
BAB 2
LANDASAN TEORI

2.1 Federated Learning

Federated Learning (FL) merupakan paradigma machine learning

terdistribusi yang memungkinkan banyak klien melakukan proses pelatihan model
secara lokal pada perangkat atau institusi masing-masing tanpa perlu memindahkan
data mentah ke server pusat [5, 6, 7, 15, 16, 17]. Pendekatan ini muncul sebagai
solusi terhadap keterbatasan pembelajaran terpusat yang sering kali menimbulkan
risiko kebocoran privasi serta permasalahan kepemilikan data [15, 16, 18]. Melalui
FL, setiap klien melatih model lokal menggunakan dataset internal, kemudian hanya
parameter atau gradien hasil pelatihan yang dikirimkan ke server untuk dilakukan
agregasi [15, 19, 20]. Server kemudian memperbarui model global berdasarkan
kontribusi masing-masing klien sehingga dihasilkan model yang lebih representatif
tanpa mengorbankan kerahasiaan data lokal [16, 17, 20].

Struktur umum Federated Learning (FL) terdiri atas satu server pusat dan
sejumlah klien yang melatih model secara lokal menggunakan data masing-masing
tanpa perlu membagikan data mentah [17, 20]. Server mengirimkan parameter
model global awal kepada klien untuk dilatih secara paralel di perangkat lokal
mereka. Setelah proses pelatihan selesai, setiap klien mengirimkan hasil pembaruan
modelnya kembali ke server. Server kemudian menggabungkan seluruh pembaruan
tersebut menggunakan mekanisme agregasi berbobot untuk memperbarui model
global. Proses ini berlangsung secara iteratif hingga model mencapai konvergensi
dan performa yang stabil [16, 17, 20]. Gambar 2.1 memperlihatkan alur kerja umum
FL yang mencakup seleksi klien, pelatihan lokal, dan agregasi model global.

6
Implementasi Packed CKKS..., Stefanie Veronica Wijaya, Universitas Multimedia Nusantara



Gambar 2.1. Alur kerja umum Federated Learning [21].

Horizontal Federated Learning (HFL) merupakan bentuk kolaborasi
terdistribusi di mana beberapa institusi dengan struktur fitur data yang serupa
melatih model secara bersama tanpa perlu berbagi data mentah [17, 18]. Melalui
mekanisme ini, HFL memungkinkan pembelajaran kolektif yang menjaga privasi
data sekaligus meningkatkan generalisasi model terhadap variasi populasi pasien
[22]. Gambar 2.2 memperlihatkan ilustrasi HFL pada skenario rumah sakit, di
mana masing-masing institusi memiliki fitur data yang identik namun pasien yang
berbeda.

Gambar 2.2. Arsitektur Horizontal Federated Learning [22].

7
Implementasi Packed CKKS..., Stefanie Veronica Wijaya, Universitas Multimedia Nusantara



Algoritma Federated Averaging (FedAvg) yang diperkenalkan oleh
McMahan et al. [19] merupakan metode agregasi paling umum dalam Federated

Learning. Algoritma ini menggabungkan model lokal dari tiap klien melalui rata-
rata berbobot untuk membentuk model global baru yang kemudian didistribusikan
kembali ke seluruh klien. Proses dasarnya ditunjukkan pada pseudocode berikut.

Algorithm 1 Federated Averaging (FedAvg) [19]
Require: Number of clients K, local batch size B, local epochs E, learning rate η

Ensure: Global weights w

1: Initialize global model w0

2: for t = 1,2, . . . ,T do
3: for all k = 1,2, . . . ,K (in parallel) do
4: wk

t+1← CLIENTUPDATE(k,wt)

5: end for
6: wt+1←

K
∑

k=1

nk
∑

K
j=1 n j

wk
t+1

7: end for
8: function CLIENTUPDATE(k,w)
9: Split local dataset Pk into batches of size B

10: for i = 1 to E do
11: for each batch b ∈ Pk do
12: w← w−η∇L (w;b)

13: end for
14: end for
15: return w

16: end function

Pada Algoritma 1, wt menyatakan parameter model global pada ronde ke-
t, sedangkan wk

t+1 adalah parameter model hasil pembaruan lokal pada klien ke-
k yang dilakukan dengan inisialisasi wt . Data lokal pada klien ke-k dinotasikan
sebagai Pk dan diproses dalam batch b∈ Pk. Pembaruan parameter lokal pada setiap
batch dilakukan dengan aturan penurunan gradien, yakni parameter w diperbarui ke
arah negatif gradien fungsi kerugian L (w;b) dengan besar langkah yang ditentukan
oleh η , sehingga diperoleh pembaruan w← w−η∇L (w;b). Setelah seluruh klien
menyelesaikan pelatihan lokal, server memperbarui model global melalui agregasi
rata-rata berbobot wt+1 = ∑

K
k=1

nk
∑

K
j=1 n j

wk
t+1, dengan nk menyatakan jumlah sampel

pada klien ke-k sehingga kontribusi masing-masing klien proporsional terhadap

8
Implementasi Packed CKKS..., Stefanie Veronica Wijaya, Universitas Multimedia Nusantara



ukuran data lokalnya. Proses ini diulang selama T ronde komunikasi hingga
diperoleh model global akhir.

Jiménez-Sánchez et al. (2023) [8] mengembangkan pendekatan Federated

Learning dengan memperluas algoritma FedAvg melalui tiga mekanisme utama,
yaitu penambahan noise, penjadwalan curriculum learning yang adaptif, serta
penyelarasan fitur lintas domain menggunakan adversarial alignment. Model
diinisialisasi menggunakan bobot awal hasil pretrained dari Wu et al. (2020) [23]
untuk mempercepat konvergensi dan menjaga stabilitas awal pelatihan federatif.

Algoritma FedAvg konvensional menghasilkan AUC sebesar 0.75 dan PR-
AUC sebesar 0.77. Penambahan noise diterapkan selama proses agregasi parameter
untuk menyeimbangkan kontribusi antar klien dan menjaga kestabilan pembaruan
model global pada data lintas domain. Mekanisme ini berperan sebagai strategi
regularisasi ringan yang mencegah dominasi model dari domain dengan distribusi
data yang lebih besar serta meningkatkan kemampuan generalisasi model federatif
[8]. Proses agregasi berbobot dengan penambahan noise ditunjukkan pada cuplikan
berikut, yang sekaligus memperlihatkan penggunaan parameter pace dan nsteps

dalam penjadwalan komunikasi federatif.
1 if (count % params.pace == 0) or t == params.nsteps - 1:
2 # communication - weights update
3 with torch.no_grad():
4 for key in global_model.state_dict().keys():
5 # num_batches_tracked is a non trainable LongTensor

and
6 # num_batches_tracked are the same for all clients
7 if local_models [0]. state_dict()[key].dtype == torch.

int64:
8 global_model.state_dict()[key].data.copy_(

local_models [0]. state_dict()[key])
9 else:

10 temp = torch.zeros_like(global_model.state_dict()[
key])

11 # add noise
12 for s in range(n_sites):
13 if params.noise_type == ’G’:
14 nn = tdist.Normal(
15 torch.tensor ([0.0]),
16 params.noise * torch.std(
17 local_models[s].state_dict()[key].

detach().cpu()
18 )
19 )
20 else:
21 nn = tdist.Laplace(
22 torch.tensor ([0.0]),
23 params.noise * torch.std(
24 local_models[s].state_dict()[key].

detach().cpu()

9
Implementasi Packed CKKS..., Stefanie Veronica Wijaya, Universitas Multimedia Nusantara



25 )
26 )
27 noise = nn.sample(local_models[s].state_dict()

[key].size()).squeeze(-1)
28 noise = noise.to(device)
29 temp += w[s] * (local_models[s].state_dict()[

key] + noise)
30 # update global model
31 global_model.state_dict()[key].data.copy_(temp)
32 # update local models
33 for s in range(n_sites):
34 local_models[s].state_dict()[key].data.copy_(

global_model.state_dict()[key])

