BAB 3
PELAKSANAAN KERJA MAGANG

3.1 Kedudukan dan Koordinasi

Pelaksanaan kerja magang pada bagian IT Developer di bawah Departemen
Teknologi Informasi sebagai Developer Intern. Selama kegiatan magang,
bimbingan diberikan oleh Head of IT Department selaku mentor yang secara aktif
memberikan arahan dan masukan dalam proses pengembangan. Tugas utama yang
dilaksanakan mencakup pengembangan sistem, pengelolaan kode melalui GitHub
untuk mempermudah kolaborasi dan pemisahan fitur, serta pemecahan kendala
teknis yang muncul selama proses.

Koordinasi dilakukan melalui rapat rutin dan diskusi langsung untuk
menyampaikan progres serta memperoleh feedback, dengan evaluasi dilakukan
secara berkala. Selain itu, rapat mingguan bersama Head of IT Department
dilakukan untuk membahas perkembangan proyek dan permasalahan teknis yang
dihadapi.

3.2 Tugas yang Dilakukan

Selama melaksanakan magang di PT Mobile Data Indonesia pada bagian
IT Developer, tugas diberikan untuk membuat dan mengembangkan sistem yang
berfokus pada kelancaran operasional perusahaan. Tugas utama yang dilakukan

adalah sebagai berikut:

1. Mengimplementasikan sistem Client Portal dengan tujuan memudahkan klien

dalam memperoleh informasi.

2. Membuat pengingat melalui email untuk klien apabila mendekati tenggat

waktu tertentu terkait pembayaran invoice bulanan.
3. Melakukan pemeliharaan sistem untuk memastikan sistem berjalan dengan

lancar dan stabil.

3.3 Uraian Pelaksanaan Magang

Kegiatan magang di PT Mobile Data Indonesia dilaksanakan selama enam

bulan sesuai dengan ketentuan kontrak magang. Program magang dimulai pada

7

Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

tanggal 26 Agustus 2025 dan berakhir pada tanggal 28 Februari 2026. Pelaksanaan

magang dilakukan pada hari kerja sesuai dengan jadwal operasional perusahaan.

Tabel 3.1 menyajikan rincian linimasa kegiatan yang dilaksanakan setiap

minggunya selama periode magang di PT Mobile Data Indonesia.

Tabel 3.1. Pekerjaan yang dilakukan tiap minggu selama pelaksanaan kerja magang

Minggu Ke -

Pekerjaan yang dilakukan

1

Kegiatan dimulai dengan rapat awal untuk memperkenalkan proyek,
diikuti dengan mempelajari sistem yang telah ada sebelumnya beserta
fungsinya, seperti membaca dokumentasi frontend, membaca API
contract dan melakukan testing API contract, mempelajari flow
chart, serta berdiskusi dan bertanya kepada karyawan lainnya untuk

memperdalam pemahaman terhadap sistem.

Kegiatan difokuskan pada pembelajaran dasar bahasa pemrograman
Go (Golang) sebagai fondasi proyek, mencakup konsep-konsep seperti
slice, array, konversi tipe data, penggunaan defer, panic, alert, serta

pemahaman terhadap interface dan struct

Kegiatan difokuskan pada pembelajaran Golang terkait modul,
mekanisme import dan export, serta penerapan unit test menggunakan
module. Selain itu, dilakukan pemahaman terhadap framework Fiber,

termasuk konsep routing dan penggunaan context.

Pada minggu ini dilakukan modifikasi struktur database dengan
penambahan dan kolom baru sesuai kebutuhan pengembangan
fitur. Pembuatan dan pengujian data seeder untuk client dilakukan
guna mendukung proses pengembangan dan pengujian berikutnya.
Implementasi autentikasi menggunakan Next Auth dikembangkan
mulai dari konfigurasi dasar, pembuatan endpoint login, hingga

penyempurnaan flow autentikasi.

Lanjut pada halaman berikutnya

8

Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

Tabel 3.1 Pekerjaan yang dilakukan tiap minggu selama pelaksanaan kerja magang (lanjutan)

Minggu Ke -

Pekerjaan yang dilakukan

5

Pembuatan endpoint untuk mendapatkan seluruh data invoice dari
database dilakukan, termasuk penyusunan struktur response dan
penanganan error. Endpoint untuk pengambilan data payment juga
dikembangkan dengan penyesuaian query parameter dan filter data yang
diperlukan. Penerapan Design halaman login pada frontend dilakukan
berdasarkan desain yang telah tersedia, diikuti dengan implementasi

form login dan integrasinya dengan endpoint backend.

Pembuatan navbar responsif dilakukan untuk mendukung tampilan
aplikasi pada berbagai ukuran perangkat. Halaman untuk menampilkan
seluruh data invoice diimplementasikan dengan memanfaatkan
endpoint yang telah tersedia. Proses migrasi dari axios ke useSWR

dilakukan untuk meningkatkan efisiensi data fetching dan caching.

Pembelajaran dan eksplorasi dilakukan terhadap Puppeteer Library
untuk keperluan generate PDF, mencakup fitur dasar serta konfigurasi
awal. Proses dilanjutkan dengan percobaan generate dan download
PDF menggunakan Puppeteer sebelum akhirnya beralih ke React PDF

setelah evaluasi kebutuhan proyek.

Rework dilakukan pada endpoint payment dengan penambahan fungsi
untuk membaca gambar dalam format blob sebagai base64. Perbaikan
dilakukan terhadap error yang muncul akibat blob yang tidak terdeteksi
atau gagal didekompilasi. Halaman details payment dikembangkan
untuk menampilkan informasi pembayaran secara lengkap, diikuti
dengan implementasi view payment endpoint yang terintegrasi dengan

data detail dan gambar base64.

Pembuatan cron job dilakukan untuk mengirim email reminder secara
otomatis sesuai jadwal yang telah ditentukan. Pengembangan sistem
email notification dilanjutkan dengan penyempurnaan mekanisme
pengiriman dan penanganan error. Template email notification
dirancang dan dibuat agar selaras dengan kebutuhan serta identitas
perusahaan, kemudian diintegrasikan ke dalam sistem pengiriman dan

diuji secara awal.

Lanjut pada halaman berikutnya

9

Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

Tabel 3.1 Pekerjaan yang dilakukan tiap minggu selama pelaksanaan kerja magang (lanjutan)

Minggu Ke -

Pekerjaan yang dilakukan

10

Implementasi desain dilakukan pada halaman invoice agar sesuai
dengan desain dan standar visual yang telah ditetapkan perusahaan.
Halaman payment juga disesuaikan agar konsisten dengan pedoman
desain dan antarmuka lainnya. Pengembangan dashboard utama
dimulai dengan perancangan layout serta penyusunan komponen inti,
kemudian dilanjutkan dengan implementasi grafik dan elemen interaktif
sesuai kebutuhan. Responsivitas diterapkan pada dashboard utama

untuk mendukung tampilan yang optimal di berbagai perangkat.

11

Integrasi display nomor invoice (Invoice_Number) pada antarmuka
Payment dan Invoice diselesaikan untuk optimalisasi pelacakan data.
Kapabilitas filtering ditingkatkan melalui implementasi sistem filter
berbasis status dan tanggal pada Tabel Invoice dan sistem filter kriteria
kompleks pada Tabel Payment, dengan penyesuaian tampilan agar
responsif. Conditional formatting diterapkan pada Tabel Invoice untuk
visualisasi status kritis (invoice melewati jatuh tempo). Terakhir,
fitur notifikasi email otomatis diimplementasikan untuk pengiriman

pengingat saat invoice melewati batas waktu pembayaran (deadline).

12

Aspek keamanan sistem ditingkatkan melalui implementasi rate limiter
pada aplikasi backend dan penambahan fungsi redirect 404 untuk
penanganan halaman yang tidak ditemukan. Pada sisi frontend,
protected routes diimplementasikan. Pengembangan sistem notifikasi,
komponen tampilan notifikasi pada frontend dikembangkan dengan
memastikan desain yang responsif. Fungsionalitas cron job yang sudah
ada diperluas dan dioptimalkan untuk membuat notifikasi otomatis bagi
invoice yang belum dibayar dan invoice yang telah melewati masa

pembayaran.

13

Fokus utama periode ini adalah seeding data dalam volume besar
diimplementasikan guna mendukung skenario simulasi dan load
testing. Aktivitas ini dilanjutkan dengan pelaksanaan festing terhadap

seluruh fitur yang tersedia untuk memastikan fungsionalitas sistem.

