BAB 3
METODOLOGI PENELITIAN

Metodologi penelitian disusun untuk mengevaluasi dampak penerapan
Packed CKKS Homomorphic Encryption pada sistem Federated Learning untuk
klasifikasi kanker payudara. Fokus evaluasi mencakup tiga aspek, yaitu performa
model (AUC dan PR-AUC), efisiensi waktu komputasi (pelatihan lokal, agregasi,
enkripsi, dan dekripsi), serta biaya komunikasi (data transfer volume).

Tahapan penelitian mencakup studi literatur, pengumpulan dataset CBIS-
DDSM, pra-pemrosesan data, pembagian data berbasis patient_id ke dalam
subset train, validation, dan test, serta distribusi data train ke tiga klien untuk
mencegah kebocoran data antar subset maupun lintas klien. Selanjutnya, diterapkan
data transformation yang meliputi perubahan ukuran citra, normalisasi intensitas,
dan peningkatan kontras menggunakan CLAHE sebelum data dimuat ke dalam
model. Pelatihan Federated Learning dilakukan menggunakan FedAvg dengan
pengaturan komunikasi berbasis pace, diintegrasikan dengan CKKS pada proses
komunikasi dan agregasi, serta top-k sparsification untuk mengurangi jumlah
pembaruan model yang dikirim pada setiap ronde. Evaluasi dilakukan pada mode
plain dan mode terenkripsi dengan variasi top-k untuk menganalisis trade-off antara

privasi, performa, dan overhead sistem.

3.1 Studi Literatur

Studi literatur dilakukan untuk memperoleh pemahaman yang komprehensif
mengenai konsep dan perkembangan terkini terkait Federated Learning (FL) dan
Homomorphic Encryption (HE) yang menjadi dasar penelitian ini. Tahapan ini
bertujuan untuk mengidentifikasi metode, algoritma, serta pendekatan yang relevan
dalam mendukung proses analisis dan perancangan sistem.

Proses studi literatur dilakukan melalui penelusuran berbagai sumber ilmiah,
seperti jurnal internasional, prosiding konferensi, serta artikel akademik yang
diperoleh dari basis data Scopus, Google Scholar, IEEE Xplore, SpringerLink, dan
ScienceDirect. Pencarian dilakukan menggunakan kata kunci seperti “Federated
Learning”, “Homomorphic Encryption”, ‘“Packed HE”, dan “Breast Cancer
Classification”. Hasil penelusuran digunakan untuk memahami perkembangan

penelitian terdahulu, menemukan kesenjangan penelitian, serta menentukan
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pendekatan yang paling sesuai untuk diterapkan dalam penelitian ini.

Tahapan ini juga berperan dalam menentukan arah eksperimen yang
dilakukan, termasuk pemilihan algoritma FedAvg sebagai metode agregasi model,
penggunaan skema Packed Homomorphic Encryption (PHE) untuk perlindungan
privasi, serta penerapan model pada studi kasus klasifikasi kanker payudara. Hasil
kajian literatur menjadi dasar dalam perancangan sistem dan rancangan eksperimen

yang dijelaskan pada bagian selanjutnya.

3.2 Pengumpulan Data

[ START )

k J

Mengunduh dataset Memuat metadata
CBIS-DDSM dari kasus (calcification & >
Kaggle mass lesion)

Identifikasi strukiur data
dan label patologi

h 4

END

Gambar 3.1. Flowchart pengumpulan data

Alur pada Gambar 3.1 merangkum proses pengambilan dataset CBIS-
DDSM dan pemuatan metadata awal yang digunakan dalam penelitian ini. Data
yang digunakan dalam penelitian ini berasal dari Curated Breast Imaging Subset of
Digital Database for Screening Mammography (CBIS-DDSM), yang merupakan
hasil kurasi dari Digital Database for Screening Mammography (DDSM) dan
disediakan secara publik di Kaggle. Dataset ini juga tersedia dalam versi
terdistribusi di Kaggle dengan struktur berkas yang telah disesuaikan untuk
kebutuhan analisis berbasis citra.

