
BAB 3
Pelaksanaan Magang

3.1 Kedudukan dan Organisasi

Selama pelaksanaan kerja magang di Divisi Digital Banking Bank SMBC,
mahasiswa magang ditempatkan sebagai Full Stack Developer Intern yang
bertanggung jawab atas pengembangan Complaint Management System internal.
Struktur organisasi dan koordinasi kerja magang dapat dijelaskan sebagai berikut:

1. Supervisor Digital Banking: Bertanggung jawab memberikan arahan teknis,
supervisi proyek, dan evaluasi berkala terhadap progres pengembangan
sistem. Supervisor juga menjadi penghubung antara mahasiswa magang
dengan manajemen divisi dan unit terkait.

2. Full Stack Developer Intern: Bertugas melakukan perancangan sistem,
pengembangan antarmuka pengguna (front end), pengembangan layanan dan
basis data (back end), integrasi komponen sistem, serta pengujian fungsional.
Posisi ini menuntut kemampuan bekerja secara mandiri dengan tanggung
jawab penuh atas siklus pengembangan aplikasi.

Koordinasi dilakukan secara rutin melalui weekly meeting dengan supervisor
untuk melakukan progress review, penyelarasan prioritas pengembangan, dan
evaluasi teknis. Komunikasi ad-hoc memanfaatkan kanal daring (chat/video call)
sesuai kebutuhan untuk diskusi teknis mendalam atau penyelesaian blocker yang
bersifat mendesak.

Gambar 3.1. Sesi koordinasi daring mingguan dengan supervisor.

7
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

Kedudukan sebagai Full Stack Developer yang bekerja secara mandiri
memberikan kesempatan untuk terlibat dalam berbagai tahapan pengembangan
sistem, mulai dari riset antarmuka pengguna, implementasi fitur, hingga pengujian
dan dokumentasi. Fokus utama pada tahap awal adalah riset UI untuk memastikan
sistem mudah digunakan dan familiar bagi pengguna, mengingat pentingnya
aspek usability dalam sistem manajemen komplain internal. Alur kerja yang
dijalankan mencakup: riset dan perancangan UI/UX, implementasi bertahap
(frontend–backend), integrasi antar komponen, uji fungsional dan debugging, serta
penyusunan dokumentasi.

3.2 Tugas yang Dilakukan

Tugas utama yang dilaksanakan selama masa magang adalah merancang
dan membangun sistem manajemen komplain berbasis web yang digunakan
untuk mendukung operasional penanganan pengaduan secara terpusat. Aplikasi
dikembangkan secara end-to-end dalam peran sebagai full-stack developer, dengan
menggunakan Next.js dan React pada sisi frontend serta layanan Firebase
(Authentication, Firestore/Realtime Database, dan Storage) pada sisi backend.
Sistem dirancang untuk mendukung tiga peran utama, yaitu User, Staff, dan Admin,
lengkap dengan mekanisme autentikasi dan otorisasi hak akses.

Secara garis besar, proses pengembangan dimulai dari analisis kebutuhan
dan penyusunan rancangan sistem berupa diagram use case, flowchart alur
komplain, serta struktur data untuk tiket, pesan percakapan, dan audit log. Setelah
rancangan disepakati, penulis mengimplementasikan struktur data dan layanan
backend, menyusun skema koleksi pada Firestore, mengonfigurasi autentikasi, serta
membuat API route untuk pengelolaan tiket, chat, perubahan status, dan penyajian
data statistik.

Tahap berikutnya adalah pengembangan antarmuka pengguna yang meliputi
halaman login, formulir pembuatan tiket, dashboard admin, ruang chat per tiket,
badge notifikasi, serta modul statistik, disertai fitur pendukung seperti unggah
gambar, pencatatan audit log, ekspor ke Excel, dan kontrol status tiket dari New

→ In Progress → Closed. Seluruh kegiatan tersebut dilaksanakan secara bertahap
setiap minggunya, sebagaimana dirangkum pada Tabel 3.1.

8
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

Tabel 3.1. Uraian Pelaksanaan Magang Selama 16 Minggu.

Minggu
Ke-

Pekerjaan yang Dilakukan

1 Pengenalan lingkungan kerja, memahami kebutuhan sistem
manajemen komplain, mempelajari dasar Next.js App Router,
struktur proyek, integrasi awal Firebase (Authentication,
Firestore, Storage), serta menyiapkan repositori dan konfigurasi
awal aplikasi.

2 Menyusun rancangan sistem: diagram use case, alur proses
komplain (flowchart), identifikasi aktor (User, Staff, Admin),
serta perancangan struktur data tiket, chat, dan audit log pada
Firestore. Menyusun draft arsitektur frontend-backend.

3 Implementasi autentikasi Firebase: pembuatan halaman login,
middleware autentikasi, validasi peran (role-based access), dan
pengamanan routing. Menguji session serta kondisi akses bagi
tiga peran pengguna.

4 Pengembangan halaman pembuatan tiket: form input, unggah
lampiran dasar, validasi data, serta penyimpanan data tiket ke
Firestore. Menyusun struktur koleksi tickets dan metadata
status.

5 Pengembangan Dashboard Admin: menampilkan daftar tiket,
menyusun tabel komplain, mengimplementasikan fitur pencarian,
filter status, dan penyortiran berdasarkan tanggal. Menambahkan
pagination berbasis query Firebase.

6 Membangun ruang chat per tiket: struktur koleksi pesan,
input chat, mekanisme real-time listener Firebase, tampilan
percakapan dinamis, serta pembeda pesan pengguna/admin.

7 Menambahkan fitur unggah gambar pada tiket dan chat
menggunakan Firebase Storage, membuat progres bar unggah,
serta menampilkan pratinjau file. Mengoptimalkan ukuran file
dan keamanan URL download.

8 Implementasi badge notifikasi: mendeteksi pesan baru, menandai
tiket dengan aktivitas terbaru, serta sinkronisasi indikator
notifikasi antara Dashboard, Header, dan tampilan chat.

9
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

Minggu
Ke-

Pekerjaan yang Dilakukan

9 Pengembangan audit log: mencatat riwayat perubahan status
tiket, aktivitas pengguna, dan tindakan admin. Merancang
struktur koleksi audit logs, serta tampilan tabel riwayat di
Admin Panel.

10 Pengembangan modul statistik: grafik jumlah komplain per
periode, kategori terbanyak, status komplain, dan ringkasan
aktivitas. Menggunakan query agregasi Firestore dan integrasi
grafik di Dashboard Admin.

11 Implementasi fitur kontrol status tiket: perubahan dari New → In

Progress → Closed, validasi peran yang boleh mengubah status,
serta notifikasi otomatis pada perubahan status.

12 Pengembangan fitur ekspor data ke Excel: menyiapkan struktur
data ekspor, membangun generator Excel, serta menyediakan
download handler di Dashboard. Pengujian kelengkapan data
ekspor.

13 Refactor kode frontend: pemecahan komponen menjadi lebih
modular (form field, kartu tiket, tabel, modal), perbaikan struktur
folder, optimalisasi hooks, dan pengurangan duplikasi logika.

14 Pengujian responsivitas di berbagai perangkat (mobile, tablet,
desktop), perbaikan layout, alur navigasi, dan penyelarasan
UI/UX. Penyesuaian warna, spasi, fokus, serta aksesibilitas form.

15 Pengujian menyeluruh seluruh modul: login, tiket, chat,
notifikasi, status, unggah file, dan statistik. Melakukan perbaikan
bug, validasi batasan akses, dan penyesuaian performa Firebase
(pengurangan read/write berlebih).

16 Finalisasi sistem: pembersihan kode, penyusunan dokumentasi
teknis (alur sistem, struktur data, API internal, skenario uji),
serta persiapan demo/serah terima kepada pembimbing dan tim
internal.

10
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

3.3 Uraian Pelaksanaan Magang

3.3.1 Use Case Diagram

Use case diagram pada Gambar 3.2 menggambarkan hubungan antara
aktor (User, Staff, dan Admin) dengan fungsi-fungsi utama yang tersedia dalam
Complaint Management System. Setiap aktor memiliki hak akses terhadap
modul yang berbeda, namun tetap terhubung melalui mekanisme autentikasi dan
dashboard berbasis peran.

Gambar 3.2. Use Case Diagram Complaint Management System

3.3.2 Daftar Modul Berdasarkan Peran Pengguna

Berdasarkan use case diagram pada Gambar 3.2, modul-modul yang dapat
diakses oleh masing-masing peran dalam sistem dapat dirangkum pada Tabel 3.2.

11
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

Tabel 3.2. Daftar Modul Berdasarkan Peran Pengguna

Peran Modul yang Dapat Diakses

User
(Pengguna)

• UC-101: Lihat Status Ticket

• UC-102: Lihat Daftar Ticket

• UC-103: Membuat Ticket

Staff (Petugas) • UC-201: Kelola Kategori Masalah Ticket

• UC-202: Lihat Statistik

• UC-203: Update Status Ticket

Admin
(Administrator)

• UC-301: Kontrol Status Akun

• UC-302: Manajemen Akun (User/Staff)

• UC-303: Lihat Statistik

• UC-304: Kelola Kategori Masalah Ticket

• UC-305: Lihat Audit Log

Modul Umum • UC-001: Notifikasi

• UC-002: Chat dalam Ticket

• UC-003: Login (Authentication)

• UC-004: Akses Dashboard (Role-Based)

• UC-005: Setting Page

3.3.2.1 Modul Authentication (Login)

Modul authentication (login) berfungsi sebagai gerbang utama untuk
mengakses Complaint Management System. Melalui modul ini, setiap pengguna
(User, Staff, maupun Admin) diwajibkan melakukan proses login terlebih dahulu
sebelum dapat menggunakan fitur lain pada sistem. Proses login memastikan bahwa
hanya akun yang sah dan masih aktif yang dapat mengakses aplikasi, sekaligus
menjadi dasar penentuan hak akses (role-based access control) untuk menampilkan
dashboard dan menu sesuai peran masing-masing.

Secara umum, alur login dimulai ketika pengguna membuka halaman login
dan memasukkan kredensial berupa alamat surel dan kata sandi. Sistem kemudian
meneruskan kredensial tersebut ke layanan autentikasi untuk diverifikasi. Jika data
yang dimasukkan valid, sistem akan membuat sesi login dan menyimpan informasi

12
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

identitas serta peran pengguna, lalu mengarahkan pengguna ke dashboard sesuai
perannya. Apabila proses autentikasi gagal, misalnya karena kata sandi salah atau
akun dinonaktifkan, sistem akan menampilkan pesan galat dan pengguna diminta
untuk memperbaiki input atau menghubungi administrator.

Implementasi Frontend

Dari sisi frontend, halaman login dirancang dengan pendekatan yang
sederhana dan fokus agar pengguna dapat langsung memahami tujuan halaman
tanpa distraksi. Tampilan dibagi menjadi dua bagian utama: panel kiri berisi
formulir login, sedangkan panel kanan menampilkan ilustrasi visual. Pembagian
ini memberikan keseimbangan antara fungsi dan estetika, sekaligus memanfaatkan
ruang layar lebar pada perangkat desktop.

