutuhan proyek yang sedang berjalan. Secara umum, kegiatan meliputi proses
pembelajaran penggunaan berbagai fools, keterlibatan dalam penyelesaian masalah
teknis, hingga pengembangan dan otomatisasi sistem data. Rincian kegiatan

mingguan selama masa magang disajikan pada Tabel 3.1.

Tabel 3.1. Uraian kegiatan setiap minggu selama pelaksanaan kerja magang

Minggu Ke- Pekerjaan yang Dilakukan

1 Mempelajari dan memahami berbagai fools yang digunakan
dalam project, seperti Google Cloud Platform (BigQuery,
Cloud Run Job, Google Workflow, dan Scheduler), DBT,

Docker, serta beberapa teknologi pendukung lainnya.

2 Mulai melakukan praktik langsung (hands-on) dengan
membantu menyelesaikan permasalahan sederhana, seperti
mengganti data source pada Looker serta menyalin dan
menyesuaikan kode fungsi yang telah ada untuk digunakan

pada brand lain dalam project yang sama.

3 Melanjutkan kegiatan pada minggu sebelumnya, yaitu
membantu penyelesaian permasalahan teknis kecil serta

memahami alur kerja project secara lebih mendalam.

4 Berpartisipasi dalam pembuatan project dashboard dari awal

untuk salah satu client, mencakup tahap perencanaan,

implementasi, dan integrasi data.

Bersambung ke halaman berikutnya

10

Perancangan dan Implementasi..., Hosea, Universitas Multimedia Nusantara

Tabel 3.1 Uraian kegiatan setiap minggu selama pelaksanaan kerja magang (Lanjutan)

Minggu Ke- Pekerjaan yang Dilakukan
5 Melakukan perbaikan (fixing) terhadap project yang sedang
berjalan serta membantu pada project-project baru yang mulai
dikembangkan.
6 Melanjutkan kegiatan perbaikan dan pengembangan project

yang telah dilakukan pada minggu sebelumnya.

7 Melanjutkan kegiatan minggu sebelumnya, dengan fokus pada

penyempurnaan dan stabilisasi sistem yang sedang dikerjakan.

8 Mendapat kepercayaan untuk menangani satu project client
baru secara mandiri, meliputi pembuatan struktur folder data
untuk penyimpanan data klien, melakukan setup awal project,

serta mulai mengerjakan proses integrasi data.

9 Mengembangkan kode Python untuk proses ingest data mentah
(raw data) ke dalam BigQuery sebagai bagian dari pipeline
data.

10 Membuat dan melakukan sefup project DBT (Data Build Tool)

untuk pengelolaan transformasi data yang lebih terstruktur.

11 Mengembangkan jobs untuk menjalankan berbagai tugas
otomatis, seperti proses ingest data dari Google Spreadsheets

dan Google Drive, serta menjalankan workflow DBT.

12 Membuat GitHub Action untuk otomatisasi deployment kode
ke cloud, serta melakukan setup workflow dan Scheduler
guna men-trigger pekerjaan (jobs) dan workflow pada waktu

tertentu.

13 Memantau dan melakukan maintenance dari pipeline yang
telah dibuat.

14 -17 Melakukan maintenance pada project Skin Game, Cartiera,
dan Sukses Group.
18 Melakukan kickoff project Social Barn serta mempelajari data
yang diberikan oleh pihak Social Barn.
19 Memulai setup project dan konfigurasi untuk project Social
Barn.

Bersambung ke halaman berikutnya

11

Perancangan dan Implementasi..., Hosea, Universitas Multimedia Nusantara

Tabel 3.1 Uraian kegiatan setiap minggu selama pelaksanaan kerja magang (Lanjutan)

Minggu Ke- Pekerjaan yang Dilakukan

20-23 Membuat dashboard serta melakukan adjustment pada project

Social Barn.

3.3.1 User Requirement

User requirement digunakan sebagai panduan utama dalam pengembangan

sistem pipeline data Cartiera agar sesuai dengan kebutuhan pengguna bisnis.

1. Data laporan harus selalu terupdate secara berkala sesuai jadwal yang
disepakati, sehingga pengguna dapat mengambil keputusan berdasarkan

informasi terbaru.

2. Pengguna dapat melihat informasi yang sudah digabung dari berbagai sumber
(misalnya penjualan online, stok gudang, dan hasil stock opname) dalam satu

tampilan yang konsisten.

3. Informasi yang ditampilkan harus akurat dan konsisten, sehingga angka
di laporan tidak membingungkan dan dapat dipercaya untuk pengambilan

keputusan.

4. Data tidak boleh terduplikasi ketika proses ingestion data

3.3.2 Perancangan Pipeline Otomatis Cartiera

Entrefine sebagai vendor penyedia layanan pengolahan data menjalin kerja
sama dengan Cartiera, sebuah merek fashion aksesori pria yang dikenal dengan gaya
simple dan elegan. Produk yang dipasarkan mencakup dompet, tas, dan berbagai
aksesori lainnya [9]. Kerja sama ini berfokus pada penguatan sistem informasi
internal yang mendukung proses operasional dan analisis penjualan.

Proyek Cartiera resmi dimulai pada 2 September 2025 dengan cakupan
utama berupa pengembangan dashboard tren penjualan serta sistem pengelolaan
input untuk stok dan pencatatan retur. Ruang lingkup pengelolaan stok mencakup
proses mulai dari input rencana barang masuk, barang masuk, barang keluar, barang

defect, hasil perbaikan gudang reject, hingga monitoring keseluruhan pergerakan

12

Perancangan dan Implementasi..., Hosea, Universitas Multimedia Nusantara

barang. Sistem ini dirancang untuk meningkatkan visibilitas dan akurasi data
inventori pada brand Cartiera.

Berdasarkan hasil diskusi bersama pihak Cartiera, diputuskan bahwa proses
input UPFOS dan stock opname dilakukan melalui file berformat .csv yang
disimpan pada Google Drive. Untuk mendukung alur kerja yang lebih terstruktur
dan cost efficient, terstandarisasi, dan otomatis, direkomendasikan penggunaan
lingkungan Google Cloud Platform. Rangkaian layanan yang digunakan meliputi
Google Cloud Run Jobs yang menjalankan kode Python untuk proses ingestion
data melalui container berbasis Docker, Google Workflows sebagai orkestrator
antarproses, serta Google Cloud Scheduler sebagai pemicu otomatisasi dalam
menjalankan workflow yang telah ditetapkan. Struktur alur proses secara umum
digambarkan melalui tahapan extract, transform, load, serta orkestrasi data pipeline

untuk dikonsumsi Looker Studio seperti yang terlihat pada Gambar 3.2.

/AN ; E“Q
> 8-
.
—{0; =
Mengambil data dari Mengambil data Menjalankan proses i Doy e Dot Menambahkan kolom
beberapa Google transaksidari file CSV extract terjadwal ke g S teknis/metadata
Spreadsheet yang tersimpandi Google Cloud BigQuery (tanggal proses, sumber
operasional Google Drive. cartira_raw file, dlsb,)
Orkestrasi Load
- G5
e —
0.9 Gr = 75
o O 2 -
Penjadwal Memuat data hasil transform ke Mengatur partisi tabel
L S S e MWorkicwibang Ee e Google BigQuery dalam bentuk berdasarkan tanggal agar
terpisah untuk setiap mengorkestrasiurutan Untuk trigger e N s query lebih efisien dan
sumber data eksekusi job ordlo dbt_cartiera mudah di-refresh per hari.

