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IMPLEMENTASI SEGMENTED CKKS HOMOMORPHIC ENCRYPTION
PADA FEDERATED LEARNING DENGAN MODEL RESNET22 UNTUK

KLASIFIKASI KANKER PAYUDARA

Chyntia Irawan

ABSTRAK

Kanker payudara merupakan salah satu penyebab utama kematian pada perempuan,
sehingga deteksi dini yang akurat sangat diperlukan. Namun, pemanfaatan data
medis terdistribusi menghadapi tantangan privasi, sehingga Federated Learning
(FL) digunakan untuk memungkinkan pelatihan model tanpa berbagi data
mentah. Meskipun demikian, pertukaran parameter model dalam FL tetap
berpotensi menimbulkan kebocoran informasi, sehingga penelitian ini menerapkan
Segmented CKKS Homomorphic Encryption pada sistem Federated Learning
dengan model ResNet22 menggunakan dataset CBIS-DDSM. Evaluasi performa
dilakukan menggunakan metrik AUC dan PR-AUC pada berbagai konfigurasi
tingkat keamanan dan panjang kunci. Hasil terbaik pada skenario terenkripsi
diperoleh pada konfigurasi 192-bit dengan key size 8192, dengan nilai AUC sebesar
0,8545 dan PR-AUC sebesar 0,8136, yang menunjukkan penurunan performa yang
relatif kecil dibandingkan model tanpa enkripsi. Hasil ini menunjukkan bahwa
Segmented CKKS mampu meningkatkan perlindungan privasi dalam Federated
Learning tanpa mengorbankan performa model secara signifikan.

Kata kunci: Federated Learning, Homomorphic Encryption, Kanker Payudara,
ResNet22, Segmented CKKS
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IMPLEMENTATION OF SEGMENTED CKKS HOMOMORPHIC
ENCRYPTION ON FEDERATED LEARNING WITH RESNET22 MODEL

FOR BREAST CANCER CLASSIFICATION

Chyntia Irawan

ABSTRACT

Breast cancer is one of the leading causes of death among women, making
accurate early detection essential. However, the use of distributed medical data
raises privacy concerns, motivating the adoption of Federated Learning (FL)
to enable collaborative model training without sharing raw data. Despite this,
model parameter exchange in FL still poses potential privacy risks, which this
study addresses by implementing Segmented CKKS Homomorphic Encryption in
a Federated Learning framework using the ResNet22 model on the CBIS-DDSM
dataset. Model performance is evaluated using AUC and PR-AUC across different
security levels and key sizes. The best encrypted configuration is achieved at
192-bit security with a key size of 8192, yielding an AUC of 0.8545 and a PR-
AUC of 0.8136, indicating only a slight performance degradation compared to the
non-encrypted model. These results demonstrate that Segmented CKKS effectively
enhances privacy protection while maintaining competitive model performance.

Keywords: Breast Cancer, Federated Learning, Homomorphic Encryption,
ResNet22, Segmented CKKS
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