Gambar 3.3. Tampilan halaman login Complaint Management System

Pada panel formulir, komponen utama yang ditampilkan adalah judul
sambutan “Welcome back!”, keterangan singkat berbahasa Indonesia, serta dua
buah isian yaitu Email address dan Password. Penggunaan tipografi huruf tebal
untuk judul, diikuti teks penjelas yang lebih ringan, ditujukan untuk mengarahkan
fokus pengguna secara bertahap dari konteks umum ke instruksi yang lebih spesifik.
Komponen tombol Login diberi warna biru yang kontras dengan latar belakang
putih untuk menegaskan bahwa elemen tersebut merupakan primary action yang
harus diklik oleh pengguna.

Dari sisi tata letak, formulir disusun secara vertikal sehingga alur pengisian
berjalan dari atas ke bawah dengan urutan yang logis: judul, deskripsi singkat, isian

13
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

email, isian kata sandi, kemudian tombol login. Margin, spasi antar komponen,
dan radius sudut pada input field serta tombol diatur agar tampilan terasa modern
dan konsisten dengan gaya desain antarmuka web kontemporer. Desain ini juga
dibuat responsif menggunakan utilitas CSS sehingga pada ukuran layar yang lebih
kecil, panel gambar dapat disembunyikan atau diposisikan ulang agar formulir tetap
mudah diakses dan dibaca oleh pengguna.

Implementasi Backend

Pada sisi backend, proses login diimplementasikan melalui endpoint
POST /api/auth/login. Endpoint ini menerima body berformat JSON yang
wajib memuat idToken (Firebase ID Token) yang diperoleh dari sisi frontend.
Selanjutnya, backend memverifikasi token menggunakan Firebase Admin SDK

untuk memastikan bahwa token valid, belum kedaluwarsa, dan tidak berada pada
kondisi tidak dapat digunakan (misalnya telah dicabut).

Apabila verifikasi berhasil, backend mengekstrak UID dari token untuk
mengidentifikasi pengguna. Backend kemudian memastikan data pengguna
tersedia pada basis data, misalnya dengan membuat dokumen pengguna
users/{uid} apabila belum ditemukan. Setelah itu, backend menghasilkan session

cookie melalui mekanisme autentikasi berbasis sesi (createSessionCookie),
lalu mengirimkannya melalui cookie HttpOnly bernama authToken. Selain
cookie utama tersebut, backend dapat menambahkan cookie pendukung seperti
sessionExp dan lastActive untuk mendukung pengelolaan masa berlaku sesi
dan mekanisme idle timeout pada middleware. Sebagai penutup, backend
mengembalikan respons JSON yang menyatakan bahwa proses login berhasil.

Jika idToken tidak dikirim atau bernilai kosong, backend mengembalikan
respons Bad Request (400). Jika verifikasi token gagal, backend mengembalikan
respons Unauthorized (401) beserta pesan galat. Rangkuman status dan makna
respons API login ditampilkan pada Tabel 3.3. Contoh format request dan respons
yang digunakan pada masing-masing skenario ditampilkan pada Tabel 3.4.

14
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

Tabel 3.3. Ringkasan Status dan Makna Respons API Login

Kondisi Status
HTTP

Makna dan Dampak

Login berhasil 200 Token valid, backend membuat sesi dan
mengirim cookie autentikasi agar sesi tetap aktif
pada request berikutnya.

idToken tidak dikirim /
kosong

400 Request tidak memenuhi field wajib sehingga
proses autentikasi dihentikan sebelum verifikasi
token dilakukan.

Token tidak valid /
kedaluwarsa / verifikasi
gagal

401 Token gagal diverifikasi sehingga backend
menolak pembuatan sesi dan tidak mengirim
cookie autentikasi.

Tabel 3.4. Contoh Request dan Respons API Login

Skenario Contoh Request dan Respons
Login berhasil (200) Request:

POST /api/auth/login

Content-Type: application/json

Body: {"idToken":"<ID TOKEN>"}

Respons:

HTTP/1.1 200 OK

Set-Cookie: authToken=<...>; HttpOnly; ...

Body: {"message":"Login berhasil"}
idToken tidak
dikirim/kosong (400)

Request:

POST /api/auth/login

Content-Type: application/json

Body (opsi 1): {}
Body (opsi 2): {"idToken":""}

Respons:

HTTP/1.1 400 Bad Request

Body: {"message":"idToken diperlukan","error":"BAD REQUEST"}
Token tidak
valid/kedaluwarsa
(401)

Request:

POST /api/auth/login

Content-Type: application/json

Body: {"idToken":"<INVALID TOKEN>"}

Respons:

HTTP/1.1 401 Unauthorized

Body: {"message":"Gagal login","error":"UNAUTHORIZED","detail":"Token

tidak valid atau kedaluwarsa"}

15
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

Activity Diagram

Untuk memberikan gambaran lebih jelas mengenai proses autentikasi,
Gambar 3.4 menunjukkan alur aktivitas login mulai dari pengguna melakukan input
hingga sistem menentukan apakah proses autentikasi berhasil atau gagal.

Gambar 3.4. Activity diagram proses login Complaint Management System

3.3.2.2 Modul Akses Dashboard (Role-Based)

Modul dashboard berfungsi sebagai pusat aktivitas setelah pengguna
berhasil login. Sistem menampilkan menu dan modul yang berbeda berdasarkan
peran pengguna, yaitu User, Staff, dan Admin. Pembatasan akses diterapkan
pada level fitur, sehingga pengguna hanya melihat fungsi yang relevan dengan
kewenangannya.

16
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

Konsep Akses dan Hak Peran

Dashboard pada sistem menggunakan satu shell halaman yang sama untuk
seluruh pengguna. Setelah proses login berhasil, sistem menentukan peran
pengguna (User, Staff, atau Admin) dan menggunakan informasi tersebut sebagai
dasar pengaturan navigasi serta modul yang dapat diakses. Pendekatan ini menjaga
struktur antarmuka tetap konsisten bagi seluruh pengguna, namun kontrol akses
tetap diterapkan sehingga setiap peran hanya melihat fitur yang relevan dengan
tanggung jawabnya (role-based access control). Pemetaan fitur berdasarkan peran
ditampilkan pada Tabel 3.5.

Tabel 3.5. Pemetaan fitur dashboard berdasarkan peran pengguna

Peran Jenis Akses Fitur yang Ditampilkan pada Dashboard

User Terbatas UC-101 (Lihat Status Ticket), UC-102 (Lihat Daftar Ticket),
UC-103 (Membuat Ticket), UC-001 (Notifikasi), UC-002
(Chat dalam Ticket).

Staff Operasional UC-201 (Kelola/Update Status Ticket), UC-001 (Notifikasi),
UC-002 (Chat dalam Ticket).

Admin Penuh UC-101/UC-102 (Monitoring Ticket), UC-201 (Kontrol
Penanganan), Manajemen Akun (Khusus Admin), Audit Log
(Khusus Admin), Manajemen Kategori Komplain, Statistik
Komplain, serta modul umum UC-001 (Notifikasi) dan UC-
002 (Chat dalam Ticket).

Implementasi Frontend dan Responsif

Pada sisi frontend, perbedaan akses antar peran diterapkan melalui
conditional rendering pada komponen navigasi dan modul dashboard. Sistem
hanya menampilkan menu dan modul yang sesuai dengan peran pengguna sehingga
antarmuka tetap fokus dan mengurangi risiko akses fitur yang tidak berwenang dari
sisi tampilan. Walaupun demikian, kontrol akses utama tetap ditegakkan pada sisi
server agar tidak dapat dilewati hanya dengan manipulasi antarmuka.

Tampilan dashboard juga dibuat responsif agar nyaman digunakan pada
berbagai ukuran layar. Pada perangkat desktop, informasi ditampilkan dalam format
tabel untuk memudahkan pemindaian data dan melihat banyak kolom sekaligus.
Pada perangkat mobile, data disajikan dalam format kartu agar lebih mudah
dibaca dan dioperasikan melalui sentuhan, tanpa mengurangi inti informasi yang
ditampilkan.

17
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

Gambar 3.5. Tampilan dashboard pada
perangkat desktop.

Gambar 3.6. Tampilan dashboard pada
perangkat mobile.

Validasi Akses pada Backend

Pada sisi backend, validasi dilakukan untuk memastikan dashboard tidak
dapat diakses tanpa sesi login. Middleware memeriksa keberadaan dan validitas
session cookie (authToken) sebelum permintaan ke rute dashboard diproses
lebih lanjut. Jika sesi tidak valid, sistem mengembalikan respons redirect ke
halaman login. Jika sesi valid, akses dashboard diizinkan dan sistem melanjutkan
pemrosesan halaman. Dengan strategi ini, akses dashboard tetap aman meskipun
pengguna mencoba mengakses rute privat secara langsung melalui URL.

18
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

Call dan Respons Akses Dashboard

Akses dashboard tidak menggunakan endpoint API khusus, melainkan
berupa permintaan HTTP ke halaman GET /dashboard. Middleware bertindak
sebagai guard yang menentukan respons berdasarkan kondisi sesi, sebagaimana
dirangkum pada Tabel 3.6.

Tabel 3.6. Respons akses dashboard berdasarkan validasi sesi

Kondisi Respons
HTTP

Hasil

authToken valid 200 OK Halaman dashboard
ditampilkan, lalu modul
dan menu dirender sesuai
peran pengguna.

authToken tidak ada / tidak valid 3xx Redirect Dialihkan ke halaman login
karena sesi dianggap tidak
aktif.

authToken ada tetapi sesi kedaluwarsa/idle
timeout

3xx Redirect Cookie sesi dihapus,
kemudian dialihkan ke
halaman login.

Dashboard User

Dashboard User berfokus pada pelaporan komplain dan pemantauan tiket
yang dibuat. Pengguna dapat membuat tiket baru, melihat daftar tiket, memantau
status penanganan, serta melakukan komunikasi melalui chat di dalam tiket.
Notifikasi ditampilkan untuk membantu pengguna mengetahui pembaruan penting
tanpa harus memeriksa tiket satu per satu.

Dashboard Staff

Dashboard Staff difokuskan pada aktivitas operasional penanganan tiket.
Staff menerima tiket yang masuk, melakukan komunikasi lanjutan melalui chat,
serta memperbarui status penanganan sesuai progres. Dengan pemetaan modul
yang lebih terbatas dibanding admin, tampilan staff dibuat lebih fokus pada
pekerjaan inti agar proses penanganan berjalan efisien.

19
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

Dashboard Admin

Dashboard Admin mencakup akses operasional sekaligus administratif.
Selain memantau dan mengendalikan proses penanganan tiket, admin dapat
mengelola akun, meninjau audit log untuk kebutuhan akuntabilitas, mengelola
kategori komplain untuk menjaga konsistensi data, serta menggunakan statistik
komplain untuk evaluasi kinerja penanganan. Modul notifikasi dan chat tetap
tersedia untuk mendukung pemantauan komunikasi dalam sistem.

