
BAB 3
PELAKSANAAN KERJA MAGANG

3.1 Kedudukan dan Koordinasi

Pelaksanaan kerja magang pada bagian IT Developer di bawah Departemen
Teknologi Informasi sebagai Developer Intern. Selama kegiatan magang,
bimbingan diberikan oleh Head of IT Department selaku mentor yang secara aktif
memberikan arahan dan masukan dalam proses pengembangan. Tugas utama yang
dilaksanakan mencakup pengembangan sistem, pengelolaan kode melalui GitHub

untuk mempermudah kolaborasi dan pemisahan fitur, serta pemecahan kendala
teknis yang muncul selama proses.

Koordinasi dilakukan melalui rapat rutin dan diskusi langsung untuk
menyampaikan progres serta memperoleh feedback, dengan evaluasi dilakukan
secara berkala. Selain itu, rapat mingguan bersama Head of IT Department

dilakukan untuk membahas perkembangan proyek dan permasalahan teknis yang
dihadapi.

3.2 Tugas yang Dilakukan

Selama melaksanakan magang di PT Mobile Data Indonesia pada bagian
IT Developer, tugas diberikan untuk membuat dan mengembangkan sistem yang
berfokus pada kelancaran operasional perusahaan. Tugas utama yang dilakukan
adalah sebagai berikut:

1. Mengimplementasikan sistem Client Portal dengan tujuan memudahkan klien
dalam memperoleh informasi.

2. Membuat pengingat melalui email untuk klien apabila mendekati tenggat
waktu tertentu terkait pembayaran invoice bulanan.

3. Melakukan pemeliharaan sistem untuk memastikan sistem berjalan dengan
lancar dan stabil.

3.3 Uraian Pelaksanaan Magang

Kegiatan magang di PT Mobile Data Indonesia dilaksanakan selama enam
bulan sesuai dengan ketentuan kontrak magang. Program magang dimulai pada

7
Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

tanggal 26 Agustus 2025 dan berakhir pada tanggal 28 Februari 2026. Pelaksanaan
magang dilakukan pada hari kerja sesuai dengan jadwal operasional perusahaan.

Tabel 3.1 menyajikan rincian linimasa kegiatan yang dilaksanakan setiap
minggunya selama periode magang di PT Mobile Data Indonesia.

Tabel 3.1. Pekerjaan yang dilakukan tiap minggu selama pelaksanaan kerja magang

Minggu Ke - Pekerjaan yang dilakukan

1 Kegiatan dimulai dengan rapat awal untuk memperkenalkan proyek,
diikuti dengan mempelajari sistem yang telah ada sebelumnya beserta
fungsinya, seperti membaca dokumentasi frontend, membaca API
contract dan melakukan testing API contract, mempelajari flow
chart, serta berdiskusi dan bertanya kepada karyawan lainnya untuk
memperdalam pemahaman terhadap sistem.

2 Kegiatan difokuskan pada pembelajaran dasar bahasa pemrograman
Go (Golang) sebagai fondasi proyek, mencakup konsep-konsep seperti
slice, array, konversi tipe data, penggunaan defer, panic, alert, serta
pemahaman terhadap interface dan struct

3 Kegiatan difokuskan pada pembelajaran Golang terkait modul,
mekanisme import dan export, serta penerapan unit test menggunakan
module. Selain itu, dilakukan pemahaman terhadap framework Fiber,
termasuk konsep routing dan penggunaan context.

4 Pada minggu ini dilakukan modifikasi struktur database dengan
penambahan dan kolom baru sesuai kebutuhan pengembangan
fitur. Pembuatan dan pengujian data seeder untuk client dilakukan
guna mendukung proses pengembangan dan pengujian berikutnya.
Implementasi autentikasi menggunakan Next Auth dikembangkan
mulai dari konfigurasi dasar, pembuatan endpoint login, hingga
penyempurnaan flow autentikasi.

Lanjut pada halaman berikutnya

8
Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

Tabel 3.1 Pekerjaan yang dilakukan tiap minggu selama pelaksanaan kerja magang (lanjutan)

Minggu Ke - Pekerjaan yang dilakukan

5 Pembuatan endpoint untuk mendapatkan seluruh data invoice dari
database dilakukan, termasuk penyusunan struktur response dan
penanganan error. Endpoint untuk pengambilan data payment juga
dikembangkan dengan penyesuaian query parameter dan filter data yang
diperlukan. Penerapan Design halaman login pada frontend dilakukan
berdasarkan desain yang telah tersedia, diikuti dengan implementasi
form login dan integrasinya dengan endpoint backend.

6 Pembuatan navbar responsif dilakukan untuk mendukung tampilan
aplikasi pada berbagai ukuran perangkat. Halaman untuk menampilkan
seluruh data invoice diimplementasikan dengan memanfaatkan
endpoint yang telah tersedia. Proses migrasi dari axios ke useSWR
dilakukan untuk meningkatkan efisiensi data fetching dan caching.

7 Pembelajaran dan eksplorasi dilakukan terhadap Puppeteer Library
untuk keperluan generate PDF, mencakup fitur dasar serta konfigurasi
awal. Proses dilanjutkan dengan percobaan generate dan download
PDF menggunakan Puppeteer sebelum akhirnya beralih ke React PDF
setelah evaluasi kebutuhan proyek.

8 Rework dilakukan pada endpoint payment dengan penambahan fungsi
untuk membaca gambar dalam format blob sebagai base64. Perbaikan
dilakukan terhadap error yang muncul akibat blob yang tidak terdeteksi
atau gagal didekompilasi. Halaman details payment dikembangkan
untuk menampilkan informasi pembayaran secara lengkap, diikuti
dengan implementasi view payment endpoint yang terintegrasi dengan
data detail dan gambar base64.

9 Pembuatan cron job dilakukan untuk mengirim email reminder secara
otomatis sesuai jadwal yang telah ditentukan. Pengembangan sistem
email notification dilanjutkan dengan penyempurnaan mekanisme
pengiriman dan penanganan error. Template email notification
dirancang dan dibuat agar selaras dengan kebutuhan serta identitas
perusahaan, kemudian diintegrasikan ke dalam sistem pengiriman dan
diuji secara awal.

Lanjut pada halaman berikutnya

9
Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

Tabel 3.1 Pekerjaan yang dilakukan tiap minggu selama pelaksanaan kerja magang (lanjutan)

Minggu Ke - Pekerjaan yang dilakukan

10 Implementasi desain dilakukan pada halaman invoice agar sesuai
dengan desain dan standar visual yang telah ditetapkan perusahaan.
Halaman payment juga disesuaikan agar konsisten dengan pedoman
desain dan antarmuka lainnya. Pengembangan dashboard utama
dimulai dengan perancangan layout serta penyusunan komponen inti,
kemudian dilanjutkan dengan implementasi grafik dan elemen interaktif
sesuai kebutuhan. Responsivitas diterapkan pada dashboard utama
untuk mendukung tampilan yang optimal di berbagai perangkat.

11 Integrasi display nomor invoice (Invoice Number) pada antarmuka
Payment dan Invoice diselesaikan untuk optimalisasi pelacakan data.
Kapabilitas filtering ditingkatkan melalui implementasi sistem filter

berbasis status dan tanggal pada Tabel Invoice dan sistem filter kriteria
kompleks pada Tabel Payment, dengan penyesuaian tampilan agar
responsif. Conditional formatting diterapkan pada Tabel Invoice untuk
visualisasi status kritis (invoice melewati jatuh tempo). Terakhir,
fitur notifikasi email otomatis diimplementasikan untuk pengiriman
pengingat saat invoice melewati batas waktu pembayaran (deadline).

12 Aspek keamanan sistem ditingkatkan melalui implementasi rate limiter

pada aplikasi backend dan penambahan fungsi redirect 404 untuk
penanganan halaman yang tidak ditemukan. Pada sisi frontend,
protected routes diimplementasikan. Pengembangan sistem notifikasi,
komponen tampilan notifikasi pada frontend dikembangkan dengan
memastikan desain yang responsif. Fungsionalitas cron job yang sudah
ada diperluas dan dioptimalkan untuk membuat notifikasi otomatis bagi
invoice yang belum dibayar dan invoice yang telah melewati masa
pembayaran.