Gambar 3.2. Alur input Cartiera

Konsep Extract, Transform, Load (ETL) merupakan pendekatan umum
yang digunakan dalam pengelolaan data untuk mengintegrasikan data dari berbagai
sumber ke dalam satu sistem terpusat [10]. Tahap extract berfokus pada
proses pengambilan data mentah dari beragam sistem sumber, baik yang bersifat
terstruktur maupun semi-terstruktur. Selanjutnya, tahap transform bertujuan
untuk mengolah data hasil ekstraksi melalui proses pembersihan, penyesuaian
format, serta penyesuaian skema agar data sesuai dengan kebutuhan bisnis dan

analisis. Tahap terakhir, yaitu load, merupakan proses pemuatan data yang telah

13

Perancangan dan Implementasi..., Hosea, Universitas Multimedia Nusantara

ditransformasi ke dalam sistem penyimpanan akhir, seperti data warehouse atau
data mart, sehingga data tersebut siap digunakan oleh sistem analitik dan Business
Intelligence.

Pengerjaan pipeline input untuk Cartiera terbagi ke dalam tiga tahapan
utama dengan penambahan proses orkestrasi, yaitu proses ekstraksi (Extract),
transformasi (7ransform), dan pemuatan (Load) dan juga proses orkestrasi ketiga
tahapan sebelumnya. Pada tahap ekstraksi, data mentah diambil dari berbagai
sistem sumber, seperti Google Drive dan Google Spreadsheet. Data yang telah
diekstraksi kemudian diproses pada tahap transformasi, di mana data dibersihkan
dan disesuaikan yang merepresentasikan kebutuhan data operasional Cartiera.
Selanjutnya, data hasil transformasi tersebut dimuat ke dalam penyimpanan akhir
sebagai bagian dari proses dalam bentuk marts-marts yang merupakan bagian dari
tahapan load. Data yang telah siap selanjutnya dapat dikonsumsi oleh sistem
Business Intelligence (BI), seperti Looker Studio, untuk keperluan analisis dan
pelaporan yang dilakukan pada tahap terpisah. Setelah semuanya sudah berjalan,
selanjutnya adalah mengorkestrasi semua tahapan sebelumnya untuk berjalan secara
otomatis. Keempat tahapan tersebut sudah digambarkan pada Gambar 3.2 dan
akan dijelaskan lebih lanjut pada subbab berikut agar alur pemrosesan data dapat

dipahami secara lebih rinci.

A Extract

Pada tahap ini, pihak Cartiera melakukan proses input data operasional
dengan mengunggah berkas berformat .csv ke Google Drive untuk UPFOS dan
stock opname serta memasukkan data langsung ke Google Spreadsheet untuk
input retur, complain, dan sebagainya yang telah disediakan oleh Entrefine.
Seluruh berkas dan Spreadsheet tersebut dikelola secara terpusat dalam satu
folder master bernama “Cartiera Inventory System”, sehingga memudahkan proses
pengorganisasian dan pemantauan data sebelum memasuki tahap berikutnya dalam

pipeline. Struktur penyimpanan ini dapat dilihat pada gambar 3.3.

14

Perancangan dan Implementasi..., Hosea, Universitas Multimedia Nusantara

Shared withme > Cartiera Inventory System ~ 2 C=[=)o

| Type - || People ~ || Modified ~ || Source ~ |

Name 4 Owner Date modified File size
B3 Cartiera Data Folder e entrefinedev 6 Oct
Cartiera Tutorial e | entrefinedev 19 Nov
Data Stock Opname Cartiera 6 me 210ct
Data Upfos Cartiera e entrefinedev 210ct

Input Folder e | entrefinedev 6 Oct

Gambar 3.3. Google Drive Master

Untuk mengunggah file data UPFOS dan sftock opname, pengguna terlebih
dahulu membuka folder yang sesuai dengan kategori data pada folder master. Setiap
jenis data telah disediakan struktur penyimpanan berbasis waktu dengan format
folder MMM/YYYY (misalnya Sep 2025), sehingga proses pengarsipan menjadi
lebih teratur dan dapat dideteksi oleh kode Python nantinya. Tampilan struktur
folder tersebut ditunjukkan pada gambar 3.4.

Name 4 Date modified

Apr 2025 17 Oct

Aug 2025 jgeles

Dec 2025 17 Oct

Feb 2026 19 Nov

Jan 2026 19 Nov

Jul 2025 17 Oct

Jun 2025 17 Oct

Mar 2025 17 Oct

May 2025 17 Oct

Nov 2025 17 Oct

Oct 2025 17 Oct

Gambar 3.4. Contoh Folder Bulan Untuk Stock Opname dan UPFOS

Setelah memilih folder berdasarkan bulan yang relevan, pengguna dapat
mengunggah file data dengan mengikuti format penamaan yang telah distandarkan,
yaitu DD-MM-YYYY*.csv (misalnya 30-09-2025.csv). Penerapan format
penamaan ini tidak hanya memastikan keteraturan dan mempermudah identifikasi
file berdasarkan tanggal input, tetapi juga menjadi bagian penting dalam proses
Extract, Transform, Load (ETL) yang telah dibangun. Format nama file

tersebut dimanfaatkan dalam pipeline otomatis untuk memfilter, membaca, dan

15

Perancangan dan Implementasi..., Hosea, Universitas Multimedia Nusantara

1

5

1

5

6

mengekstraksi data sesuai tanggal. Contoh format nama file tersebut dapat dilihat
pada gambar 3.5.

‘ Type ~ H People ~ Modified ~ || Source ~

Name Owner Date modified File size

2 30-09-2025.csv an linacartiera@... 19 Nov 80 KB

Gambar 3.5. Contoh Memasukkan Data UPFOS dan Stock Opname

Setelah data diunggah oleh pihak Cartiera ke Google Drive dengan struktur
dan format penamaan yang telah distandarisasi, tahap selanjutnya adalah proses
ingestion data ke dalam sistem penyimpanan terpusat berbasis BigQuery. Proses ini
dijalankan menggunakan serangkaian skrip Python yang berfungsi untuk membaca
file dari Google Drive, melakukan pembersihan data (data cleaning), transformasi
format, serta memuat hasilnya ke BigQuery dalam bentuk tabel terpartisi.

Langkah pertama dalam pipeline adalah inisialisasi koneksi menggunakan
Application Default Credentials (ADC), yang memberikan akses hanya-baca ke
Google Drive dan akses penuh ke layanan BigQuery. Skrip kemudian membangun
dua klien terpisah, yaitu satu klien untuk berkomunikasi dengan Google Drive
API dan satu klien untuk menjalankan operasi pada BigQuery. Pada tahap ini,
konfigurasi seperti lokasi dataset, ID folder pada Google Drive, serta jumlah hari
lookback didefinisikan agar proses ingest dapat berjalan secara otomatis tanpa
konfigurasi ulang. Potongan kode dapat terlihat pada kode 3.1.

from google.auth import default
from google.cloud import bigquery
from googleapiclient.discovery import build

Load credentials
credentials , project = default(
scopes =[
“https ://www. googleapis.com/auth/drive.readonly ’,

“https ://www. googleapis .com/auth/cloud—-platform’

16

Perancangan dan Implementasi..., Hosea, Universitas Multimedia Nusantara

13

14

15

1

BigQuery & Drive client

bg_client = bigquery.Client(credentials=credentials , project=
project)
drive_service = build(’drive’, ’v3’, credentials=credentials)

Kode 3.1: Inisiasi Kredensial dan Membuat klien BigQuery dan Google Drive

Pipeline kemudian memulai proses dengan mengidentifikasi seluruh folder
bulanan yang ada di dalam direktori 7oot SO pada Google Drive. Struktur folder
bulan, misalnya “Oct 2025 atau “Nov 2025”, dipindai menggunakan pencocokan
pola (regex) untuk memastikan hanya folder dengan format waktu yang valid yang
diproses. Dari setiap folder bulan tersebut, skrip akan mencari file-file .csv yang
namanya mengikuti format tanggal DD-MM-YYYY, sehingga hanya file hasil
ekspor UPFOS yang memenuhi standar penamaan yang akan diproses. Untuk
mendapatkan nama bulan folder dapat menggunakan kode yang ditunjukkan pada
kode 3.2.

def get_month_folders(parent_folder_id: str):
Get all month folders (format: Oct 2025, Nov 2025, etc.) from
parent folder.