3.3.2.3 Fitur Chat dalam Tiket Komplain

Fitur chat merupakan sarana komunikasi langsung antara pengguna dan
petugas (Staff/Admin) di dalam satu tiket komplain. Melalui chat, pengguna
dapat memberikan klarifikasi, melengkapi informasi, maupun menanyakan progres
penanganan tanpa perlu berpindah kanal komunikasi lain. Setiap tiket memiliki
ruang chat tersendiri agar percakapan terdokumentasi dan konteks pembahasan
tidak bercampur dengan tiket lain.

Pada implementasinya, chat dibuka dari daftar tiket pada dashboard. Sistem
juga menampilkan indikator notifikasi (badge) pada ikon chat ketika terdapat pesan
baru yang belum dibaca. Indikator tersebut akan hilang ketika pengguna membuka
chat, baik dari daftar tiket maupun dari notifikasi.

Tampilan Chat (Desktop dan Mobile)

Antarmuka chat ditampilkan sebagai popup agar pengguna tetap berada pada
konteks dashboard. Pada perangkat desktop, chat muncul sebagai panel popup

dengan ukuran tetap. Pada perangkat mobile, chat ditampilkan memenuhi layar
agar area percakapan dan input tetap nyaman digunakan.

20
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

Gambar 3.7. Tampilan chat pada perangkat
desktop (popup/panel).

Gambar 3.8. Tampilan chat pada perangkat
mobile (full screen).

Implementasi Frontend

Pada sisi frontend, chat dirancang sebagai komponen popup dengan header
yang menampilkan judul percakapan dan tombol tutup. Area pesan menggunakan
format bubble chat sehingga pesan pengguna dibedakan dari pesan petugas melalui
posisi dan gaya tampilan. Setiap pesan memuat identitas pengirim dan waktu
pengiriman agar kronologi percakapan jelas.

Chat mendukung pengiriman gambar. Pengguna dapat memilih file melalui
ikon lampiran, melihat pratinjau sebelum mengirim, serta membatalkan lampiran
jika diperlukan. Jika gambar pada pesan ditekan, sistem menampilkan ukuran lebih
besar melalui modal viewer. Selain itu, panel Info Komplain disediakan dalam
bentuk collapsible untuk menampilkan ringkasan tiket tanpa menutupi area chat
secara permanen.

21
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

Implementasi Backend

Fitur chat tidak melalui endpoint API internal seperti modul login,
melainkan memanfaatkan Firebase Realtime Database sebagai Backend-as-a-

Service untuk komunikasi real-time. Pesan disimpan pada jalur per tiket (misalnya
komplainMessages/<idTiket>). Pengambilan data dilakukan melalui listener

berbasis event, sehingga pesan baru dapat tampil seketika tanpa mekanisme refresh

manual.
Pengiriman pesan dilakukan menggunakan mekanisme direct push dari

frontend ke RTDB. Operasi push secara otomatis menghasilkan messageId

(key) unik untuk setiap pesan. Untuk kebutuhan notifikasi pesan baru,
sistem menyimpan nilai lastSeen per pengguna dan per tiket pada jalur
usersLastSeenMessages/<uid>/<idTiket> dalam bentuk timestamp. Nilai ini
diperbarui ketika chat dibuka dari daftar tiket maupun dari notifikasi agar indikator
badge langsung hilang.

Struktur Data

Struktur data pesan dan lastSeen pada Realtime Database dirangkum sebagai
berikut.

1 komplainMessages/<ticketId >/<messageId > = {

2 "senderId": "uid",

3 "senderName": "Nama Pengirim",

4 "text": "Isi pesan",

5 "imageUrl": "https://... (opsional)",

6 "timestamp": 1730000000000

7 }

8

9 usersLastSeenMessages/<uid >/<ticketId > = 1730000000000

Kode 3.1: Struktur data chat dan lastSeen pada Firebase Realtime Database.

Call dan Respons (RTDB)

Karena chat terhubung langsung ke Firebase Realtime Database, bentuk
respons tidak berupa JSON seperti endpoint API, melainkan berupa ACK dari
operasi database (berhasil atau gagal) serta event real-time dari listener ketika
terdapat pesan baru. Ringkasan call dan respons ditampilkan pada Tabel 3.7.

22
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

Tabel 3.7. Call dan respons pada fitur chat berbasis RTDB (direct push dan listener)

Aktivitas Call (Operasi) Respons (ACK / Event)

Membuka chat Attach listener ke
komplainMessages/<idTiket>

Event listener memuat pesan yang
tersedia, kemudian mengirim event
pesan baru ketika ada node baru.

Mengirim pesan teks
(direct push)

push ke
komplainMessages/<idTiket>

dengan payload pesan

ACK sukses: pesan tersimpan dan
menghasilkan messageId.
ACK gagal: operasi ditolak (mis.
permission denied atau gangguan
jaringan).

Mengirim pesan
dengan gambar

Upload ke Cloudinary lalu push

message berisi imageUrl
ACK sukses: pesan tersimpan
dengan URL gambar.
ACK gagal: gagal upload atau gagal
menulis ke RTDB.

Menandai sudah
dibaca (lastSeen)

set/update

usersLastSeenMessages/

<uid>/<idTiket> (timestamp)

ACK sukses: nilai tersimpan dan
indikator badge dihapus.
ACK gagal: gagal tulis karena
aturan akses atau jaringan.

Menerima pesan baru
secara real-time

Event listener (mis.
onChildAdded) pada jalur
pesan

Event diterima dan UI
menambahkan bubble pesan tanpa
refresh.

Sequence Diagram

Alur proses utama pada fitur chat dirangkum dalam sequence diagram untuk
memperjelas interaksi antar komponen sistem. Gambar 3.9 menggambarkan proses
pembukaan chat dari notifikasi sekaligus pembaruan nilai lastSeen. Gambar 3.10
menggambarkan proses pengiriman pesan menggunakan mekanisme direct push ke
Realtime Database.

23
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

Gambar 3.9. Sequence diagram pembukaan chat dari notifikasi dan pembaruan lastSeen.

Gambar 3.10. Sequence diagram pengiriman pesan chat menggunakan direct push ke
RTDB.

3.3.2.4 Notifikasi Pesan Chat Tiket Komplain

Fitur notifikasi digunakan untuk memberi sinyal ketika terdapat pesan chat
baru pada tiket komplain. Indikator ini membantu pengguna memprioritaskan tiket
yang membutuhkan respons tanpa harus membuka tiket satu per satu.

24
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

Antarmuka Notifikasi

Notifikasi ditampilkan melalui ikon lonceng pada header. Ketika terdapat
pesan baru yang belum terbaca, ikon lonceng menampilkan badge sebagai indikator
(Gambar 3.11). Saat ikon ditekan, sistem menampilkan dropdown “Notifikasi
Saya” yang berisi daftar tiket dengan pesan baru, lengkap dengan cuplikan pesan
terakhir dan penanda status belum dibaca (Gambar 3.12).

Gambar 3.11. Ikon lonceng
dengan badge sebagai indikator
pesan baru.

Gambar 3.12. Dropdown “Notifikasi Saya” yang
menampilkan daftar pesan baru dan kontrol dibaca.

Implementasi Backend (Realtime Database)

Notifikasi dibangun menggunakan Firebase Realtime Database. Secara
konseptual, tiket dianggap memiliki pesan baru apabila timestamp pesan terbaru
pada komplainMessages/<idTiket> lebih besar daripada nilai lastSeen pada
usersLastSeenMessages/<uid>/<idTiket>. Ringkasan call dan respons yang
terjadi pada notifikasi ditampilkan pada Tabel 3.8.

25
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

Tabel 3.8. Call dan respons fitur notifikasi chat berbasis RTDB

Aktivitas Call (Operasi) Respons (ACK / Event)

Memuat daftar
notifikasi

Attach listener pada jalur pesan
dan/atau ringkasan pesan per tiket

Event listener mengirim data real-
time sehingga daftar notifikasi
dan badge dapat diperbarui tanpa
refresh.

Klik item notifikasi Update lastSeen pada
usersLastSeenMessages/

<uid>/<idTiket>

ACK sukses: nilai lastSeen
tersimpan dan item notifikasi
dianggap terbaca.
ACK gagal: pembaruan ditolak
(aturan akses/jaringan) sehingga
status belum berubah.

Tandai semua dibaca Update lastSeen untuk seluruh
tiket terkait notifikasi

ACK sukses: seluruh notifikasi
dianggap terbaca dan badge
lonceng hilang.
ACK gagal: sebagian pembaruan
gagal, sehingga beberapa item
masih dianggap belum dibaca.

Sequence Diagram

Untuk memperjelas mekanisme notifikasi berbasis event real-time,
Gambar 3.13 menunjukkan alur ketika sistem memasang listener, menerima
event pesan baru, menghitung kondisi belum dibaca berdasarkan lastSeen, lalu
memperbarui badge dan daftar notifikasi. Diagram ini juga menunjukkan proses
ketika pengguna membuka item notifikasi atau menandai semua notifikasi sebagai
dibaca.

26
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

Gambar 3.13. Sequence diagram fitur notifikasi pesan chat tiket komplain berbasis Firebase
RTDB

27
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

3.3.2.5 Halaman Pengaturan (Settings)

Halaman Pengaturan (Settings) merupakan modul umum yang dapat diakses
oleh seluruh peran pengguna (User, Staff, dan Admin) setelah berhasil login.
Modul ini berfungsi sebagai pusat pengelolaan informasi akun secara mandiri, yaitu
menampilkan ringkasan identitas pengguna yang sedang aktif serta menyediakan
fasilitas keamanan berupa perubahan kata sandi dan aksi logout. Dengan
menyediakan fitur ini pada satu halaman terpusat, sistem membantu pengguna
memahami status akun yang digunakan sekaligus mempermudah pemeliharaan
keamanan akun tanpa perlu melibatkan pihak lain.

Gambar 3.14. Tampilan halaman Pengaturan (Settings) pada sistem.

Implementasi Frontend

Dari sisi frontend, halaman pengaturan dirancang dengan struktur yang
sederhana dan informatif. Bagian Personal Details menampilkan data identitas
utama seperti nama, email, dan status/peran akun dalam bentuk read-only sehingga
pengguna dapat melakukan verifikasi informasi akun tanpa risiko perubahan tidak
sengaja. Untuk memperkuat konteks visual, halaman menampilkan ikon yang
menyesuaikan peran, misalnya ikon shield untuk akun admin dan ikon pengguna
untuk peran lainnya .

Bagian keamanan akun disediakan melalui form perubahan kata sandi yang
terdiri dari Current Password, New Password, dan Confirm New Password. Setiap

28
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

field kata sandi memiliki kontrol show/hide agar pengguna dapat memeriksa input
bila diperlukan tanpa mengorbankan kenyamanan penggunaan. Setelah perubahan
berhasil, sistem menampilkan pesan umpan balik dan mengosongkan field agar
tidak menyisakan data sensitif pada tampilan. Selain itu, tersedia tombol Log Out

untuk mengakhiri sesi penggunaan secara langsung dari halaman yang sama.