10

Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

3.3.1 Mempelajari Sistem Sebelumnya

Pada minggu pertama kegiatan magang, dilakukan penjelasan mengenai
kelanjutan program yang telah dikembangkan sebelumnya. Untuk memperoleh
pemahaman yang lebih mendalam terhadap program tersebut, dilakukan analisis
screening secara cermat dan efisien terhadap sistem yang sudah ada. Dalam konteks
ini, flowchart merupakan alat yang krusial, sebab flowchart adalah representasi
diagramatik dari langkah-langkah suatu algoritma [5, 6]. Adapun cuplikan
flowchart dan API Contract dari aplikasi yang ada sebelumnya disajikan sebagai
berikut:

A Flowchart Pembuatan Invoice

Diagram alir pada Gambar 3.1[3] mengilustrasikan prosedur penanganan
permintaan POST /invoices/. Proses dimulai dengan Middleware - JWT
Verification untuk otentikasi, di mana error akan mengembalikan respons
Unauthorized. Validasi dilanjutkan dengan Role Verification (memastikan
peran isFinance) dan ZOD Input Validation pada tahap ini masing-masing
mengembalikan respons Forbidden dan Invalid Parameters. Selanjutnya,
sistem melakukan pemeriksaan duplikasi nomor invoice yang jika ditemukan
akan mengembalikan respons Duplicate Data. Proses juga mencakup verifikasi
keberadaan klien, yang kegagalannya direspon dengan Not Found. Hanya setelah
seluruh validasi berhasil, sistem melanjutkan ke eksekusi utama: Calculate
Invoice Price, diikuti dengan penyisipan data ke basis data Invoice dan
Invoice Detail. Prosedur diselesaikan dengan pengembalian respons success

to frontend dan terminasi (End).

11

Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

Return Response
Unathorize to
Frontend

Receive
POST /invoices/
from frontend

Middleware - JWT
Verification

Return response
Role isFinance Forbidden to

Middleware - Role

Verification Frontend

S |
false Return response
Invalid Farameters
to Frontend
e ————

Input Valid?

\ﬁ
| Z0D Input Validati I

true

true Return response
Duplicate Data to

Frontend
 ———

nvoice Number
Exists?

Check Invoice Number

Return Response
Mot Found To
Frontend

Check Client di
Database

Insert Invoice Detail
Data To Database

Insert Invoice Data
To Database

Calculate Invoice
Price

Return response */_End

success to frontend

Gambar 3.1. Flowchart pembuatan invoice baru

B Flowchart Pembuatan Payment

Diagram alir pada Gambar 3.2 [3] menyajikan alur pemrosesan permintaan
pembayaran (POST /payments/) dari antarmuka pengguna. Prosedur ini diinisiasi
dengan penerimaan permintaan lalu dilanjutkan melalui serangkaian validasi
otorisasi dan integritas data yang ketat. Tahap pertama mencakup verifikasi
token JWT terhadap basis data Users. Kegagalan otentikasi akan menghentikan

proses dicatat dan mengembalikan respons 401 Unauthorized. Jika otentikasi

12

Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

berhasil sistem melanjutkan ke verifikasi peran (Role Verification). Kegagalan
verifikasi peran direspon dengan pencatatan dan respons 403 Forbidden. Validasi
selanjutnya adalah Input Validation untuk memastikan integritas data masukan.
Kegagalan validasi ini direspons dengan 400 Invalid parameters. Setelah
validasi input sistem melakukan pemeriksaan status pembayaran pada Invoice
terkait. Jika status pembayaran sudah Paid transaksi dicegah dicatat dan dihentikan
dengan respons 409 Invoice is Paid. Apabila semua verifikasi lolos proses
berlanjut ke eksekusi transaksi. Eksekusi ini mencakup penyisipan pembayaran
baru ke basis data Payments dan pembaruan status serta jumlah yang telah dibayar
pada basis data Invoices. Sebagai tahap terminasi yang sukses aktivitas ini dicatat

dan sistem mengembalikan respons 200 Success sebelum prosedur berakhir (END).

@

Receive request POST
Ipayments/ from frontend

Return response 401
Unauthorized

oken Authenticated?

Middleware - JWT
Verification

true

Middleware - Role
Verification

Return response 403
Forbidden to access

Return response 400
Invalid parameters

true Return response 409

Invoice is Paid

true

ZOD Input Validation

true

Invoice isPaid?

Check Payment Status

false

Update paid amount|
Insetr‘t) P[J):\;\;E:::‘lent and payment status Returnsruecslf:snsse 200
in invoice

Gambar 3.2. Flowchart pembuatan pembayaran baru

C API Contract Pembuatan Invoice

Kontrak API ini mendefinisikan mekanisme untuk membuat sebuah Invoice
baru beserta detailnya melalui metode POST pada endpoint /invoices. API ini

memerlukan otentikasi menggunakan token.

13

Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

C.1 Request Body

Request body wajib disertakan dalam format application/json. Bagian
ini memuat data utama invoice serta rincian item di dalamnya. Struktur data lengkap

terkait request body tersebut dipaparkan pada Tabel 3.2 berikut ini:

Tabel 3.2. Struktur data request API pembuatan invoice

Parameter | Tipe Data
Data Invoice Utama

invoice_number string
issue_date string (date)
due_date string (date)
tax_rate number

tax_invoice_number | string

client_id string (uuid)
Detail Invoice

transaction_note string
delivery_count number

price_per_delivery | number

C.2 Response
API ini memberikan beberapa kode status respons HTTP:

e 201 Created: Invoice berhasil dibuat.

* 400 Bad Request: Parameter yang dikirim tidak valid (kesalahan validasi
data).

e 404 Not Found: Klien tidak ditemukan berdasarkan client_id.

e 409 Conflict: Invoice sudah ada.

500 Internal Server Error: Kesalahan server internal.

C.3 Struktur Respons Berhasil

Respons sukses menyajikan data invoice yang telah diproses, mencakup nilai
kalkulasi seperti sub total, tax amount, dan total. Detail mengenai struktur
data tersebut dapat dirujuk pada Tabel 3.3 sebagai berikut:

14

Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

Tabel 3.3. Struktur data response sukses pembuatan invoice

Parameter Tipe Data
status string
code integer
message string
Data

invoice_id

string (uuid)

invoice_number

string

issue_date

string (date-time)

due_date string (date-time)
sub_total number
tax_rate number
tax_amount number
total number
tax_invoice_number | string
amount _paid number

payment_status string (enum: [paid, unpaid, partiall)

voided_at string (date-time, nullable)
client_id string (uuid)

created_at string (date-time)
updated_at string (date-time)

C.4 Struktur Respons Error

Respons kesalahan memiliki skema umum yang mencakup status, kode,
pesan, dan data, di mana bagian data dapat memuat rincian validasi atau bernilai
null. Penjelasan mengenai komponen struktur tersebut dipaparkan pada Tabel 3.4

sebagai berikut:

Tabel 3.4. Struktur data response error pembuatan invoice

Parameter | Tipe Data
status string

code integer
message string

data object atau null

D API Contract Pembuatan Payment

Kontrak API ini mendefinisikan mekanisme untuk mencatat sebuah

Pembayaran (Payment) baru terhadap invoice tertentu melalui metode POST

15

Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

pada endpoint /payments. API ini memerlukan otentikasi menggunakan token
dan menerima data dalam format multipart/form-data karena melibatkan

pengunggahan berkas bukti transfer.

D.1 Request Body

Penggunaan request body diwajibkan menggunakan format
multipart/form-data untuk memastikan validitas pengiriman data. Spesifikasi

mengenai parameter dan struktur data yang diperlukan dalam proses ini dipaparkan
pada Tabel 3.5 berikut:

Tabel 3.5. Struktur data request API pembuatan pembayaran

Parameter Tipe Data
payment _date string (date)
amount _paid number

proof _of transfer | string

invoice_number string

D.2 Response
API ini memberikan beberapa kode status respons HTTP:

* 201 Created: Pembayaran berhasil dibuat. Respons mengembalikan objek
pembayaran yang baru dibuat.

* 400 Bad Request: Parameter yang dikirim tidak valid (kesalahan validasi
data).