13 Fokus utama periode ini adalah seeding data dalam volume besar
diimplementasikan guna mendukung skenario simulasi dan load

testing. Aktivitas ini dilanjutkan dengan pelaksanaan testing terhadap
seluruh fitur yang tersedia untuk memastikan fungsionalitas sistem.

10
Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

3.3.1 Mempelajari Sistem Sebelumnya

Pada minggu pertama kegiatan magang, dilakukan penjelasan mengenai
kelanjutan program yang telah dikembangkan sebelumnya. Untuk memperoleh
pemahaman yang lebih mendalam terhadap program tersebut, dilakukan analisis
screening secara cermat dan efisien terhadap sistem yang sudah ada. Dalam konteks
ini, flowchart merupakan alat yang krusial, sebab flowchart adalah representasi
diagramatik dari langkah-langkah suatu algoritma [5, 6]. Adapun cuplikan
flowchart dan API Contract dari aplikasi yang ada sebelumnya disajikan sebagai
berikut:

A Flowchart Pembuatan Invoice

Diagram alir pada Gambar 3.1[3] mengilustrasikan prosedur penanganan
permintaan POST /invoices/. Proses dimulai dengan Middleware - JWT

Verification untuk otentikasi, di mana error akan mengembalikan respons
Unauthorized. Validasi dilanjutkan dengan Role Verification (memastikan
peran isFinance) dan ZOD Input Validation pada tahap ini masing-masing
mengembalikan respons Forbidden dan Invalid Parameters. Selanjutnya,
sistem melakukan pemeriksaan duplikasi nomor invoice yang jika ditemukan
akan mengembalikan respons Duplicate Data. Proses juga mencakup verifikasi
keberadaan klien, yang kegagalannya direspon dengan Not Found. Hanya setelah
seluruh validasi berhasil, sistem melanjutkan ke eksekusi utama: Calculate

Invoice Price, diikuti dengan penyisipan data ke basis data Invoice dan
Invoice Detail. Prosedur diselesaikan dengan pengembalian respons success

to frontend dan terminasi (End).

11
Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

Gambar 3.1. Flowchart pembuatan invoice baru

B Flowchart Pembuatan Payment

Diagram alir pada Gambar 3.2 [3] menyajikan alur pemrosesan permintaan
pembayaran (POST /payments/) dari antarmuka pengguna. Prosedur ini diinisiasi
dengan penerimaan permintaan lalu dilanjutkan melalui serangkaian validasi
otorisasi dan integritas data yang ketat. Tahap pertama mencakup verifikasi
token JWT terhadap basis data Users. Kegagalan otentikasi akan menghentikan
proses dicatat dan mengembalikan respons 401 Unauthorized. Jika otentikasi

12
Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

berhasil sistem melanjutkan ke verifikasi peran (Role Verification). Kegagalan
verifikasi peran direspon dengan pencatatan dan respons 403 Forbidden. Validasi
selanjutnya adalah Input Validation untuk memastikan integritas data masukan.
Kegagalan validasi ini direspons dengan 400 Invalid parameters. Setelah
validasi input sistem melakukan pemeriksaan status pembayaran pada Invoice

terkait. Jika status pembayaran sudah Paid transaksi dicegah dicatat dan dihentikan
dengan respons 409 Invoice is Paid. Apabila semua verifikasi lolos proses
berlanjut ke eksekusi transaksi. Eksekusi ini mencakup penyisipan pembayaran
baru ke basis data Payments dan pembaruan status serta jumlah yang telah dibayar
pada basis data Invoices. Sebagai tahap terminasi yang sukses aktivitas ini dicatat
dan sistem mengembalikan respons 200 Success sebelum prosedur berakhir (END).

Gambar 3.2. Flowchart pembuatan pembayaran baru

C API Contract Pembuatan Invoice

Kontrak API ini mendefinisikan mekanisme untuk membuat sebuah Invoice

baru beserta detailnya melalui metode POST pada endpoint /invoices. API ini
memerlukan otentikasi menggunakan token.

13
Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

C.1 Request Body

Request body wajib disertakan dalam format application/json. Bagian
ini memuat data utama invoice serta rincian item di dalamnya. Struktur data lengkap
terkait request body tersebut dipaparkan pada Tabel 3.2 berikut ini:

Tabel 3.2. Struktur data request API pembuatan invoice

Parameter Tipe Data
Data Invoice Utama
invoice number string
issue date string (date)
due date string (date)
tax rate number
tax invoice number string
client id string (uuid)
Detail Invoice
transaction note string
delivery count number
price per delivery number

C.2 Response

API ini memberikan beberapa kode status respons HTTP:

• 201 Created: Invoice berhasil dibuat.

• 400 Bad Request: Parameter yang dikirim tidak valid (kesalahan validasi
data).

• 404 Not Found: Klien tidak ditemukan berdasarkan client id.

• 409 Conflict: Invoice sudah ada.

• 500 Internal Server Error: Kesalahan server internal.

C.3 Struktur Respons Berhasil

Respons sukses menyajikan data invoice yang telah diproses, mencakup nilai
kalkulasi seperti sub total, tax amount, dan total. Detail mengenai struktur
data tersebut dapat dirujuk pada Tabel 3.3 sebagai berikut:

14
Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

Tabel 3.3. Struktur data response sukses pembuatan invoice

Parameter Tipe Data
status string
code integer
message string
Data
invoice id string (uuid)
invoice number string
issue date string (date-time)
due date string (date-time)
sub total number
tax rate number
tax amount number
total number
tax invoice number string
amount paid number
payment status string (enum: [paid, unpaid, partial])
voided at string (date-time, nullable)
client id string (uuid)
created at string (date-time)
updated at string (date-time)

C.4 Struktur Respons Error

Respons kesalahan memiliki skema umum yang mencakup status, kode,
pesan, dan data, di mana bagian data dapat memuat rincian validasi atau bernilai
null. Penjelasan mengenai komponen struktur tersebut dipaparkan pada Tabel 3.4
sebagai berikut:

Tabel 3.4. Struktur data response error pembuatan invoice

Parameter Tipe Data
status string
code integer
message string
data object atau null

D API Contract Pembuatan Payment

Kontrak API ini mendefinisikan mekanisme untuk mencatat sebuah
Pembayaran (Payment) baru terhadap invoice tertentu melalui metode POST

15
Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

pada endpoint /payments. API ini memerlukan otentikasi menggunakan token
dan menerima data dalam format multipart/form-data karena melibatkan
pengunggahan berkas bukti transfer.

D.1 Request Body

Penggunaan request body diwajibkan menggunakan format
multipart/form-data untuk memastikan validitas pengiriman data. Spesifikasi
mengenai parameter dan struktur data yang diperlukan dalam proses ini dipaparkan
pada Tabel 3.5 berikut:

Tabel 3.5. Struktur data request API pembuatan pembayaran

Parameter Tipe Data
payment date string (date)
amount paid number
proof of transfer string
invoice number string

D.2 Response

API ini memberikan beberapa kode status respons HTTP:

• 201 Created: Pembayaran berhasil dibuat. Respons mengembalikan objek
pembayaran yang baru dibuat.

• 400 Bad Request: Parameter yang dikirim tidak valid (kesalahan validasi
data).

• 404 Not Found: Invoice tidak ditemukan berdasarkan invoice number.

• 409 Conflict: Konflik pembayaran.

• 500 Internal Server Error: Kesalahan server internal.

D.3 Struktur Respons Berhasil

Respons sukses akan mengembalikan struktur standar dan objek data
pembayaran yang tercipta.

16
Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

Tabel 3.6. Struktur data response sukses pembuatan pembayaran

Parameter Tipe Data
status string
code integer
message string
data object

D.4 Struktur Respons Error

Respons kesalahan mengadopsi struktur standar yang mencakup elemen
status, kode, pesan, serta data, yang dapat berisi rincian validasi maupun bernilai
null. Adapun spesifikasi mengenai komponen struktur tersebut dipaparkan pada
Tabel 3.7 berikut ini:

Tabel 3.7. Struktur data response error pembuatan pembayaran

Parameter Tipe Data
status string
code integer
message string
data object atau null

3.3.2 Belajar Go

Pada minggu ke-2 dan ke-3, kegiatan difokuskan pada pembelajaran bahasa
pemrograman Go (Golang) sebagai fondasi teknis untuk pengembangan backend

menggunakan framework Go Fiber. Pembelajaran mencakup konsep-konsep
fundamental seperti tipe data dasar, struktur data kolektif (slice, array, map),
manajemen kontrol alur (defer, panic), hingga pemahaman mendalam tentang
struct dan interface untuk membangun arsitektur modular. Selain itu, dipelajari
mekanisme import/export modul, penerapan unit test, dan konsep routing serta
context dalam framework Fiber.