Implementasi Backend

Pada sisi backend, modul Settings diakses melalui API internal agar format
layanan konsisten dengan modul login. Setiap request membawa cookie sesi
authToken yang diverifikasi untuk memastikan pengguna sudah terautentikasi. Jika
sesi valid, backend mengambil profil dari koleksi users berdasarkan UID dan
mengembalikannya dalam format JSON. Untuk perubahan kata sandi, backend
menerapkan reauthentication sebelum pembaruan password dilakukan, sehingga
aksi sensitif hanya diproses ketika kredensial pengguna tervalidasi. Aksi logout

mengakhiri sesi dengan menghapus cookie sesi dan mengembalikan respons JSON
sebagai umpan balik kepada frontend.

Call dan Respons API

Ringkasan call dan respons untuk modul Settings ditampilkan pada Tabel 3.9
dan contoh request/response JSON ditampilkan pada Tabel 3.10.

29
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

Tabel 3.9. Ringkasan endpoint dan status response modul Settings

Fitur Endpoint Status Makna

Muat profil GET /api/users/me 200 Profil berhasil dimuat
sesuai sesi login.

Muat profil GET /api/users/me 401 Sesi tidak valid / tidak
ada authToken.

Ubah password POST

/api/auth/change-password

200 Password berhasil
diperbarui.

Ubah password POST

/api/auth/change-password

400 Validasi input
gagal (field
wajib/konfirmasi).

Ubah password POST

/api/auth/change-password

401 Sesi tidak valid / belum
login.

Ubah password POST

/api/auth/change-password

403 Re-auth gagal
(password saat ini
salah).

Logout POST /api/auth/logout 200 Logout berhasil dan
sesi diakhiri.

Logout POST /api/auth/logout 401 Sesi tidak valid / tidak
ada authToken.

30
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

Tabel 3.10. Contoh request dan response JSON modul Settings

Skenario Contoh Request dan Respons

Muat profil (200) Request:

GET /api/users/me

Response:

HTTP/1.1 200 OK

Body:

{"message":"Berhasil memuat profil","data":{"uid":

"...","name":"...","email":"...","role":"..."}}

Ubah password (200) Request:

POST /api/auth/change-password

Content-Type: application/json

Body:

{"currentPassword":"***","newPassword":"***","confirmPassword":"***"}

Response:

HTTP/1.1 200 OK

Body:

{"message":"Password berhasil diperbarui"}

Ubah password (400) Request:

POST /api/auth/change-password

Response:

HTTP/1.1 400 Bad Request

Body:

{"message":"Validasi input gagal","error":"VALIDATION ERROR"}

Ubah password (403) Request:

POST /api/auth/change-password

Response:

HTTP/1.1 403 Forbidden

Body:

{"message":"Password saat ini tidak valid","error":"REAUTH FAILED"}

Logout (200) Request:

POST /api/auth/logout

Response:

HTTP/1.1 200 OK

Body:

{"message":"Logout berhasil"}

31
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

Sequence Diagram Perubahan Password

Alur perubahan password dirangkum pada Gambar 3.15 untuk memperjelas
tahapan validasi sesi, re-autentikasi, dan pembaruan kata sandi.

Gambar 3.15. Sequence diagram proses perubahan password pada modul Settings.

3.3.2.6 Lihat Daftar Tiket

Modul Lihat Daftar Tiket berfungsi untuk menampilkan daftar tiket
komplain milik pengguna yang sedang login. Melalui modul ini, pengguna
dapat memantau status penanganan, membuka detail tiket, melihat bukti yang
telah diunggah, serta melanjutkan komunikasi melalui fitur chat pada tiket terkait.

32
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

Selain itu, sistem memberikan kontrol terbatas pada tiket tertentu sesuai kebijakan
(misalnya hanya pada status awal).

Untuk menjaga kenyamanan penggunaan di berbagai ukuran layar,
antarmuka disusun secara responsif. Pada perangkat desktop, daftar tiket
ditampilkan dalam bentuk tabel agar pengguna mudah melakukan pemindaian data,
sedangkan pada perangkat mobile, daftar tiket ditampilkan dalam bentuk kartu agar
lebih nyaman dibaca dan dioperasikan melalui sentuhan.

Gambar 3.16. Tampilan daftar tiket pada
dashboard (desktop).

Gambar 3.17. Tampilan daftar tiket pada
dashboard (mobile).

Implementasi Frontend

Pada sisi frontend, daftar tiket diterima sebagai props lalu dikelola kembali
dalam state lokal agar UI dapat segera diperbarui ketika terdapat tiket baru atau
perubahan status. Komponen menyediakan fungsi addNewTicket melalui ref

sehingga ketika pengguna mengirim komplain baru, tiket dapat langsung disisipkan

33
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

ke urutan teratas dan halaman otomatis kembali ke halaman pertama.
Akses data pada tampilan user dibatasi melalui mekanisme visibility

filtering, yaitu tiket yang ditampilkan hanyalah tiket yang memiliki userId

sama dengan UID pengguna yang sedang login. Identitas pengguna didapatkan
dari Firebase Authentication, sedangkan peran pengguna diambil dari dokumen
users/{uid} dan dapat disimpan sementara pada localStorage untuk mengurangi
proses pembacaan berulang.

Pada tampilan desktop, tiket ditampilkan dalam bentuk tabel yang
mendukung pagination sehingga daftar tetap ringkas saat jumlah tiket bertambah.
Tabel juga menyediakan kemampuan sorting untuk kolom tanggal dan status agar
pengguna lebih mudah meninjau tiket berdasarkan urutan yang dibutuhkan. Pada
tampilan mobile, daftar tiket ditampilkan dalam bentuk kartu, serta dilengkapi fitur
pencarian dan filter (tanggal dan status) agar tiket dapat ditemukan lebih cepat pada
layar kecil.

Setiap tiket menyediakan beberapa aksi utama yang relevan untuk user.
Pertama, pengguna dapat membuka bukti komplain (jika ada) melalui tombol Lihat

Bukti yang akan menampilkan gambar pada modal viewer. Kedua, pengguna dapat
membuka chat tiket melalui tombol chat, dan sistem menampilkan indikator badge

ketika terdapat pesan baru agar pengguna dapat merespons tanpa harus memeriksa
satu per satu tiket. Untuk mencegah double trigger, pembukaan chat menggunakan
mekanisme deduplication guard berbasis waktu sehingga klik cepat berulang tidak
menyebabkan chat terbuka lebih dari sekali.

Selain itu, pengguna hanya diizinkan melakukan perubahan pada tiket
dengan status awal. Pada implementasi ini, tombol edit dan hapus hanya muncul
ketika status tiket masih New, sehingga perubahan tidak dilakukan ketika tiket sudah
diproses. Jika pengguna memilih hapus, sistem menampilkan dialog konfirmasi

terlebih dahulu untuk menghindari penghapusan tidak sengaja.

Implementasi Backend

Pada sisi backend, data tiket komplain disimpan di Cloud Firestore
pada koleksi komplain. Untuk kebutuhan menampilkan daftar tiket, sistem
menyediakan endpoint GET /api/complaints yang memverifikasi sesi melalui
cookie authToken. Setelah sesi valid, backend memuat data tiket dan menerapkan
pembatasan akses, yaitu untuk peran User hanya tiket milik pengguna (berdasarkan
UID) yang dikembalikan. Parameter pagination, pencarian, dan filter juga diproses

34
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

pada backend agar hasil yang dikirim ke frontend tetap ringkas dan sesuai
kebutuhan tampilan tabel/kartu.

Call dan Respons API

Rangkuman status dan makna respons endpoint GET /api/complaints

ditampilkan pada Tabel 3.11. Contoh request dan respons JSON ditampilkan pada
Tabel 3.12.

Tabel 3.11. Ringkasan status response endpoint GET /api/complaints

Kondisi Status
HTTP

Makna

Berhasil memuat daftar tiket 200 Data tiket dikembalikan sesuai hak akses dan
parameter filter/pagination.

Parameter tidak valid 400 Request ditolak karena format query
parameter tidak sesuai (misalnya page

bukan angka).

Tidak terautentikasi 401 Cookie sesi tidak ada atau tidak valid sehingga
akses ditolak.

Tidak berhak mengakses data 403 Pengguna terautentikasi tetapi tidak memiliki
kewenangan pada konteks permintaan tertentu.

Kesalahan internal 500 Terjadi kegagalan proses server atau layanan
data.

35
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

Tabel 3.12. Contoh request dan respons JSON endpoint GET /api/complaints

Skenario Contoh Request dan Respons

Berhasil (200) Request:

GET /api/complaints?scope=mine&page=1&limit=10&status=New

Respons:

HTTP/1.1 200 OK

Body:

{"message":"Berhasil memuat tiket","data":{"items":[{"id":"...","title

":"...","status":"New","createdAt":"..."}], "page":1,"limit":10}}

Tidak terautentikasi
(401)

Request:

GET /api/complaints?scope=mine

Respons:

HTTP/1.1 401 Unauthorized

Body:

{"message":"Unauthorized","error":"UNAUTHORIZED"}

Parameter tidak valid
(400)

Request:

GET /api/complaints?scope=mine&limit=abc

Respons:

HTTP/1.1 400 Bad Request

Body:

{"message":"Parameter tidak valid","error":"BAD REQUEST"}

3.3.2.7 Modul Pembuatan Tiket

Modul pembuatan tiket merupakan fitur khusus pada Dashboard User yang
digunakan untuk membuat tiket baru maupun memperbarui tiket yang sudah ada
setelah pengguna berhasil login. Untuk menjaga fokus pengguna dan mengurangi
perpindahan konteks, form pembuatan tiket ditampilkan dalam bentuk modal dialog

(Gambar 3.18) dengan overlay, sehingga pengguna tetap berada pada halaman
dashboard saat melakukan pengisian atau pembaruan data tiket.

36
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

Gambar 3.18. Tampilan form pembuatan tiket pada Dashboard User dalam bentuk modal.

Field yang disediakan pada form mencakup Nama Nasabah, Nomor Akun
Citra Pensiun, Nomor Akun Digital, NIK, Kategori Masalah, dan Deskripsi Tiket.
Selain itu, pengguna dapat melampirkan bukti pendukung dalam bentuk dokumen
atau foto. Untuk memastikan kelengkapan data, beberapa field ditetapkan sebagai
field wajib (misalnya nama, Nomor Akun Citra Pensiun, NIK, kategori, dan
deskripsi tiket), sehingga tiket yang dikirim memiliki informasi minimum yang
diperlukan untuk proses penanganan.

37
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

Implementasi Frontend

Pada sisi frontend, modul pembuatan tiket dibangun menggunakan React
dan ditampilkan sebagai modal dengan overlay agar pengguna tetap berada pada
konteks dashboard. Pengelolaan input form menggunakan mekanisme form

handling sehingga proses validasi dapat dilakukan secara konsisten sebelum data
dikirim atau diperbarui. Ketika pengguna belum mengisi field wajib atau format
input tidak sesuai, sistem menampilkan pesan kesalahan secara langsung pada
komponen input terkait untuk mengarahkan pengguna memperbaiki data.