CBIS-DDSM berisi citra mamografi yang telah dianotasi oleh ahli radiologi
dengan dua kategori temuan utama, yaitu calcification dan mass lesion. Label
klasifikasi yang digunakan mencakup dua kelas, yaitu benign dan malignant.
Calcification menggambarkan endapan kalsium kecil yang tampak sebagai bintik
putih pada citra mamografi, sedangkan mass lesion mengacu pada massa jaringan
atau benjolan yang dapat mengindikasikan adanya pertumbuhan abnormal pada
area payudara. Contoh visual kategori benign dan malignant ditunjukkan pada
Gambar 3.2.
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CBIS-DDSM — Benigh Mammograms

CBIS-DDSM — Malighant Mammograms

Gambar 3.2. Contoh citra mamografi kategori benign dan malignant.

Koleksi resmi CBIS-DDSM pada TCIA terdiri atas sekitar 1.566 subjek
dengan lebih dari 10.239 citra dalam format DICOM. Pada penelitian ini, data
diakses dari versi Kaggle yang merupakan replikasi dari dataset TCIA tersebut.
Dataset ini menjadi dasar untuk tahap pra-pemrosesan metadata, pembagian dataset,

serta pelatihan model dalam skema Federated Learning.

3.2.1 Struktur Dataset

Dataset CBIS-DDSM menyediakan metadata kasus yang memuat informasi
identitas pasien, label patologi, serta jalur berkas citra. Ringkasan struktur kolom

yang digunakan pada penelitian ini disajikan pada Tabel 3.1.

Tabel 3.1. Struktur kolom pada berkas deskripsi dataset CBIS-DDSM

Kolom Keterangan

patient_id Nomor identifikasi unik pasien

pathology Label patologi (BENIGN, BENIGN.WITHOUT.CALLBACK, MALIGNANT)
image file path Jalur citra mamografi (format JPEG)

cropped image path Jalur citra hasil pemotongan (cropped)

ROI mask path Jalur berkas penanda area lesi (Region of Interest)

Seluruh label pathology diseragamkan menjadi dua kelas biner:

* Benign: gabungan antara BENIGN dan BENIGN_WITHOUT _CALLBACK.
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* Malignant: diambil dari label MALTIGNANT.

Empat berkas CSV digunakan sebagai sumber metadata utama, masing-masing
memuat deskripsi kasus untuk kategori calcification dan mass lesion pada subset
pelatihan dan pengujian. Ringkasan jumlah entri untuk setiap berkas ditunjukkan
pada Tabel 3.2.

Tabel 3.2. Ringkasan jumlah entri pada setiap berkas CSV CBIS-DDSM

Nama Berkas Kategori  Jumlah Entri
calc_case_description_train_set.csv Calcification 1.546
calc_case_description_test_set.csv  Calcification 326
mass_case_description_train_set.csv Mass lesion 1.318
mass_case_description_test_set.csv  Mass lesion 378

3.3 Pra-pemrosesan Data

Memuat metadata train
& test (calcification + 4
mass)

v

Validasi kecocokan UID
dengan file citra

Menggabungkan Ekstraksi patient_id dan
metadata train dan test "l SeriesinstanceUlD _‘

F

Penghapusan entri Penghapusan data
tanpa UID, label, atau duplikat berdasarkan
patient_id valid SeriesInstanceUlD

L 4

v

END

Gambar 3.3. Flowchart pra-pemrosesan data

Tahapan pra-pemrosesan metadata ditunjukkan pada Gambar 3.3, mulai
dari penggabungan berkas CSV hingga pembersihan entri tidak valid dan
duplikat. Tahap pra-pemrosesan data pada penelitian ini berfokus pada pengolahan
metadata untuk membentuk satu himpunan data yang konsisten sebelum dilakukan
pembagian dataset dan pelatihan model. Pra-pemrosesan mencakup penggabungan
berkas CSV, penyeragaman format kolom, validasi keterhubungan metadata dengan

berkas citra, serta pembersihan entri yang tidak valid atau duplikat.
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Empat berkas CSV pada CBIS-DDSM terdiri atas dua subset (pelatihan
dan pengujian) dan dua kategori temuan (calcification dan mass lesion). Untuk
mempermudah pengelolaan, dua berkas pelatthan (calc_...train... dan
mass_...train...) digabungkan menjadi satu metadata train, sedangkan dua
berkas pengujian (calc_...test... dan mass_...test...) digabungkan
menjadi satu metadata fest. Selanjutnya, kedua metadata tersebut diseragamkan
struktur kolomnya agar konsisten dan dapat diproses dengan pipeline yang sama.