Kode 2.1: Proses agregasi model global dengan regularisasi berbasis noise dan penjadwalan
komunikasi [8]

Pada Kode 2.1, variabel count merupakan penghitung langkah pelatihan
lokal dalam satu epoch, sedangkan params.nsteps menentukan jumlah
total langkah (mini-steps) yang dijalankan setiap epoch pada masing-masing
situs. Kondisi (count % params.pace == 0) or t == params.nsteps - 1

memastikan bahwa agregasi global hanya dilakukan secara periodik setiap sejumlah
langkah tertentu yang diatur oleh pace, atau dipaksa terjadi pada akhir epoch ketika
t = params.nsteps - 1. Dengan demikian, pace mengendalikan frekuensi
komunikasi federatif, sementara nsteps mengatur granularitas pelatihan lokal
dalam satu epoch. Jiménez-Sánchez et al. [8] menunjukkan bahwa pengaturan
ritme komunikasi ini penting untuk menjaga keseimbangan antara stabilitas
konvergensi dan efisiensi pelatihan, terutama ketika digabung dengan mekanisme
adversarial alignment dan curriculum learning.

2.1.1 Adversarial Alignment

Mekanisme adversarial alignment digunakan untuk menyelaraskan
distribusi representasi fitur antar domain dengan prinsip pembelajaran adversarial.
Arsitektur terdiri atas dua komponen utama, yaitu encoder untuk mengekstraksi
fitur dan discriminator untuk membedakan asal domain representasi tersebut.
Proses pelatihan berlangsung secara kompetitif agar encoder menghasilkan fitur
yang tidak dapat dibedakan oleh discriminator, sehingga tercipta representasi yang
bersifat domain-invariant [8]. Fungsi kerugian yang digunakan dijelaskan sebagai
berikut.

1 def advDloss(d1, d2):
2 res = -torch.log(d1).mean() - torch.log(1 - d2).mean()
3 return res
4

10
Implementasi Packed CKKS..., Stefanie Veronica Wijaya, Universitas Multimedia Nusantara



5 def advGloss(d1, d2):
6 res = -torch.log(d1).mean() - torch.log(d2).mean()
7 return res.mean()

Kode 2.2: Fungsi kerugian pada mekanisme adversarial alignment [8]

Proses pelatihan berlangsung dengan membandingkan representasi antar
domain untuk memperkecil perbedaan distribusi fitur. Pembaruan bobot
dilakukan secara bergantian antara encoder dan discriminator agar keseimbangan
pembelajaran terjaga. Cuplikan berikut menggambarkan bagian utama dari
proses pelatihan adversarial sekaligus menunjukkan bagaimana parameter nsteps
digunakan untuk mengulang proses optimisasi klasifikasi dan penyelarasan fitur
pada setiap epoch.

1 for t in range(params.nsteps):
2 # feature space
3 fs = []
4

5 # optimize classifier
6 for i in range(n_sites):
7 optimizers[i].zero_grad()
8 inputs , labels , domain , idx = next(data_inters[i]) # get

mini -batch for site i
9 num_data[i] += labels.size(0)

10 inputs = inputs.to(device)
11 labels = labels.to(device)
12 probs , logits = local_models[i](inputs) # get output of

model i
13 loss = class_criterion(logits , labels) # compute loss
14

15 loss_all[i] += loss.item() * labels.size(0)
16 loss.backward(retain_graph=True)
17 optimizers[i].step()
18

19 fs.append(local_models[i].encoder(inputs)) # feature
space

20

21 # optimize alignment
22 nn = []
23 noises = []
24 for i in range(n_sites):
25 nn = tdist.Normal(torch.tensor ([0.0]), 0.001 * torch.std(

fs[i].detach().cpu()))
26 noises.append(nn.sample(fs[i].size()).squeeze().to(device)

)
27

28 for i in range(n_sites):
29 for j in range(n_sites):
30 if i != j:
31 optimizerDs[i].zero_grad()
32 optimizerGs[i].zero_grad()
33 optimizerGs[j].zero_grad()
34

35 d1 = discriminators[i](fs[i].detach() + noises[i])
36 d2 = discriminators[i](fs[j].detach() + noises[j])

11
Implementasi Packed CKKS..., Stefanie Veronica Wijaya, Universitas Multimedia Nusantara



37 num_dataG[i] += d1.size(0)
38 num_dataD[i] += d1.size(0)
39 lossD = advDloss(d1, d2)
40 lossG = advGloss(d1, d2)
41

42 lossD_all[i] += lossD.item() * d1.size(0)
43 lossG_all[i] += lossG.item() * d1.size(0)
44 lossG_all[j] += lossG.item() * d2.size(0)
45 lossD = 0.1 * lossD
46

47 if epoch >= params.n_epochs_adversarial:
48 lossG.backward(retain_graph=True)
49 optimizerGs[i].step()
50 optimizerGs[j].step()
51

52 lossD.backward(retain_graph=True) #
retain_graph=True works too

53 optimizerDs[i].step()
54

55 count += 1

Kode 2.3: Loop pelatihan lokal dengan nsteps dan adversarial alignment [8]

Pada Kode 2.3, parameter params.nsteps menentukan berapa kali proses
pelatihan lokal diulang dalam satu epoch pada setiap situs. Setiap iterasi langkah t

terdiri atas dua bagian utama: (1) optimisasi classifier berbasis loss klasifikasi untuk
memperbaiki kemampuan prediksi lokal, dan (2) proses adversarial alignment

yang menambahkan noise kecil pada representasi fitur (fs) dan melatih pasangan
encoder–discriminator agar distribusi fitur antar domain menjadi lebih selaras.
Dalam konteks ini, nsteps berperan sebagai pengatur granularitas pembaruan
model lokal: semakin besar nsteps, semakin banyak mini-batch yang diproses
dan semakin halus perubahan parameter sebelum dilakukan agregasi global yang
dijadwalkan oleh pace [8].

Integrasi adversarial alignment menghasilkan AUC sebesar 0.78 dan PR-
AUC sebesar 0.80, atau peningkatan sekitar 3% dibandingkan FedAvg. Hasil ini
menunjukkan bahwa penyelarasan fitur antar domain efektif dalam mengurangi
perbedaan distribusi representasi dan memperkuat generalisasi model global [8].

2.1.2 Curriculum Learning

Mekanisme curriculum learning yang diterapkan bersifat memory-aware,
mengatur prioritas pelatihan berdasarkan perubahan prediksi antar ronde. Sampel
yang kembali salah setelah pembaruan model global dilatih terlebih dahulu pada
iterasi berikutnya. Strategi ini menjaga konsistensi antara pembelajaran lokal dan
global serta mencegah model melupakan informasi penting pada domain tertentu

12
Implementasi Packed CKKS..., Stefanie Veronica Wijaya, Universitas Multimedia Nusantara



[8]. Pembobotan dihitung berdasarkan perbandingan hasil prediksi antar ronde
sebagaimana diformulasikan berikut.

1 def get_curriculum_weights(preds_back , preds_recent):
2 comparison = preds_back > preds_recent
3 weights = comparison.astype(np.float) + 1.0
4 return weights

Kode 2.4: Perhitungan bobot kurikulum lokal [8]

Proses pembentukan kurikulum dilakukan setelah fase adversarial selesai.
Setiap situs menghitung bobot kurikulum berdasarkan perubahan prediksi antara
epoch sebelumnya dan saat ini. Bobot ini digunakan sebagai probabilitas sampling
untuk menyusun ulang data pelatihan menggunakan Weighted Random Sampling,
sebagaimana ditunjukkan pada cuplikan berikut.