A Tipe Data dan Slice

Pembelajaran fundamental mencakup deklarasi variabel, konversi tipe data,
serta penggunaan struktur data kolektif dinamis seperti slice dan map. hasil
pembelajara

17
Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

1 v a r s u h u C e l c i u s f l o a t 3 2 = 2 7 . 5
2 v a r s u h u F a h r e n h e i t f l o a t 6 4 = f l o a t 6 4 (s u h u C e l c i u s * 9 / 5 + 32)
3 v a r n i l a i I n t i n t 1 6 = i n t 1 6 (s u h u C e l c i u s) / / K o n v e r s i ke i n t e g e r
4

5 t y p e KodeProduk s t r i n g
6 v a r kodeBarang KodeProduk = ”PRD−2025−A1”

Kode 3.1: Deklarasi variabel dan konversi tipe data

Kode 3.1 mengilustrasikan konversi eksplisit antar tipe data numerik. Selain
itu, Go mendukung deklarasi tipe data baru berdasarkan tipe data yang sudah ada
(type aliases), seperti KodeProduk yang didasarkan pada tipe string.

1 d a t a P e g a w a i := [. . .] s t r i n g {” Rina ” , ” Agus ” , ” Hendra ” , ”Maya” , ”
S i s k a ” , ” A r i e f ”}

2 fmt . P r i n t l n (d a t a P e g a w a i [2 : 5]) / / H a s i l : [Hendra Maya S i s k a]
3

4 a r s i p I n i s i a t i f := make ([] s t r i n g , 3 , 8)
5 a r s i p I n i s i a t i f [0] = ” I n i s i a t i f Alpha ”
6 a r s i p I n i s i a t i f [1] = ” I n i s i a t i f Be ta ”
7 a r s i p I n i s i a t i f [2] = ” I n i s i a t i f Gamma”
8 a r s i p I n i s i a t i f T e r b a r u := append (a r s i p I n i s i a t i f , ” I n i s i a t i f D e l t a

”)

Kode 3.2: Contoh inisialisasi dan manipulasi slice

Kode 3.2 menunjukkan penggunaan slice dalam bahasa Go, yang meliputi
pengambilan sebagian elemen menggunakan teknik slicing, pembuatan slice

dengan fungsi bawaan make yang memiliki panjang dan kapasitas tertentu, serta
penambahan elemen baru ke dalam slice menggunakan fungsi append.

B Struktur Data dan Interface

Pembelajaran dilanjutkan pada struktur data kustom (struct) untuk
pemodelan data dan interface untuk implementasi polimorfisme. Kode
3.3 mendefinisikan struct Pegawai yang memiliki properti dasar. Fungsi
getSapaanKepada adalah method yang terikat pada struct Pegawai,
memungkinkan struct tersebut memiliki perilaku.

1 t y p e Pegawai s t r u c t {
2 Nama , J a b a t a n s t r i n g
3 IDPegawai i n t
4 }
5

18
Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

6 func (p Pegawai) ge tSapaanKepada (t a r g e t s t r i n g) (r e s u l t s t r i n g) {
7 r e s u l t = ” Se lama t s i a n g , ” + t a r g e t + ” . Saya ” + p . Nama + ” ,

d a r i b a g i a n ” + p . J a b a t a n
8 r e t u r n r e s u l t
9 }

Kode 3.3: Definisi struct dan method

Kode 3.4 menunjukkan definisi interface Laporan. Fungsi cetakLaporan
dapat menerima objek apa pun (seperti struct Pegawai) selama objek tersebut
mengimplementasikan method BuatLaporan secara implisit.

1 t y p e Laporan i n t e r f a c e {
2 BuatLaporan (j u d u l s t r i n g) s t r i n g
3 }
4

5 func c e t a k L a p o r a n (o b j e k Laporan) {
6 fmt . P r i n t l n (o b j e k . Bua tLaporan (” Laporan Bulanan ”))
7 }
8 / / S t r u c t Pegawai h a r u s mengimplementas ikan method BuatLaporan
9 func (p Pegawai) Bua tLaporan (j u d u l s t r i n g) (s t r i n g) {

10 / / . . .
11 }

Kode 3.4: Interface dan penerapannya

C Manajemen Kontrol Alur Defer, Panic, dan Recover

Manajemen galat dalam bahasa pemrograman Go memanfaatkan
mekanisme defer, panic, dan recover untuk mengendalikan alur eksekusi
program saat terjadi kondisi abnormal. Kode 3.5 memperlihatkan bagian-bagian
inti dari implementasi mekanisme tersebut.

1 func u j i D e f e r P a n i c (t r i g g e r P a n i c boo l) {
2 d e f e r func () {
3 i f pesan := r e c o v e r () ; pesan != n i l {
4 fmt . P r i n t l n (” E r r o r : ” , pesan)
5 }
6 } ()
7

8 i f t r i g g e r P a n i c {
9 p a n i c (” Koneks i D a t a b a s e Gagal ”)

10 }
11 }

Kode 3.5: Contoh inti penggunaan defer, panic, dan recover

19
Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

Cuplikan kode tersebut menyoroti peran utama defer dalam menjamin
eksekusi fungsi pemulihan ketika terjadi panic. Pemanggilan panic digunakan
untuk mensimulasikan kegagalan sistem, sementara fungsi recover() yang
dieksekusi di dalam blok defer berfungsi untuk menangkap dan mengelola
galat tersebut. Penyederhanaan kode ini bertujuan untuk menekankan konsep
fundamental tanpa menampilkan detail implementasi yang tidak relevan dengan
pembahasan.

D Error Handling

Dalam bahasa pemrograman Go, penanganan galat (error handling)
umumnya dilakukan dengan mengembalikan nilai bertipe error sebagai nilai
kembalian terakhir dari suatu fungsi. Kode 3.6 memperlihatkan penerapan
mekanisme tersebut, termasuk pembuatan tipe galat kustom dan pengembalian nilai
nil ketika proses berjalan tanpa kesalahan.

1 t y p e I n p u t E r r o r s t r u c t {
2 Pesan s t r i n g
3 }
4

5 func (e * I n p u t E r r o r) E r r o r () s t r i n g {
6 r e t u r n e . Pesan
7 }
8

9 func p r o s e s D a t a (i s E r r o r boo l) (s t r i n g , e r r o r) {
10 i f i s E r r o r {
11 r e t u r n ” ” , e r r o r s . New(” V a l i d a s i d a t a i n p u t g a g a l ”)
12 }
13 r e t u r n ” Data b e r h a s i l d i p r o s e s ” , n i l
14 }

Kode 3.6: Fungsi dengan error handling standar

Pada cuplikan kode tersebut, tipe galat kustom InputError didefinisikan
dengan mengimplementasikan method Error(), sehingga memenuhi antarmuka
error yang disediakan oleh Go. Selain itu, fungsi prosesData mengilustrasikan
praktik konvensional dalam Go, yaitu mengembalikan nilai nil sebagai error

apabila proses eksekusi berhasil, serta objek error ketika terjadi kegagalan.

20
Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

E Implementasi Sederhana Go Fiber Routing dan Handler

Pembelajaran framework Go Fiber difokuskan pada konsep routing serta
pemanfaatan context untuk menangani permintaan HTTP. Kode 3.7 menunjukkan
contoh implementasi dasar sebuah endpoint menggunakan metode HTTP GET yang
mengembalikan respons dalam format JSON.