Validasi dilakukan dengan memeriksa keberadaan patient_id, label
pathology, serta jalur citra yang dapat diakses. Entri yang tidak memiliki
patient_id atau label patologi yang valid dihapus. Duplikasi entri juga
dihapus untuk memastikan setiap citra/seri hanya dihitung satu kali pada tahap
pembagian dataset. Selain itu, bila metadata memuat pengenal seri (misalnya
SeriesInstanceUID/UID), validasi dilakukan dengan mencocokkan UID yang
diekstraksi dari jalur berkas dengan struktur direktori citra yang tersedia, sehingga
metadata benar-benar mereferensikan citra yang ada.

Hasil pra-pemrosesan metadata menghasilkan himpunan data yang
konsisten untuk tahap berikutnya, yaitu pembagian dataset dan pelatihan model.
Secara ringkas, output utama dari tahap ini adalah: (1) metadata gabungan untuk
subset frain dan fest, (2) label patologi yang telah diseragamkan menjadi dua kelas
biner (benign/malignant), serta (3) data yang telah dibersihkan dari entri tidak valid
dan duplikasi sehingga meminimalkan risiko kebocoran atau ketidakkonsistenan

saat pembagian data berbasis patient_id.

3.4 Pembagian Dataset

Pembagian Menjamin satu pasien Pembagian data per site Pembentukan
patient_id ke » hanya bera«_ja pada » menjadi train dan test » validation set dari
tiga site satu site (80/20) data train (15%)

Proses pembagian dataset berbasis patient_id untuk membentuk tiga site

Gambar 3.4. Flowchart pembagian dataset

serta subset train, validation, dan test diilustrasikan pada Gambar 3.4. Pembagian
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dataset dirancang untuk mensimulasikan skenario Federated Learning sekaligus
mencegah kebocoran informasi lintas himpunan. Pembagian dilakukan berbasis
patient_id sehingga seluruh citra milik pasien yang sama tidak tersebar ke
himpunan yang berbeda. Strategi ini penting untuk mencegah patient-level leakage,
yaitu kondisi ketika citra dari pasien yang sama muncul pada train dan test atau pada
klien yang berbeda.

Pada penelitian ini, setiap patient_id dipetakan secara deterministik
ke tiga klien fiktif (site0, sitel, dan site2) menggunakan fungsi hash
MD5(patient-id) mod 3. Pemetaan deterministik memastikan replikasi
eksperimen, sekaligus menjaga bahwa setiap pasien hanya muncul pada satu site.

Setelah data dipetakan ke masing-masing site, dilakukan pembagian train
dan test dengan rasio 80%/20% pada setiap site. Selanjutnya, himpunan validation
dibentuk dengan mengambil 15% dari data train. Dengan demikian, proporsi akhir
pada setiap site menjadi sekitar 68% untuk train, 12% untuk validation, dan 20%
untuk fest. Pemisahan dilakukan secara stratified terhadap label untuk menjaga
stabilitas proporsi benign dan malignant pada setiap split. Seluruh citra kemudian

diorganisasi ke dalam struktur direktori:
cbisdataset/site{0-2}/{train,val,test}/{benign,malignant}/.

Tabel 3.3 merangkum jumlah entri pada setiap kombinasi site/phase/label.
Dengan skema pembagian tersebut, distribusi data antarklien dapat dibuat relatif

seimbang dan seluruh pembagian tetap patient-disjoint antar site.

Tabel 3.3. Rekap jumlah data per site dan phase (entri per label).