* 404 Not Found: Invoice tidak ditemukan berdasarkan invoice_number.
e 409 Conflict: Konflik pembayaran.

e 500 Internal Server Error: Kesalahan server internal.

D.3 Struktur Respons Berhasil

Respons sukses akan mengembalikan struktur standar dan objek data

pembayaran yang tercipta.

16

Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

Tabel 3.6. Struktur data response sukses pembuatan pembayaran

Parameter | Tipe Data
status string
code integer
message string
data object

D.4 Struktur Respons Error

Respons kesalahan mengadopsi struktur standar yang mencakup elemen
status, kode, pesan, serta data, yang dapat berisi rincian validasi maupun bernilai
null. Adapun spesifikasi mengenai komponen struktur tersebut dipaparkan pada
Tabel 3.7 berikut ini:

Tabel 3.7. Struktur data response error pembuatan pembayaran

Parameter | Tipe Data
status string

code integer
message string

data object atau null

3.3.2 Belajar Go

Pada minggu ke-2 dan ke-3, kegiatan difokuskan pada pembelajaran bahasa
pemrograman Go (Golang) sebagai fondasi teknis untuk pengembangan backend
menggunakan framework Go Fiber. Pembelajaran mencakup konsep-konsep
fundamental seperti tipe data dasar, struktur data kolektif (slice, array, map),
manajemen kontrol alur (defer, panic), hingga pemahaman mendalam tentang
struct dan interface untuk membangun arsitektur modular. Selain itu, dipelajari
mekanisme import/export modul, penerapan unit test, dan konsep routing serta

context dalam framework Fiber.

A Tipe Data dan Slice

Pembelajaran fundamental mencakup deklarasi variabel, konversi tipe data,
serta penggunaan struktur data kolektif dinamis seperti slice dan map. hasil

pembelajara

17

Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

6

1

4

5

var suhuCelcius float32 = 27.5
var suhuFahrenheit float64 = float64 (suhuCelcius = 9/5 + 32)

var nilailnt intl6 = intl6 (suhuCelcius) // Konversi ke integer

type KodeProduk string
var kodeBarang KodeProduk = "PRD-2025-A1"

Kode 3.1: Deklarasi variabel dan konversi tipe data

Kode 3.1 mengilustrasikan konversi eksplisit antar tipe data numerik. Selain
itu, Go mendukung deklarasi tipe data baru berdasarkan tipe data yang sudah ada

(type aliases), seperti KodeProduk yang didasarkan pada tipe st ring.

29

dataPegawai := [...]string{”Rina”, “Agus”, "Hendra”, ”"Maya”,
Siska”, ”Arief”}
fmt. Println (dataPegawai[2:5]) // Hasil: [Hendra Maya Siska]

arsipInisiatif := make([]string , 3, 8)

arsipInisiatif [0] = "Inisiatif Alpha”

arsiplnisiatif [1] = "Inisiatif Beta”

arsiplnisiatif [2] = "Inisiatif Gamma”

arsiplnisiatifTerbaru := append(arsiplnisiatif , "Inisiatif Delta
)

Kode 3.2: Contoh inisialisasi dan manipulasi slice

Kode 3.2 menunjukkan penggunaan slice dalam bahasa Go, yang meliputi
pengambilan sebagian elemen menggunakan teknik slicing, pembuatan slice
dengan fungsi bawaan make yang memiliki panjang dan kapasitas tertentu, serta

penambahan elemen baru ke dalam slice menggunakan fungsi append.

B Struktur Data dan Interface

Pembelajaran dilanjutkan pada struktur data kustom (struct) untuk
pemodelan data dan interface untuk implementasi polimorfisme. Kode
3.3 mendefinisikan struct Pegawai yang memiliki properti dasar. Fungsi
getSapaanKepada adalah method yang terikat pada struct Pegawai,
memungkinkan struct tersebut memiliki perilaku.
type Pegawai struct{

Nama, Jabatan string

IDPegawai int

}

18

Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

6

1

2

func (p Pegawai) getSapaanKepada(target string) (result string){

2 29 2 2

result = ”Selamat siang, + target + Saya + p.Nama + 7,

’”

dari bagian + p.Jabatan

return result

Kode 3.3: Definisi struct dan method

Kode 3.4 menunjukkan definisi interface Laporan. Fungsi cetakLaporan
dapat menerima objek apa pun (seperti struct Pegawai) selama objek tersebut
mengimplementasikan method BuatLaporan secara implisit.

type Laporan interface {
BuatLaporan(judul string) string

func cetakLaporan(objek Laporan){
fmt. Println (objek . BuatLaporan(”Laporan Bulanan™))

}

// Struct Pegawai harus mengimplementasikan method BuatLaporan
func (p Pegawai) BuatLaporan(judul string) (string){
/1

}

Kode 3.4: Interface dan penerapannya

C Manajemen Kontrol Alur Defer, Panic, dan Recover

Manajemen galat dalam bahasa pemrograman Go memanfaatkan
mekanisme defer, panic, dan recover untuk mengendalikan alur eksekusi
program saat terjadi kondisi abnormal. Kode 3.5 memperlihatkan bagian-bagian

inti dari implementasi mekanisme tersebut.

func ujiDeferPanic(triggerPanic bool) {
defer func() {

if pesan := recover(); pesan != nil {
fmt. Println ("Error:”, pesan)
}
1O

if triggerPanic {
panic (”Koneksi Database Gagal”)

Kode 3.5: Contoh inti penggunaan defer, panic, dan recover

19

Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

Cuplikan kode tersebut menyoroti peran utama defer dalam menjamin
eksekusi fungsi pemulihan ketika terjadi panic. Pemanggilan panic digunakan
untuk mensimulasikan kegagalan sistem, sementara fungsi recover() yang
dieksekusi di dalam blok defer berfungsi untuk menangkap dan mengelola
galat tersebut. Penyederhanaan kode ini bertujuan untuk menekankan konsep
fundamental tanpa menampilkan detail implementasi yang tidak relevan dengan

pembahasan.

D Error Handling

Dalam bahasa pemrograman Go, penanganan galat (error handling)
umumnya dilakukan dengan mengembalikan nilai bertipe error sebagai nilai
kembalian terakhir dari suatu fungsi. Kode 3.6 memperlihatkan penerapan
mekanisme tersebut, termasuk pembuatan tipe galat kustom dan pengembalian nilai
nil ketika proses berjalan tanpa kesalahan.

type InputError struct {

Pesan string

func (e #InputError) Error() string {

return e.Pesan

func prosesData(isError bool) (string, error) {
if isError {

3999

return , errors . New(”Validasi data input gagal”)

}

return “Data berhasil diproses”, nil

Kode 3.6: Fungsi dengan error handling standar

Pada cuplikan kode tersebut, tipe galat kustom InputError didefinisikan
dengan mengimplementasikan method Error (), sehingga memenuhi antarmuka
error yang disediakan oleh Go. Selain itu, fungsi prosesData mengilustrasikan
praktik konvensional dalam Go, yaitu mengembalikan nilai nil sebagai error

apabila proses eksekusi berhasil, serta objek error ketika terjadi kegagalan.

20

Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

E Implementasi Sederhana Go Fiber Routing dan Handler

Pembelajaran framework Go Fiber difokuskan pada konsep routing serta
pemanfaatan context untuk menangani permintaan HTTP. Kode 3.7 menunjukkan
contoh implementasi dasar sebuah endpoint menggunakan metode HTTP GET yang

mengembalikan respons dalam format JSON.

package main

3 import (

’710g77
”github .com/ gofiber/fiber/v2”

func main () {
app := fiber .New()

app.Get(”/api/status”, func(c =fiber.Ctx) error {
return c.Status (fiber.StatusOK) .JSON(fiber .Map{

“message”: " Aplikasi siap digunakan”,
”status”: “OK”,
3]
b
log. Fatal (app.Listen (7:30007))
}
Kode 3.7: Inisialisasi aplikasi dan endpoint sederhana
Pada implementasi tersebut, aplikasi Fiber diinisialisasi melalui
pemanggilan fungsi fiber.New (). Selanjutnya, metode app.Get digunakan

untuk mendefinisikan sebuah route dengan metode HTTP GET pada jalur
/api/status. Fungsi handler menerima parameter bertipe *fiber.Ctx yang
merepresentasikan konteks permintaan, dan digunakan untuk mengatur kode status
HTTP serta mengirimkan respons dalam format JSON kepada klien. Aplikasi
kemudian dijalankan sebagai server HT'TP pada port 3000.