Dropdown kategori dimuat secara dinamis dari basis data agar daftar
kategori dapat dikelola tanpa hardcode pada antarmuka. Selain itu, kategori yang
bersifat nonaktif tidak ditampilkan pada dropdown, sehingga pengguna hanya dapat
memilih kategori yang masih berlaku dalam sistem. Pendekatan ini menjaga
konsistensi antara pengaturan kategori pada sistem dan opsi yang muncul pada form
tiket.

Antarmuka juga menerapkan kontrol interaksi berdasarkan status tiket dan
hak akses. Sebagai contoh, apabila pengguna merupakan pemilik tiket dan tiket
sudah berada pada status In Progress, maka beberapa field dan tombol simpan
dinonaktifkan. Pembatasan ini bertujuan mencegah perubahan data inti ketika
proses penanganan sudah berjalan, sehingga informasi yang sedang diproses oleh
petugas tetap stabil.

Implementasi Backend

Alur pembuatan tiket dirangkum pada Gambar 3.19. Ketika pengguna
menekan tombol simpan, frontend mengirim request POST /api/complaints

beserta cookie sesi authToken. Middleware memverifikasi sesi menggunakan
Firebase Admin SDK. Jika sesi valid, request diteruskan ke API route
untuk dilakukan validasi input. Apabila pengguna melampirkan bukti,
sistem mengunggah file ke Storage/Cloudinary dan menyimpan URL lampiran.
Selanjutnya backend membuat dokumen tiket pada koleksi komplain dengan
atribut owner dan status awal New. Setelah tiket berhasil dibuat, sistem dapat
mencatat aktivitas ke koleksi audit logs, lalu mengembalikan respons 201

Created. Jika validasi input gagal, backend mengembalikan 400 Bad Request,
sedangkan sesi tidak valid menghasilkan 401 Unauthorized.s.

38
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

Gambar 3.19. Sequence diagram proses pembuatan tiket komplain.

Call dan Respons API

Untuk mendukung form, backend menyediakan layanan: (1) memuat
kategori aktif untuk dropdown, (2) membuat tiket baru, dan (3) memperbarui tiket
pada kondisi tertentu. Ringkasan status respons untuk setiap endpoint disajikan

39
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

pada Tabel 3.15–3.17, sedangkan contoh request dan respons JSON disajikan pada
Tabel 3.16–3.18.

Tabel 3.13. Ringkasan status response endpoint GET /api/categories (kategori aktif)

Kondisi Status
HTTP

Makna

Berhasil memuat kategori 200 Backend mengembalikan daftar kategori aktif
untuk dropdown.

Tidak terautentikasi 401 Cookie sesi tidak ada/tidak valid sehingga
akses ditolak.

Kesalahan internal 500 Terjadi kegagalan layanan data.

Tabel 3.14. Contoh request dan respons JSON endpoint GET /api/categories

Skenario Contoh Request dan Respons

Berhasil (200) Request:

GET /api/categories?active=true

Respons:

HTTP/1.1 200 OK

Body:

{"message":"Berhasil memuat kategori",

"data":{"items":[{"id":"...","name":"..."}]}}

Tidak terautentikasi
(401)

Request:

GET /api/categories?active=true

Respons:

HTTP/1.1 401 Unauthorized

Body:

{"message":"Unauthorized","error":"UNAUTHORIZED"}

40
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

Tabel 3.15. Ringkasan status response endpoint POST /api/complaints (buat tiket)

Kondisi Status
HTTP

Makna

Berhasil membuat tiket 201 Tiket berhasil dibuat dan backend
mengembalikan ticketId.

Validasi input gagal 400 Field wajib tidak lengkap / format tidak sesuai.

Tidak terautentikasi 401 Cookie sesi tidak ada/tidak valid sehingga
akses ditolak.

Tidak berhak (role tidak sesuai) 403 Peran pengguna tidak diizinkan membuat
tiket.

Kesalahan internal 500 Terjadi kegagalan proses simpan atau layanan
terkait.

Tabel 3.16. Contoh request dan respons JSON endpoint POST /api/complaints

Skenario Contoh Request dan Respons

Berhasil (201) Request:

POST /api/complaints

Content-Type: application/json

Body:

{"namaNasabah":"...","noAkunCitra":"...","noAkunDigital":"

...","nik":"...","categoryId":"...","description":"...","

evidenceUrl":"..."}

Respons:

HTTP/1.1 201 Created

Body:

{"message":"Tiket berhasil dibuat ","data":{"

ticketId":"<DOC ID>","status":"New"}}

Validasi gagal (400) Request:

POST /api/complaints

Body:

{"namaNasabah":"","nik":"","categoryId":null,"description":""}

Respons:

HTTP/1.1 400 Bad Request

Body:

{"message":"Field wajib belum lengkap","error":"VALIDATION ERROR"}

41
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

Tabel 3.17. Ringkasan status response endpoint PATCH /api/complaints/<id> (update
tiket)

Kondisi Status
HTTP

Makna

Berhasil memperbarui tiket 200 Tiket diperbarui dan backend mengembalikan
data ringkas hasil update.

Validasi input gagal 400 Field tidak sesuai aturan (misalnya format NIK
tidak valid).

Tidak terautentikasi 401 Cookie sesi tidak ada/tidak valid sehingga
akses ditolak.

Bukan pemilik tiket 403 Pengguna bukan owner tiket yang diminta.

Tiket tidak dapat diubah (status
tidak sesuai)

403 Tiket sudah diproses (misalnya In Progress)
sehingga perubahan ditolak.

Tiket tidak ditemukan 404 ticketId tidak valid / dokumen tidak tersedia.

Kesalahan internal 500 Terjadi kegagalan proses simpan atau layanan
terkait.

Tabel 3.18. Contoh request dan respons JSON endpoint PATCH /api/complaints/<id>

Skenario Contoh Request dan Respons

Berhasil (200) Request:

PATCH /api/complaints/<DOC ID>

Body:

{"description":"Update deskripsi...","evidenceUrl":"..."}

Respons:

HTTP/1.1 200 OK

Body:

{"message":"Tiket berhasil diperbarui","

data":{"ticketId":"<DOC ID>","updatedAt":"..."}}

Ditolak karena status
(403)

Request:

PATCH /api/complaints/<DOC ID>

Respons:

HTTP/1.1 403 Forbidden

Body:

{"message":"Tiket tidak dapat diubah pada status saat

ini","error":"STATUS LOCKED"}

42
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

3.3.2.8 Manajemen Kategori Komplain

Fitur Manajemen Kategori Komplain digunakan untuk mengelola daftar
kategori masalah yang menjadi acuan pengelompokan tiket komplain. Kategori
ini dipakai secara langsung pada saat pengguna membuat komplain, sehingga
konsistensi kategori berpengaruh terhadap proses triase, pelaporan statistik, serta
kemudahan pencarian data. Oleh karena itu, akses fitur ini dibatasi hanya untuk
peran Staff dan Admin, sedangkan User tidak diberikan akses agar integritas data
kategori tetap terjaga.

Secara umum, alur pengelolaan kategori dimulai ketika Staff/Admin

membuka halaman kategori dan sistem memuat daftar kategori yang tersedia.
Pengelola dapat menambahkan kategori baru melalui input yang disediakan,
mengubah status kategori menjadi aktif atau nonaktif, serta menghapus kategori
apabila diperlukan. Ketika suatu kategori dinonaktifkan, kategori tersebut tidak lagi
ditampilkan sebagai opsi pada formulir pembuatan komplain, sehingga pengguna
hanya dapat memilih kategori yang masih berlaku.

Gambar 3.20. Tampilan fitur manajemen kategori komplain.

Implementasi Frontend

Dari sisi frontend, halaman kategori dirancang sederhana dan langsung pada
tujuan, yaitu menambahkan kategori dan mengelola daftar kategori yang sudah
ada. Input penambahan kategori ditempatkan pada bagian atas agar pengelola dapat

43
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

menambah kategori baru tanpa berpindah halaman. Untuk menjaga validitas data,
sistem melakukan validasi dasar dan menolak penambahan apabila nama kategori
kosong.

Daftar kategori ditampilkan dalam bentuk tabel pada perangkat desktop agar
informasi lebih mudah dibaca secara bersamaan. Pada perangkat mobile, data dapat
disajikan lebih ringkas agar tetap nyaman dioperasikan melalui sentuhan. Setiap
kategori memiliki aksi inti berupa pengaturan status aktif/nonaktif melalui kontrol
toggle dan penghapusan kategori melalui tombol hapus yang dilindungi dialog
konfirmasi.

Pendekatan status aktif/nonaktif digunakan sebagai kontrol operasional agar
kategori yang tidak lagi relevan dapat dinonaktifkan tanpa menghilangkan jejak
data. Dengan demikian, kategori yang dinonaktifkan tidak digunakan lagi pada
proses input komplain, namun data historis tetap konsisten.

Implementasi Backend

Pada sisi backend, data kategori disimpan pada koleksi kategori komplain

di Cloud Firestore. Saat halaman dibuka, backend mengambil seluruh dokumen
kategori dan mengembalikannya ke frontend untuk ditampilkan. Setiap data
kategori minimal memuat nama kategori, status aktif/nonaktif, serta informasi
waktu pembuatan untuk menjaga keterlacakan perubahan data.

Saat kategori ditambahkan, backend membuat dokumen baru dengan status
awal aktif. Perubahan status kategori diproses melalui operasi pembaruan (update)
pada field isActive sehingga perubahan dapat langsung mempengaruhi seluruh
bagian sistem yang menggunakan kategori, khususnya pilihan kategori pada form
pembuatan komplain. Penghapusan kategori diproses melalui operasi delete setelah
pengelola melakukan konfirmasi pada antarmuka.

Dari sisi keamanan, backend menerapkan pembatasan akses berbasis peran.
Akses halaman dan menu dibatasi pada lapisan aplikasi, lalu diperkuat kembali pada
lapisan basis data melalui Security Rules agar hanya Staff dan Admin yang dapat
melakukan operasi tulis (create, update, delete) pada koleksi kategori. Jika terjadi
kegagalan proses, backend mengembalikan respons galat yang jelas agar frontend

dapat menampilkan umpan balik yang informatif.
Rangkuman status dan makna respons API kategori ditampilkan pada

Tabel 3.19. Contoh request dan respons ditampilkan pada Tabel 3.20.

44
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

Tabel 3.19. Ringkasan Status dan Makna Respons API Manajemen Kategori Komplain

Kondisi Status
HTTP

Makna dan Dampak

Request berhasil 200 Backend berhasil
memuat/menambah/mengubah/menghapus
kategori dan frontend dapat memperbarui
tampilan.

Input tidak valid 400 Nama kategori kosong atau format request
tidak sesuai sehingga proses dibatalkan
sebelum menulis ke basis data.

Belum login / sesi tidak valid 401 Permintaan ditolak karena pengguna
belum terautentikasi.