Site Train Val Test Total
Benign | Malignant | Subtotal | Benign | Malignant | Subtotal | Benign | Malignant | Subtotal

site0 390 306 696 69 54 123 118 88 206 1.025

sitel 383 338 721 68 60 128 136 84 220 1.069

site2 377 294 671 67 52 119 131 88 219 1.009

Total | 1.150 938 2.088 204 166 370 385 260 645 3.103

Berdasarkan pembagian pada Tabel 3.3, setiap site memiliki subset train,
validation, dan test dengan distribusi label yang relatif seimbang. Selain
itu, pemetaan berbasis patient_id memastikan tidak terjadi irisan pasien
antar site maupun antar subset, sehingga evaluasi model pada data fest lebih

merepresentasikan kemampuan generalisasi pada pasien yang benar-benar baru.
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3.5 Data Transformation

R . . - Peningkatan kontras
Input Image Konversi ke I Resize citra menjadi - menggunakan
grayscale 2048 = 2048 CLAHE

Mormalisasi

Gambar 3.5. Flowchart data transformation

Gambar 3.5 mengilustrasikan transformasi citra pada tahap pemuatan data
sebelum pelatihan lokal. Data transformation diterapkan untuk menyesuaikan
representasi citra mamografi agar sesuai dengan masukan model CNN. Tahap ini
dilakukan secara lokal pada masing-masing klien dan bersifat on-the-fly, yaitu
dijalankan saat pemuatan data sebelum citra dimasukkan ke model pada proses
pelatihan lokal. Dengan pendekatan ini, data yang tersimpan pada direktori
site tetap mempertahankan struktur pembagian train/validation/test, sedangkan
transformasi citra dilakukan dinamis untuk setiap mini-batch.

Transformasi yang digunakan meliputi konversi citra menjadi grayscale
satu kanal untuk menyesuaikan karakteristik citra mamografi, perubahan ukuran
citra menjadi 2048 x 2048 piksel, peningkatan kontras lokal menggunakan
metode Contrast-Limited Adaptive Histogram Equalization (CLAHE), konversi ke
tensor numerik, serta normalisasi intensitas dengan mean=[0.5] dan std=[0.5].
Kombinasi transformasi ini bertujuan meningkatkan keterbacaan struktur jaringan
pada citra kontras rendah serta menstabilkan proses pelatihan.

Contoh hasil transformasi CLAHE ditunjukkan pada Gambar 3.6.
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(a) Citra asli (b) Setelah CLAHE

Gambar 3.6. Perbandingan citra mamografi sebelum dan sesudah peningkatan kontras
menggunakan Contrast-Limited Adaptive Histogram Equalization (CLAHE).

Implementasi transformasi citra dilakukan secara modular. Kelas
CLAHEPreprocess digunakan untuk melakukan CLAHE dan penyaringan halus
(Gaussian blur) guna mereduksi noise lokal.

import cv2
import numpy as np

3 from PIL import Image

class CLAHEPreprocess:
def __init__(self, clip_limit=2.0, tile_grid_size=(8,8)):
self.clip_limit = clip_limit
self.tile_grid_size = tile_grid_size

def __call__(self, img):

img_np = np.array (img)
if len(img_np.shape) == 3:
img_np = cv2.cvtColor (img_np, cv2.COLOR_RGB2GRAY)

clahe = cv2.createCLAHE (clipLimit=self.clip_limit,
tileGridSize=self.tile_grid_size)

img_clahe = clahe.apply(img_np)

img_blur = cv2.GaussianBlur (img_clahe, (3, 3), 0)

return Image.fromarray (img_blur)

Kode 3.1: Implementasi transformasi CLAHE

Pipeline transformasi kemudian dibangun menggunakan
torchvision.transforms agar seluruh transformasi diterapkan berurutan

secara konsisten.
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I from torchvision import transforms

data_transform = transforms.Compose ([

transforms.Grayscale (num_output_channels=1),
transforms.Resize ((2048, 2048)),

CLAHEPreprocess (clip_limit=2.0, tile_grid_size=(8,8)),
transforms.ToTensor (),

transforms.Normalize (mean=[0.5], std=[0.5])

Kode 3.2: Konfigurasi pipeline data transformation

3.6 Arsitektur Sistem

Bagian ini menjelaskan rancangan sistem Federated Learning yang

mengintegrasikan Federated Averaging (FedAvg) dengan Packed CKKS
Homomorphic Encryption.  Sistem memastikan proses pelatihan kolaboratif
berlangsung tanpa pertukaran data mentah antarklien, karena pembaruan model
dikomunikasikan dalam bentuk ciphertext. Arsitektur terdiri dari tiga komponen

utama: server global, klien lokal, dan modul enkripsi CKKS.