1 package main
2

3 i m p o r t (
4 ” l o g ”
5 ” g i t h u b . com / g o f i b e r / f i b e r / v2 ”
6)
7

8 func main () {
9 app := f i b e r . New ()

10

11 app . Get (” / a p i / s t a t u s ” , func (c * f i b e r . Ctx) e r r o r {
12 r e t u r n c . S t a t u s (f i b e r . StatusOK) . JSON (f i b e r . Map{
13 ” message ” : ” A p l i k a s i s i a p d igunakan ” ,
14 ” s t a t u s ” : ”OK” ,
15 })
16 })
17

18 l o g . F a t a l (app . L i s t e n (” :3000 ”))
19 }

Kode 3.7: Inisialisasi aplikasi dan endpoint sederhana

Pada implementasi tersebut, aplikasi Fiber diinisialisasi melalui
pemanggilan fungsi fiber.New(). Selanjutnya, metode app.Get digunakan
untuk mendefinisikan sebuah route dengan metode HTTP GET pada jalur
/api/status. Fungsi handler menerima parameter bertipe *fiber.Ctx yang
merepresentasikan konteks permintaan, dan digunakan untuk mengatur kode status
HTTP serta mengirimkan respons dalam format JSON kepada klien. Aplikasi
kemudian dijalankan sebagai server HTTP pada port 3000.

3.3.3 Modifikasi Struktur Tabel untuk Integrasi Kredensial

Pada minggu keempat, pengembangan diawali dengan melakukan
perubahan pada struktur model Client. Modifikasi ini bertujuan mengubah tabel
yang sebelumnya hanya menyimpan profil klien menjadi tabel yang juga berfungsi

21
Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

sebagai penyimpanan kredensial untuk proses otentikasi. Perubahan dilakukan
dengan menambahkan kolom client email dan client password. Perbandingan
struktur sebelum dan sesudah perubahan ditampilkan pada Tabel 3.8 dan Tabel 3.9.

Tabel 3.8. Struktur model client (sebelum)

Atribut Tipe Data
client id String

client name String

currency String

country String

client address String

postal code String

client phone String

deleted at DateTime?

created at DateTime

updated at DateTime

Tabel 3.9. Struktur model client (sesudah)

Atribut Tipe Data
client id String

client name String

client email String

client password String

currency String

country String

client address String

postal code String

client phone String

deleted at DateTime?

created at DateTime

updated at DateTime

22
Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

3.3.4 Implementasi Seeder untuk Pengujian

Pada tahap pengembangan API, dibuat dua database seeder untuk
menyediakan data awal selama proses pengujian, yaitu Client Seeder dan Invoice

Seeder. Seeder digunakan agar pengujian API dapat berjalan secara konsisten
dengan data yang stabil.

A Client Seeder

Client Seeder digunakan untuk menyediakan beberapa entitas klien awal
yang dapat digunakan untuk proses autentikasi. Password klien di-hash

menggunakan bcrypt agar sesuai dengan praktik keamanan.

1 hashedPassword , _ := bcrypt.GenerateFromPassword([]byte("

password123"), bcrypt.DefaultCost)

2 db.Exec(‘

3 INSERT INTO clients (client_id , client_email , client_password ,

client_name)

4 VALUES (gen_random_uuid(), ?, ?, ?)‘,

5 "contact@nusantaratech.co.id", string(hashedPassword), "

nusantaratech",

6)

Kode 3.8: Contoh hashing dan insert klien

Kode di atas menunjukkan proses inti dari Client Seeder: hashing password
dan penyisipan data klien secara langsung. Pada implementasi sebenarnya,
beberapa klien ditambahkan secara batch insert, namun ditampilkan satu contoh
untuk menjaga kejelasan.

B Invoice Seeder

Invoice Seeder menghasilkan data faktur dengan nilai perhitungan otomatis
seperti subtotal, pajak, dan total. Penyisipan data dilakukan dalam sebuah transaksi
untuk memastikan integritas antara tabel invoices dan invoice details.

1 db.Transaction(func(tx *gorm.DB) error {

2 // Hitung nilai faktur

3 price := 100

4 count := 2000

5 subTotal := price * count

6 taxAmount := 0.02 * float64(subTotal)

23
Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

7 total := float64(subTotal) + taxAmount

8

9 // Insert invoice dan ambil invoice_id

10 var invoiceID string

11 tx.Raw(‘

12 INSERT INTO invoices (

13 invoice_id , invoice_number , issue_date , due_date ,

14 tax_rate , tax_amount , sub_total , total , payment_status

15)

16 VALUES (gen_random_uuid(), ?, NOW(), NOW() + INTERVAL ’30

day’,

17 ?, ?, ?, ?, ’unpaid ’)

18 RETURNING invoice_id‘,

19 "INV -001", 0.02, taxAmount , subTotal , total ,

20).Scan(&invoiceID)

21

22 // Insert invoice detail

23 tx.Exec(‘

24 INSERT INTO invoice_details (

25 invoice_detail_id , invoice_id , amount , price_per_delivery ,

delivery_count

26)

27 VALUES (gen_random_uuid(), ?, ?, ?, ?)‘,

28 invoiceID , subTotal , price , count ,

29)

30

31 return nil

32 })

Kode 3.9: Contoh transaksi invoice seeder

Transaksi di atas memastikan bahwa data faktur dan detail faktur hanya
akan disimpan jika kedua operasi berhasil. Dengan demikian, konsistensi data tetap
terjaga selama proses pengujian.

3.3.5 Implementasi Fitur Autentikasi Klien

Sistem autentikasi dibangun dengan memisahkan tanggung jawab antara
manajemen permintaan, logika validasi keamanan, dan akses data untuk memenuhi
prinsip separation of concerns.

Pada lapisan handler, fokus utama adalah mendelegasikan data kredensial
dari permintaan HTTP ke lapisan layanan. Implementasi secara selektif untuk

24
Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

proses delegasi ini dapat dilihat pada Kode 3.10.

1 func (h *ClientHandler) LoginHandler(c *fiber.Ctx) error {

2 // ... proses parsing request ...

3 client , err := h.service.LoginService(req.Email , req.Password)

4 // ... penanganan error dan response ...

5 return utils.Success(c, 200, "Login success", client)

6 }

Kode 3.10: Handler autentikasi

Logika bisnis utama terdapat pada lapisan service, khususnya pada proses
verifikasi keamanan menggunakan algoritma hashing. Inti dari validasi kredensial
pengguna tersebut dijelaskan pada Kode 3.11.

1 func (cs *clientService) LoginService(email , password string)

(...) {

2 client , _ := cs.repo.FindByEmail(email)

3

4 // Inti verifikasi: Komparasi hash password menggunakan bcrypt

5 if err := bcrypt.CompareHashAndPassword ([]byte(client.

ClientPassword), []byte(password)); err != nil {

6 return models.ClientLoginResponse{}, errors.New("password

salah")

7 }

8 return utils.ToClientLoginResponse(client), nil

9 }

Kode 3.11: Inti logika verifikasi service

Interaksi dengan basis data pada lapisan repository disederhanakan untuk
hanya melakukan pengambilan entitas tunggal. Kueri data berdasarkan identitas
unik surel ditunjukkan pada Kode 3.12.

1 func (r *clientRepository) FindByEmail(email string) (*models.

Client , error) {

2 var client models.Client

3 // Pengambilan data menggunakan kueri SQL mentah

4 err := r.db.Raw(‘SELECT * FROM clients WHERE client_email = ?

LIMIT 1‘, email).Scan(&client).Error

5 return &client , err

6 }

Kode 3.12: Kueri data klien

25
Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

3.3.6 Integrasi Autentikasi Sisi Frontend

Di sisi frontend, integrasi dilakukan untuk menghubungkan input pengguna
dengan endpoint API backend. Logika utama dalam pemberian otorisasi sesi
pengguna pada pustaka NextAuth dirinci pada Kode 3.13.

1 authorize: async (cred) => {

2 // Komunikasi asinkronus dengan backend API

3 const res = await axios.post(‘${process.env.API_URL}/api/clients

/login ‘, cred);

4 const data = res.data.data;

5

6 // Mengembalikan data user jika autentikasi berhasil

7 return data ? { id: data.client_id , email: data.client_email ,

name: data.client_name } : null;

8 }

Kode 3.13: Logika authorize NextAuth

Melalui pendekatan yang dipaparkan pada Kode 3.10 hingga Kode 3.13,
aplikasi menjamin bahwa hanya pengguna dengan kredensial valid yang dapat
memperoleh token akses untuk sesi aktif.