3.3.3 Modifikasi Struktur Tabel untuk Integrasi Kredensial

Pada minggu keempat, pengembangan diawali dengan melakukan
perubahan pada struktur model Client. Modifikasi ini bertujuan mengubah tabel

yang sebelumnya hanya menyimpan profil klien menjadi tabel yang juga berfungsi

21

Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

sebagai penyimpanan kredensial untuk proses otentikasi. Perubahan dilakukan
dengan menambahkan kolom client _email dan client_password. Perbandingan

struktur sebelum dan sesudah perubahan ditampilkan pada Tabel 3.8 dan Tabel 3.9.

Tabel 3.8. Struktur model client (sebelum)

Atribut Tipe Data
client_id String
client_name String
currency String
country String

client_address | String

postal_code String
client_phone String
deleted_at DateTime?
created_at DateTime
updated_at DateTime

Tabel 3.9. Struktur model client (sesudah)

Atribut Tipe Data
client_id String
client_name String
client _email String

client _password | String

currency String

country String

client_address String

postal_code String

client_phone String

deleted.at DateTime?

created._at DateTime

updated_at DateTime
22

Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

1

3.3.4 Implementasi Seeder untuk Pengujian

Pada tahap pengembangan API, dibuat dua database seeder untuk
menyediakan data awal selama proses pengujian, yaitu Client Seeder dan Invoice
Seeder. Seeder digunakan agar pengujian API dapat berjalan secara konsisten

dengan data yang stabil.

A Client Seeder

Client Seeder digunakan untuk menyediakan beberapa entitas klien awal
yang dapat digunakan untuk proses autentikasi. Password klien di-hash

menggunakan bcrypt agar sesuai dengan praktik keamanan.

hashedPassword, _ := bcrypt.GenerateFromPassword ([]byte ("
passwordl23"), bcrypt.DefaultCost)
db.Exec ('

INSERT INTO clients (client_id, client_email, client_password,
client_name)
VALUES (gen_random_uuid (), 2?2, 2?2, ?)°%Y,

"contact@nusantaratech.co.id", string(hashedPassword), "

nusantaratech",

Kode 3.8: Contoh hashing dan insert klien

Kode di atas menunjukkan proses inti dari Client Seeder: hashing password
dan penyisipan data klien secara langsung. Pada implementasi sebenarnya,
beberapa klien ditambahkan secara batch insert, namun ditampilkan satu contoh

untuk menjaga kejelasan.

B Invoice Seeder

Invoice Seeder menghasilkan data faktur dengan nilai perhitungan otomatis
seperti subtotal, pajak, dan total. Penyisipan data dilakukan dalam sebuah transaksi

untuk memastikan integritas antara tabel invoices dan invoice_details.

db.Transaction (func (tx *gorm.DB) error {
// Hitung nilai faktur
price := 100
count := 2000
subTotal := price * count
taxAmount := 0.02 * float64 (subTotal)

23

Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

total := float64 (subTotal) + taxAmount

// Insert invoice dan ambil invoice_ id
var invoicelID string
tx.Raw (°
INSERT INTO invoices (
invoice_id, invoice_number, issue_date, due_date,
tax_rate, tax_amount, sub_total, total, payment_status

)
VALUES (gen_random_uuid (), ?, NOW(), NOW() + INTERVAL '30

day’,
?2, ?2, ?, ?, '"unpaid’)
RETURNING invoice_id?",
"INV-001", 0.02, taxAmount, subTotal, total,

) .Scan (&invoicelID)

// Insert invoice detail
tx.Exec ('
INSERT INTO invoice_details (
invoice_detail_id, invoice_id, amount, price_per_delivery,
delivery_count

)
VALUES (gen_random_uuid (), 2?2, ?, 2, ?)°%,

invoiceID, subTotal, price, count,

return nil

Kode 3.9: Contoh transaksi invoice seeder

Transaksi di atas memastikan bahwa data faktur dan detail faktur hanya
akan disimpan jika kedua operasi berhasil. Dengan demikian, konsistensi data tetap

terjaga selama proses pengujian.

3.3.5 Implementasi Fitur Autentikasi Klien

Sistem autentikasi dibangun dengan memisahkan tanggung jawab antara
manajemen permintaan, logika validasi keamanan, dan akses data untuk memenuhi
prinsip separation of concerns.

Pada lapisan handler, fokus utama adalah mendelegasikan data kredensial

dari permintaan HTTP ke lapisan layanan. Implementasi secara selektif untuk

24

Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

o

IS

proses delegasi ini dapat dilihat pada Kode 3.10.

func (h *ClientHandler) LoginHandler (c *fiber.Ctx) error {

// ... proses parsing request
client, err := h.service.LoginService(req.Email, req.Password)
// ... penanganan error dan response

return utils.Success(c, 200, "Login success", client)

Kode 3.10: Handler autentikasi

Logika bisnis utama terdapat pada lapisan service, khususnya pada proses
verifikasi keamanan menggunakan algoritma hashing. Inti dari validasi kredensial

pengguna tersebut dijelaskan pada Kode 3.11.

func (cs *clientService) LoginService (email, password string)

foool

client, _ := cs.repo.FindByEmail (email)

// Inti verifikasi: Komparasi hash password menggunakan bcrypt
if err := bcrypt.CompareHashAndPassword ([]byte(client.
ClientPassword), []lbyte(password)); err != nil {

return models.ClientLoginResponse{}, errors.New("password
salah")

}

return utils.ToClientLoginResponse (client), nil

Kode 3.11: Inti logika verifikasi service

Interaksi dengan basis data pada lapisan repository disederhanakan untuk
hanya melakukan pengambilan entitas tunggal. Kueri data berdasarkan identitas

unik surel ditunjukkan pada Kode 3.12.

func (r *clientRepository) FindByEmail (email string) (*models.
Client, error) {
var client models.Client
// Pengambilan data menggunakan kueri SQL mentah
err := r.db.Raw(‘SELECT * FROM clients WHERE client_email = ?
LIMIT 1', email).Scan(&client) .Error

return &client, err

Kode 3.12: Kueri data klien

25

Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

3.3.6 Integrasi Autentikasi Sisi Frontend

Di sisi frontend, integrasi dilakukan untuk menghubungkan input pengguna
dengan endpoint API backend. Logika utama dalam pemberian otorisasi sesi
pengguna pada pustaka NextAuth dirinci pada Kode 3.13.

I authorize: async (cred) => {
// Komunikasi asinkronus dengan backend API
const res = await axios.post (‘${process.env.API_URL}/api/clients
/login‘', cred);

4 const data = res.data.data;

6 // Mengembalikan data user jika autentikasi berhasil
7 return data ? { id: data.client_id, email: data.client_email,

name: data.client_name } : null;

Kode 3.13: Logika authorize NextAuth

Melalui pendekatan yang dipaparkan pada Kode 3.10 hingga Kode 3.13,
aplikasi menjamin bahwa hanya pengguna dengan kredensial valid yang dapat
memperoleh token akses untuk sesi aktif.

3.3.7 Implementasi Fitur Pengambilan Data Invoice

Sistem ini memastikan isolasi data dengan mengimplementasikan alur kerja
berlapis. Fokus utama pada fitur ini adalah memastikan bahwa data yang ditarik

hanya milik pengguna yang terautentikasi.

A Lapisan Handler

Pada lapisan ini, poin krusial adalah pengambilan identitas klien dari
konteks lokal yang telah diatur oleh middleware. Implementasi inti pada
GetAllInvoiceByClientIdHandler dapat dilihat pada Kode 3.14.

i // Mengambil identitas user dari context yang diinjeksi middleware

2 userId := c.Locals("userId").(string)

3 invoices, err := h.service.GetAllInvoiceByClientIdService (userId)

Kode 3.14: Ekstraksi ID dari konteks lokal

26

Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

B Lapisan Service

Lapisan service berfungsi melakukan validasi bisnis terhadap hasil kueri.
Bagian paling penting adalah deteksi kondisi data yang tidak ditemukan untuk
memberikan respons spesifik, seperti ditunjukkan pada Kode 3.15.
1 // Validasi spesifik Jjika record tidak ditemukan dalam database
» if errors.Is(err, gorm.ErrRecordNotFound) {

return nil, errors.New("invoice tidak ditemukan")

4}
Kode 3.15: Logika validasi record

C Lapisan Repository dan Struktur Data

Pada lapisan repository, keamanan data dijamin melalui penggunaan kueri
SQL yang terfilter secara eksplisit. Fokus utama terletak pada implementasi
klausa WHERE menggunakan atribut client_id untuk membatasi ruang lingkup
pengambilan data, sehingga tercipta isolasi data antar klien.