1. Server Global

Server menginisialisasi model global dan mendistribusikannya kepada
seluruh klien sebagai inisialisasi pelatihan lokal. Sinkronisasi parameter
dilakukan secara periodik berdasarkan parameter pace, yaitu ketika jumlah
langkah pelatihan lokal mencapai kelipatan tertentu atau ketika langkah

terakhir dalam satu epoch tercapai.

Pada setiap ronde agregasi, server menerima pembaruan dari klien dalam
bentuk ciphertext CKKS beserta mask sparsifikasi. Agregasi dilakukan secara
langsung pada domain homomorfik menggunakan operasi linear CKKS
berupa penjumlahan dan perkalian skalar untuk membentuk ciphertext global.
Bobot agregasi klien ditetapkan secara seragam (wi = %) atau proporsional

terhadap jumlah data latih lokal (w,- = Z”—’nj) sesuai konfigurasi sistem.
J

Server ~menghitung sum mask sebagai - faktor normalisasi yang
merepresentasikan total kontribusi efektif pada setiap batch terenkripsi.
Hasil agregasi berupa pasangan (ciphertext global, sum mask) kemudian
dibroadcast kembali ke seluruh klien untuk digunakan pada ronde berikutnya.
Parameter global per ronde, metrik evaluasi, waktu komputasi, serta biaya

komunikasi dicatat untuk kebutuhan analisis.
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2. Klien Lokal

Klien menjalankan pelatihan secara mandiri menggunakan data lokal tanpa
mengirimkan data mentah ke server. Setiap klien menyimpan model
klasifikasi dan diskriminator domain. Model klasifikasi mempelajari prediksi
label pada distribusi data masing-masing site, sedangkan diskriminator

domain mendukung penyelarasan representasi fitur lintas klien.

Pelatihan lokal dilakukan selama nsteps pada setiap epoch. Pada setiap
langkah, model klasifikasi diperbarui dengan meminimalkan cross-entropy
loss. =~ Mekanisme feature alignment diterapkan melalui pembelajaran
adversarial, di mana representasi fitur encoder diberi gangguan noise kecil,
diskriminator domain dilatih untuk membedakan asal domain, dan encoder
dioptimasi agar menghasilkan representasi yang lebih invariant terhadap

domain, sehingga pergeseran distribusi antarklien dapat ditekan.

Strategi curriculum learning diterapkan setelah fase adversarial tertentu.
Prediksi benar dan salah pada data latih dihitung pada awal setiap epoch
untuk membentuk bobot sampling, sehingga sampel yang relatif sulit atau
terlupakan memperoleh probabilitas pemilihan yang lebih besar pada epoch

berikutnya.

Pada momen agregasi berbasis pace, parameter model diubah ke dalam
bentuk vektor satu dimensi melalui proses flattening dan dipartisi menjadi
batch berukuran tetap. Sparsifikasi top-k diterapkan pada tingkat batch
dengan memilih batch yang memiliki rata-rata magnitudo absolut tertinggi.
Batch terpilih dienkripsi menggunakan CKKS dan dikirim ke server bersama
mask sparsifikasi. Setelah menerima pembaruan global, klien mendekripsi
ciphertext, melakukan normalisasi menggunakan sum mask, merekonstruksi

parameter model, dan melanjutkan pelatihan pada ronde berikutnya.

. Packed CKKS Homomorphic Encryption

Modul enkripsi menerapkan skema CKKS melalui pustaka 7TenSEAL.
Konteks CKKS dibangkitkan satu kali pada awal pelatihan dan dibagikan
sebagai konteks publik agar seluruh klien menggunakan konfigurasi enkripsi
yang identik, sedangkan kunci privat dipertahankan pada sisi klien untuk

keperluan dekripsi.
Parameter model dipadatkan (packing) ke dalam slot-slot CKKS sehingga

satu ciphertext dapat memuat banyak elemen parameter secara simultan.
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Untuk menekan biaya komunikasi, sparsifikasi top-k diterapkan pada tingkat
batch hasil packing. Server melakukan agregasi langsung pada ciphertext
terpilih tanpa mengakses parameter individual klien. Nilai sum mask
digunakan pada tahap dekripsi untuk menormalkan hasil agregasi sesuai
kontribusi efektif tiap batch, sehingga kerahasiaan pembaruan model dan

efisiensi komunikasi tetap terjaga.

o Pelatihan Model Lokal Agregasi di Server Global > Bobot Model Terenkripsi
o Enkripsi Bobot Model Lokal Pengiriman Bobot Model Global Terenkripsi p Public Key
Pengiriman Bobot Terenkripsi ke Server Dekripsi dan Pembaruan Model Lokal //@ Secret Key

L2

Global Server Aggregation

>
>

Global Model

A 1. Server menunggu hingga semua cleint
mengirim model enkripsi.