Returns list of folder IDs and names.

query = (
f”’{parent_folder_id}’ in parents and ”

"mimeType="application/vnd. google—apps.folder’ and trashed

=false”
)
try :
results = drive_service . files (). list(

g=query ,
fields="files (id , name)’,
orderBy="name desc’
).execute ()
except Exception:
return []

)

folders = results.get(’ files’, [])

Filter folders that match month-year pattern (e.g., “Oct
20257, ”Nov 20257)
month_folders = []

month_pattern = re.compile(

17

Perancangan dan Implementasi..., Hosea, Universitas Multimedia Nusantara

1

r’"(Jan |Feb|Mar|Apr|May|Jun | Jul | Aug|Sep | Oct|Nov |Dec)\s+\d
{418,
re .IGNORECASE

for folder in folders:
if month_pattern.match(folder[name’]):
month_folders.append(folder)

return month_folders
Kode 3.2: Mendapatkan Folder Nama Bulan

Setelah file ditemukan, proses berlanjut pada pembacaan isi file. Karena
file CSV dari sistem operasional sering memiliki inkonsistensi seperti perbedaan
separator atau encoding, fungsi read csv from drive dirancang untuk mencoba
beberapa strategi parsing yang berbeda. Proses ini mencoba kombinasi koma
atau titik koma sebagai pemisah kolom serta beberapa encoding umum hingga
ditemukan konfigurasi yang dapat dibaca dengan benar. Untuk menjaga konsistensi
struktur, skrip memastikan bahwa hanya 28 kolom pertama yang digunakan, karena
struktur data SO Cartiera secara operasional memang terbatas hingga kolom AB.
Fungsi read csv from drive dapat dilihat pada kode 3.3.

def read_csv_from_drive (file_id: str, file_name: str):
Read CSV file from Google Drive with fallback strategies for
encodings and separators.

Always limits to max 28 columns (A to AB).

9999 9

request = drive_service . files ().get_media(fileld=file_id)
file_content = io.BytesIO ()

downloader = MedialoBaseDownload (file_content , request)
done = False

while not done:

done = downloader.next_chunk ()

=9

file_content.seek (0)

strategies = [
{’sep’: ’,’, ’encoding’: ‘utf-8'},
{’sep’: ’;’, ’encoding’: ‘utf-8’},
{’sep’: ’,’, ’encoding’: ’ISO-8859-1"},
{’sep’: ’;’, ’encoding’: ’ISO-8859-1"},

18

Perancangan dan Implementasi..., Hosea, Universitas Multimedia Nusantara

40

41

s s

{’sep’: ’,’, ’encoding’: ’windows-1252"},

il s s

{’sep’: ’;’, ’encoding’: ’windows-1252"},

for strategy in strategies:
try:
file_content.seek (0)
df = pd.read_csv(
file_content ,
sep=strategy [’ sep’],
encoding=strategy [encoding]

if len(df.columns) >= 3:
df = df.iloc[:, :28] # limit to first 28 columns

return df

except Exception:

continue

return None

Kode 3.3: Membaca CSV dari Google Drive

B Transform

Pada tahap transform dalam proses ETL, sebelum data mentah dimuat ke
dalam data warehouse Google BigQuery, dilakukan serangkaian transformasi untuk
menyiapkan data agar siap dianalisis. Tujuan utama dari proses transform ini adalah
memastikan data telah bersih, terstruktur, dan relevan sesuai dengan kebutuhan
analisis, serta disimpan terlebih dahulu ke dalam data staging.

Data mentah masuk ke tahap pembersihan dan transformasi. Pada
tahap ini, nama kolom diseragamkan melalui proses renaming, mulai dari
menghilangkan karakter khusus hingga mengonversi format nama agar seluruh
kolom menggunakan huruf kecil dan garis bawah. Selain itu, nilai pada kolom teks
dibersihkan dari karakter yang tidak diperlukan, dan tipe data pada kolom tanggal
dikonversi ke tipe waktu yang sesuai. Jika data tidak memiliki kolom tanggal
bawaan, skrip secara otomatis mengekstraknya dari nama file untuk memastikan
setiap baris data dapat dipetakan ke partisi tanggal yang tepat di BigQuery. Kode
dari tahap ini dapat dilihat pada kode 3.4.

19

Perancangan dan Implementasi..., Hosea, Universitas Multimedia Nusantara

i def clean_dataframe (df: pd.DataFrame, file_name: str):

df = df.rename (columns=COLUMN_MAPPING LANGUAGE RENAME)

df.columns = [str(col).strip(’=".,) for col in df.columns]
df.columns = [str(col).lower().replace(’ °, *_’) for col in df
.columns]

df = df.rename (columns=COLUMN _MAPPING RENAME)

for col in df.columns:
if df[col].dtype == ’object’:
df[col] = df[col].apply(lambda x: str(x).strip(’ =".,
) if pd.notna(x) else x)
df[col] = df[col].apply(lambda x: x.strip () if

isinstance (x, str) else Xx)

)

if ’creation_time’ in df.columns:
df[’creation_time’] = pd.to_datetime (df[creation_time],
errors=’"coerce)
df[’tanggal ’]
df[’tanggal ’]

df[’creation_time ’].dt.date

pd.to_datetime (df[’ tanggal’])

else:
date_string = file_name [:10]
try:
df[tanggal’] = pd.to_datetime (date_string , format="%d
—Jom=%Y)
except:

df[tanggal’] = pd.NaT

if ’stocktaking_time’ in df.columns:
df[’stocktaking time’] = pd.to_datetime (df[’

stocktaking time’], errors=’coerce)

return df

Kode 3.4: Pembersihan Header dan DataFrame

Proses transform kemudian dilanjutkan dengan validasi tipe data, di mana

kolom numerik seperti kuantitas stok, jumlah inventori, dan semua kolom yang
bertipe data angka dipastikan tersimpan dalam format angka, sedangkan kolom
yang bersifat identitas tetap disimpan sebagai string agar format aslinya tidak
berubah. Langkah ini penting untuk menjaga akurasi perhitungan serta konsistensi
data saat proses analisis dilakukan. Setelah seluruh proses pembersihan dan
penyesuaian data selesai, skrip menambahkan metadata tambahan berupa nama file

sumber, folder asal, serta timestamp ingestion. Penambahan informasi ini bertujuan

20

Perancangan dan Implementasi..., Hosea, Universitas Multimedia Nusantara

i def numeric_transformation (df: pd.DataFrame):

qty_columns = [’stocktaking_qty’, ’inventory_qty’,
"1
for col in qty_-columns:

if col in df.columns:

untuk menjaga keterlacakan data dan memudahkan proses audit di kemudian hari.
Keseluruhan proses transform ini diimplementasikan dalam kode yang ditunjukkan
pada kode 3.5.