1 if epoch > params.n_epochs_adversarial:
2 curriculum_weights = []
3 for i in range(n_sites):
4 weights = get_curriculum_weights(track_preds[epoch - 1][i

],
5 track_preds[epoch][i])
6 curriculum_weights.append(weights)
7

8 train_sampler0 = WeightedRandomSampler(weights=
curriculum_weights[0],

9 num_samples=len(
trainset0))

10 train_loader0 = DataLoader(trainset0 ,
11 batch_size=len(trainset0) // params

.nsteps ,
12 shuffle=False ,
13 num_workers=params.num_workers ,
14 sampler=train_sampler0)
15

16 train_sampler1 = WeightedRandomSampler(weights=
curriculum_weights[1],

17 num_samples=len(
trainset1))

18 train_loader1 = DataLoader(trainset1 ,
19 batch_size=len(trainset1) // params

.nsteps ,
20 shuffle=False ,
21 num_workers=params.num_workers ,
22 sampler=train_sampler1)
23

24 train_sampler2 = WeightedRandomSampler(weights=
curriculum_weights[2],

25 num_samples=len(
trainset2))

26 train_loader2 = DataLoader(trainset2 ,
27 batch_size=len(trainset2) // params

.nsteps ,
28 shuffle=False ,
29 num_workers=params.num_workers ,
30 sampler=train_sampler2)

13
Implementasi Packed CKKS..., Stefanie Veronica Wijaya, Universitas Multimedia Nusantara



31

32 data_inters = [iter(train_loader0),
33 iter(train_loader1),
34 iter(train_loader2)]

Kode 2.5: Implementasi pembaruan bobot kurikulum pada tiap situs [8]

Pada Kode 2.5, curriculum learning diintegrasikan dengan skema batching

yang sama seperti pada loop utama, yaitu menggunakan batch size =

len(trainset0)//params.nsteps. Hal ini memastikan bahwa urutan sampel
yang diprioritaskan oleh kurikulum tetap konsisten dengan ritme pelatihan lokal
yang diatur oleh nsteps. Hasil eksperimen menunjukkan bahwa penerapan
curriculum learning menghasilkan AUC sebesar 0.75 dan PR-AUC sebesar 0.78,
yang merepresentasikan peningkatan sekitar 1% dibandingkan FedAvg standar
[8]. Peningkatan ini menandakan bahwa pengaturan urutan pelatihan berdasarkan
tingkat kesulitan data berkontribusi pada stabilitas proses pembelajaran federatif.

Kombinasi kedua mekanisme, yaitu alignment dan curriculum learning

(FedAlign-CL), menghasilkan performa terbaik dengan AUC sebesar 0.79
dan PR-AUC sebesar 0.82, atau peningkatan masing-masing sekitar 4%
dan 5% dibandingkan FedAvg dasar. Integrasi Curriculum Learning dan
Adversarial Alignment yang dijalankan dalam loop pelatihan berbasis nsteps

serta disinkronkan secara periodik menggunakan pace meningkatkan efektivitas
pembelajaran federatif serta memperkuat stabilitas dan kemampuan generalisasi
model global pada data medis multisentra [8]. Tabel 2.1 merangkum penelitian
terkait penggunaan Federated Learning.

Tabel 2.1. Ringkasan penelitian Federated Learning

Peneliti Metode Hasil Judul

Jiménez-

Sánchez et al.

(2023) [8]

FL-Align-

CL

AUC 79%,

PR-AUC

82%

Memory-aware curriculum federated

learning for breast cancer classification

Nan Yan et al.

(2024) [14]

FL + HE Acc 71,37% Efficient and straggler-resistant

homomorphic encryption for

heterogeneous federated learning

Lanjut pada halaman berikutnya

14
Implementasi Packed CKKS..., Stefanie Veronica Wijaya, Universitas Multimedia Nusantara



Tabel 2.1 Ringkasan penelitian Federated Learning (lanjutan)

Peneliti Metode Hasil Judul

Shukla et al.

(2025) [24]

FL + DP Acc 96,1% Federated learning with differential

privacy for breast cancer diagnosis

enabling secure data sharing and model

integrity

Adnan et al.

(2022) [25]

FL + DP AUC ≈ 0,9 Federated learning and differential

privacy for medical image analysis

Lessage et al.

(2024) [26]

FL + HE Acc 73,2% Secure federated learning applied to

medical imaging with fully homomorphic

encryption

Zhang et al.

(2020) [27]

FL + HE Acc 74,04% BatchCrypt: Efficient Homomorphic

Encryption for Cross-Silo Federated

Learning

2.2 Packed CKKS Homomorphic Encryption

Skema Packed CKKS Homomorphic Encryption merupakan pengembangan
dari CKKS (Cheon–Kim–Kim–Song) yang memungkinkan operasi aritmetika
dilakukan langsung di atas data terenkripsi tanpa proses dekripsi. Mekanisme ini
mendukung representasi bilangan riil dan komputasi paralel, menjadikannya sangat
relevan untuk sistem pembelajaran terdistribusi yang membutuhkan privasi tinggi
seperti Federated Learning [11, 14]. Prinsip utama Packed CKKS adalah konsep
packing, yaitu pengemasan sejumlah besar nilai plaintext ke dalam satu ciphertext

agar dapat diproses secara serentak. Dengan demikian, efisiensi komputasi
meningkat tanpa mengurangi keamanan data.

Gambar 2.3 memperlihatkan alur umum Packed CKKS pada skenario
Federated Learning. Setiap klien melakukan pelatihan lokal dan menghasilkan
pembaruan parameter, kemudian parameter tersebut dikemas (packing) ke dalam
slot-slot CKKS dan dienkripsi menjadi ciphertext. Server hanya menerima
ciphertext dari seluruh klien dan melakukan agregasi secara homomorfik untuk
membentuk ciphertext global tanpa mengakses nilai plaintext. Hasil agregasi
selanjutnya dikirim kembali ke klien untuk didekripsi, sehingga klien memperoleh
parameter global terbaru untuk ronde berikutnya [14].

15
Implementasi Packed CKKS..., Stefanie Veronica Wijaya, Universitas Multimedia Nusantara



Gambar 2.3. Ilustrasi Packed CKKS [14].

Inisialisasi konteks dan kunci CKKS dilakukan satu kali pada tahap awal
sistem. Implementasi Nan Yan et al. [14] membangkitkan konteks CKKS dengan
menetapkan parameter kriptografi dan menghasilkan pasangan kunci publik serta
kunci privat. Proses serialisasi menyimpan parameter konteks (dan kunci sesuai
kebutuhan implementasi) ke dalam file, sehingga konteks yang sama dapat dipakai
kembali selama seluruh ronde pelatihan [14].

Kunci publik pada konteks digunakan untuk melakukan enkripsi parameter
model di sisi klien. Kunci privat digunakan di sisi klien untuk melakukan
dekripsi hasil agregasi global. Server hanya memproses ciphertext melalui operasi
homomorfik dan tidak memiliki akses ke kunci privat, sehingga isi model tidak
dapat dibaca dalam bentuk plaintext. Pola ini konsisten dengan skenario FedPHE
yang mengasumsikan distribusi kunci dilakukan melalui kanal aman dan server
tidak berkolusi dengan klien [14]. Kode 2.6 disajikan sebagai kutipan langsung
dari implementasi Nan Yan et al. [14] untuk menggambarkan proses inisialisasi
konteks CKKS.

1 import os, tenseal as ts
2

3 def ckks_init(data_dir):
4 ckks_ctx = ts.context(ts.SCHEME_TYPE.CKKS , poly_modulus_degree

=8192, coeff_mod_bit_sizes=[60, 40, 40, 60])
5 ckks_ctx.global_scale =2**40
6 ckks_ctx.generate_galois_keys()
7 params = ckks_ctx.serialize(save_secret_key=True)
8 ckks_file = os.path.join(data_dir + ’context_params’)
9 with open(ckks_file , "wb") as f:

10 f.write(params)

Kode 2.6: Inisialisasi konteks CKKS [14]

Berdasarkan implementasi yang dikemukakan oleh Nan Yan et al. [14],
mekanisme umum pada Gambar 2.3 dirumuskan kembali dalam bentuk pseudocode

pada Algoritma 2. Algoritma ini menjelaskan proses kerja inti Packed CKKS di sisi
klien, meliputi pelatihan lokal, pengemasan batch, seleksi parameter signifikan, dan

16
Implementasi Packed CKKS..., Stefanie Veronica Wijaya, Universitas Multimedia Nusantara



enkripsi ke domain homomorfik.