Penyimpanan data faktur diorganisir ke dalam dua entitas utama: tabel
invoices untuk informasi header dan tabel invoice details untuk rincian
transaksi. Hubungan antar tabel ini dijaga melalui foreign key invoice_id. Struktur

lengkap dari kedua tabel tersebut dipaparkan pada Tabel 3.12 dan Tabel 3.11.

Tabel 3.10. Struktur table invoice

Atribut Tipe Data

invoice_id String (PK)

invoice_number | String

issue_date DateTime
due_date DateTime
total Float

payment_status | String

client_id String (FK)
created_at DateTime
27

Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

o

Tabel 3.11. Struktur table invoice detail

Atribut Tipe Data

invoice_detail_id | String (PK)

transaction_note | String

amount Float
invoice_id String (FK)
created_at DateTime

Berdasarkan struktur pada Tabel 3.12, kolom client_id menjadi kunci
krusial dalam keamanan aplikasi. Setiap kueri yang dieksekusi oleh repository
wajib menyertakan filter terhadap kolom ini untuk memastikan klien hanya dapat
mengakses data miliknya sendiri. Implementasi kueri tersebut ditunjukkan pada
Kode 3.16.

// Menjamin isolasi data melalui filter client_id pada kueri
query := ‘SELECT * FROM invoices WHERE client_id = ?°

3 err := r.db.Raw(query, clientId).Scan(&invoices) .Error

1

Kode 3.16: Kueri SQL terfilter berdasarkan client ID

Penerapan kueri pada Kode 3.16 secara efektif mencegah akses ilegal antar
klien. Meskipun seorang klien mengetahui ID faktur milik pihak lain, sistem tidak
akan mengembalikan data tersebut karena filter clientId tidak akan terpenuhi

dalam hasil pencarian basis data.

3.3.8 Reimplementasi Endpoint Get All Payments Berdasarkan Klien

Reimplementasi ini bertujuan untuk memastikan bahwa akses terhadap data
pembayaran dikunci secara ketat berdasarkan identitas klien yang terautentikasi
melalui token JWT.

A Payment Handler

Pada lapisan ini, fokus utama adalah ekstraksi identitas klien (userId) yang
telah diinjeksi oleh middleware ke dalam konteks lokal Fiber. Potongan kode
pada Kode 3.17 menunjukkan bagaimana identitas ini digunakan sebagai parameter

utama.

// Mengambil userId dari konteks sesi yang terautentikasi

28

Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

5

o

userId := c.Locals("userId").(string)

payments, err := h.service.GetAllPaymentByClientIdService (userId)

Kode 3.17: Ekstraksi identitas klien pada handler

B Payment Service

Lapisan service menangani logika transisi data dan validasi hasil. Bagian
terpenting adalah penanganan kondisi ketika catatan pembayaran tidak ditemukan
dalam basis data, sebagaimana diilustrasikan pada Kode 3.18.

// Memastikan pesan error yang informatif saat data kosong

if errors.Is(err, gorm.ErrRecordNotFound) {

return nil, errors.New("payment tidak ditemukan")

Kode 3.18: Logika penanganan record tidak ditemukan

C Payment Repository

Melalui operasi JOIN antar tabel, sistem memastikan bahwa data
pembayaran hanya diambil jika terkait langsung dengan ID klien yang meminta.
Mekanisme ini memanfaatkan relasi antara tabel payments, invoices, dan
clients, sehingga akses data pembayaran selalu dibatasi oleh kepemilikan klien

yang sah. Struktur kueri SQL tersebut dirinci pada Kode 3.19.

\

query :=
SELECT p.payment_date, p.amount_paid, p.proof_of_transfer
FROM payments p

JOIN invoices i ON p.invoice_id = i.invoice_id
JOIN clients ¢ ON i.client_id = c.client_id
WHERE c.client_id = ?

ORDER BY p.payment_date DESC;

err := p.db.Raw(query, clientId) .Scan (&payments).Error

Kode 3.19: Kueri JOIN dengan filter keamanan

Atribut data yang diambil dalam kueri tersebut selaras dengan struktur
tabel pembayaran yang digunakan oleh sistem. Tabel ini menyimpan informasi
inti terkait transaksi pembayaran, termasuk waktu pembayaran, jumlah yang

dibayarkan, serta bukti transfer. Struktur lengkap tabel pembayaran ditunjukkan

29

Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

pada Tabel 3.12, yang menjadi dasar dalam proses pengambilan data pada lapisan

repository.

Tabel 3.12. Struktur table payment

Atribut Tipe Data
payment_id String (PK)
payment _date DateTime
amount _paid Float

proof _of transfer | String

voided_at DateTime
created_at DateTime
updated_at DateTime

3.3.9 Penerapan Desain Halaman Login

Pada periode minggu ke-5, halaman login dikembangkan, beralih dari fase
prototype pengujian fungsi menuju penyesuaian penuh dengan desain antarmuka
pengguna (UI) yang telah ditetapkan. Implementasi desain baru ini memastikan
keselarasan antara fungsi autentikasi yang sudah stabil dan tampilan akhir produk.

Hasil akhir dari pembaruan desain halaman login dapat dilihat pada Gambar 3.3.

x>
Mobile Data Indonesia
Client Portal

Login to your account

e-mail

youremail@example.com

Gambar 3.3. Tampilan akhir antarmuka halaman login portal klien

30

Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

3.3.10 Implementasi Side Navigation Bar

Pada minggu ke-6, implementasi side navigation bar dilakukan berdasarkan
desain yang telah ditetapkan. Implementasi ini berfungsi untuk memfasilitasi user
dalam bernavigasi dari satu halaman ke halaman lain. Aspek responsive design juga
diterapkan guna menjamin kemudahan akses dan navigasi bagi user dari berbagai

perangkat. Berikut adalah hasil akhir dari implementasi side navigation bar.

€X> Mobile Data Indonesia

Main
(@ Dashboard
B invoices

& payments

majuyaja

info@majuyaja.co.id

[Logout

Gambar 3.4. Tampilan akhir navigation bar

3.3.11 Optimasi Fetching Data dengan Strategi useSWR

Pada minggu ke-6, dilakukan transisi mekanisme pengambilan data dari
metode imperatif (axios) menjadi deklaratif menggunakan pustaka useSWR (Stale-
While-Revalidate). Strategi ini diterapkan untuk mengoptimalkan performa aplikasi
melalui mekanisme caching dan sinkronisasi data otomatis di latar belakang.

Penerapan utama useSWR difokuskan pada fleksibilitas pengambilan data

secara kondisional, di mana permintaan API hanya akan dieksekusi apabila token

31

Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

otorisasi telah tersedia dalam status aplikasi. Implementasi inti dari logika ini
dipaparkan pada Kode 3.20.

// Menggunakan SWR untuk caching dan revalidasi otomatis

const { data, error, isLoading } = useSWR<InvoiceResponse > (
// Conditional fetching: key bernilai null jika token tidak
ada

jwtToken ? ‘${process.env.NEXT_PUBLIC_API_URL}/api/invoices/

get' : null,
5 (url: string) => fetcherWithAuth<InvoiceResponse>(url,
jwtToken || undefined)

6);

Kode 3.20: Implementasi fetching Kondisional dengan useSWR

Penggunaan conditional key pada Kode 3.20 menjamin efisiensi sumber
daya jaringan dengan mencegah pemanggilan endpoint yang tidak sah sebelum
pengguna terautentikasi. Selain itu, fungsi fetcherWithAuth secara otomatis
menyuntikkan bearer token ke dalam header permintaan, sehingga aspek keamanan
tetap terjaga tanpa menambah kompleksitas pada komponen antarmuka.

Melalui skema ini, data faktur yang telah diambil akan disimpan dalam
cache lokal, sehingga saat pengguna berpindah halaman dan kembali lagi, data
dapat langsung ditampilkan secara instan tanpa menunggu proses jaringan selesai
(stale data), sementara validasi data terbaru tetap berjalan di latar belakang.