>difference

df[col] = pd.to_numeric(df[col], errors=’coerce’)

id_columns = [’ stocktake_order_no’, ’product_code’,
product_specification_code ’]
for col in id_columns:
if col in df.columns:
df[col] = df[col].astype(str)

return df

def process_so_data(days_string: str = None):

all_dataframes = []
month_folders = get_month_folders (SO_FOLDER_ID)

if not month_folders:

return pd.DataFrame ()

for folder in month_folders:
folder_id = folder[’id’]
folder_name = folder[name’]
csv_files = get_csv_files_from_folder (folder-id

days_string)

if not csv_files:

continue
for file in csv_files:
file_id = file [id’]

file_name = file[name’]

try :

il

df = read_csv_from_drive(file_id , file_name)

if df is None or df.empty:

21

Perancangan dan Implementasi..., Hosea, Universitas Multimedia Nusantara

1

continue

df

df = numeric_transformation (df)

clean_dataframe (df, file_name)

df[’source_file’] = file_name
df[’source_folder’] = folder_name
df[’ingestion_timestamp’] = datetime .now ()

all _dataframes .append (df)

except:

continue

if all_dataframes:
final_df = pd.concat(all_dataframes , ignore_index=True)
return final_df
else :
return pd.DataFrame ()
Kode 3.5: Proses SO DataFrame

Setelah semua file dalam periode waktu tertentu selesai diolah, seluruh
DataFrame yang berhasil dibaca digabungkan menjadi satu kumpulan data final.
Pipeline kemudian memverifikasi keberadaan tabel target di BigQuery. Jika
tabel belum tersedia, sistem akan membuat tabel baru dengan skema yang telah
ditentukan dan partisi berdasarkan kolom tanggal. Sebelum data ditulis ke
BigQuery, pipeline juga menghapus terlebih dahulu partisi yang memiliki tanggal
sama, sehingga data yang diunggah selalu dalam keadaan bersih dan tidak terjadi
duplikasi. Pembuatan partisi dan penghapusan partisi terlihat pada kode 3.6

def create_partitioned_table_if_not_exists (table_name: str):
project_id = bq_client.project
table_id = f”{project_id } .{DATASETID }.{ table_name }”

try :
bg_client.get_table (table_id)
return
except NotFound:
schema = [
bigquery .SchemaField(”creator”, “STRING”),
bigquery .SchemaField (”creation_time”, “TIMESTAMP”) ,
bigquery .SchemaField (" operator”, ”"STRING”),
bigquery . SchemaField (”stocktaking_time”, "TIMESTAMP”),
bigquery .SchemaField (”stocktake_order_-no”, ”"STRING”),
bigquery .SchemaField (”stocktake_type”, "STRING”),

22

Perancangan dan Implementasi..., Hosea, Universitas Multimedia Nusantara

bigquery .SchemaField (”warehouse”, "STRING”),
bigquery . SchemaField (”products_name”, “STRING”),
bigquery .SchemaField (”product_code”, ”STRING”),
bigquery .SchemaField (”sku_name”, ”"STRING”) ,

bigquery . SchemaField (" product_specification_code”,

STRING™) ,
bigquery.SchemaField (”stocktaking_qty”, "FLOAT”),
bigquery .SchemaField (”inventory_qty”, “FLOAT”),
bigquery . SchemaField (”difference”, "FLOAT”),
bigquery .SchemaField (”notes”, “STRING”),
bigquery .SchemaField (”tanggal”, “DATE”),
I

table = bigquery.Table(table_id , schema=schema)

table.time_partitioning = bigquery. TimePartitioning (
type_=bigquery. TimePartitioningType .DAY,
field="tanggal”,

table = bq-client.create_table(table)

def delete_partition_data (table_name: str, dates: list):

project_id = bq_client.project
table_id = f”{project_id } .{DATASETID}.{ table_name }”

for

date in dates:

date_str = date.strftime (%Y—%m%d ")
query = 777

DELETE FROM ‘{table_id }°

WHERE tanggal = DATE ’{date_str}’

999399

try:
query_job = bq_client.query(query)
query_job.result ()

except:

pass
Kode 3.6: Membuat Tabel Partisi dan Menghapus Partisi

29

Tahap terakhir dari transformasi ini adalah memuat data ke BigQuery
menggunakan mode append setelah proses pembersihan partisi. Seluruh baris

dengan tanggal yang valid akan dimasukkan kembali ke tabel terpartisi, dan jika

23

Perancangan dan Implementasi..., Hosea, Universitas Multimedia Nusantara

1

"

seluruh proses berjalan tanpa kendala, sistem akan menampilkan ringkasan jumlah
baris yang berhasil diunggah serta partisi yang diperbarui. Dengan pendekatan
ini, tahan terhadap format data yang tidak konsisten, dan memastikan bahwa data
stok opname Cartiera tersimpan dalam struktur yang rapi, mudah dicari, dan siap
digunakan untuk analisis lebih lanjut 3.7.
def upload_to_bigquery (df: pd.DataFrame, table_name: str):

if df.empty:

return

project_id = bq_client.project
table_id = f”{project_id } .{DATASETID}.{ table_name}”

try :
bg_client.get_dataset (f’{project_id }.{DATASET.ID}”)
except NotFound:
dataset = bigquery.Dataset(f”{project_id }.{DATASETID}”)
dataset.location = “asia—-southeast2”

bg_client.create_dataset(dataset, exists_ok=True)
create_partitioned_table_if_not_exists (table_name)
valid_dates = df[df[’ tanggal’].notna()][tanggal’].dt.date.
unique ()

unique_dates = sorted(valid_dates)

if len(unique_dates) ==

return

delete_partition_data (table_name , unique_dates)

try :
df = df[df[tanggal’].notna()].copy()
if df.empty:
return
metadata_columns = [’source_file’, ’source_folder’, ’
ingestion_timestamp’, ‘tanggal_file]
df = df.drop(columns=[col for col in metadata_columns if

col in df.columns], errors=’ignore’)

df = df.replace ([pd.NA, pd.NaT], None)