Role tidak sesuai (bukan
Staff/Admin)

403 Permintaan ditolak karena pengguna tidak
memiliki hak akses pengelolaan kategori.

Kategori tidak ditemukan 404 Target kategori yang dimaksud tidak
ditemukan sehingga operasi tidak dapat
dilanjutkan.

Gagal eksekusi di server 500 Terjadi kegagalan proses di server
atau basis data sehingga aksi tidak
terselesaikan.

Tabel 3.20. Contoh Request dan Respons API Manajemen Kategori Komplain

Skenario Contoh Request dan Respons
Memuat kategori (200) Request:

GET /api/kategori-komplain

Response:

HTTP/1.1 200 OK

Body: {"data":[{"id":"...","name":"Layanan","isActive":true},...]}
Tambah kategori (200) Request:

POST /api/kategori-komplain

Body: {"name":"Fasilitas"}

Response:

HTTP/1.1 200 OK

Body: {"message":"Kategori created"}
Toggle aktif/nonaktif
(200)

Request:

PATCH /api/kategori-komplain/{id}/status
Body: {"isActive":false}

Response:

HTTP/1.1 200 OK

Body: {"message":"Status updated"}
Hapus kategori (200) Request:

DELETE /api/kategori-komplain/{id}

Response:

HTTP/1.1 200 OK

Body: {"message":"Kategori deleted"}

45
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

Sequence Diagram

Untuk memperjelas interaksi antara Staff/Admin, frontend, dan backend,
Gambar 3.21 menunjukkan alur ketika sistem memuat daftar kategori serta
menjalankan aksi inti seperti menambah kategori dan mengubah status
aktif/nonaktif.

Gambar 3.21. Sequence diagram proses Manajemen Kategori Komplain

46
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

3.3.2.9 Modul Statistik Komplain

Modul Statistik Komplain berfungsi untuk membantu Staff dan Admin

memantau kondisi penanganan komplain secara ringkas dan terukur melalui
ringkasan metrik dan visualisasi data. Modul ini dirancang agar pengelola dapat
melakukan pemantauan harian serta evaluasi periodik, misalnya dengan melihat
total komplain pada periode tertentu, jumlah komplain yang masuk pada hari
berjalan, jumlah komplain yang terselesaikan, distribusi komplain berdasarkan
kategori, distribusi komplain berdasarkan status, serta rata-rata durasi penyelesaian.

Secara umum, alur statistik dimulai ketika pengguna membuka halaman
statistik dan memilih rentang tanggal yang ingin dianalisis. Pengguna dapat
memakai filter cepat (misalnya 7 hari terakhir atau 30 hari terakhir) maupun
menentukan tanggal secara manual. Sistem kemudian meminta data statistik ke
backend berdasarkan parameter tanggal tersebut. Backend memvalidasi autentikasi
dan otorisasi, mengambil data komplain sesuai rentang, menghitung agregasi yang
dibutuhkan, lalu mengembalikan hasil dalam format JSON. Selanjutnya, frontend

merender hasil tersebut menjadi kartu ringkasan dan grafik. Apabila terjadi
kegagalan pengambilan data atau rentang tanggal tidak valid, sistem menampilkan
pesan galat yang informatif agar pengguna dapat melakukan perbaikan.

Implementasi Frontend

Dari sisi frontend, Modul Statistik Komplain diimplementasikan sebagai
satu halaman khusus pada dashboard, yaitu halaman Statistik Komplain. Halaman
ini dirancang sebagai dashboard analitik yang menggabungkan kontrol filter,
ringkasan metrik, dan grafik dalam satu tampilan agar pengguna dapat memahami
kondisi secara cepat tanpa perlu berpindah halaman.

47
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

Gambar 3.22. Tampilan modul Statistik Komplain dengan filter tanggal, ringkasan, dan
grafik.

Pada bagian atas halaman, tersedia kontrol filter yang terdiri dari filter cepat

(7 hari terakhir dan 30 hari terakhir), filter rentang tanggal manual (Dari–Sampai),
serta tombol reset untuk mengembalikan filter ke kondisi awal. Ketika filter diubah,
frontend melakukan pemanggilan endpoint statistik dengan menyertakan parameter
tanggal awal dan tanggal akhir, kemudian memperbarui tampilan berdasarkan
respons yang diterima.

Hasil statistik ditampilkan dalam dua bentuk utama. Bagian pertama adalah
kartu ringkasan (summary cards) yang memprioritaskan metrik inti seperti Total
Komplain, Komplain Hari Ini, Terselesaikan, serta rata-rata durasi penyelesaian.
Bagian kedua adalah visualisasi grafik yang menampilkan tren komplain per hari,
distribusi kategori, dan distribusi status. Grafik dilengkapi tooltip agar pengguna
dapat melihat nilai detail tanpa membuat tampilan terlalu padat.

Untuk menjaga pengalaman pengguna, halaman menampilkan indikator
loading ketika data sedang dimuat dan menampilkan pesan error yang informatif
ketika pemanggilan API gagal. Tampilan juga disusun responsif sehingga pada
layar lebar komponen dapat ditata dalam grid, sedangkan pada layar sempit
komponen disusun vertikal agar tetap mudah dibaca dan dioperasikan.

48
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

Implementasi Backend

Pada sisi backend, data statistik disediakan melalui endpoint GET

/api/statistik. Endpoint ini hanya dapat diakses oleh peran Admin dan Staff

sehingga data analitik yang bersifat operasional tidak dapat dilihat oleh pengguna
biasa. Backend memvalidasi autentikasi berdasarkan cookie sesi authToken,
kemudian memeriksa peran pengguna sebelum memproses permintaan.

Request statistik menerima parameter start dan end dalam format
tanggal YYYY-MM-DD. Backend memvalidasi parameter agar formatnya benar
dan memastikan rentang tanggal konsisten. Setelah validasi berhasil, backend
mengambil data komplain sesuai rentang tanggal dan menghitung agregasi untuk
kebutuhan tampilan, yaitu total komplain, komplain pada hari berjalan, jumlah
terselesaikan, tren komplain per tanggal, distribusi kategori, distribusi status, serta
rata-rata durasi penyelesaian untuk komplain yang benar-benar selesai. Hasil
perhitungan kemudian dikirim dalam format JSON agar dapat langsung digunakan
oleh komponen visualisasi pada frontend.

Jika pengguna belum login, backend mengembalikan Unauthorized (401).
Jika pengguna login tetapi role tidak sesuai, backend mengembalikan Forbidden

(403). Jika parameter tanggal tidak valid, backend mengembalikan Bad

Request (400). Jika terjadi kegagalan query atau perhitungan agregasi, backend
mengembalikan Internal Server Error (500). Ringkasan status dan makna respons
API statistik ditampilkan pada Tabel 3.21. Contoh request dan respons yang
digunakan pada masing-masing skenario ditampilkan pada Tabel 3.22.

Tabel 3.21. Ringkasan Status dan Makna Respons API Statistik Komplain

Kondisi Status
HTTP

Makna dan Dampak

Request statistik berhasil 200 Backend mengembalikan ringkasan dan
dataset grafik sesuai rentang tanggal agar
dapat langsung dirender oleh frontend.

Parameter start/end tidak valid 400 Format tanggal salah atau rentang tidak
konsisten sehingga backend menghentikan
proses sebelum agregasi dilakukan.

Belum login / sesi tidak valid 401 Backend menolak akses karena pengguna
belum terautentikasi.

Role tidak sesuai (bukan
Admin/Staff)

403 Backend menolak akses meskipun pengguna
login karena tidak memiliki hak akses
analitik.

Gagal query / gagal agregasi 500 Terjadi kegagalan proses di server sehingga
frontend tidak dapat menampilkan statistik.

49
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

Tabel 3.22. Contoh Request dan Respons API Statistik Komplain

Skenario Contoh Request dan Respons
Request berhasil (200) Request:

GET /api/statistik?start=2025-10-01

&end=2025-10-30

Response:

HTTP/1.1 200 OK

Body:

{"meta":{"start":"2025-10-01","end":"2025-10-30"},
"summary":{"total":120,"today":6,"resolved":70,
"avgResolutionHours":15.4},
"timeseries":[{"date":"2025-10-01","total":3},
{"date":"2025-10-02","total":5}],
"byCategory":[{"category":"Layanan","total":40},
{"category":"Fasilitas","total":30}],
"byStatus":[{"status":"New","total":20},
{"status":"In Progress","total":30},
{"status":"Done","total":70}]}

Tanggal tidak valid /
rentang tidak konsisten
(400)

Request:

GET /api/statistik?start=2025-10-30

&end=2025-10-01

Response:

HTTP/1.1 400 Bad Request

Body: {"message":"Invalid date range","error":"BAD REQUEST"}
Belum login / sesi tidak
valid (401)

Request:

GET /api/statistik?start=2025-10-01

&end=2025-10-30

Response:

HTTP/1.1 401 Unauthorized

Body: {"message":"Unauthorized","error":"UNAUTHORIZED"}
Role tidak sesuai (403) Request:

GET /api/statistik?start=2025-10-01

&end=2025-10-30

Response:

HTTP/1.1 403 Forbidden

Body: {"message":"Forbidden","error":"FORBIDDEN"}

50
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

Sequence Diagram

Untuk memperjelas interaksi antara pengguna, frontend, dan backend,
Gambar 3.23 menunjukkan alur ketika pengguna menerapkan filter, sistem
melakukan request statistik, backend menghitung agregasi, lalu frontend merender
ringkasan dan grafik berdasarkan respons.

Gambar 3.23. Sequence diagram proses Statistik Komplain

51
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

3.3.2.10 Manajemen Akun (Khusus Admin)

Modul Manajemen Akun merupakan fitur administratif yang hanya dapat
diakses oleh Admin untuk mengelola akun pengguna dalam sistem. Modul ini
disediakan untuk kebutuhan operasional dan keamanan, seperti meninjau daftar
akun, mengubah status aktif/nonaktif, melakukan reset password ketika pengguna
mengalami kendala akses, serta menghapus akun yang tidak lagi digunakan.
Selain itu, admin juga dapat membuat akun baru (misalnya untuk Staff) melalui
halaman khusus, sehingga proses onboarding dapat dilakukan secara terkontrol
tanpa membuka akses pembuatan akun bagi peran lain.

Secara umum, alur manajemen akun dimulai ketika admin membuka
halaman daftar akun. Sistem memuat daftar pengguna secara terotorisasi, lalu
admin dapat menjalankan aksi administratif pada akun tertentu, seperti mengubah
status aktif/nonaktif, melakukan reset password, atau menghapus akun. Jika
admin memilih membuat akun baru, admin diarahkan ke halaman pembuatan akun,
mengisi informasi akun, lalu sistem menyimpan akun baru sehingga langsung
tersedia pada daftar akun. Apabila sesi tidak valid atau role tidak sesuai, sistem
menolak akses untuk memastikan fitur sensitif ini hanya dapat digunakan oleh
admin.

Implementasi Frontend

Dari sisi frontend, modul Manajemen Akun disusun menjadi dua halaman
utama, yaitu halaman daftar akun dan halaman pembuatan akun baru. Pemisahan
ini dilakukan agar aktivitas pemantauan dan aksi cepat (misalnya toggle status,
reset password, hapus akun) tetap berada pada satu halaman, sementara proses
pembuatan akun memiliki alur input yang lebih terfokus.