Algorithm 2 Packed CKKS Client Process [14]
Require: Model lokal wi, jumlah epoch lokal E, rasio sparsifikasi s%, ukuran batch

B, konteks enkripsi ctx

Ensure: Ciphertext terenkripsi Ct
i dan mask Mt

i

1: for setiap global round t = 0,1, . . . ,T −1 do
2: // Pelatihan lokal
3: // Packed CKKS dan sparsifikasi top-k
4: Pi← Flatten and pack wt

i menjadi batch {P1
i , . . . ,P

K
i }

5: θ ← ambang batas s% tertinggi dalam Pi

6: for setiap batch Pi[l] ∈ Pi do
7: if |Pi[l]| ≥ θ then
8: Mt

i [l]← 1
9: Ct

i [l]← E(Pi[l])

10: else
11: Mt

i [l]← 0
12: end if
13: end for
14: Kirim pasangan (Ct

i ,M
t
i ) ke server

15: Terima hasil agregasi global (Ct ,Mt) dari server
16: Dekripsi Ct menggunakan kunci privat dan mask Mt

17: w̃t+1← hasil dekripsi ciphertext global
18: Unpack w̃t+1 ke dalam struktur model: wi

t+1← params tomodel(w̃t+1)

19: end for

Indeks t menyatakan global round ke-t. Indeks i menyatakan klien ke-
i. Setiap ronde global menghasilkan parameter model lokal terbaru wt

i melalui
pelatihan lokal. Parameter wt

i diubah menjadi vektor satu dimensi melalui proses
flattening dan dipadatkan ke dalam slot-slot CKKS (packing) untuk membentuk
representasi terkemas Pi. Mengingat kapasitas slot CKKS terbatas, Pi dipartisi
menjadi beberapa batch {P1

i , . . . ,P
K
i } agar setiap batch dapat diproses dan

dienkripsi secara efisien. Tahap ini memungkinkan banyak elemen parameter
dimuat dalam satu ciphertext sesuai karakteristik skema Packed CKKS.

Sparsifikasi top-k diterapkan dengan menentukan ambang θ yang
merepresentasikan s% nilai tertinggi berdasarkan magnitudo pada Pi. Setiap batch

Pi[l] yang memenuhi kondisi |Pi[l]| ≥ θ dipertahankan, diberi mask biner Mt
i [l] =

17
Implementasi Packed CKKS..., Stefanie Veronica Wijaya, Universitas Multimedia Nusantara



1, dan dienkripsi menggunakan operator enkripsi E(·) sehingga menghasilkan
ciphertext Ct

i [l] = E(Pi[l]). Batch yang tidak memenuhi ambang diabaikan dengan
Mt

i [l] = 0. Pasangan (Ct
i ,M

t
i ) dikirim ke server untuk dilakukan agregasi dalam

domain ciphertext. Hasil agregasi global (Ct ,Mt) diterima klien pada akhir
ronde. Klien mendekripsi Ct menggunakan kunci privat dan menerapkan mask

Mt untuk merekonstruksi vektor parameter global terdekripsi w̃t+1. Vektor w̃t+1

di-unpack dan dipetakan kembali ke struktur parameter model melalui fungsi
params tomodel sehingga diperoleh parameter klien pada ronde berikutnya, yaitu
wi

t+1.
Gambar 2.4 menunjukkan ilustrasi mekanisme top-k sparsification pada

skema Packed CKKS. Pembaruan parameter yang telah dikemas dipilih berdasarkan
nilai magnitudo tertinggi, kemudian ditandai menggunakan mask biner. Hanya
batch terpilih yang dienkripsi dan dikirimkan ke server, sedangkan elemen yang
tidak terpilih tidak dikirim sehingga volume komunikasi dapat ditekan tanpa
mengubah alur agregasi terenkripsi [14].

Gambar 2.4. Ilustrasi top-k sparsification dengan mask pada proses packing dan agregasi
terenkripsi [14].

Konteks ini menjadi landasan utama bagi seluruh proses enkripsi dan
dekripsi dalam skema Packed CKKS. Parameter model diubah dari struktur tensor
multidimensi menjadi representasi vektor satu dimensi agar dapat dikemas dalam
batch. Transformasi ini dilakukan melalui fungsi params tolist() berikut.

1 import numpy as np, torch
2

3 def params_tolist(model):
4 model.to(’cpu’)

18
Implementasi Packed CKKS..., Stefanie Veronica Wijaya, Universitas Multimedia Nusantara



5 local_state = model.state_dict()
6 params_list , layer_shape , params_num = [], {}, {}
7 for key in local_state.keys():
8 layer_shape[key] = local_state[key].shape
9 params_num[key] = int(np.prod(local_state[key].shape))

10 layer_values = local_state[key].reshape(params_num[key]).
tolist()

11 params_list.extend(layer_values)
12 return params_list , params_num , layer_shape

Kode 2.7: Konversi parameter model ke vektor satu dimensi [14]

Fungsi tersebut berperan sebagai tahap pra-packing (flattening) yang menyusun
seluruh parameter model dalam satu daftar panjang (flat list). Setiap elemen
parameter disusun secara berurutan agar dapat dibagi menjadi batch tetap pada
tahap enkripsi berikutnya.

Proses packing aktual dilakukan bersamaan dengan enkripsi pada
mekanisme CKKS. Setiap batch parameter berukuran enc batch size dikemas
menjadi satu ciphertext. Penelitian Nan Yan et al. [14] menerapkan teknik
top-k sparsification untuk mengoptimalkan efisiensi komunikasi dengan hanya
mengenkripsi sebagian batch dengan magnitudo tertinggi.

Implementasi kombinasi packing dan top-k sparsification menggunakan
pustaka TenSEAL ditunjukkan pada potongan kode berikut. Proses ini membagi
parameter menjadi beberapa batch berukuran tetap, menghitung rata-rata absolut
setiap batch, lalu mengenkripsi batch dengan skor tertinggi menjadi ciphertext

CKKS.
1 import tenseal as ts, numpy as np
2

3 def ckks_enc(plain_list , ckks_ctx , isBatch , batch_size , topk_ratio
, is_spars=’topk’):

4 batch_num = int(np.ceil(len(plain_list) / batch_size))
5 if isBatch:
6 if len(plain_list) % batch_num != 0:
7 pad = batch_num * batch_size - len(plain_list)
8 plain_list.extend([0] * pad)
9 if is_spars == ’topk’:

10 plain_batches = [plain_list[i * batch_size : (i + 1) *
batch_size] for i in range(batch_num)]

11

12 avg_list = [np.average(np.abs(batch)) for batch in
plain_batches]

13 k = int(np.ceil(batch_num * topk_ratio))
14 top_idx = np.argsort(avg_list)[-k:]
15 mask = [1 if i in top_idx else 0 for i in range(

batch_num)]
16

17 cipher_list = []
18 for i in top_idx:
19 cipher = ts.ckks_vector(ckks_ctx , plain_batches[i

])

19
Implementasi Packed CKKS..., Stefanie Veronica Wijaya, Universitas Multimedia Nusantara



20 cipher_list.append(cipher.serialize())
21 return cipher_list , mask
22

23 else:
24 cipher = [ts.ckks_vector(ckks_ctx , [i]).serialize() for i

in plain_list]
25 return cipher

Kode 2.8: Proses packing dan enkripsi menggunakan skema Packed CKKS [14]

Fungsi enc params() digunakan untuk menjalankan proses packing sekaligus
enkripsi parameter lokal di sisi klien. Fungsi ini membaca konteks enkripsi
publik (public context) yang berisi parameter CKKS, kemudian memanggil
ckks enc() dengan parameter sistem yang telah ditetapkan, seperti ukuran batch

(enc batch size) dan rasio top-k sparsification.
1 import os, tenseal as ts
2

3 def enc_params(params_list , args , epoch=0):
4 with open(os.path.join(args.data_dir , "context_params"), "rb")

as f:
5 ckks_ctx = ts.context_from(f.read())
6 return ckks_enc(params_list , ckks_ctx , isBatch=args.isBatch ,
7 batch_size=args.enc_batch_size ,
8 topk_ratio=args.topk , is_spars=args.isSpars)

Kode 2.9: Pemanggilan fungsi enkripsi di sisi klien [14]

Proses dekripsi dijalankan di sisi klien menggunakan kunci privat yang
tidak pernah dibagikan. Setiap ciphertext didekripsi menjadi vektor numerik dan
dinormalisasi sesuai jumlah batch aktif. Mekanisme tersebut diimplementasikan
menggunakan fungsi ckks dec() berikut.