24

Perancangan dan Implementasi..., Hosea, Universitas Multimedia Nusantara

1

pandas_gbq.to_gbq(
df,
table_id ,
project_id=project_id ,
if_exists="append’,
location="asia—southeast2’,

credentials=credentials

except Exception as e:
raise e

Kode 3.7: Mengunggah Dataframe ke Google BigQuery

C Load

Data yang sudah masuk ke Bigquery disusun dan dimuat menjadi lima data
marts, yaitu marts complain, marts estimation in, marts inventory trend, marts so
data, dan marts UPFOS. Marts complain berfungsi untuk menyajikan data keluhan
pelanggan yang telah diseleksi dari data mentah dengan hanya mengambil kolom-
kolom yang relevan tanpa melibatkan proses perhitungan tambahan. Transformasi
yang dilakukan pada marts complain berfokus pada penyederhanaan struktur data
serta penyesuaian penamaan kolom agar lebih konsisten, mudah dipahami, dan
siap digunakan dalam proses analisis lanjutan. Implementasi marts complain

direalisasikan menggunakan perintah SQL sebagaimana ditunjukkan pada Kode 3.8

SELECT
tanggal _pengajuan_komplain AS Tanggal,
member_id ,
member_name ,
sku_code AS Product_Code,
product_quantity AS Qty_Komplain,
no_handphone AS nomor_hp,
nomor_pesanan AS order_number ,
kategori_keterangan AS Alasan_Complain,
logistics_.name_code AS Ekspedisi,
marketplace AS Marketplace,
kategori_masalah_otomatis AS Problem_WH,
solusi AS Solusi,
penyelesaian_status AS Penyelesaian_Status ,

product_-name AS Product,

25

Perancangan dan Implementasi..., Hosea, Universitas Multimedia Nusantara

s

s FROM {{ source(’cartiera_raw’, ’input_complain’) }}

Kode 3.8: Kode SQL marts complain

Marts estimation in digunakan untuk menyajikan estimasi barang masuk
(estimated inbound) berdasarkan data perencanaan dan realisasi inbound pada
periode berjalan. Data pada mart ini diolah dengan memanfaatkan window function
untuk menghitung total rencana inbound per SKU dalam satu bulan serta akumulasi
inbound yang telah terealisasi hingga tanggal tertentu. Melalui proses ini, marts
estimation in mampu memberikan informasi mengenai estimasi inbound pada hari
berjalan, total estimasi inbound bulanan, serta sisa inbound yang diperkirakan akan
datang. Hasil transformasi ini bertujuan untuk mendukung analisis perencanaan
stok dan monitoring realisasi inbound secara lebih efisien. Implementasi marts

estimation in ini dapat dilihat pada kode 3.9

1 with base_data as (

select
; tanggal ,
4 SKU,
5 planned_in ,
6 Inbound ,

7 sum(planned_in) over (partition by SKU, date_trunc (tanggal
, month)) as total_planned_month ,

8 sum(Inbound) over (

9 partition by SKU, date_trunc (tanggal , month)

10 order by tanggal

11 rows between unbounded preceding and current row

12) as cumulative_inbound

13 from {{ ref(’ marts_inventory_trend’) }}

14 where tanggal >= DATE TRUNC(CURRENT DATE() , MONIH)

15)

16

17 select

18 tanggal ,

19 SKU as sku,

20 total_planned_month as est_in_this_month ,

21 planned_in as est_in ,

2 total_planned_month — cumulative_inbound as est_in_akan_datang

3 from base_data
2+ order by tanggal , sku
Kode 3.9: Kode SQL marts est in

Marts so data digunakan untuk menyajikan data hasil stock opname

26

Perancangan dan Implementasi..., Hosea, Universitas Multimedia Nusantara

1

dengan membandingkan jumlah persediaan yang tercatat pada sistem dengan hasil
perhitungan fisik di gudang. Data pada mart ini diperoleh dari sumber data mentah
tanpa melibatkan proses perhitungan tambahan, dengan fokus pada pemilihan
kolom-kolom yang relevan seperti tanggal pelaksanaan stock opname, identitas
produk, nilai persediaan pada sistem, nilai hasil stock opname, serta selisih di antara
keduanya. Penyajian data dalam marts so data bertujuan untuk mendukung proses
evaluasi akurasi pencatatan stok, identifikasi selisih persediaan, serta sebagai dasar
analisis pengendalian inventori. Kode SQL dari marts so data seperti ditunjukkan
pada kode 3.10

SELECT
tanggal ,
product_specification_code ,
sku_name ,
inventory_qty as Nilai_Sistem ,
stocktaking_qty as Nilai_Stock_Opname ,
difference as selisih

FROM {{ source(’cartiera_.raw’, ’so_inventory’) }}

Kode 3.10: Kode SQL marts so data

Marts inventory trend digunakan untuk menyajikan pergerakan persediaan
barang secara harian berdasarkan berbagai sumber data yang berkaitan dengan
aktivitas gudang. Mart ini mengintegrasikan data barang masuk, barang keluar,
barang cacat (defect), hasil stock opname, estimasi inbound, transaksi UPFOS,
serta hasil perbaikan barang reject ke dalam satu struktur data yang terpadu.
Proses transformasi dilakukan dengan membangun date spine dan daftar SKU agar
data persediaan tersedia secara konsisten untuk setiap tanggal dan setiap produk,
meskipun tidak terdapat transaksi pada hari tertentu.

Selanjutnya, perhitungan stok dilakukan dengan menjadikan hasil stock
opname terakhir sebagai titik awal (anchor point), kemudian menambahkan mutasi
stok harian secara kumulatif untuk memperoleh nilai stok awal, stok akhir, serta
sisa persediaan. Selain itu, marts inventory trend juga menyediakan metrik analitis
seperti selisih antara stok sistem dan hasil stock opname, rata-rata pergerakan
barang keluar dalam periode tertentu, moving average, deviasi standar, serta
akumulasi barang keluar bulanan. Penyajian data dalam mart ini bertujuan untuk
mendukung analisis tren persediaan, pemantauan stabilitas stok, serta pengambilan
keputusan terkait perencanaan dan pengendalian inventori secara lebih akurat. Kode

lengkapnya dapat terlihat pada kode 3.11
WITH input_barang_masuk AS (

27

Perancangan dan Implementasi..., Hosea, Universitas Multimedia Nusantara

2 SELECT
tanggal _masuk ,

4 product_name ,

5 sku_code ,

6 total_qty ,

7 gty_masuk ,

8 qty_reject

9 FROM {{ source(’cartiera_raw’, ’input_barang masuk’) }}
0),

2 input_barang_keluar AS (

13 SELECT

14 tanggal_keluar ,

5 product_name ,

16 sku_code ,

17 qty-keluar

I8 FROM {{ source(’cartiera_raw’, ’input_barang_keluar’) }}
v o),

> input_barang_defect AS (

2 SELECT

23 tanggal_keluar ,

24 product_name ,

25 sku_code ,

26 qty_defect

2 FROM {{ source(’cartiera_.raw’, ‘input_barang_defect’) }}
%),

30 data_est_in AS (

31 SELECT

3 tanggal ,

33 sku ,

34 product_name ,

35 qty_planned ,

36 actual_delivery ,

37 qty_in_estimation

38 FROM {{ source(’cartiera_raw’, ’data_est_in’) }}
©),

40

i data_inventory_so AS (

'S

o SELECT
4 tanggal ,
44 product_specification_code AS sku,

28

Perancangan dan Implementasi..., Hosea, Universitas Multimedia Nusantara

45 sku_name AS product_name ,

46 stocktaking_qty AS hasilstockopname
47 FROM {{ source(’cartiera_raw’, ’so_inventory’) }}
48),

so upfos_inventory AS (

51 SELECT

52 DATE(tanggal) AS tanggal,

53 product_specification_code AS sku_code,

54 SUM(product_qty) AS qty-upfos

55 FROM {{ source(’cartiera_raw’ ', ‘upfos_inventory’) }}
56 GROUP BY DATE(tanggal), product_specification_code
57),

9 input_perbaikan_reject AS (
60 SELECT

61 tanggal _masuk ,

62 product_name ,

63 sku_code ,

64 qty-masuk

65 FROM {{ source(’cartiera_raw’, ~

input_hasil_perbaikan_gudang_reject’) }}

66),
67
¢ — Get unique SKU list from all data
o sku_list AS (
70 SELECT DISTINCT
71 sku AS sku_code,
72 product_.name AS nama_produk
73 FROM data_inventory_so
),
75
76 — Generate date spine for the next 5 years from today
77 tanggal_5_tahun AS (
78 SELECT DISTINCT
79 DATE(tanggal) AS tanggal
80 FROM UNNEST (
81 GENERATE_DATE_ARRAY (
82 DATE(’2025-10-01"),
83 DATE_ADD(DATE(>2025-10-01"), INTERVAL 5 YEAR),
84 INTERVAL 1 DAY
85)
86) AS tanggal
29