3.3.12 Implementasi Generate & Download PDF

Fitur pembuatan dokumen PDF dilakukan melalui API Route yang berfungsi
sebagai perantara (proxy) untuk menjaga keamanan token JWT saat melakukan

permintaan dokumen ke backend.

A Pemrosesan Parameter Permintaan

Implementasi pada sisi API Route difokuskan pada ekstraksi data identitas
faktur dan kredensial akses yang dikirimkan oleh frontend. Inti dari pengambilan
data tersebut dapat dilihat pada Kode 3.21.

1 // Ekstraksi data dan token dari body request

> const { invoice_id, jwt_token } = await request.json () ;

4 // Fetching data ke backend menggunakan Bearer Token

32

Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

o

const apiResponse = await fetch (‘${process.env.API_URL}/api/
invoices/get/detail ', {
method: "POST",
headers: { "Authorization": ‘Bearer ${jwt_token}', "Content-
Type": "application/json" 1},
body: JSON.stringify ({ invoice_id })

b) i

Kode 3.21: Ekstraksi parameter dan otorisasi backend

Penggunaan Kode 3.21 sangat penting karena jwt_token digunakan untuk
memberikan otorisasi kepada server backend agar mengizinkan akses data sensitif.
Dengan memproses ini di server-side, token tidak terekspos pada URL permintaan

di sisi klien.

B Mekanisme Penyimpanan dan Pengiriman PDF

Dokumen PDF tidak disimpan ke dalam file system server, melainkan diolah
sepenuhnya di dalam memori (RAM) dalam bentuk Buffer. Hal ini bertujuan untuk
mencegah penumpukan berkas sementara dan menjaga kerahasiaan data. Proses
pengiriman data biner tersebut ditunjukkan pada Kode 3.22.

// Render komponen React menjadi Buffer biner di memori

const pdfBuffer = await renderToBuffer (React.createElement (

PDFTemplate, { invoiceData }));

// Mengirimkan buffer langsung sebagail respons HTTP
return new NextResponse (pdfBuffer as BodyInit, {
status: 200,
headers: {
"Content -Type": "application/pdf",
"Content -Disposition": ‘inline; filename="invoice-${
invoice_id}.pdf" ",
by
b i

Kode 3.22: Konversi ke buffer dan binary streaming

Berdasarkan Kode 3.22, PDF dikirimkan kepada pengguna sebagai
aliran data biner (Binary Stream). Melalui penetapan header Content-Type:
application/pdf, peramban klien diperintahkan untuk langsung membuka atau

mengunduh dokumen tanpa ada jejak berkas fisik yang tertinggal di media

33

Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

penyimpanan server. Mekanisme on-the-fly rendering ini memastikan skalabilitas

aplikasi karena server tidak perlu mengelola siklus hidup berkas statis di dalam disk.

3.3.13 Implementasi Base64 Sebagai Penyimpanan Gambar

Untuk mendukung arsitektur stateless, penyimpanan gambar dilakukan
dengan mengonversi berkas biner menjadi format string di dalam basis data. Hal

ini menghilangkan kebutuhan akan file system permanen di server.

A Encoding Sisi Backend

Pada sisi backend, fokus utama terletak pada transformasi buffer gambar
menjadi skema Data URI Base64. Inti dari proses konversi tersebut ditunjukkan
pada Kode 3.23.

// Konversi buffer biner menjadi string Base64 dengan metadata

mimetype

» const base64String = ‘data:${reqg.file.mimetype};base64d,S${req.file.

buffer.toString (’'base64’)}?Y;

3 req.body.proof_of_transfer = base64String;

Kode 3.23: Transformasi buffer ke data URI base64

B Decoding Sisi Frontend

Di sisi klien, data Base64 direkonstruksi kembali menjadi objek biner (Blob)
secara temporer di dalam memori peramban. Kode 3.24 menampilkan logika inti

pemrosesan data tersebut sebelum ditampilkan kepada pengguna.

// Dekode string Base64 menjadi array byte biner

» const byteCharacters = atob (proof.split(",")[1]);

3 const byteArray = new Uint8Array (Array.from(byteCharacters, char

=> char.charCodeAt (0)));

// Pembuatan URL objek temporer dari Blob

const blobUrl = URL.createObjectURL (new Blob ([byteArray], { type:
contentType 1}));

window.open (blobUrl, "_blank");

Kode 3.24: Konversi base64 ke blob object

34

Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

Penerapan Kode 3.23 dan Kode 3.24 memastikan bahwa sistem tidak
menyisakan jejak berkas fisik di media penyimpanan server maupun klien. Gambar
hanya menempati ruang di basis data sebagai teks, dan diproses di dalam
memori (RAM) peramban hanya saat dibutuhkan untuk visualisasi. Mekanisme
URL. createObjectURL memastikan efisiensi karena data biner tersebut tidak perlu

diunduh ulang melalui permintaan jaringan tambahan.

3.3.14 Penerapan Email CRON Job

CRON Job merupakan mekanisme penjadwalan standar pada sistem operasi
berbasis Unix, yang berfungsi menjalankan perintah atau skrip secara otomatis
pada waktu atau interval tertentu [7, 8]. Implementasi CRON Job di sini sangat
penting untuk mengotomatisasi pengiriman email reminder kepada semua klien
tanpa memerlukan intervensi manual. CRON Job yang dirancang bertujuan untuk
mengirimkan email secara berkala pada interval yang telah ditentukan. Berikut
adalah implementasi kode untuk mengaktifkan penjadwalan tersebut.

cronJob := cron.New()
cronJob . AddFunc(”0 7 * = =7, func() { jobs.EmailCron(config.DB

) b
cronJob . Start ()

Kode 3.25: Inisialisasi dan penjadwalan tugas email

Kode 3.25 menunjukkan inisialisasi scheduler CRON baru (cronJob :=
cron.New()). Fungsi AddFunc digunakan untuk mendaftarkan tugas, di mana
"0 7 * * *" merupakan sintaks CRON yang menjadwalkan eksekusi tugas pada
pukul 07:00 pagi setiap hari. Tugas yang dijalankan adalah jobs.EmailCron, yang
bertanggung jawab mengirim email reminder menggunakan koneksi database yang
disediakan (config.DB). Akhirnya, cronJob.Start () mengaktifkan scheduler

tersebut.

3.3.15 Email Notification

Email notification diimplementasikan untuk memberikan reminder
pembayaran invoice secara langsung kepada client tanpa memerlukan intervensi
manual dari pihak perusahaan. Setiap notifikasi mencakup informasi yang jelas
mengenai batas waktu pembayaran (deadline) yang tersisa. Otomatisasi ini

memastikan client menerima informasi tepat waktu, sehingga meningkatkan

35

Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

efisiensi proses penagihan. Tampilan contoh email reminder yang dikirimkan

kepada client dapat dilihat pada Gambar 3.5.

Pembayaran Invoice

Halo nusantaratech ,

Kami ingin mengingatkan Anda bahwa inveice berikut telah jatuh tempo:

Nomor Invoice:1

Tanggal Jatuh Tempo:15 October 2025
Total Invoice:Rp 2055442.50

Sudah Dibayar:Rp 1500000.00

Sisa Pembayaran:Rp 555442.50

Mohon segera lakukan pembayaran untuk menghindari keterdlambatan lebih lanjut. Jika Anda
sudah melakukan pembayaran, mohon abaikan email ini

Email ini dikirim secara otomatis, mohon tidak membalas email ini.
Untuk pertanyaan, silakan hubungi customer service kami

Gambar 3.5. Tampilan contoh email notifikasi pembayaran invoice

3.3.16 Implementasi Halaman Invoice

Pada minggu ke-10 hingga ke-11, Halaman Invoice telah berhasil
diimplementasikan dan diselesaikan sesuai dengan desain yang telah disetujui
sebelumnya. Halaman ini berfungsi sebagai pusat bagi client untuk melihat dan
mengelola semua faktur mereka. Tampilan hasil akhir dari Halaman Invoice dapat
dilihat pada Gambar 3.6.

36

Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

All Invoices

View and manage all your invoices

Search Invoice Number

Search by invoice number...

Payment Status

] Paid Partial Unpaid

Overdue Status

Overdue Before Due

Voided Status

Active Voided

Invoice Number Issue Date Due Date

INV-2024-1005 27 Sep 2025 26 Nov 2025 Rp 1.2
INV-2024-1006 17 Sep 2025 & Des 2025 Rp 1.3
INV-2024-1004 7 Okt 2025 16 Nov 2025 Rp1.2
4 G >

Gambar 3.6. Tampilan akhir halaman invoice

Halaman Invoice ini dilengkapi dengan fitur filter dan tampilan tabel data.

