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IMPLEMENTASI PACKED CKKS HOMOMORPHIC ENCRYPTION
PADA FEDERATED LEARNING DENGAN MODEL CNN RESNET-22

UNTUK KLASIFIKASI KANKER PAYUDARA

Stefanie Veronica Wijaya

ABSTRAK

Pelatihan model machine learning pada data medis terdistribusi menghadapi
tantangan besar dalam menjaga privasi data pasien serta tingginya biaya komunikasi
pada skema federated learning (FL) terenkripsi. FL memungkinkan pelatihan
kolaboratif tanpa pertukaran data mentah, namun penerapan homomorphic
encryption secara signifikan meningkatkan communication overhead. Penelitian
ini menerapkan Packed CKKS Homomorphic Encryption pada FL berbasis
CNN ResNet-22 untuk klasifikasi kanker payudara menggunakan dataset CBIS-
DDSM, serta mengintegrasikan mekanisme top-k sparsification untuk menekan
biaya komunikasi. Eksperimen pada skenario tiga klien menunjukkan bahwa
konfigurasi top-k = 0,2 menghasilkan biaya komunikasi terendah, dengan performa
klasifikasi yang tidak mengalami penurunan drastis dibandingkan baseline FL tanpa
enkripsi, ditunjukkan oleh AUC sebesar 0,8554 dan PR-AUC sebesar 0,8095, serta
peningkatan waktu komputasi sekitar 1,59 kali dibandingkan mode tanpa enkripsi.
Hasil ini menegaskan bahwa top-k = 0,2 paling sesuai untuk menurunkan biaya
komunikasi pada FL terenkripsi dengan trade-off performa yang terukur.

Kata kunci: Federated Learning, Homomorphic Encryption, Kanker Payudara,
Packed CKKS, ResNet22
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IMPLEMENTATION OF PACKED CKKS HOMOMORPHIC ENCRYPTION
IN FEDERATED LEARNING WITH CNN RESNET-22 MODEL FOR

BREAST CANCER CLASSIFICATION

Stefanie Veronica Wijaya

ABSTRACT

Training machine learning models on distributed medical data poses significant
challenges in preserving patient privacy and mitigating the high communication
cost introduced by encrypted federated learning (FL). Federated Learning enables
collaborative model training without sharing raw data; however, the application
of homomorphic encryption substantially increases communication overhead. This
study applies Packed CKKS Homomorphic Encryption to an FL framework based
on a ResNet-22 convolutional neural network for breast cancer classification
using the CBIS-DDSM dataset, and integrates a top-k sparsification mechanism
to reduce communication cost. Experiments conducted under a three-client setting
demonstrate that the top-k = 0.2 configuration achieves the lowest communication
cost while maintaining classification performance that does not suffer a drastic
degradation compared to non-encrypted federated learning, as indicated by an
AUC of 0.8554 and a PR-AUC of 0.8095. This configuration incurs an increase
in computational time of approximately 1.59× relative to the unencrypted setting.
These results indicate that top-k = 0.2 represents the most suitable configuration
for reducing communication cost in encrypted federated learning while preserving
a controlled and measurable performance trade-off.

Keywords: Breast Cancer, Federated Learning, Homomorphic Encryption, Packed
CKKS, ResNet22
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