3.3.7 Implementasi Fitur Pengambilan Data Invoice

Sistem ini memastikan isolasi data dengan mengimplementasikan alur kerja
berlapis. Fokus utama pada fitur ini adalah memastikan bahwa data yang ditarik
hanya milik pengguna yang terautentikasi.

A Lapisan Handler

Pada lapisan ini, poin krusial adalah pengambilan identitas klien dari
konteks lokal yang telah diatur oleh middleware. Implementasi inti pada
GetAllInvoiceByClientIdHandler dapat dilihat pada Kode 3.14.

1 // Mengambil identitas user dari context yang diinjeksi middleware

2 userId := c.Locals("userId").(string)

3 invoices , err := h.service.GetAllInvoiceByClientIdService(userId)

Kode 3.14: Ekstraksi ID dari konteks lokal

26
Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

B Lapisan Service

Lapisan service berfungsi melakukan validasi bisnis terhadap hasil kueri.
Bagian paling penting adalah deteksi kondisi data yang tidak ditemukan untuk
memberikan respons spesifik, seperti ditunjukkan pada Kode 3.15.

1 // Validasi spesifik jika record tidak ditemukan dalam database

2 if errors.Is(err, gorm.ErrRecordNotFound) {

3 return nil, errors.New("invoice tidak ditemukan")

4 }

Kode 3.15: Logika validasi record

C Lapisan Repository dan Struktur Data

Pada lapisan repository, keamanan data dijamin melalui penggunaan kueri
SQL yang terfilter secara eksplisit. Fokus utama terletak pada implementasi
klausa WHERE menggunakan atribut client id untuk membatasi ruang lingkup
pengambilan data, sehingga tercipta isolasi data antar klien.

Penyimpanan data faktur diorganisir ke dalam dua entitas utama: tabel
invoices untuk informasi header dan tabel invoice details untuk rincian
transaksi. Hubungan antar tabel ini dijaga melalui foreign key invoice id. Struktur
lengkap dari kedua tabel tersebut dipaparkan pada Tabel 3.12 dan Tabel 3.11.

Tabel 3.10. Struktur table invoice

Atribut Tipe Data
invoice id String (PK)

invoice number String

issue date DateTime

due date DateTime

total Float

payment status String

client id String (FK)

created at DateTime

27
Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

Tabel 3.11. Struktur table invoice detail

Atribut Tipe Data
invoice detail id String (PK)

transaction note String

amount Float

invoice id String (FK)

created at DateTime

Berdasarkan struktur pada Tabel 3.12, kolom client id menjadi kunci
krusial dalam keamanan aplikasi. Setiap kueri yang dieksekusi oleh repository

wajib menyertakan filter terhadap kolom ini untuk memastikan klien hanya dapat
mengakses data miliknya sendiri. Implementasi kueri tersebut ditunjukkan pada
Kode 3.16.

1 // Menjamin isolasi data melalui filter client_id pada kueri

2 query := ‘SELECT * FROM invoices WHERE client_id = ?‘

3 err := r.db.Raw(query , clientId).Scan(&invoices).Error

Kode 3.16: Kueri SQL terfilter berdasarkan client ID

Penerapan kueri pada Kode 3.16 secara efektif mencegah akses ilegal antar
klien. Meskipun seorang klien mengetahui ID faktur milik pihak lain, sistem tidak
akan mengembalikan data tersebut karena filter clientId tidak akan terpenuhi
dalam hasil pencarian basis data.

3.3.8 Reimplementasi Endpoint Get All Payments Berdasarkan Klien

Reimplementasi ini bertujuan untuk memastikan bahwa akses terhadap data
pembayaran dikunci secara ketat berdasarkan identitas klien yang terautentikasi
melalui token JWT.

A Payment Handler

Pada lapisan ini, fokus utama adalah ekstraksi identitas klien (userId) yang
telah diinjeksi oleh middleware ke dalam konteks lokal Fiber. Potongan kode
pada Kode 3.17 menunjukkan bagaimana identitas ini digunakan sebagai parameter
utama.

1 // Mengambil userId dari konteks sesi yang terautentikasi

28
Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

2 userId := c.Locals("userId").(string)

3 payments , err := h.service.GetAllPaymentByClientIdService(userId)

Kode 3.17: Ekstraksi identitas klien pada handler

B Payment Service

Lapisan service menangani logika transisi data dan validasi hasil. Bagian
terpenting adalah penanganan kondisi ketika catatan pembayaran tidak ditemukan
dalam basis data, sebagaimana diilustrasikan pada Kode 3.18.

1 // Memastikan pesan error yang informatif saat data kosong

2 if errors.Is(err, gorm.ErrRecordNotFound) {

3 return nil, errors.New("payment tidak ditemukan")

4 }

Kode 3.18: Logika penanganan record tidak ditemukan

C Payment Repository

Melalui operasi JOIN antar tabel, sistem memastikan bahwa data
pembayaran hanya diambil jika terkait langsung dengan ID klien yang meminta.
Mekanisme ini memanfaatkan relasi antara tabel payments, invoices, dan
clients, sehingga akses data pembayaran selalu dibatasi oleh kepemilikan klien
yang sah. Struktur kueri SQL tersebut dirinci pada Kode 3.19.

1 query := ‘

2 SELECT p.payment_date , p.amount_paid , p.proof_of_transfer

3 FROM payments p

4 JOIN invoices i ON p.invoice_id = i.invoice_id

5 JOIN clients c ON i.client_id = c.client_id

6 WHERE c.client_id = ?

7 ORDER BY p.payment_date DESC;‘

8

9 err := p.db.Raw(query , clientId).Scan(&payments).Error

Kode 3.19: Kueri JOIN dengan filter keamanan

Atribut data yang diambil dalam kueri tersebut selaras dengan struktur
tabel pembayaran yang digunakan oleh sistem. Tabel ini menyimpan informasi
inti terkait transaksi pembayaran, termasuk waktu pembayaran, jumlah yang
dibayarkan, serta bukti transfer. Struktur lengkap tabel pembayaran ditunjukkan

29
Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

pada Tabel 3.12, yang menjadi dasar dalam proses pengambilan data pada lapisan
repository.

Tabel 3.12. Struktur table payment

Atribut Tipe Data
payment id String (PK)

payment date DateTime

amount paid Float

proof of transfer String

voided at DateTime

created at DateTime

updated at DateTime

3.3.9 Penerapan Desain Halaman Login

Pada periode minggu ke-5, halaman login dikembangkan, beralih dari fase
prototype pengujian fungsi menuju penyesuaian penuh dengan desain antarmuka
pengguna (UI) yang telah ditetapkan. Implementasi desain baru ini memastikan
keselarasan antara fungsi autentikasi yang sudah stabil dan tampilan akhir produk.
Hasil akhir dari pembaruan desain halaman login dapat dilihat pada Gambar 3.3.

Gambar 3.3. Tampilan akhir antarmuka halaman login portal klien

30
Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

3.3.10 Implementasi Side Navigation Bar

Pada minggu ke-6, implementasi side navigation bar dilakukan berdasarkan
desain yang telah ditetapkan. Implementasi ini berfungsi untuk memfasilitasi user

dalam bernavigasi dari satu halaman ke halaman lain. Aspek responsive design juga
diterapkan guna menjamin kemudahan akses dan navigasi bagi user dari berbagai
perangkat. Berikut adalah hasil akhir dari implementasi side navigation bar.

Gambar 3.4. Tampilan akhir navigation bar

3.3.11 Optimasi Fetching Data dengan Strategi useSWR

Pada minggu ke-6, dilakukan transisi mekanisme pengambilan data dari
metode imperatif (axios) menjadi deklaratif menggunakan pustaka useSWR (Stale-

While-Revalidate). Strategi ini diterapkan untuk mengoptimalkan performa aplikasi
melalui mekanisme caching dan sinkronisasi data otomatis di latar belakang.

Penerapan utama useSWR difokuskan pada fleksibilitas pengambilan data
secara kondisional, di mana permintaan API hanya akan dieksekusi apabila token

31
Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

otorisasi telah tersedia dalam status aplikasi. Implementasi inti dari logika ini
dipaparkan pada Kode 3.20.