Berikut rincian fitur filter dan deskripsi kolom tabel.

3.3.17 Implementasi Halaman Payment

Pada minggu ke-10 hingga ke-11, implementasi Halaman Payment berhasil
diselesaikan. Halaman ini berfungsi sebagai pusat bagi client untuk meninjau dan
melacak semua riwayat pembayaran yang telah dilakukan untuk setiap invoice.
Fitur yang disediakan mencakup filter dan search sederhana, serta kapabilitas

sorting pada kolom tabel. Tampilan halaman ini dapat dilihat pada Gambar 3.7.

37

Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

Tabel 3.13. Rincian fitur filter halaman invoice

Fitur Filter

Fungsi

Search Invoice Number

Berfungsi untuk mencari invoice secara spesifik
berdasarkan nomor faktur (Invoice Number).

Payment Status

Memungkinkan user memfilter invoice berdasarkan status
pembayarannya (misalnya: Paid, Unpaid).

Overdue Status

Memungkinkan user memfilter invoice berdasarkan status
jatuh temponya (Overdue atau Before Due).

Voided Status

Memungkinkan user memfilter invoice berdasarkan status
validitasnya (Active atau Voided).

Payments

View and manage all payment records

Search Invoice Number

Search by invoice number...

Payment Status

Active Voided

Invoice Number Payment Date Payment Amount

INV-2024-1005 13 Nov 2025 Rp 632.500,0C
INV-2024-1005 12 Nov 2025 Rp 632.500,0C
INV-2024-1005 3 Nov 2025 Rp 632.500,0C
INV-2024-1005 3 Nov 2025 Rp 632.500,0C

4 »

Gambar 3.7. Tampilan akhir halaman payment

Berikut adalah rincian fitur filfer dan deskripsi kolom tabel yang terdapat

pada Halaman Payment.

38

Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

Tabel 3.14. Rincian fitur filter halaman payment

Fitur Filter | Fungsi

Search Berfungsi untuk mencari pembayaran berdasarkan invoice
number secara spesifik.

Filter Memungkinkan user memfilter data pembayaran
berdasarkan status pembayaran.

3.3.18 Implementasi Halaman Dashboard

Implementasi Halaman Dashboard juga dilaksanakan pada minggu ke-10
hingga ke-11. Dashboard ini berfungsi untuk menampilkan ringkasan data penting
(key metrics) secara menyeluruh, sehingga memberikan gambaran cepat mengenai
status finansial perusahaan kepada client. Informasi utama yang disajikan meliputi
Total Tagihan, Total Nominal yang Sudah Dibayar, jumlah invoice yang sudah
melewati deadline (Overdue), dan Total Keseluruhan Invoice. Selain itu, disajikan
pula daftar Recent Invoice yang menampilkan faktur yang baru saja diterbitkan,

sehingga memudahkan client dalam pelacakan aktivitas terbaru. Tampilan akhir

dari Halaman Dashboard dapat dilihat pada Gambar 3.8.

Main

XY Mobile Data Indonesia

@ Dashboard
B invoices

S payments

Dashboard

verview of your account and recent activities

Total Outstanding Total Paid

Rp 1.342.500,00 Rp 2.452.500,00

Total Invoices

View all

Recent Invoices

Issue Date Due Date Total Status Amount Paid

27 Sep 2025 26 Nov 2025 Rp 1.265.000,00

rp132000000 (EF)

Rp 1.210.000.00

Rp 632.500,00

17 Sep 2025 6 Des 2025 Rp 1.320.000,00

7 Okt 2025 16 Nov 2025 Rp 500.000.00

Gambar 3.8. Tampilan akhir halaman dashboard

39

Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

3.3.19 Implementasi Rate Limiter

Pada minggu ke-12, rate limiter diimplementasikan sebagai lapisan
keamanan yang bertujuan untuk mengendalikan frekuensi permintaan (request) dari
setiap klien. Hal ini penting untuk menjaga penggunaan sumber daya server tetap
stabil dan mencegah serangan Denial of Service (DoS) atau penyalahgunaan API.
Implementasi rate limiter ini menggunakan middleware 1imiter yang disediakan
oleh framework Go Fiber.

app.Use(limiter .New(limiter.Config{
Max : 10,
Expiration: 30 # time.Second,

Kode 3.26: Konfigurasi dasar dan batas akses

Kode 3.26 menunjukkan inisialisasi middleware 1imiter dan penerapannya
pada seluruh aplikasi (app.Use). Konfigurasi dasar menetapkan batas (Max)
maksimum 10 permintaan dalam durasi (Expiration) 30 detik. Ini berarti setiap
alamat IP hanya diizinkan mengirim 10 request dalam periode 30 detik.

KeyGenerator: func(c =fiber.Ctx) string {
return c.IP ()

}
LimitReached: func(c xfiber.Ctx) error {
return utils . Error(c, fiber.StatusTooManyRequests, “Too Many
Request”, ”Please try again later”)
}
13D

Kode 3.27: Penentuan kunci (key) dan penanganan batas tercapai

Pada kode 3.27, KeyGenerator diatur untuk mengidentifikasi klien
berdasarkan alamat IP mereka (c.IP()), sehingga setiap IP memiliki batas
permintaannya sendiri. Fungsi LimitReached mendefinisikan respons yang akan
dikirimkan ketika batas permintaan terlampaui. Respons yang dikirim adalah 429
Too Many Requests dengan pesan error kustom yang menyarankan klien

untuk mencoba lagi nanti.

3.3.20 Implementasi Protected Routes

Perlindungan rute (protected routes) pada sisi frontend diterapkan untuk
memastikan akses ke halaman sensitif seperti dashboard, invoices, dan payments

terbatas hanya bagi klien yang memiliki kredensial sah. Mekanisme ini

40

Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

1

menggunakan middleware yang bekerja di tingkat edge runtime untuk mencegat

permintaan sebelum mencapai komponen halaman.

A Logika Navigasi dan Redireksi Middleware

Middleware memeriksa keberadaan session token di dalam cookies klien
pada setiap transisi halaman. Fokus utama dari logika ini adalah mencegah
pengguna yang sudah /ogin untuk kembali ke halaman login, serta memblokir akses
anonim ke jalur terproteksi. Implementasi ringkas dari logika tersebut dapat dilihat
pada Kode 3.28.

export function middleware (request: NextRequest) {

const sessionToken = request.cookies.get ("access_token")?.
value;
const isLoginPage = request.nextUrl.pathname === "/login";

// Mencegah akses ke halaman login jika sudah terautentikasi
if (isLoginPage && sessionToken) {

return NextResponse.redirect (new URL("/", request.nextUrl.
origin));

}

// Proteksi rute: Arahkan ke login jika tidak ada token
if (!isLoginPage && !sessionToken) ({

return NextResponse.redirect (new URL("/login", request.
nextUrl.origin));

}

return NextResponse.next ();

Kode 3.28: Logika validasi sesi dan redireksi

Penerapan Kode 3.28 memastikan bahwa aliran navigasi pengguna selalu
sinkron dengan status autentikasi mereka. Dengan melakukan pemeriksaan di sisi
server (middleware), sistem dapat menghindari kebocoran data visual yang sering

terjadi jika proteksi hanya dilakukan di sisi klien (client-side rendering).

B Konfigurasi Jalur Terproteksi

Untuk mengoptimalkan performa, middleware hanya dijalankan pada jalur-

jalur tertentu yang didefinisikan dalam objek konfigurasi. Hal ini mencegah

41

Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

eksekusi kode pada berkas statis atau aset publik. Daftar jalur yang dilindungi oleh
sistem ini dirinci pada Kode 3.29.
export const config = {
matcher: [
Wy
"/login",
"/invoices/:path*",

"/payments/:path*",

Kode 3.29: Konfigurasi matcher middleware

Melalui penggunaan matcher pada Kode 3.29, sistem secara otomatis
memetakan rute mana saja yang memerlukan validasi token. Kombinasi antara
logika pada Kode 3.28 dan konfigurasi rute ini menciptakan sistem keamanan

frontend yang tangguh dan efisien dalam pengelolaan sesi pengguna.