1 import tenseal as ts
2 import numpy as np
3

4 def ckks_dec(cipher_list , ckks_ctx , sk, isBatch=True , sum_masks
=[], batch_size=0):

5 if isBatch:
6 plain_list = []
7 for idx , cipher_serial in enumerate(cipher_list):
8 if cipher_serial == 0:
9 zero_pad = [0] * batch_size

10 plain_list.extend(zero_pad)
11 else:
12 plain = ts.CKKSVector.load(ckks_ctx , cipher_serial

).decrypt(sk)
13 if len(sum_masks) > 0 and sum_masks[idx] > 0:
14 plain = np.array(plain) / sum_masks[idx]
15

16 plain_list.extend(plain)
17

18 return np.array(plain_list)

Kode 2.10: Dekripsi dan normalisasi hasil agregasi Packed CKKS [14]

20
Implementasi Packed CKKS..., Stefanie Veronica Wijaya, Universitas Multimedia Nusantara



Fungsi dec params() digunakan untuk mendekripsi hasil agregasi di sisi klien
menggunakan konteks privat yang berisi kunci rahasia (secret key). Fungsi ini
memanggil ckks dec() untuk mengubah ciphertext global menjadi representasi
numerik sebelum dilakukan proses unpacking.

1 import os, tenseal as ts
2

3 def dec_params(cipher_list , sum_masks , args):
4 with open(os.path.join(args.data_dir , "context_params"), "rb")

as f:
5 ckks_ctx = ts.context_from(f.read())
6 sk = ckks_ctx.secret_key()
7 return ckks_dec(cipher_list , ckks_ctx , sk,
8 isBatch=args.isBatch ,
9 sum_masks=sum_masks ,

10 batch_size=args.enc_batch_size)

Kode 2.11: Pemanggilan fungsi dekripsi di sisi klien [14]

Langkah akhir dalam mekanisme Packed CKKS adalah proses unpacking,
yaitu pengembalian hasil dekripsi ke struktur parameter model semula. Setelah
ciphertext agregat didekripsi menjadi vektor numerik, nilai-nilai tersebut dipetakan
kembali ke tensor parameter model berdasarkan bentuk aslinya. Implementasinya
dilakukan melalui fungsi params tomodel() seperti berikut.

1 import numpy as np, torch
2 from collections import OrderedDict
3

4 def params_tomodel(model , global_list , params_num , layer_shape ,
args , params_list):

5 update_state = OrderedDict()
6 model.to(’cpu’)
7 idx_cnt = 0
8 if args.isSpars == ’topk’:
9 for key in model.state_dict().keys():

10 layer_size = int(params_num[key])
11 tmp = global_list[idx_cnt : idx_cnt + layer_size]
12 for j in range(len(tmp)):
13 if tmp[j] == 0 and (j == len(tmp) - 1 or tmp[j +

1] == 0):
14 tmp[j] = params_list[idx_cnt + j]
15 update_state[key] = torch.from_numpy(np.array(tmp).

reshape(layer_shape[key]))
16 idx_cnt += layer_size
17 model.load_state_dict(update_state)

Kode 2.12: Proses unpacking hasil dekripsi ke struktur model [14]

Fungsi tersebut memastikan hasil dekripsi (global list) dikembalikan ke
bentuk tensor sesuai dimensi parameter model awal. Mekanisme ini menjadi
komponen akhir dari Packed CKKS, yang menjamin model hasil agregasi dapat
digunakan kembali pada iterasi berikutnya tanpa kehilangan struktur internal

21
Implementasi Packed CKKS..., Stefanie Veronica Wijaya, Universitas Multimedia Nusantara



maupun presisi numeriknya [14]. Kombinasi konsep packing CKKS dan top-

k sparsification sebagaimana diusulkan oleh Nan Yan et al. [14] mampu
meningkatkan efisiensi komunikasi dan keamanan tanpa mengorbankan akurasi.
Pendekatan ini menurunkan ukuran data terenkripsi hingga lebih dari 16 kali
dibanding skema CKKS konvensional, dengan performa model yang tetap stabil,
sehingga menjadi solusi efektif untuk sistem pembelajaran terdistribusi yang aman
dan efisien.

Mekanisme pembobotan dalam FedPHE pada implementasi resmi Nan
Yan et al. [14] tidak menggunakan metrik kemiripan model maupun divergensi
sebagaimana dijelaskan dalam formulasi teoritis, melainkan mengandalkan skema
pembobotan sederhana berbasis jumlah sampel. Pembobotan ini diimplementasikan
secara eksplisit pada fungsi init prop() pada kode sumber resmi, yang
menghitung proporsi sampel pelatihan dan pengujian untuk setiap klien. Potongan
kode berikut menunjukkan cara perhitungan bobot agregasi tersebut.

1 def init_prop(train_dataset ,test_dataset ,n_clients):
2 """
3 Initialize weights of aggregation according to the samples of

clients.
4

5 Args:
6 train_dataset (‘dict ‘):
7 Training dataset.
8 test_dataset (‘dict ‘):
9 Test dataset.

10 n_clients (‘int ‘):
11 Number of clients to participate.
12 Returns:
13 train_props (‘list ‘):
14 Training weight for each client.
15 test_props (‘list ‘):
16 Test weight for each client.
17 """
18 client_n_samples_train = []
19 client_n_samples_test = []
20 for idx in range(n_clients):
21 client_n_samples_train.append(len(train_dataset[idx]))
22 client_n_samples_test.append(len(test_dataset[idx]))
23 samples_sum_train = np.sum(client_n_samples_train)
24 samples_sum_test = np.sum(client_n_samples_test)
25 test_props = []
26 train_props = []
27 for idx in range(n_clients):
28 train_props.append(client_n_samples_train[idx]/

samples_sum_train)
29 test_props.append(client_n_samples_test[idx]/

samples_sum_test)
30 return train_props ,test_props

Kode 2.13: Perhitungan bobot agregasi berbasis jumlah sampel [14]

22
Implementasi Packed CKKS..., Stefanie Veronica Wijaya, Universitas Multimedia Nusantara



Fungsi init prop() menghitung jumlah sampel pelatihan dan pengujian
pada setiap klien, kemudian menormalkannya terhadap total sampel seluruh klien.
Hasil normalisasi tersebut disimpan dalam train props dan digunakan sebagai
bobot agregasi (training weights) pada sisi server. Dengan demikian, kontribusi
parameter klien yang memiliki lebih banyak data akan secara proporsional lebih
besar dalam pembentukan model global. Skema ini sejalan dengan pendekatan
weighted Federated Averaging, namun diintegrasikan dengan skema enkripsi
homomorfik CKKS sehingga seluruh proses agregasi tetap dilakukan di domain
terenkripsi.