Perancangan dan Implementasi..., Hosea, Universitas Multimedia Nusantara

96

98

99

100

101

102

103

104

105

106

107

108

109

110

gabungan_data_harian AS (

)

SELECT
t.tanggal,
s.sku_code ,
s.nama_produk ,
so. hasilstockopname AS hasilstockopname ,
COALESCE(est.qty-planned, 0) AS planned_in ,
COALESCE (masuk . qty_masuk , 0) AS stock_in ,
COALESCE(masuk . qty_-reject , 0) AS stock_in_rejected ,
COALESCE(keluar.qty_keluar, 0) AS stock_out,
COALESCE(defect.qty_defect, 0) AS stock_defect,
COALESCE(upfos.qty_upfos, 0) AS stock_out_upfos ,
COALESCE(perbaikan . qty_masuk, 0) AS qty_retur
FROM tanggal_5_tahun t
CROSS JOIN sku_list s
LEFT JOIN data_inventory_so so ON DATE(so.tanggal) = t.tanggal
AND so.sku = s.sku_code
LEFT JOIN input_barang_-masuk masuk ON DATE(masuk.tanggal_masuk
) = t.tanggal AND masuk.sku_code = s.sku_code
LEFT JOIN input_barang_keluar keluar ON DATE(keluar .
tanggal_keluar) = t.tanggal AND keluar.sku_code = s.sku_code
LEFT JOIN input_barang_defect defect ON DATE(defect.
tanggal _keluar) = t.tanggal AND defect.sku_code = s.sku_code
LEFT JOIN data_est_-in est ON DATE(est.tanggal) = t.tanggal AND
est.sku = s.sku_code
LEFT JOIN upfos_inventory upfos ON upfos.tanggal = t.tanggal
AND upfos.sku_code = s.sku_code
LEFT JOIN input_perbaikan_reject perbaikan ON DATE(perbaikan.
tanggal_masuk) = t.tanggal AND perbaikan.sku_code = s.sku_code

3 —— Ambil hasilstockopname dari hari sebelumnya untuk digunakan

sebagai basis

with_lag_opname AS (

SELECT
tanggal ,
sku_code ,
nama_produk ,
hasilstockopname ,
planned_in ,

stock_in ,

30

Perancangan dan Implementasi..., Hosea, Universitas Multimedia Nusantara

128

129

146

147

148

149

154

155

156

stock_in_rejected ,

stock_out ,

stock_defect ,

stock_out_upfos ,

qty-retur ,

—— Ambil hasilstockopname dari hari sebelumnya sebagai
anchor point

LAG(hasilstockopname) OVER (PARTITION BY sku_code ORDER BY

tanggal) AS hasilstockopname_kemarin

FROM gabungan_data_harian
) 9

—— Identifikasi tanggal terakhir ada stock opname untuk setiap
hari
with_opname_group AS (

SELECT

tanggal ,

sku_code ,

nama_produk ,

hasilstockopname ,

hasilstockopname_kemarin ,

planned_in ,

stock_in ,

stock_in_rejected ,

stock_out ,

stock_defect ,

stock_out_upfos ,

qty-retur ,

—— Buat group ID berdasarkan tanggal terakhir ada opname (
dari hari kemarin)

SUM(CASE WHEN hasilstockopname_kemarin IS NOT NULL THEN 1
ELSE 0 END)

OVER (PARTITION BY sku_code ORDER BY tanggal) AS

opname_group_id
FROM with_lag_opname

)
—— Hitung stock base (dari opname terakhir) dan mutasi kumulatif
per group
with_cumulative AS (
SELECT
tanggal ,
sku_code ,

31

Perancangan dan Implementasi..., Hosea, Universitas Multimedia Nusantara

169

170

178

179

180

nama_produk ,

hasilstockopname ,

planned_in ,

stock_in ,

stock_in_rejected ,

stock_out ,

stock_defect ,

stock_out_upfos ,

qty-retur ,

opname_group-id ,

—— Stock base dari stock opname terakhir (dari hari
kemarin)

FIRST_VALUE (COALESCE(CAST(hasilstockopname_kemarin AS
INT64), 0))

OVER (PARTITION BY sku_code, opname_group_-id ORDER BY
tanggal ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED
FOLLOWING) AS stock_base ,

—— Mutasi kumulatif dari awal group sampai hari ini (
termasuk UPFOS sebagai stock_out dan qty_retur sebagai stock_in
)

SUM(stock_in + qty_retur — stock_out — stock_defect —
stock_out_upfos)

OVER (PARTITION BY sku_code, opname_group_-id ORDER BY
tanggal ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS
mutasi_kumulatif ,

—— Mutasi kumulatif sampai kemarin untuk jadi stock awal
hari ini

COALESCE(

SUM(stock_in + qty_retur — stock_out — stock_defect -
stock_out_upfos)

OVER (PARTITION BY sku_code, opname_group-id ORDER
BY tanggal ROWS BETWEEN UNBOUNDED PRECEDING AND 1 PRECEDING) ,

0

) AS mutasi_kumulatif_kemarin
FROM with_opname_group

SELECT

tanggal ,

sku_code as SKU,

nama_produk as Product,

— Stock awal: stock base + mutasi sampai kemarin

sum(stock_base + mutasi_kumulatif_kemarin) AS stock_awal,

32

Perancangan dan Implementasi..., Hosea, Universitas Multimedia Nusantara

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

sum(planned_in) as planned_in ,
sum(stock_in) as Inbound,
sum(stock_in_rejected) as stock_in_rejected ,
sum(stock_out + stock_out_upfos) as Outbound,
sum(stock_defect) as out_reject,
—— Stock akhir: stock base + mutasi sampai hari ini (sudah
include qty_retur)
sum(qty_retur) AS in_retur ,
sum(stock_base + mutasi_kumulatif) AS Sisa,
—— Hasil stock opname dari data_inventory-so
max (CAST(hasilstockopname AS INT64)) AS hasilstockopname ,
—— Selisih: hasilstockopname - stock_akhir
max (CASE

WHEN hasilstockopname IS NOT NULL

THEN CAST(hasilstockopname AS INT64) — (stock_base +
mutasi_kumulatif)

ELSE NULL
END) AS selisih ,

avg (sum(stock_out + stock_out_upfos)) OVER (
PARTITION BY sku_code
ORDER BY tanggal
ROWS BETWEEN 59 PRECEDING AND 1 PRECEDING
) AS avg_outbound_60d,

avg (sum(stock_out + stock_out_upfos)) OVER (
PARTITION BY sku_code
ORDER BY tanggal
ROWS BETWEEN 89 PRECEDING AND CURRENT ROW
) AS moving_avg_90d,

STDDEV_POP(avg(stock_out + stock_out_upfos)) OVER (
PARTITION BY sku_code
ORDER BY tanggal
ROWS BETWEEN 59 PRECEDING AND 1 PRECEDING