3.3.21 Pengembangan Sistem Notifikasi

Sistem notifikasi dikembangkan untuk melengkapi fungsi CRON Job yang
telah dibuat sebelumnya. Setelah CRON Job mengirimkan email reminder
pembayaran invoice, sistem secara bersamaan akan membuat dan menyimpan
notifikasi baru yang ditujukan kepada client yang bersangkutan. Notifikasi ini
berfungsi untuk memberi tahu user mengenai invoice yang mendekati batas waktu
pembayaran (deadline) atau yang sudah melewati jatuh tempo. Tampilan antarmuka
notifikasi dapat dilihat pada Gambar 3.9.

42

Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

Invoice INV-2024-1004 telah jatuh
tempo. Tanggal jatuh tempo: 16
November 2025

Mark as read all

Gambar 3.9. Tampilan modal notifikasi

Pada antarmuka, setiap notifikasi baru yang belum dibaca akan memicu
munculnya indikator mengambang (floating notification) pada ikon bel, yang
menunjukkan jumlah notifikasi yang belum dibaca. Ketika ikon tersebut diklik,
akan muncul popover modal yang menampilkan daftar (/ist) notifikasi. User dapat
menggunakan tombol Mark As Read untuk menandai semua notifikasi sebagai
sudah dibaca, yang secara otomatis akan menghilangkan indikator mengambang

pada ikon notifikasi.

3.3.22 Penambahan Seeding Data

Pada minggu terakhir pelaksanaan, dilakukan penambahan volume seeding
data secara signifikan untuk menciptakan skenario simulasi yang mendekati kondisi
nyata (real case). Fokus utama adalah menghasilkan dataset invoice dengan status
pembayaran yang bervariasi (unpaid, partial, paid) guna menguji akurasi filter dan

kalkulasi saldo pada aplikasi.

A Invoice Seeder

Invoice Seeder dirancang untuk menghasilkan tiga faktur per klien dengan
skenario status yang berbeda. Bagian krusial dari implementasi ini adalah
penggunaan blok switch untuk menentukan logic nominal pembayaran dan
pembungkusan kueri ke dalam database transaction untuk menjamin integritas data

antara tabel invoice dan detailnya. Logika inti tersebut ditunjukkan pada Kode 3.30.

43

Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

1

5

3

4

5

6

// Loop untuk menghasilkan 3 status berbeda per klien
for 1 := 0; 1 < 3; 1++ {
var paymentStatus string

var amountPaid float64

switch i {

case 0: paymentStatus, amountPaid "unpaid", 0
case 1: paymentStatus, amountPaid = "partial", total / 2

"paid", total

case 2: paymentStatus, amountPaid

}

// Menjamin integritas data menggunakan Transaksi GORM
db.Transaction (func (tx *gorm.DB) error {

// ... Insert Invoice

// Menggunakan RETURNING invoice_id untuk relasi detail

tx.Raw (invoiceQuery, ...).Scan (&invoicelID)

// Insert Invoice Detail berdasarkan ID yang baru dibuat

return tx.Exec(invoiceDetailQuery, invoiceID, ...).Error

Kode 3.30: Logika penentuan status dan transaksi database

Melalui penggunaan Kode 3.30, sistem dapat mensimulasikan berbagai
kondisi keuangan klien dalam satu kali eksekusi, sehingga pengujian fitur reporting

menjadi lebih komprehensif.

B Payment Seeder

Payment Seeder melengkapi dataset dengan membuat catatan pembayaran
hanya untuk faktur yang tidak berstatus unpaid. Langkah selektif yang diambil
dalam kueri ini adalah melakukan filter awal pada status invoice sebelum melakukan
proses penyisipan data ke tabel payments. Implementasi kueri dan kalkulasi sisa
tagihan dipaparkan pada Kode 3.31.

// Hanya mengambil invoice yang memiliki riwayat pembayaran (
partial/paid)
db.Raw (‘SELECT invoice_id, total, amount_paid FROM invoices

WHERE payment_status IN (’partial’, ’'paid’) LIMIT 10°%').

Scan (&invoices)
for _, inv := range invoices {

44

Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

remainingAmount := inv.Total - inv.AmountPaid
if remainingAmount > 0 {
// Membuat record pembayaran untuk sisa tagihan
paymentQuery := ‘INSERT INTO payments (payment_id,
amount_paid, invoice_id, ...)
VALUES (gen_random_uuid (), 2, 2?2, ...)°

db.Exec (paymentQuery, remainingAmount, inv.InvoiceID, ...)

Kode 3.31: Filtering invoice dan pembuatan data pembayaran

Berdasarkan Kode 3.31, data pembayaran yang dihasilkan selalu sinkron
dengan sisa saldo pada faktur terkait. Dengan memisahkan tugas seeder menjadi
dua tahap ini, pengembang dapat memastikan bahwa relasi antar-tabel diuji secara

vertikal, mulai dari entitas klien hingga ke catatan pembayaran spesifik.

3.4 Kendala dan Solusi yang Ditemukan

Selama proses migrasi dan pengembangan backend pada proyek baru,
terdapat beberapa kendala teknis dan operasional yang terkait dengan kompatibilitas

sistem lama dan adaptasi teknologi baru.

1. Adanya learning curve untuk bahasa pemrograman Go, khususnya dalam
konsep penggunaan struct dan receiver, menyebabkan proses pengembangan
berjalan kurang efisien. Hal ini disebabkan oleh perbedaan paradigma

pemrograman (seperti OOP) dengan bahasa yang telah dikuasai sebelumnya.

2. ORM dari proyek Service Internal Invoice tidak dapat digunakan kembali
(reused) untuk pengembangan aplikasi Client Portal karena ketidakcocokan

teknologi dan struktur data antara kedua codebase yang independen.

3. Mekanisme upload gambar pada aplikasi Service Invoice Internal masih
menyimpan file di folder lokal (uploads), sehingga tidak dapat diakses dan
ditampilkan oleh aplikasi Service Client Portal. Hal ini mengharuskan
perubahan pada codebase untuk memindahkan lokasi penyimpanan ke tempat

yang dapat diakses bersama.

Pada setiap kendala yang disebutkan, berikut solusi yang

diimplementasikan:

45

Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

1. Pembelajaran intensif secara mandiri melalui dokumentasi dan tutorial

Golang untuk mempercepat adaptasi syntax pemrograman.

2. Penerapan Raw Query SQL secara langsung untuk menangani operasi
database, memastikan kompatibilitas dengan skema yang ada dan

menghindari ketergantungan pada ORM lama.

3. Modifikasi kode untuk mengganti mekanisme penyimpanan lokal dengan
integrasi layanan penyimpanan terpusat agar file dapat diakses bersama oleh

berbagai layanan aplikasi.

46

Implementasi Website Client ..., Michael Tio, Universitas Multimedia Nusantara

	BAB 3 Pelaksanaan Kerja Magang
	3.1 Kedudukan dan Koordinasi
	3.2 Tugas yang Dilakukan
	3.3 Uraian Pelaksanaan Magang
	3.3.1 Mempelajari Sistem Sebelumnya
	3.3.2 Belajar Go
	3.3.3 Modifikasi Struktur Tabel untuk Integrasi Kredensial
	3.3.4 Implementasi Seeder untuk Pengujian
	3.3.5 Implementasi Fitur Autentikasi Klien
	3.3.6 Integrasi Autentikasi Sisi Frontend
	3.3.7 Implementasi Fitur Pengambilan Data Invoice
	3.3.8 Reimplementasi Endpoint Get All Payments Berdasarkan Klien
	3.3.9 Penerapan Desain Halaman Login
	3.3.10 Implementasi Side Navigation Bar
	3.3.11 Optimasi Fetching Data dengan Strategi useSWR
	3.3.12 Implementasi Generate & Download PDF
	3.3.13 Implementasi Base64 Sebagai Penyimpanan Gambar
	3.3.14 Penerapan Email CRON Job
	3.3.15 Email Notification
	3.3.16 Implementasi Halaman Invoice
	3.3.17 Implementasi Halaman Payment
	3.3.18 Implementasi Halaman Dashboard
	3.3.19 Implementasi Rate Limiter
	3.3.20 Implementasi Protected Routes
	3.3.21 Pengembangan Sistem Notifikasi
	3.3.22 Penambahan Seeding Data

	3.4 Kendala dan Solusi yang Ditemukan