Proses penggabungan parameter terenkripsi kemudian dilaksanakan pada
sisi server melalui fungsi aggregatie weights(), yang menerima ciphertext

CKKS dan mask dari setiap klien, lalu mengalikan ciphertext tersebut dengan
bobot weights client (yang berasal dari train props) sebelum dilakukan
penjumlahan homomorfik. Mekanisme ini menghasilkan model global terenkripsi
yang merupakan kombinasi berbobot dari kontribusi seluruh klien tanpa membuka
nilai plaintext. Algoritma berikut merangkum prosedur agregasi dalam FedPHE
berdasarkan implementasi tersebut.

Algorithm 3 Packed CKKS Server Aggregation Process dengan bobot proporsi
sampel [14]

Require: Ciphertext dan mask klien {(Ct
i ,M

t
i )}N

i=1, bobot sampel {pi}, ukuran
batch B, konteks enkripsi ctx

Ensure: Ciphertext global Ct dan mask agregat Mt

1: for setiap ronde federasi t = 0, . . . ,T −1 do
2: Terima (Ct

i ,M
t
i ) dari setiap klien

3: for setiap batch aktif l do
4: Ct [l]← ∑

N
i=1 piCt

i [l]

5: Mt [l]← ∑
N
i=1 pi Mt

i [l]

6: end for
7: Kirimkan (Ct ,Mt) ke seluruh klien
8: end for

Algoritma 3 menggambarkan proses agregasi global pada sisi server
menggunakan skema Packed CKKS Homomorphic Encryption dengan agregasi
berbobot. Skema ini mengadopsi konsep secure weighted aggregation pada
ciphertext sebagaimana diperkenalkan oleh Nan Yan et al. [14].

Pada setiap ronde federasi t, server menerima pasangan ciphertext dan

23
Implementasi Packed CKKS..., Stefanie Veronica Wijaya, Universitas Multimedia Nusantara



mask (Ct
i ,M

t
i ) dari seluruh klien yang berpartisipasi. Setiap Ct

i merepresentasikan
parameter model klien yang telah melalui proses packing, sparsification, dan
enkripsi CKKS, sedangkan Mt

i digunakan untuk menandai batch aktif yang dikirim
oleh klien.

Agregasi dilakukan pada tingkat batch terenkripsi. Untuk setiap batch aktif
l, server menghitung ciphertext global Ct [l] sebagai penjumlahan linier berbobot
dari ciphertext klien, yaitu Ct [l] = ∑

N
i=1 piCt

i [l]. Bobot pi mencerminkan proporsi
kontribusi klien terhadap model global dan dijumlahkan tanpa melakukan dekripsi,
sehingga kerahasiaan parameter klien tetap terjaga. Proses yang sama diterapkan
pada mask agregat Mt [l] untuk memastikan konsistensi struktur batch pada tahap
dekripsi di sisi klien.

Penggunaan bobot pi secara konsisten pada sisi klien dan server mengikuti
pendekatan weighted aggregation dalam Federated Learning. Klien mengalikan
parameter model lokal dengan bobot pi sebelum proses enkripsi, sementara
server menggunakan bobot yang sama untuk melakukan agregasi homomorfik.
Pendekatan ini ekuivalen dengan melakukan agregasi berbobot pada domain
plaintext, namun seluruh operasi dilakukan pada domain ciphertext, sehingga server
tidak memiliki akses terhadap nilai parameter asli.

Dengan mekanisme ini, agregasi global dapat dilakukan secara aman
tanpa mengorbankan prinsip dasar Federated Learning, serta memungkinkan
penggabungan kontribusi klien yang tidak seragam dalam skema terenkripsi.

1 def aggregatie_weights(rec,recv_list ,weights_client ,total_sum ,

2 batch_num ,id_list ,args ,enc_tools = {},

rep_num = []):

3 if args.enc:

4 global_cipher = [0] * batch_num

5 if args.isSpars == ’topk’:

6 sum_mask = [0] * batch_num

7 for idx,value in enumerate(rec.values()):

8 c_id = value[0]

9 if args.algorithm == ’ckks’:

10 ckks_file = os.path.join(args.data_dir + ’

context_params’)

11 with open(ckks_file , "rb") as f:

12 params = f.read()

13 ckks_ctx = ts.context_from(params)

14 frac = ts.ckks_vector(ckks_ctx ,[weights_client[c_id]])

15 if args.isSpars == ’topk’:

16 mask = value[1]

24
Implementasi Packed CKKS..., Stefanie Veronica Wijaya, Universitas Multimedia Nusantara



17 cipher = value[2]

18 for batch in range(batch_num):

19 if mask[batch]:

20 cnt = sum(mask[:batch])

21 res = ts.CKKSVector.load(ckks_ctx ,cipher[

cnt]) * frac

22 sum_mask[batch] += weights_client[c_id]

23 if global_cipher[batch]:

24 res += ts.CKKSVector.load(ckks_ctx ,

global_cipher[batch])

25 global_cipher[batch] = res.serialize()

26 return sum_mask ,global_cipher

Fungsi di atas menunjukkan bahwa ciphertext setiap batch dimuat
kembali ke dalam konteks CKKS, dikalikan dengan bobot klien, kemudian
dijumlahkan secara homomorfik. Variabel sum mask menyimpan total bobot
yang berkontribusi pada setiap batch dan digunakan selama proses dekripsi untuk
menormalkan parameter global. Pendekatan ini menghasilkan agregasi yang setara
dengan Federated Averaging berbobot tetapi dilakukan sepenuhnya pada domain
terenkripsi menggunakan Packed CKKS.

2.3 Klasifikasi Kanker Payudara

Kanker payudara menjadi penyebab utama kematian akibat kanker pada
perempuan di seluruh dunia dan menempati peringkat pertama dalam tingkat
insidensi global [28, 29, 1]. Deteksi dini berperan penting dalam keberhasilan
terapi, sehingga pengembangan metode klasifikasi berbasis citra medis menjadi
fokus utama dalam sistem computer-aided detection (CAD) [30, 31, 32, 33]. Tujuan
klasifikasi adalah membedakan jaringan jinak (benign) dan ganas (malignant) pada
citra mammogram untuk mendukung diagnosis klinis yang akurat [31, 30, 33].

Gambar 2.5 memperlihatkan contoh citra mammogram dengan label benign

dan malignant. Citra benign biasanya menunjukkan pola jaringan yang lebih
homogen dan batas lesi yang halus, sedangkan citra malignant cenderung memiliki
tepi tidak beraturan dan intensitas kontras yang lebih tinggi [34].

25
Implementasi Packed CKKS..., Stefanie Veronica Wijaya, Universitas Multimedia Nusantara



Gambar 2.5. Klasifikasi benign dan malignant [34].

Pendekatan modern berbasis deep learning, khususnya Convolutional

Neural Networks (CNN), memungkinkan ekstraksi fitur secara otomatis tanpa
rekayasa manual [1, 33, 35]. CNN mempelajari representasi spasial dan semantik
melalui operasi konvolusi bertingkat untuk mengenali pola kompleks seperti tepi,
tekstur, dan bentuk lesi [8, 31, 35]. Arsitektur populer seperti VGGNet, ResNet,
dan DenseNet menunjukkan performa tinggi pada dataset CBIS-DDSM, INbreast,
dan BreakHis [36, 33]. Model-model tersebut umumnya dievaluasi menggunakan
metrik akurasi, AUC, dan PR-AUC sebagai ukuran utama kinerja klasifikasi [8, 33].

Keterbatasan utama pada klasifikasi citra medis terletak pada jumlah data
yang terbatas dan kebijakan privasi pasien [3, 7]. Federated Learning (FL)
memberikan solusi dengan memungkinkan pelatihan model secara kolaboratif antar
institusi tanpa perlu berbagi data mentah [3, 19]. Setiap institusi melatih model
lokal menggunakan data internal dan hanya mengirimkan pembaruan parameter
ke server pusat untuk agregasi [8, 1]. Pendekatan ini menjaga kerahasiaan data
pasien sekaligus memastikan kepatuhan terhadap regulasi privasi seperti HIPAA
dan GDPR [4, 3, 7].