52
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

Gambar 3.24. Halaman daftar akun, pengaturan status, serta aksi reset password dan hapus
akun.

Pada halaman daftar akun, data pengguna ditampilkan dalam bentuk tabel
agar admin dapat melihat informasi inti secara cepat, seperti nama, email, role,
status, serta aksi yang tersedia. Untuk menjaga kenyamanan penggunaan pada
berbagai perangkat, tampilan dibuat responsif dengan menyesuaikan penyajian data
pada perangkat mobile agar tetap terbaca dan mudah dioperasikan.

Aksi administrasi dirancang eksplisit dan aman. Perubahan status
akun dilakukan melalui kontrol toggle (aktif/nonaktif) sehingga admin dapat
menonaktifkan akun tanpa menghapus data. Aksi reset password disediakan
melalui modal agar admin dapat menetapkan kata sandi baru tanpa berpindah
halaman; pada modal ini dapat disediakan bantuan seperti generate password

serta indikator kekuatan password untuk mendorong penerapan kata sandi yang
lebih kuat. Aksi hapus akun dilindungi dengan dialog konfirmasi untuk mencegah
penghapusan tidak sengaja.

Untuk menjaga keterbacaan data ketika jumlah pengguna bertambah,
halaman daftar akun dilengkapi pagination sehingga admin dapat menavigasi data
per halaman secara konsisten tanpa membebani tampilan dengan daftar yang terlalu
panjang.

53
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

Gambar 3.25. Halaman pembuatan akun baru oleh admin.

Pada halaman pembuatan akun, admin mengisi informasi yang diperlukan
untuk akun baru, kemudian sistem memvalidasi input sebelum menyimpan akun.
Setelah berhasil dibuat, akun baru akan muncul pada daftar akun sehingga admin
dapat langsung melakukan pengelolaan lanjutan jika diperlukan.

Implementasi Backend

Pada sisi backend, modul Manajemen Akun menerapkan kontrol akses ketat
berbasis peran (role-based access control). Seluruh endpoint admin hanya dapat
dipanggil apabila pengguna sudah login dan memiliki peran Admin. Jika sesi
tidak valid, backend mengembalikan respons Unauthorized (401). Jika pengguna
login tetapi role bukan admin, backend mengembalikan respons Forbidden (403).
Dengan pendekatan ini, fitur sensitif seperti reset password, pembuatan akun, dan
penghapusan akun tidak dapat diakses oleh User maupun Staff.

Secara fungsional, backend menyediakan layanan untuk memuat daftar akun
secara terotorisasi, menerapkan perubahan status aktif/nonaktif, memproses reset

password, menghapus akun, serta membuat akun baru. Pemuatan daftar akun
dilakukan secara server-side agar data pengguna dapat dibaca sesuai kewenangan
admin. Setiap aksi administratif diproses melalui endpoint khusus admin sehingga
validasi autentikasi, otorisasi, serta validasi input dapat diterapkan sebelum
eksekusi dilakukan. Jika proses berhasil, backend mengembalikan respons JSON

54
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

sebagai indikator keberhasilan. Jika gagal, backend mengembalikan respons
galat yang jelas, sementara detail error dicatat pada sisi server untuk membantu
debugging.

Rangkuman status dan makna respons API manajemen akun ditampilkan
pada Tabel 3.23. Contoh request dan respons API ditampilkan pada Tabel 3.24.

Tabel 3.23. Ringkasan Status dan Makna Respons API Manajemen Akun (Admin)

Kondisi Status
HTTP

Makna dan Dampak

Request berhasil 200 Backend mengeksekusi aksi admin (load
akun, toggle status, reset password, hapus
akun, atau buat akun) dan mengembalikan
indikator keberhasilan.

Input tidak valid 400 Request tidak memenuhi validasi
(misalnya field wajib kosong atau format
tidak sesuai) sehingga proses dihentikan.

Belum login / sesi tidak valid 401 Backend menolak akses karena pengguna
belum terautentikasi.

Role bukan admin 403 Backend menolak akses karena pengguna
tidak memiliki hak akses untuk aksi
admin.

Akun tidak ditemukan 404 Target akun yang dimaksud tidak
ditemukan sehingga aksi tidak dapat
dijalankan.

Gagal eksekusi di server 500 Terjadi kegagalan proses di server
sehingga aksi admin tidak dapat
diselesaikan.

55
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

Tabel 3.24. Contoh Request dan Respons API Manajemen Akun (Admin)

Skenario Contoh Request dan Respons
Memuat daftar akun (200) Request:

GET /api/admin/users?page=1

Response:

HTTP/1.1 200 OK

Body: {"data":[...], "page":1, "totalPages":N}
Toggle status akun (200) Request:

PATCH /api/admin/users/{uid}/status
Body: {"isActive":false}

Response:

HTTP/1.1 200 OK

Body: {"message":"Status updated"}
Reset password (200) Request:

POST /api/admin/users/{uid}/reset-password
Body: {"newPassword":"<PASSWORD BARU>"}

Response:

HTTP/1.1 200 OK

Body: {"message":"Password reset success"}
Hapus akun (200) Request:

DELETE /api/admin/users/{uid}

Response:

HTTP/1.1 200 OK

Body: {"message":"User deleted"}
Belum login / sesi tidak
valid (401)

Request:

GET /api/admin/users?page=1

Response:

HTTP/1.1 401 Unauthorized

Body: {"message":"Unauthorized","error":"UNAUTHORIZED"}
Role bukan admin (403) Request:

GET /api/admin/users?page=1

Response:

HTTP/1.1 403 Forbidden

Body: {"message":"Forbidden","error":"FORBIDDEN"}

56
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

Sequence Diagram

Untuk memperjelas interaksi antara admin, frontend, dan backend,
Gambar 3.26 menunjukkan alur utama pada modul Manajemen Akun, yaitu
ketika admin memuat daftar akun (termasuk mekanisme validasi sesi dan role
admin), kemudian menjalankan aksi administratif yang paling sering digunakan
seperti perubahan status aktif/nonaktif serta reset password. Alur ini menekankan
bahwa setiap permintaan diproteksi oleh kontrol akses sebelum backend melakukan
pembaruan data.

Gambar 3.26. Sequence diagram proses Manajemen Akun (Admin)

57
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

3.3.2.11 Audit Log Admin

Modul Audit Log merupakan fitur khusus Admin yang digunakan untuk
melacak aktivitas penting di dalam sistem, seperti pembuatan, perubahan, dan
penghapusan data komplain. Pencatatan ini bertujuan menjaga akuntabilitas,
memudahkan penelusuran ketika terjadi kesalahan operasional, serta menyediakan
jejak perubahan (traceability) yang dapat ditinjau kembali berdasarkan waktu,
pelaku, dan target perubahan (misalnya ID tiket).

Secara umum, alur audit log dimulai ketika admin membuka halaman audit
log dan sistem memuat data log terbaru. Admin dapat melakukan pencarian untuk
menemukan aktivitas tertentu dengan cepat, menelusuri log melalui pagination,
serta mengekspor data log sesuai kondisi tampilan yang sedang aktif (misalnya
berdasarkan hasil pencarian atau halaman tertentu). Apabila sesi tidak valid atau
role tidak sesuai, sistem menolak akses untuk memastikan audit log hanya dapat
diakses oleh admin.

Gambar 3.27. Tampilan modul Audit Log Admin.

Implementasi Frontend

Dari sisi frontend, modul Audit Log diimplementasikan sebagai satu
halaman monitoring pada dashboard admin. Halaman ini menyediakan dua kontrol
utama, yaitu search bar untuk pencarian cepat dan tombol Ekspor ke Excel untuk
mengunduh data log sesuai kondisi tampilan yang sedang aktif. Kolom pencarian
membantu admin menemukan aktivitas berdasarkan kata kunci seperti nama pelaku,

58
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

ID tiket, atau ringkasan aktivitas, sehingga admin tidak perlu menelusuri halaman
satu per satu.

Data log ditampilkan secara responsif. Pada perangkat desktop, data
disajikan dalam bentuk tabel agar kolom-kolom penting dapat dibaca sekaligus,
seperti pengguna, ID tiket, ringkasan aktivitas, waktu, dan tanggal. Pada perangkat
mobile, data disajikan dalam bentuk kartu ringkas agar tetap nyaman dibaca dan
mudah di-scroll. Untuk memperjelas konteks aktivitas, tampilan mobile dapat
menampilkan penanda visual berdasarkan jenis aksi (misalnya create, edit, atau
delete) melalui badge atau gaya kartu yang berbeda.

Agar pengalaman penggunaan tetap konsisten, halaman menampilkan
indikator loading saat proses pengambilan data berlangsung, serta empty state

ketika data tidak tersedia atau hasil pencarian tidak menemukan log. Untuk
menjaga keterbacaan ketika jumlah log banyak, halaman menyediakan pagination
dengan ukuran halaman tetap dan navigasi halaman yang jelas, serta menonaktifkan
interaksi tertentu ketika data sedang dimuat agar tidak terjadi permintaan berulang
yang tidak diperlukan.

Implementasi Backend

Pada sisi backend, akses audit log dibatasi ketat untuk peran Admin melalui
validasi autentikasi dan otorisasi sebelum data dikembalikan. Jika sesi login
tidak valid, backend mengembalikan respons Unauthorized (401). Jika pengguna
login tetapi role bukan admin, backend mengembalikan respons Forbidden (403).
Pembatasan ini memastikan data audit tidak dapat diakses oleh User maupun Staff.

Sumber data audit disimpan pada koleksi audit logs di Cloud Firestore.
Saat halaman dibuka, backend mengambil data log dengan urutan waktu terbaru
terlebih dahulu (order by timestamp desc) dan menerapkan pagination agar
pemuatan data tetap efisien. Setiap dokumen audit dipetakan menjadi entitas log
yang memuat informasi inti seperti jenis aksi, ID target (misalnya ID tiket), nama
pelaku, ringkasan perubahan, serta timestamp. Jika diperlukan untuk investigasi,
data before dan after dapat disertakan sebagai jejak perubahan agar admin dapat
menelusuri apa yang berubah pada suatu aksi.

Fitur ekspor memanfaatkan dataset log sesuai kondisi tampilan yang aktif,
sehingga file Excel yang dihasilkan selaras dengan kebutuhan admin saat itu.
Untuk keamanan di tingkat basis data, aturan Security Rules juga membatasi
koleksi audit logs agar hanya admin yang dapat membaca data audit, sedangkan

59
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

pencatatan log dilakukan oleh sistem ketika terjadi aksi penting yang perlu
didokumentasikan.

Rangkuman status dan makna respons API audit log ditampilkan pada
Tabel 3.25. Contoh request dan respons ditampilkan pada Tabel 3.26.