1 // Menggunakan SWR untuk caching dan revalidasi otomatis

2 const { data , error , isLoading } = useSWR <InvoiceResponse >(

3 // Conditional fetching: key bernilai null jika token tidak

ada

4 jwtToken ? ‘${process.env.NEXT_PUBLIC_API_URL}/api/invoices/

get‘ : null ,

5 (url: string) => fetcherWithAuth <InvoiceResponse >(url,

jwtToken || undefined)

6);

Kode 3.20: Implementasi fetching Kondisional dengan useSWR

Penggunaan conditional key pada Kode 3.20 menjamin efisiensi sumber
daya jaringan dengan mencegah pemanggilan endpoint yang tidak sah sebelum
pengguna terautentikasi. Selain itu, fungsi fetcherWithAuth secara otomatis
menyuntikkan bearer token ke dalam header permintaan, sehingga aspek keamanan
tetap terjaga tanpa menambah kompleksitas pada komponen antarmuka.

Melalui skema ini, data faktur yang telah diambil akan disimpan dalam
cache lokal, sehingga saat pengguna berpindah halaman dan kembali lagi, data
dapat langsung ditampilkan secara instan tanpa menunggu proses jaringan selesai
(stale data), sementara validasi data terbaru tetap berjalan di latar belakang.

3.3.12 Implementasi Generate & Download PDF

Fitur pembuatan dokumen PDF dilakukan melalui API Route yang berfungsi
sebagai perantara (proxy) untuk menjaga keamanan token JWT saat melakukan
permintaan dokumen ke backend.

A Pemrosesan Parameter Permintaan

Implementasi pada sisi API Route difokuskan pada ekstraksi data identitas
faktur dan kredensial akses yang dikirimkan oleh frontend. Inti dari pengambilan
data tersebut dapat dilihat pada Kode 3.21.

1 // Ekstraksi data dan token dari body request

2 const { invoice_id , jwt_token } = await request.json();

3

4 // Fetching data ke backend menggunakan Bearer Token

32
Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

5 const apiResponse = await fetch(‘${process.env.API_URL}/api/

invoices/get/detail ‘, {

6 method: "POST",

7 headers: { "Authorization": ‘Bearer ${jwt_token}‘, "Content -

Type": "application/json" },

8 body: JSON.stringify({ invoice_id })

9 });

Kode 3.21: Ekstraksi parameter dan otorisasi backend

Penggunaan Kode 3.21 sangat penting karena jwt token digunakan untuk
memberikan otorisasi kepada server backend agar mengizinkan akses data sensitif.
Dengan memproses ini di server-side, token tidak terekspos pada URL permintaan
di sisi klien.

B Mekanisme Penyimpanan dan Pengiriman PDF

Dokumen PDF tidak disimpan ke dalam file system server, melainkan diolah
sepenuhnya di dalam memori (RAM) dalam bentuk Buffer. Hal ini bertujuan untuk
mencegah penumpukan berkas sementara dan menjaga kerahasiaan data. Proses
pengiriman data biner tersebut ditunjukkan pada Kode 3.22.

1 // Render komponen React menjadi Buffer biner di memori

2 const pdfBuffer = await renderToBuffer(React.createElement(

PDFTemplate , { invoiceData }));

3

4 // Mengirimkan buffer langsung sebagai respons HTTP

5 return new NextResponse(pdfBuffer as BodyInit , {

6 status: 200,

7 headers: {

8 "Content -Type": "application/pdf",

9 "Content -Disposition": ‘inline; filename="invoice -${

invoice_id}.pdf"‘,

10 },

11 });

Kode 3.22: Konversi ke buffer dan binary streaming

Berdasarkan Kode 3.22, PDF dikirimkan kepada pengguna sebagai
aliran data biner (Binary Stream). Melalui penetapan header Content-Type:

application/pdf, peramban klien diperintahkan untuk langsung membuka atau
mengunduh dokumen tanpa ada jejak berkas fisik yang tertinggal di media

33
Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

penyimpanan server. Mekanisme on-the-fly rendering ini memastikan skalabilitas
aplikasi karena server tidak perlu mengelola siklus hidup berkas statis di dalam disk.

3.3.13 Implementasi Base64 Sebagai Penyimpanan Gambar

Untuk mendukung arsitektur stateless, penyimpanan gambar dilakukan
dengan mengonversi berkas biner menjadi format string di dalam basis data. Hal
ini menghilangkan kebutuhan akan file system permanen di server.

A Encoding Sisi Backend

Pada sisi backend, fokus utama terletak pada transformasi buffer gambar
menjadi skema Data URI Base64. Inti dari proses konversi tersebut ditunjukkan
pada Kode 3.23.

1 // Konversi buffer biner menjadi string Base64 dengan metadata

mimetype

2 const base64String = ‘data:${req.file.mimetype};base64 ,${req.file.

buffer.toString(’base64’)}‘;

3 req.body.proof_of_transfer = base64String;

Kode 3.23: Transformasi buffer ke data URI base64

B Decoding Sisi Frontend

Di sisi klien, data Base64 direkonstruksi kembali menjadi objek biner (Blob)
secara temporer di dalam memori peramban. Kode 3.24 menampilkan logika inti
pemrosesan data tersebut sebelum ditampilkan kepada pengguna.

1 // Dekode string Base64 menjadi array byte biner

2 const byteCharacters = atob(proof.split(",")[1]);

3 const byteArray = new Uint8Array(Array.from(byteCharacters , char

=> char.charCodeAt(0)));

4

5 // Pembuatan URL objek temporer dari Blob

6 const blobUrl = URL.createObjectURL(new Blob([byteArray], { type:

contentType }));

7 window.open(blobUrl , "_blank");

Kode 3.24: Konversi base64 ke blob object

34
Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

Penerapan Kode 3.23 dan Kode 3.24 memastikan bahwa sistem tidak
menyisakan jejak berkas fisik di media penyimpanan server maupun klien. Gambar
hanya menempati ruang di basis data sebagai teks, dan diproses di dalam
memori (RAM) peramban hanya saat dibutuhkan untuk visualisasi. Mekanisme
URL.createObjectURL memastikan efisiensi karena data biner tersebut tidak perlu
diunduh ulang melalui permintaan jaringan tambahan.

3.3.14 Penerapan Email CRON Job

CRON Job merupakan mekanisme penjadwalan standar pada sistem operasi
berbasis Unix, yang berfungsi menjalankan perintah atau skrip secara otomatis
pada waktu atau interval tertentu [7, 8]. Implementasi CRON Job di sini sangat
penting untuk mengotomatisasi pengiriman email reminder kepada semua klien
tanpa memerlukan intervensi manual. CRON Job yang dirancang bertujuan untuk
mengirimkan email secara berkala pada interval yang telah ditentukan. Berikut
adalah implementasi kode untuk mengaktifkan penjadwalan tersebut.

1 c r o n J o b := c ron . New ()
2 c r o n J o b . AddFunc (” 0 7 * * * ” , func () { j o b s . EmailCron (c o n f i g .DB

) })
3 c r o n J o b . S t a r t ()

Kode 3.25: Inisialisasi dan penjadwalan tugas email

Kode 3.25 menunjukkan inisialisasi scheduler CRON baru (cronJob :=

cron.New()). Fungsi AddFunc digunakan untuk mendaftarkan tugas, di mana
"0 7 * * *" merupakan sintaks CRON yang menjadwalkan eksekusi tugas pada
pukul 07:00 pagi setiap hari. Tugas yang dijalankan adalah jobs.EmailCron, yang
bertanggung jawab mengirim email reminder menggunakan koneksi database yang
disediakan (config.DB). Akhirnya, cronJob.Start() mengaktifkan scheduler

tersebut.

3.3.15 Email Notification

Email notification diimplementasikan untuk memberikan reminder

pembayaran invoice secara langsung kepada client tanpa memerlukan intervensi
manual dari pihak perusahaan. Setiap notifikasi mencakup informasi yang jelas
mengenai batas waktu pembayaran (deadline) yang tersisa. Otomatisasi ini
memastikan client menerima informasi tepat waktu, sehingga meningkatkan

35
Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

efisiensi proses penagihan. Tampilan contoh email reminder yang dikirimkan
kepada client dapat dilihat pada Gambar 3.5.