2.3.1 Metrik Evaluasi untuk Klasifikasi Kanker Payudara

Kinerja model dievaluasi menggunakan tiga metrik utama, yaitu Accuracy,
Area Under the Receiver Operating Characteristic Curve (AUC), dan Area

Under the Precision–Recall Curve (PR-AUC). Ketiga metrik ini digunakan untuk
memberikan evaluasi yang komprehensif terhadap performa model klasifikasi
kanker payudara, khususnya pada kondisi data medis dengan distribusi kelas yang

26
Implementasi Packed CKKS..., Stefanie Veronica Wijaya, Universitas Multimedia Nusantara



tidak seimbang.
Accuracy mengukur proporsi prediksi yang diklasifikasikan secara benar

terhadap keseluruhan sampel, dan didefinisikan sebagai:

Akurasi =
T P+T N

T P+T N +FP+FN
, (2.1)

di mana T P, T N, FP, dan FN masing-masing menyatakan true positive,
true negative, false positive, dan false negative [37].

Perhitungan nilai akurasi dilakukan pada tahap validasi model dengan
membandingkan hasil prediksi kelas dan label sebenarnya pada setiap batch

data. Prediksi kelas diperoleh dengan memilih kelas dengan probabilitas tertinggi
dari keluaran model. Implementasi penghitungan akurasi mengikuti mekanisme
evaluasi yang digunakan oleh Sánchez et al. [8], sebagaimana ditunjukkan pada
potongan kode berikut.

1 preds = torch.argmax(probs , dim=1)
2 correct += preds.eq(labels.view(-1)).sum().item()
3

4 accuracy = correct / len(dataloader.dataset)

Kode 2.14: Perhitungan akurasi pada tahap validasi model [8]

Kode 2.14 menunjukkan bahwa akurasi dihitung dengan membandingkan
prediksi kelas hasil model dan label sebenarnya. Prediksi kelas diperoleh
dari probabilitas keluaran model menggunakan operator argumen maksimum,
sedangkan nilai akurasi diperoleh dengan menormalisasi jumlah prediksi yang
benar terhadap total sampel pada dataset validasi [37].

AUC merepresentasikan luas area di bawah kurva Receiver Operating

Characteristic (ROC), yang menggambarkan trade-off antara True Positive Rate

(TPR) dan False Positive Rate (FPR) pada berbagai ambang keputusan. Kurva ROC
memplot hubungan TPR dan FPR yang didefinisikan sebagai berikut [38]:

TPR =
T P

T P+FN
(2.2)

FPR =
FP

FP+T N
(2.3)

Berdasarkan kurva tersebut, AUC diperoleh sebagai integral luas area di

27
Implementasi Packed CKKS..., Stefanie Veronica Wijaya, Universitas Multimedia Nusantara



bawah kurva ROC dan dapat dirumuskan sebagai [38]:

AUC =
∫ 1

0
TPRd(FPR) = 1−

∫ 1

0
FPRd(TPR) (2.4)

Nilai AUC yang semakin mendekati 1 menandakan kemampuan model yang
semakin baik dalam membedakan kelas positif dan kelas negatif.

PR-AUC (Precision–Recall AUC) digunakan untuk mengevaluasi performa
model, terutama pada data dengan distribusi label yang tidak seimbang.
Kurva Precision–Recall memplot hubungan antara Precision dan Recall, yang
didefinisikan sebagai berikut [38]:

Precision =
T P

T P+FP
(2.5)

Recall =
T P

T P+FN
(2.6)

Nilai PR-AUC diperoleh dari luas area di bawah kurva Precision–Recall dan
dirumuskan sebagai berikut [38]:

AUPRC =
∫ 1

0
Precisiond(Recall) (2.7)

Nilai PR-AUC yang tinggi mengindikasikan bahwa model mampu
mengenali sebagian besar sampel positif dengan tingkat kesalahan prediksi yang
rendah [38].

Implementasi penghitungan kedua metrik mengikuti langsung kode evaluasi
yang digunakan oleh Sánchez et al. [8]. Pada tahap evaluasi, vektor label
sebenarnya dan probabilitas keluaran model yang tersimpan dalam targets dan
probabilities terlebih dahulu diratakan menjadi y true dan y prob. Nilai
y prob diambil dari komponen kelas positif (malignant), yaitu elemen ke-2 dari
vektor probabilitas, kemudian dikonversi dari log-probabilitas menggunakan fungsi
eksponensial. Kurva precision–recall dan nilai PR-AUC dihitung menggunakan
fungsi precision recall curve dan auc, sedangkan AUC diperoleh melalui
roc auc score, sebagaimana ditunjukkan pada potongan kode berikut.

28
Implementasi Packed CKKS..., Stefanie Veronica Wijaya, Universitas Multimedia Nusantara



1 from sklearn.metrics import precision_recall_curve , auc,
roc_auc_score , confusion_matrix

2 import numpy as np
3

4 # calculate precision and recall for each threshold
5 y_true = np.asarray([val for sublist in targets for val in sublist

])
6 y_prob = np.asarray([np.exp(val[1]) for sublist in probabilities

for val in sublist])
7 y_pred = np.asarray([np.argmax(val) for sublist in probabilities

for val in sublist])
8 lr_precision , lr_recall , _ = precision_recall_curve(y_true , y_prob

)
9 pr_auc = auc(lr_recall , lr_precision)

10 roc_auc = roc_auc_score(y_true , y_prob)
11

12 print(’AUC: {:.4f}’.format(roc_auc))
13 print(’PR AUC: {:.4f}’.format(pr_auc))
14 print(confusion_matrix(y_true , y_pred))

Kode 2.15: Perhitungan AUC dan PR-AUC pada tahap evaluasi model [8]

Kode pada Listing 2.15 menunjukkan bahwa roc auc score(y true,

y prob) digunakan untuk menghitung luas di bawah kurva ROC, sedangkan
kombinasi precision recall curve(y true, y prob) dan auc(lr recall,

lr precision) menghasilkan nilai PR-AUC. Vektor y pred dibentuk dari
argumen maksimum probabilitas (np.argmax) untuk memperoleh prediksi kelas
diskret, yang kemudian digunakan dalam confusion matrix(y true, y pred)

guna mengevaluasi distribusi prediksi benar dan salah model.

2.4 CNN ResNet-22

Convolutional Neural Network (CNN) merupakan jenis jaringan saraf tiruan
yang dirancang khusus untuk mengolah data berbentuk citra. CNN terdiri atas
beberapa lapisan utama yaitu convolution layer, pooling layer, dan fully connected

layer. Lapisan konvolusi berfungsi mengekstraksi fitur spasial seperti tepi, bentuk,
dan tekstur, sedangkan lapisan pooling bertugas mereduksi dimensi fitur tanpa
menghilangkan informasi penting. Lapisan fully connected berperan melakukan
klasifikasi berdasarkan fitur yang telah diekstraksi. Pendekatan ini telah terbukti
efektif untuk berbagai tugas pengenalan pola, termasuk klasifikasi kanker payudara
menggunakan citra mammogram [39, 40].

29
Implementasi Packed CKKS..., Stefanie Veronica Wijaya, Universitas Multimedia Nusantara



Gambar 2.6. Arsitektur CNN [41].

Gambar 2.6 menggambarkan proses kerja CNN yang diawali dengan
masukan citra pada lapisan input, diikuti operasi konvolusi menggunakan kernel
untuk mengekstraksi fitur lokal. Hasilnya kemudian diproses melalui pooling

layer untuk mereduksi ukuran fitur, dan diakhiri dengan lapisan klasifikasi yang
menghasilkan keluaran berupa label kelas citra. CNN mampu mempelajari
representasi hierarkis secara otomatis dari fitur sederhana menuju fitur kompleks
tanpa rekayasa manual.