) AS std_dev ,

sum(sum(stock_out + stock_out_upfos)) OVER (
PARTITION BY sku_code, date_trunc(tanggal, month)
ORDER BY tanggal
ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW

) as outbound_mtd ,

33

Perancangan dan Implementasi..., Hosea, Universitas Multimedia Nusantara

lag (sum(stock_base + mutasi_kumulatif), 1) OVER (
PARTITION BY sku_code
ORDER BY tanggal

) AS sisa_yesteday

FROM with_cumulative
GROUP BY tanggal , sku_code, nama_produk
ORDER BY tanggal , sku_code
Kode 3.11: Kode SQL marts inventory trend

Marts yang terakhir adalah marts UPFOS digunakan untuk menyajikan data
transaksi penjualan online dari sistem UPFOS yang telah distandarisasi dan siap
digunakan untuk analisis. Mart ini menyediakan informasi utama terkait transaksi,
pelanggan, produk, kanal penjualan, serta pengiriman. Selain itu, ditambahkan
atribut urutan transaksi pelanggan untuk mendukung analisis pola dan frekuensi
pembelian. Tujuan utama dari marts UPFOS adalah mendukung analisis performa
penjualan online dan perilaku pelanggan secara terstruktur. Secara lengkap kode
SQL dapat terlihat pada kode 3.12

WITH upfos_raw AS (
SELECT

platform AS marketplace,
dispatch_order_no AS order_number ,
platform_order_id AS order_id,
product_specification_code AS product_code ,
product_qty AS qty,
member_name AS ‘name ‘,
recipient_mobile_number AS nomor_hp,
recipient_address AS ‘address °,
source AS item_bundling,
tanggal ,
”Online” AS category ,
recipient_.name AS customer_id ,
logistics_vendor AS ekspedisi,
sku_name AS product_name ,
NULL AS bundling_name ,
FALSE AS is_bundling ,
SPLIT (region, °/’)[SAFE_OFFSET(0)] AS province ,
SPLIT (region, '/)[SAFE_OFFSET(1)] AS city ,
“Utama” AS jenis_sku ,
logistics_tracking_no AS no_resi,
NULL as sub_category_code ,
NULL sub_category

34

Perancangan dan Implementasi..., Hosea, Universitas Multimedia Nusantara

)

5 FROM {{ source(’cartiera_raw’, ’upfos_inventory’) }}

28 SELECT
29 ¥,
30 ~—— Transaction sequence per member (customer)
31 DENSE RANK () OVER (PARTITION BY customer_id ORDER BY tanggal) AS
transaction_sequence ,
3 DENSE RANK () OVER (PARTITION BY customer_-id, sub_category ORDER
BY tanggal) AS product_sequence ,
LAG(tanggal) OVER (PARTITION BY customer_-id ORDER BY tanggal) AS
customer_previous_transaction_date ,
1+ LAG(tanggal) OVER (PARTITION BY customer_id, sub_category ORDER
BY tanggal) AS customer_subcategory_previous_transaction_date ,
;s LEAD(tanggal) OVER (PARTITION BY customer_id ORDER BY tanggal)
AS customer_next_transaction_date ,
s LEAD(tanggal) OVER (PARTITION BY customer_id, sub_category ORDER
BY tanggal) AS customer_subcategory_next_transaction_date
7 FROM upfos_raw

Kode 3.12: Kode SQL marts UPFOS

D Orkestrasi Pipeline Data Otomatis

Seluruh komponen pipeline data Cartiera dikemas ke dalam container
Docker agar proses eksekusi dapat berjalan secara konsisten dan terisolasi pada
lingkungan cloud. Pendekatan ini memungkinkan proses ingestion data dijalankan
sebagai unit mandiri tanpa ketergantungan terhadap lingkungan lokal tempat
pengembangan. Implementasi container untuk proses ingestion Stock Opname

direalisasikan melalui Dockerfile sebagaimana ditunjukkan pada Kode 3.13.

FROM python:3.10-slim

3 WORKDIR /app

4

s # Copy requirements and install dependencies

o« COPY so_ingestion/requirements.txt ./

7 RUN pip install ——no-cache—-dir —-r requirements. txt
8

9 # Copy common config module (from parent context)
10 COPY common ./common

11

2 # Copy ingestion script

35

Perancangan dan Implementasi..., Hosea, Universitas Multimedia Nusantara

3 COPY so_ingestion/ingestion.py

14

s CMD [”python”, “ingestion.py”]
Kode 3.13: Docker SO Ingestion

A

Selain kode Python ingestion, seluruh file Data Build Tool juga dikemas

ke dalam container Docker untuk memastikan konsistensi eksekusi di lingkungan

cloud. Proses transformasi menggunakan DBT dijalankan sebagai job terpisah

agar tidak bergantung langsung pada proses ingestion data dan dapat dieksekusi

secara independen. Implementasi container DBT ditunjukkan pada Dockerfile yang

dirujuk pada Kode 3.14.
I FROM python:3.10—-slim

3 WORKDIR /app

s # Install dbt—bigquery

s RUN pip install ——no—cache—dir \

7 dbt—bigquery==1.10.1 \

8 google —cloud-bigquery==3.38.0

o # Copy dbt project
1 COPY . /app/

3 # Set profiles directory
i+ ENV. DBT_PROFILES_DIR =/app

i« # Run dbt with full refresh
7 CMD [”dbt”, “run”, "——profiles —-dir”, ”/app”, "——project—-dir”,
app”, 7——full —refresh”]
Kode 3.14: Docker SO Ingestion

rebuild

75/

Setelah seluruh proses containerisasi selesai, tahap selanjutnya adalah

deployment otomatis ke lingkungan Google Cloud menggunakan mekanisme

Continuous Integration dan Continuous Deployment (CI/CD). Proses CI/CD

diimplementasikan menggunakan GitHub Actions

yang bertugas

untuk

membangun Docker image, mengunggah image ke Artifact Registry, serta

membuat atau memperbarui Cloud Run Job yang digunakan untuk menjalankan

proses ingestion dan transformasi data. Selain itu, GitHub Actions juga digunakan

untuk melakukan deployment Google Cloud Workflows dan konfigurasi Cloud

Scheduler sebagai bagian dari satu alur deployment terintegrasi, sebagaimana

ditunjukkan pada Kode 3.15.