Gambar 3.5. Tampilan contoh email notifikasi pembayaran invoice

3.3.16 Implementasi Halaman Invoice

Pada minggu ke-10 hingga ke-11, Halaman Invoice telah berhasil
diimplementasikan dan diselesaikan sesuai dengan desain yang telah disetujui
sebelumnya. Halaman ini berfungsi sebagai pusat bagi client untuk melihat dan
mengelola semua faktur mereka. Tampilan hasil akhir dari Halaman Invoice dapat
dilihat pada Gambar 3.6.

36
Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

Gambar 3.6. Tampilan akhir halaman invoice

Halaman Invoice ini dilengkapi dengan fitur filter dan tampilan tabel data.
Berikut rincian fitur filter dan deskripsi kolom tabel.

3.3.17 Implementasi Halaman Payment

Pada minggu ke-10 hingga ke-11, implementasi Halaman Payment berhasil
diselesaikan. Halaman ini berfungsi sebagai pusat bagi client untuk meninjau dan
melacak semua riwayat pembayaran yang telah dilakukan untuk setiap invoice.
Fitur yang disediakan mencakup filter dan search sederhana, serta kapabilitas
sorting pada kolom tabel. Tampilan halaman ini dapat dilihat pada Gambar 3.7.

37
Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

Tabel 3.13. Rincian fitur filter halaman invoice

Fitur Filter Fungsi
Search Invoice Number Berfungsi untuk mencari invoice secara spesifik

berdasarkan nomor faktur (Invoice Number).
Payment Status Memungkinkan user memfilter invoice berdasarkan status

pembayarannya (misalnya: Paid, Unpaid).
Overdue Status Memungkinkan user memfilter invoice berdasarkan status

jatuh temponya (Overdue atau Before Due).
Voided Status Memungkinkan user memfilter invoice berdasarkan status

validitasnya (Active atau Voided).

Gambar 3.7. Tampilan akhir halaman payment

Berikut adalah rincian fitur filter dan deskripsi kolom tabel yang terdapat
pada Halaman Payment.

38
Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

Tabel 3.14. Rincian fitur filter halaman payment

Fitur Filter Fungsi
Search Berfungsi untuk mencari pembayaran berdasarkan invoice

number secara spesifik.

Filter Memungkinkan user memfilter data pembayaran
berdasarkan status pembayaran.

3.3.18 Implementasi Halaman Dashboard

Implementasi Halaman Dashboard juga dilaksanakan pada minggu ke-10
hingga ke-11. Dashboard ini berfungsi untuk menampilkan ringkasan data penting
(key metrics) secara menyeluruh, sehingga memberikan gambaran cepat mengenai
status finansial perusahaan kepada client. Informasi utama yang disajikan meliputi
Total Tagihan, Total Nominal yang Sudah Dibayar, jumlah invoice yang sudah
melewati deadline (Overdue), dan Total Keseluruhan Invoice. Selain itu, disajikan
pula daftar Recent Invoice yang menampilkan faktur yang baru saja diterbitkan,
sehingga memudahkan client dalam pelacakan aktivitas terbaru. Tampilan akhir
dari Halaman Dashboard dapat dilihat pada Gambar 3.8.

Gambar 3.8. Tampilan akhir halaman dashboard

39
Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

3.3.19 Implementasi Rate Limiter

Pada minggu ke-12, rate limiter diimplementasikan sebagai lapisan
keamanan yang bertujuan untuk mengendalikan frekuensi permintaan (request) dari
setiap klien. Hal ini penting untuk menjaga penggunaan sumber daya server tetap
stabil dan mencegah serangan Denial of Service (DoS) atau penyalahgunaan API.
Implementasi rate limiter ini menggunakan middleware limiter yang disediakan
oleh framework Go Fiber.

1 app . Use (l i m i t e r . New(l i m i t e r . Conf ig {
2 Max : 10 ,
3 E x p i r a t i o n : 30 * t ime . Second ,

Kode 3.26: Konfigurasi dasar dan batas akses

Kode 3.26 menunjukkan inisialisasi middleware limiter dan penerapannya
pada seluruh aplikasi (app.Use). Konfigurasi dasar menetapkan batas (Max)
maksimum 10 permintaan dalam durasi (Expiration) 30 detik. Ini berarti setiap
alamat IP hanya diizinkan mengirim 10 request dalam periode 30 detik.

1 KeyGenera to r : func (c * f i b e r . Ctx) s t r i n g {
2 r e t u r n c . IP ()
3 } ,
4 Limi tReached : func (c * f i b e r . Ctx) e r r o r {
5 r e t u r n u t i l s . E r r o r (c , f i b e r . S ta tusTooManyReques t s , ” Too Many

Reques t ” , ” P l e a s e t r y a g a i n l a t e r ”)
6 } ,
7 }))

Kode 3.27: Penentuan kunci (key) dan penanganan batas tercapai

Pada kode 3.27, KeyGenerator diatur untuk mengidentifikasi klien
berdasarkan alamat IP mereka (c.IP()), sehingga setiap IP memiliki batas
permintaannya sendiri. Fungsi LimitReached mendefinisikan respons yang akan
dikirimkan ketika batas permintaan terlampaui. Respons yang dikirim adalah 429
Too Many Requests dengan pesan error kustom yang menyarankan klien
untuk mencoba lagi nanti.

3.3.20 Implementasi Protected Routes

Perlindungan rute (protected routes) pada sisi frontend diterapkan untuk
memastikan akses ke halaman sensitif seperti dashboard, invoices, dan payments

terbatas hanya bagi klien yang memiliki kredensial sah. Mekanisme ini

40
Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

menggunakan middleware yang bekerja di tingkat edge runtime untuk mencegat
permintaan sebelum mencapai komponen halaman.

A Logika Navigasi dan Redireksi Middleware

Middleware memeriksa keberadaan session token di dalam cookies klien
pada setiap transisi halaman. Fokus utama dari logika ini adalah mencegah
pengguna yang sudah login untuk kembali ke halaman login, serta memblokir akses
anonim ke jalur terproteksi. Implementasi ringkas dari logika tersebut dapat dilihat
pada Kode 3.28.

1 export function middleware(request: NextRequest) {

2 const sessionToken = request.cookies.get("access_token")?.

value;

3 const isLoginPage = request.nextUrl.pathname === "/login";

4

5 // Mencegah akses ke halaman login jika sudah terautentikasi

6 if (isLoginPage && sessionToken) {

7 return NextResponse.redirect(new URL("/", request.nextUrl.

origin));

8 }

9

10 // Proteksi rute: Arahkan ke login jika tidak ada token

11 if (!isLoginPage && !sessionToken) {

12 return NextResponse.redirect(new URL("/login", request.

nextUrl.origin));

13 }

14

15 return NextResponse.next();

16 }

Kode 3.28: Logika validasi sesi dan redireksi

Penerapan Kode 3.28 memastikan bahwa aliran navigasi pengguna selalu
sinkron dengan status autentikasi mereka. Dengan melakukan pemeriksaan di sisi
server (middleware), sistem dapat menghindari kebocoran data visual yang sering
terjadi jika proteksi hanya dilakukan di sisi klien (client-side rendering).

B Konfigurasi Jalur Terproteksi

Untuk mengoptimalkan performa, middleware hanya dijalankan pada jalur-
jalur tertentu yang didefinisikan dalam objek konfigurasi. Hal ini mencegah

41
Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

eksekusi kode pada berkas statis atau aset publik. Daftar jalur yang dilindungi oleh
sistem ini dirinci pada Kode 3.29.

1 export const config = {

2 matcher: [

3 "/",

4 "/login",

5 "/invoices/:path*",

6 "/payments/:path*",

7],

8 };

Kode 3.29: Konfigurasi matcher middleware

Melalui penggunaan matcher pada Kode 3.29, sistem secara otomatis
memetakan rute mana saja yang memerlukan validasi token. Kombinasi antara
logika pada Kode 3.28 dan konfigurasi rute ini menciptakan sistem keamanan
frontend yang tangguh dan efisien dalam pengelolaan sesi pengguna.