Arsitektur CNN yang sangat dalam sering menghadapi masalah vanishing

gradient yang menghambat proses pelatihan. Untuk mengatasi hal ini, He et al. [40]
memperkenalkan arsitektur Residual Network (ResNet). Ciri khas ResNet adalah
adanya skip connection yang memungkinkan sinyal input diteruskan langsung ke
lapisan yang lebih dalam dan dijumlahkan dengan keluaran fungsi residual. Struktur
ini memungkinkan jaringan yang sangat dalam dilatih tanpa mengalami degradasi
performa. ResNet terbukti meningkatkan akurasi pada berbagai tugas klasifikasi
dan menjadi fondasi bagi banyak model visi komputer modern. Gambar 2.7
memperlihatkan contoh arsitektur ResNet dengan koneksi residual antar blok
konvolusi.

30
Implementasi Packed CKKS..., Stefanie Veronica Wijaya, Universitas Multimedia Nusantara



Gambar 2.7. Arsitektur Residual Network (ResNet) [41].

Jiménez-Sánchez et al. [8] mengusulkan arsitektur ResNet-22 sebagai
encoder ringan untuk klasifikasi citra medis, khususnya citra mammogram.
Arsitektur ini terdiri atas lima tahap blok residual berturut dengan konfigurasi
[2, 2, 2, 2, 2], yang diakhiri dengan tiga lapisan klasifikasi penuh (fully

connected) berukuran 128, 64, dan 2 neuron. Pendekatan ini menjaga kedalaman
jaringan tetap efisien sambil mempertahankan kemampuan ekstraksi fitur kompleks.
Implementasi struktur feature extractor, classifier, dan domain discriminator pada
model tersebut dirangkum pada Tabel 2.2.

Tabel 2.2. Arsitektur ResNet-22 CNN [8]

Layer Configuration

F: Feature Extractor

1 Conv(1, 16, 3, 1, 1), MaxPool(3, 2, 0, 1)
2.1 Block(16, 16, 3, s1=1, s2=1, 1), Conv(16, 16, 1, 1)
2.2 Block(16, 32, 3, s1=2, s2=1, 1)
3.1 Block(16, 32, 3, s1=2, s2=1, 1), Conv(16, 32, 1, 2)
3.2 Block(16, 32, 3, s1=2, s2=1, 1)
4.1 Block(32, 64, 3, s1=2, s2=1, 1), Conv(32, 64, 1, 2)
4.2 Block(32, 64, 3, s1=2, s2=1, 1)
5.1 Block(64, 128, 3, s1=2, s2=1, 1), Conv(64, 128, 1, 2)
5.2 Block(64, 128, 3, s1=2, s2=1, 1)
6.1 Block(128, 256, 3, s1=2, s2=1, 1), Conv(128, 256, 1, 2)
6.2 Block(128, 256, 3, s1=2, s2=1, 1)

Cls: Classifier

Lanjut ke halaman berikutnya

31
Implementasi Packed CKKS..., Stefanie Veronica Wijaya, Universitas Multimedia Nusantara



Tabel 2.2. Arsitektur ResNet-22 CNN [8] (lanjutan)

Layer Configuration

1 FC(256, 128), BN, ReLU, Dropout(0.5)
2 FC(128, 64), BN, ReLU, Dropout(0.5)
3 FC(64, 2), Sigmoid

D: Domain Discriminator

1 FC(256, 4), ReLU
2 FC(4, 2), Sigmoid

Implementasi feature extractor (encoder) dan classifier pada model
Jiménez-Sánchez et al. [8] ditulis menggunakan pustaka PyTorch. Struktur berikut
memperlihatkan bahwa modul Classifier terdiri atas tiga lapisan linear dengan
aktivasi ReLU dan normalisasi batch, sementara bagian Encoder memanfaatkan
arsitektur ResNet-22 untuk mengekstraksi fitur dari citra mammogram.

1 class Classifier(nn.Module):
2 def __init__(self , num_classes=2):
3 super(Classifier , self).__init__()
4 self.encoder = Encoder()
5 self.fc1 = nn.Linear(256, 128)
6 self.fc2 = nn.Linear(128, 64)
7 self.fc3 = nn.Linear(64, num_classes)
8 self.bn1 = nn.BatchNorm1d (128)
9 self.bn2 = nn.BatchNorm1d (64)

10 self.drop1 = nn.Dropout()
11 self.drop2 = nn.Dropout()
12

13 def forward(self , input):
14 logits = self.encoder(input)
15 logits = F.relu(self.bn1(self.fc1(logits)))
16 logits = self.drop1(logits)
17 logits = F.relu(self.bn2(self.fc2(logits)))
18 logits = self.drop2(logits)
19 logits = self.fc3(logits)
20 probs = F.softmax(logits , dim=1)
21 return probs , logits

Kode 2.16: Struktur utama Classifier dan Encoder pada model Jiménez-Sánchez [8]

Selain struktur klasifikasi, arsitektur ResNet-22 diimplementasikan
menggunakan blok residual yang diadaptasi dari ResNet v2. Setiap blok residual
terdiri atas dua lapisan konvolusi dengan normalisasi batch dan fungsi aktivasi
ReLU, sebagaimana ditunjukkan pada potongan berikut.

1 class BasicBlockV2(nn.Module):
2 def __init__(self , inplanes , planes , stride=1, downsample=None

):

32
Implementasi Packed CKKS..., Stefanie Veronica Wijaya, Universitas Multimedia Nusantara



3 super(BasicBlockV2 , self).__init__()
4 self.bn1 = nn.BatchNorm2d(inplanes)
5 self.conv1 = conv3x3(inplanes , planes , stride)
6 self.bn2 = nn.BatchNorm2d(planes)
7 self.conv2 = conv3x3(planes , planes)
8 self.downsample = downsample
9 self.relu = nn.ReLU(inplace=True)

10

11 def forward(self , x):
12 residual = x
13 out = self.relu(self.bn1(x))
14 if self.downsample is not None:
15 residual = self.downsample(out)
16 out = self.conv1(out)
17 out = self.relu(self.bn2(out))
18 out = self.conv2(out)
19 return out + residual

Kode 2.17: Blok residual dasar (BasicBlockV2) pada arsitektur ResNet-22 [8]

Fungsi resnet22() membangun jaringan dengan lima blok residual
berturut, masing-masing terdiri atas dua lapisan konvolusi. Implementasi
ringkasnya ditunjukkan pada potongan berikut.

1 def resnet22(input_channels , activation):
2 return ViewResNetV2(
3 input_channels=input_channels ,
4 activation=activation ,
5 num_filters=16,
6 blocks_per_layer_list=[2, 2, 2, 2, 2],
7 block_strides_list=[1, 2, 2, 2, 2],
8 block_fn=BasicBlockV2 ,
9 )

Kode 2.18: Implementasi fungsi pembentuk arsitektur ResNet-22 [8]

Arsitektur ResNet-22 dirancang agar ringan secara komputasi namun tetap
mampu mengekstraksi fitur kompleks dari citra medis resolusi tinggi. Struktur
residual memungkinkannya mempertahankan stabilitas gradien selama pelatihan,
sehingga model dapat beradaptasi terhadap variasi data lintas institusi [8].

33
Implementasi Packed CKKS..., Stefanie Veronica Wijaya, Universitas Multimedia Nusantara


	75bc4d12ed1da48cbaf6b79f23c77876abf4e7b9d569aea1f0a096fdd3095b18.pdf
	BAB 2 Landasan Teori
	2.1 Federated Learning
	2.1.1 Adversarial Alignment
	2.1.2 Curriculum Learning

	2.2 Packed CKKS Homomorphic Encryption
	2.3 Klasifikasi Kanker Payudara
	2.3.1 Metrik Evaluasi untuk Klasifikasi Kanker Payudara

	2.4 CNN ResNet-22