Tabel 3.25. Ringkasan Status dan Makna Respons API Audit Log (Admin)

Kondisi Status
HTTP

Makna dan Dampak

Request berhasil 200 Backend mengembalikan data audit log
sesuai pagination atau filter agar dapat
ditampilkan pada tabel/kartu dan diekspor
bila diperlukan.

Parameter request tidak valid 400 Request tidak memenuhi validasi
(misalnya parameter halaman tidak
valid) sehingga proses dihentikan.

Belum login / sesi tidak valid 401 Backend menolak akses karena pengguna
belum terautentikasi.

Role bukan admin 403 Backend menolak akses karena audit log
bersifat sensitif dan hanya untuk admin.

Gagal mengambil data / gagal
proses ekspor

500 Terjadi kegagalan proses di server
sehingga data log tidak dapat dimuat atau
file ekspor tidak dapat dihasilkan.

60
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

Tabel 3.26. Contoh Request dan Respons API Audit Log (Admin)

Skenario Contoh Request dan Respons
Memuat audit log (200) Request:

GET /api/admin/audit-logs?page=1

Response:

HTTP/1.1 200 OK

Body: {"data":[...], "page":1, "totalPages":N}
Memuat audit log dengan
pencarian (200)

Request:

GET /api/admin/audit-logs?page=1

&q=edit

Response:

HTTP/1.1 200 OK

Body: {"data":[...], "page":1, "totalPages":N}
Ekspor audit log ke Excel
(200)

Request:

GET /api/admin/audit-logs/export?q=edit

Response:

HTTP/1.1 200 OK

Content-Type: application/vnd.openxmlformats-officedocument.

spreadsheetml.sheet

Belum login / sesi tidak
valid (401)

Request:

GET /api/admin/audit-logs?page=1

Response:

HTTP/1.1 401 Unauthorized

Body: {"message":"Unauthorized","error":"UNAUTHORIZED"}
Role bukan admin (403) Request:

GET /api/admin/audit-logs?page=1

Response:

HTTP/1.1 403 Forbidden

Body: {"message":"Forbidden","error":"FORBIDDEN"}

61
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

Sequence Diagram

Untuk memperjelas interaksi antara admin, frontend, dan backend,
Gambar 3.28 menunjukkan alur ketika admin memuat data audit log, melakukan
pencarian dan pagination, serta mengekspor data log sesuai kondisi tampilan yang
aktif.

Gambar 3.28. Sequence diagram proses Audit Log Admin

62
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

3.3.3 Sesi Login Berakhir Otomatis Jika Tidak Ada Aktivitas Selama 5 Menit

Pada sistem yang dikembangkan, pengamanan sesi pada area dashboard
diterapkan pada lapisan middleware sebagai gerbang utama akses (server-side

gate). Pendekatan ini dipilih karena middleware dieksekusi sebelum halaman
dashboard diproses dan sebelum konten internal dikirim ke klien, sehingga sistem
dapat menolak akses lebih awal ketika sesi tidak valid tanpa bergantung pada
validasi di sisi frontend. Mekanisme ini diterapkan khusus pada rute dashboard
(area privat), sehingga halaman publik tidak terdampak.

Selain validasi sesi dasar, sistem menerapkan idle timeout selama lima
menit sebagai pengamanan tambahan. Jika tidak ada aktivitas pengguna melewati
batas tersebut, sistem mengakhiri sesi dan mengarahkan pengguna kembali
ke halaman login. Kebijakan ini mengurangi risiko akses tidak sah ketika
pengguna meninggalkan perangkat dalam keadaan masih login, serta membantu
mengurangi permintaan yang tidak perlu pada layanan backend ketika sesi
dibiarkan menganggur.

3.3.3.1 Pencatatan Aktivitas Pengguna

Sistem menyimpan waktu aktivitas terakhir pengguna dalam bentuk
timestamp pada cookie lastActive. Pembaruan nilai lastActive dilakukan
secara terkontrol melalui proses server-side agar keputusan validasi tidak
bergantung pada manipulasi di sisi klien. Untuk mendukung pembaruan aktivitas
pada interaksi tertentu yang tidak selalu memicu perpindahan halaman, disediakan
endpoint khusus yang dipanggil oleh dashboard ketika terjadi interaksi (misalnya
pemanggilan data AJAX atau aksi UI tertentu).

1 import { NextResponse } from ’next/server ’;

2

3 export const runtime = ’nodejs ’;

4

5 export async function POST() {

6 const now = Date.now().toString();

7 const res = NextResponse.json({ ok: true });

8

9 res.cookies.set(’lastActive ’, now, {

10 httpOnly: true ,

11 secure: process.env.NODE_ENV === ’production ’,

12 sameSite: ’lax’,

63
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

13 path: ’/’,

14 maxAge: 60 * 60,

15 });

16

17 return res;

18 }

Kode 3.2: Endpoint untuk memperbarui cookie aktivitas terakhir pengguna (lastActive).

Flowchart Validasi Idle Timeout

Untuk memberikan gambaran ringkas terhadap keputusan yang diambil
sistem pada setiap akses rute dashboard, Gambar 3.29 menunjukkan alur validasi
sesi pada middleware mulai dari pemeriksaan authToken, evaluasi selisih waktu
idle berdasarkan lastActive, hingga keputusan untuk melanjutkan akses atau
mengakhiri sesi dan mengarahkan pengguna ke halaman login.

64
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

Gambar 3.29. Flowchart validasi sesi dan idle timeout 5 menit pada middleware dashboard.

3.3.3.2 Validasi Idle Timeout dan Redirect Login di Middleware

Validasi dilakukan di middleware agar konsisten untuk seluruh rute
dashboard. Middleware membaca authToken sebagai indikator autentikasi dan
lastActive sebagai indikator aktivitas terakhir. Jika token tidak ada, pengguna
dianggap belum terautentikasi dan diarahkan ke halaman login. Jika token ada
tetapi selisih waktu antara now dan lastActive melebihi lima menit, middleware
melakukan logout paksa dengan menghapus cookie sesi, lalu melakukan redirect

ke halaman login dengan parameter alasan agar pengguna memahami penyebab
pengalihan.

1 const IDLE_MS = 5 * 60 * 1000; // 5 menit

65
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

2

3 export function middleware(req: NextRequest) {

4 if (!req.nextUrl.pathname.startsWith("/dashboard")) return

NextResponse.next();

5

6 const authToken = req.cookies.get("authToken")?.value;

7 const lastActive = Number(req.cookies.get("lastActive")?.value);

8 const now = Date.now();

9

10 if (!authToken) {

11 return NextResponse.redirect(new URL("/login", req.url));

12 }

13

14 if (!Number.isNaN(lastActive) && now - lastActive > IDLE_MS) {

15 const res = NextResponse.redirect(new URL("/login?reason=idle

", req.url));

16 res.cookies.set("authToken", "", { path: "/", httpOnly: true ,

maxAge: 0 });

17 res.cookies.set("lastActive", "", { path: "/", httpOnly: true ,

maxAge: 0 });

18 return res;

19 }

20

21 const res = NextResponse.next();

22 res.cookies.set("lastActive", String(now), { path: "/", httpOnly

: true });

23 return res;

24 }

25

26 export const config = { matcher: ["/dashboard/:path*"] };

Kode 3.3: Snippet inti validasi sesi dan idle timeout di middleware.

3.3.3.3 Lapisan Tambahan: Validasi Token Firebase di Server

Sebagai pengamanan berlapis (defense in depth), sistem juga memverifikasi
session cookie menggunakan Firebase Admin SDK pada proses server-side tertentu.
Verifikasi ini memastikan token benar-benar valid dan belum dicabut (revoked). Jika
verifikasi gagal, akses ditolak dan pengguna diarahkan kembali ke halaman login.

1 ’use server ’;

2

3 import { redirect } from ’next/navigation ’;

66
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

4 import { cookies } from ’next/headers ’;

5 import { adminAuth } from ’@/lib/firebase -admin ’;

6

7 export async function requireSession(nextPath: string) {

8 const cookieStore = await cookies();

9 const token = cookieStore.get(’authToken ’)?.value;

10

11 if (!token) redirect(‘/login?next=${encodeURIComponent(nextPath)

}‘);

12

13 try {

14 await adminAuth.verifySessionCookie(token , true);

15 } catch {

16 redirect(‘/login?next=${encodeURIComponent(nextPath)}‘);

17 }

18 }

Kode 3.4: Validasi sesi server-side menggunakan Firebase Admin SDK.

3.3.3.4 Ringkasan Kondisi dan Dampak

Untuk memudahkan pemahaman perilaku sistem, Tabel ?? merangkum
kondisi utama yang terjadi pada akses dashboard dan dampaknya terhadap
pengguna.

Kondisi Respons
HTTP

Dampak

Cookie authToken tidak ada 3xx Redirect Pengguna dianggap belum
login dan diarahkan ke
halaman login.

Idle melebihi 5 menit 3xx Redirect Cookie sesi dihapus dan
pengguna diarahkan
ke login dengan alasan
reason=idle.

Sesi valid dan masih aktif 200 OK Akses dashboard diizinkan
dan lastActive diperbarui.

Token dicabut / verifikasi
Firebase gagal

3xx Redirect Akses ditolak dan pengguna
diarahkan ke halaman login.

67
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

3.3.3.5 Kesimpulan

Penempatan kontrol sesi pada middleware menjadikan validasi akses
dashboard bersifat konsisten, server-side, dan sulit dilewati melalui manipulasi di
sisi klien. Kebijakan idle timeout lima menit memperkuat keamanan akses dengan
mengurangi risiko perangkat ditinggalkan dalam keadaan login, serta membantu
menekan aktivitas sesi menganggur pada layanan backend.

68
Rancang Bangun Website..., Joshua Jonathan, Universitas Multimedia Nusantara

	BAB 3 Pelaksanaan Magang
	3.1 Kedudukan dan Organisasi
	3.2 Tugas yang Dilakukan
	3.3 Uraian Pelaksanaan Magang
	3.3.1 Use Case Diagram
	3.3.2 Daftar Modul Berdasarkan Peran Pengguna
	3.3.2.1 Modul Authentication (Login)
	3.3.2.2 Modul Akses Dashboard (Role-Based)
	3.3.2.3 Fitur Chat dalam Tiket Komplain
	3.3.2.4 Notifikasi Pesan Chat Tiket Komplain
	3.3.2.5 Halaman Pengaturan (Settings)
	3.3.2.6 Lihat Daftar Tiket
	3.3.2.7 Modul Pembuatan Tiket
	3.3.2.8 Manajemen Kategori Komplain
	3.3.2.9 Modul Statistik Komplain
	3.3.2.10 Manajemen Akun (Khusus Admin)
	3.3.2.11 Audit Log Admin

	3.3.3 Sesi Login Berakhir Otomatis Jika Tidak Ada Aktivitas Selama 5 Menit
	3.3.3.1 Pencatatan Aktivitas Pengguna
	3.3.3.2 Validasi Idle Timeout dan Redirect Login di Middleware
	3.3.3.3 Lapisan Tambahan: Validasi Token Firebase di Server
	3.3.3.4 Ringkasan Kondisi dan Dampak
	3.3.3.5 Kesimpulan