36

Perancangan dan Implementasi..., Hosea, Universitas Multimedia Nusantara

1

name: CI/CD Pipeline

push:
branches:
— main

workflow_dispatch: # Allow manual trigger

env:

PROJECT.ID: your-gcp—-project—id

REGION: asia-southeast2

SERVICE_ACCOUNT: your—service —account@your—project.iam.
gserviceaccount.com

ARTIFACT REGISTRY_REPO: cloud—-run—jobs

SO Ingestion Image
SOIMAGE: asia-southeast2 —docker.pkg.dev/your—-gcp—project—id/
cloud-run—jobs/cartierra —so—ingestion: latest

SO Ingestion Job
SO_JOB: cartierra —so—ingestion

jobs:

build —and-deploy :

runs —on: ubuntu-latest

steps :
— name: Checkout code
uses: actions/checkout@v4

— name: Authenticate to Google Cloud
uses: google—github—-actions/auth@v2
with :
credentials_json: ${{ secrets .GCP.SAKEY }}

— name: Set up Google Cloud SDK
uses: google—github—-actions/setup —gcloud@v?2
with :
project_id: ${{ env.PROJECT.ID }}

— name: Configure Docker for Artifact Registry
run: gcloud auth configure-docker asia-southeast2 —docker.

pkg.dev

37

Perancangan dan Implementasi..., Hosea, Universitas Multimedia Nusantara

65

66

68

69

— name: Enable required APIs
run: |
gcloud services enable \

cloudbuild. googleapis.com \
run. googleapis.com \
artifactregistry . googleapis.com \
cloudscheduler. googleapis.com \
workflows . googleapis .com \
workflowexecutions. googleapis .com \
logging . googleapis.com \
bigquery . googleapis .com

— name: Create Artifact Registry repository (if not exists)
run: |
if ! gcloud artifacts repositories describe ${{ env.
ARTIFACT_REGISTRY_REPO }} \
——location=${{ env.REGION }} &>/dev/null; then
gcloud artifacts repositories create ${{ env.
ARTIFACT_REGISTRY_REPO }} \
——repository —format=docker \
——location=${{ env.REGION }} \
——description="Docker repository for Cloud Run Jobs”
fi

= = == SO Ingestion = = ===
— name: Build and push SO Ingestion image
run: |
cd cloud_run_job
gcloud builds submit \
——config so_ingestion/cloudbuild.yaml \
——substitutions=IMAGE_URL=${{ env.SOIMAGE }} \
——timeout=20m \
——machine—-type=e2-highcpu -8

— name: Deploy SO Ingestion Job
run: |
if gcloud run jobs describe ${{ env.SOJOB }} —-region=$
{{ env.REGION }} &>/dev/null; then
gcloud run jobs update ${{ env.SO.JOB }} \
——image=${{ env.SOIMAGE }} \
——region=${{ env.REGION }} \
——memory=2Gi \

38

Perancangan dan Implementasi..., Hosea, Universitas Multimedia Nusantara

110

——cpu=1 \
——max—retries=2 \
——task —timeout=3600s \
——service —account=${{ env.SERVICE_.ACCOUNT }} \
——set —env—vars=LOOKBACK DAYS=7
else
gcloud run jobs create ${{ env.SO.JOB }} \
——image=${{ env.SOIMAGE }} \
——region=%${{ env.REGION }} \
——memory=2Gi \
——cpu=1 \
——max—retries=2 \
——task —timeout=3600s \
——service —account=${{ env.SERVICE_ ACCOUNT }} \
——set —env—vars=LOOKBACK DAYS=7
fi

= == Deployment Summary

— name: Deployment Summary

run: |

echo ” ”

echo ” SO INGESTION DEPLOYMENT COMPLETED! ”

echo ” ”

echo 77

echo ” Cloud Run Job:”

echo ” ${{ env.SO.JOB }}”

echo 77

echo ” Console Link:”

echo ” - Jobs: https://console.cloud.google.com/run/
jobs?project=${{ env.PROJECT.ID }}”

echo ” ”

Kode 3.15: Kode Github Action

Melalui pendekatan ini, GitHub Actions berperan sebagai pengelola siklus
hidup infrastruktur pipeline data, sedangkan eksekusi pipeline secara harian
dijalankan oleh Google Cloud Workflows yang dipicu oleh Cloud Scheduler.
Workflow bertanggung jawab mengatur urutan eksekusi Cloud Run Job, dimulai
dari proses ingestion data hingga transformasi menggunakan DBT, sehingga
dependensi antarproses dapat terjaga dengan baik. Dengan arsitektur tersebut,
pipeline data Cartiera dapat berjalan secara otomatis, terjadwal, dan konsisten tanpa

memerlukan intervensi manual.

39

Perancangan dan Implementasi..., Hosea, Universitas Multimedia Nusantara

E BI Dashboard

Sebagai keluaran akhir dari proses pipeline data, data yang telah melalui
tahap ingestion, transformasi, dan pemuatan ke dalam data warehouse Google
BigQuery kemudian disajikan dalam bentuk Business Intelligence (BI) dashboard.
Dashboard ini menjadi representasi visual dari hasil pengolahan data yang telah
terstandarisasi dan terintegrasi, sehingga dapat dimanfaatkan secara langsung oleh
pengguna.

BI Dashboard dibangun menggunakan Looker Studio dan terhubung
langsung dengan tabel data marts hasil pemrosesan DBT. Dengan integrasi tersebut,
dashboard mampu menampilkan data yang konsisten dan diperbarui secara berkala
sesuai dengan alur pipeline data yang telah dirancang. Hal ini memastikan bahwa
informasi yang disajikan bersumber dari data yang telah melalui proses validasi dan
transformasi yang sistematis.

Tampilan dashboard, sebagaimana ditunjukkan pada Gambar 3.6,
merepresentasikan hasil akhir dari keseluruhan proses pengolahan data dalam
satu antarmuka visual. Penyajian ini memungkinkan pengguna untuk mengakses
dan memantau informasi hasil olahan data tanpa perlu berinteraksi langsung

dengan sistem basis data atau melakukan pengolahan data secara manual.

Gambar 3.6. Tampilan BI Dashboard Operasional Cartiera

Secara keseluruhan, BI Dashboard berperan sebagai lapisan akhir yang
menjembatani proses pengolahan data teknis dengan kebutuhan analisis dan
pengambilan keputusan. Dengan dukungan pipeline data yang terotomatisasi,
dashboard memastikan hasil pengolahan data dapat diakses secara efektif,

konsisten, dan berkelanjutan.

40

Perancangan dan Implementasi..., Hosea, Universitas Multimedia Nusantara

3.4 Kendala dan Solusi yang Ditemukan
3.4.1 Kendala yang Dihadapi

Selama proses kegiatan magang berlangsung, ditemukan beberapa kendala

sebagai berikut:

1. Proses penyesuaian terhadap lingkungan kerja dari sistem yang telah berjalan
2. Keterbatasan dokumentasi pada beberapa bagian sistem yang sudah dibuat
3. Penyesuaian terhadap pengelolaan waktu dan pembagian prioritas pekerjaan

menjadi tantangan

3.4.2 Solusi atas Kendala yang Ditemukan

Dari berbagai kendala yang ditemukan selama pelaksanaan kegiatan

magang, diperoleh solusi sebagai berikut:

1. Dilakukan proses pembelajaran bertahap melalui penelusuran alur sistem

yang telah berjalan

2. Keterbatasan dokumentasi diatasi dengan melakukan diskusi dan koordinasi

secara langsung dengan Kak Fattah selaku supervisor

3. Pengelolaan waktu dan prioritas pekerjaan ditingkatkan dengan menyusun
jadwal kerja yang lebih terstruktur, lalu untuk setiap task yang dikerjakan

ditulis dan disusun secara prioritas melalui Trello

Secara keseluruhan, solusi yang diterapkan memungkinkan kendala yang

muncul dapat diatasi secara bertahap.

41

Perancangan dan Implementasi..., Hosea, Universitas Multimedia Nusantara

	BAB 3 Pelaksanaan Kerja Magang
	3.1 Kedudukan dan Koordinasi
	3.2 Tugas yang Dilakukan
	3.3 Uraian Pelaksanaan Magang
	3.3.1 User Requirement
	3.3.2 Perancangan Pipeline Otomatis Cartiera

	3.4 Kendala dan Solusi yang Ditemukan
	3.4.1 Kendala yang Dihadapi
	3.4.2 Solusi atas Kendala yang Ditemukan