3.3.21 Pengembangan Sistem Notifikasi

Sistem notifikasi dikembangkan untuk melengkapi fungsi CRON Job yang
telah dibuat sebelumnya. Setelah CRON Job mengirimkan email reminder

pembayaran invoice, sistem secara bersamaan akan membuat dan menyimpan
notifikasi baru yang ditujukan kepada client yang bersangkutan. Notifikasi ini
berfungsi untuk memberi tahu user mengenai invoice yang mendekati batas waktu
pembayaran (deadline) atau yang sudah melewati jatuh tempo. Tampilan antarmuka
notifikasi dapat dilihat pada Gambar 3.9.

42
Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

Gambar 3.9. Tampilan modal notifikasi

Pada antarmuka, setiap notifikasi baru yang belum dibaca akan memicu
munculnya indikator mengambang (floating notification) pada ikon bel, yang
menunjukkan jumlah notifikasi yang belum dibaca. Ketika ikon tersebut diklik,
akan muncul popover modal yang menampilkan daftar (list) notifikasi. User dapat
menggunakan tombol Mark As Read untuk menandai semua notifikasi sebagai
sudah dibaca, yang secara otomatis akan menghilangkan indikator mengambang
pada ikon notifikasi.

3.3.22 Penambahan Seeding Data

Pada minggu terakhir pelaksanaan, dilakukan penambahan volume seeding

data secara signifikan untuk menciptakan skenario simulasi yang mendekati kondisi
nyata (real case). Fokus utama adalah menghasilkan dataset invoice dengan status
pembayaran yang bervariasi (unpaid, partial, paid) guna menguji akurasi filter dan
kalkulasi saldo pada aplikasi.

A Invoice Seeder

Invoice Seeder dirancang untuk menghasilkan tiga faktur per klien dengan
skenario status yang berbeda. Bagian krusial dari implementasi ini adalah
penggunaan blok switch untuk menentukan logic nominal pembayaran dan
pembungkusan kueri ke dalam database transaction untuk menjamin integritas data
antara tabel invoice dan detailnya. Logika inti tersebut ditunjukkan pada Kode 3.30.

43
Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

1 // Loop untuk menghasilkan 3 status berbeda per klien

2 for i := 0; i < 3; i++ {

3 var paymentStatus string

4 var amountPaid float64

5

6 switch i {

7 case 0: paymentStatus , amountPaid = "unpaid", 0

8 case 1: paymentStatus , amountPaid = "partial", total / 2

9 case 2: paymentStatus , amountPaid = "paid", total

10 }

11

12 // Menjamin integritas data menggunakan Transaksi GORM

13 db.Transaction(func(tx *gorm.DB) error {

14 // ... Insert Invoice ...

15 // Menggunakan RETURNING invoice_id untuk relasi detail

16 tx.Raw(invoiceQuery , ...).Scan(&invoiceID)

17

18 // Insert Invoice Detail berdasarkan ID yang baru dibuat

19 return tx.Exec(invoiceDetailQuery , invoiceID , ...).Error

20 })

21 }

Kode 3.30: Logika penentuan status dan transaksi database

Melalui penggunaan Kode 3.30, sistem dapat mensimulasikan berbagai
kondisi keuangan klien dalam satu kali eksekusi, sehingga pengujian fitur reporting

menjadi lebih komprehensif.

B Payment Seeder

Payment Seeder melengkapi dataset dengan membuat catatan pembayaran
hanya untuk faktur yang tidak berstatus unpaid. Langkah selektif yang diambil
dalam kueri ini adalah melakukan filter awal pada status invoice sebelum melakukan
proses penyisipan data ke tabel payments. Implementasi kueri dan kalkulasi sisa
tagihan dipaparkan pada Kode 3.31.

1 // Hanya mengambil invoice yang memiliki riwayat pembayaran (

partial/paid)

2 db.Raw(‘SELECT invoice_id , total , amount_paid FROM invoices

3 WHERE payment_status IN (’partial’, ’paid ’) LIMIT 10‘).

Scan(&invoices)

4

5 for _, inv := range invoices {

44
Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

6 remainingAmount := inv.Total - inv.AmountPaid

7 if remainingAmount > 0 {

8 // Membuat record pembayaran untuk sisa tagihan

9 paymentQuery := ‘INSERT INTO payments (payment_id ,

amount_paid , invoice_id , ...)

10 VALUES (gen_random_uuid(), ?, ?, ...)‘

11 db.Exec(paymentQuery , remainingAmount , inv.InvoiceID , ...)

12 }

13 }

Kode 3.31: Filtering invoice dan pembuatan data pembayaran

Berdasarkan Kode 3.31, data pembayaran yang dihasilkan selalu sinkron
dengan sisa saldo pada faktur terkait. Dengan memisahkan tugas seeder menjadi
dua tahap ini, pengembang dapat memastikan bahwa relasi antar-tabel diuji secara
vertikal, mulai dari entitas klien hingga ke catatan pembayaran spesifik.

3.4 Kendala dan Solusi yang Ditemukan

Selama proses migrasi dan pengembangan backend pada proyek baru,
terdapat beberapa kendala teknis dan operasional yang terkait dengan kompatibilitas
sistem lama dan adaptasi teknologi baru.

1. Adanya learning curve untuk bahasa pemrograman Go, khususnya dalam
konsep penggunaan struct dan receiver, menyebabkan proses pengembangan
berjalan kurang efisien. Hal ini disebabkan oleh perbedaan paradigma
pemrograman (seperti OOP) dengan bahasa yang telah dikuasai sebelumnya.

2. ORM dari proyek Service Internal Invoice tidak dapat digunakan kembali
(reused) untuk pengembangan aplikasi Client Portal karena ketidakcocokan
teknologi dan struktur data antara kedua codebase yang independen.

3. Mekanisme upload gambar pada aplikasi Service Invoice Internal masih
menyimpan file di folder lokal (uploads), sehingga tidak dapat diakses dan
ditampilkan oleh aplikasi Service Client Portal. Hal ini mengharuskan
perubahan pada codebase untuk memindahkan lokasi penyimpanan ke tempat
yang dapat diakses bersama.

Pada setiap kendala yang disebutkan, berikut solusi yang
diimplementasikan:

45
Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

1. Pembelajaran intensif secara mandiri melalui dokumentasi dan tutorial
Golang untuk mempercepat adaptasi syntax pemrograman.

2. Penerapan Raw Query SQL secara langsung untuk menangani operasi
database, memastikan kompatibilitas dengan skema yang ada dan
menghindari ketergantungan pada ORM lama.

3. Modifikasi kode untuk mengganti mekanisme penyimpanan lokal dengan
integrasi layanan penyimpanan terpusat agar file dapat diakses bersama oleh
berbagai layanan aplikasi.

46
Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

	BAB 3 Pelaksanaan Kerja Magang
	3.1 Kedudukan dan Koordinasi
	3.2 Tugas yang Dilakukan
	3.3 Uraian Pelaksanaan Magang
	3.3.1 Mempelajari Sistem Sebelumnya
	3.3.2 Belajar Go
	3.3.3 Modifikasi Struktur Tabel untuk Integrasi Kredensial
	3.3.4 Implementasi Seeder untuk Pengujian
	3.3.5 Implementasi Fitur Autentikasi Klien
	3.3.6 Integrasi Autentikasi Sisi Frontend
	3.3.7 Implementasi Fitur Pengambilan Data Invoice
	3.3.8 Reimplementasi Endpoint Get All Payments Berdasarkan Klien
	3.3.9 Penerapan Desain Halaman Login
	3.3.10 Implementasi Side Navigation Bar
	3.3.11 Optimasi Fetching Data dengan Strategi useSWR
	3.3.12 Implementasi Generate & Download PDF
	3.3.13 Implementasi Base64 Sebagai Penyimpanan Gambar
	3.3.14 Penerapan Email CRON Job
	3.3.15 Email Notification
	3.3.16 Implementasi Halaman Invoice
	3.3.17 Implementasi Halaman Payment
	3.3.18 Implementasi Halaman Dashboard
	3.3.19 Implementasi Rate Limiter
	3.3.20 Implementasi Protected Routes
	3.3.21 Pengembangan Sistem Notifikasi
	3.3.22 Penambahan Seeding Data

	3.4 Kendala dan Solusi yang Ditemukan