Local

Training 2. Terima semua paket terenkripsi (C_i, M_i).

3. Lakukan Secure Aggregation di ranah
homomorfik.

4. Hitung rata-rata global (FedAvg).

5. Simpan model global terenkripsi.

-o.
L2 7}. Alignment
e/
Local

Model
Weights

Client

Gambar 3.7. Arsitektur sistem Federated Learning dengan integrasi Packed CKKS
Homomorphic Encryption

Seluruh proses pelatihan berlangsung secara iteratif sepanjang beberapa
epoch, dengan agregasi federasi yang dijalankan secara periodik mengikuti

parameter pace. Urutan prosesnya adalah sebagai berikut:

1. Server membentuk direktori komunikasi bersama dan menginisialisasi model
global. Model ini kemudian didistribusikan ke seluruh klien sebagai
inisialisasi parameter pelatihan lokal. Pada tahap ini ditetapkan seluruh
parameter federasi, meliputi jumlah epoch, jumlah langkah lokal per epoch

(nsteps), nilai pace, ukuran batch enkripsi, serta rasio sparsifikasi top-k.

2. Konteks Packed CKKS Homomorphic Encryption diinisialisasi satu kali pada
awal pelatihan. Konteks in1 memuat parameter skema CKKS dan kunci
yang diperlukan untuk operasi homomorfik. Konteks publik disimpan pada
direktori komunikasi agar seluruh klien menggunakan konfigurasi enkripsi
yang identik, sementara kunci privat tetap berada di sisi klien untuk keperluan

dekripsi.
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. Pada setiap epoch, masing-masing klien menjalankan pelatihan lokal selama
nsteps menggunakan data lokal. Pembaruan model klasifikasi dilakukan
dengan meminimalkan cross-entropy loss. Secara paralel, mekanisme feature
alignment diterapkan melalui pembelajaran adversarial lintas-sife, di mana
representasi fitur diberi gangguan noise kecil dan diskriminator domain
dilatih untuk membedakan asal domain, sementara encoder dioptimasi agar

menghasilkan representasi yang invariant terhadap domain.

. Setelah fase adversarial tertentu, strategi curriculum learning diterapkan.
Pada awal setiap epoch, klien menghitung prediksi benar/salah pada data
latih untuk membentuk bobot sampling. Bobot ini digunakan dalam weighted
sampler sehingga sampel yang lebih sulit memperoleh probabilitas pemilihan

yang lebih besar pada epoch berikutnya.

. Ketika jumlah langkah lokal mencapai kelipatan pace, atau ketika langkah
lokal terakhir dalam satu epoch tercapai, proses komunikasi federasi
dijalankan. Setiap klien menyiapkan pembaruan parameter model untuk

dikirim ke server secara aman.

. Parameter model lokal diubah ke dalam bentuk vektor satu dimensi melalui
proses flattening dan dipartisi ke dalam batch sesuai ukuran slot enkripsi
CKKS. Sparsifikasi top-k diterapkan pada tingkat batch dengan memilih
batch yang memiliki rata-rata magnitudo absolut tertinggi. Hanya batch
terpilih yang dienkripsi menjadi ciphertext dan dikirim ke server bersama

mask sparsifikasi.

. Server menerima ciphertext dan mask dari seluruh klien, kemudian
melakukan agregasi homomorfik secara langsung pada ciphertext aktif
menggunakan operasi linear CKKS. Agregasi dapat dilakukan secara seragam
atau berbobot sesuai konfigurasi, sehingga menghasilkan ciphertext global
dan sum mask yang merepresentasikan kontribusi efektif pada setiap batch.

Seluruh proses agregasi dilakukan tanpa mendekripsi pembaruan klien.

. Ciphertext global dan sum mask dibroadcast kembali ke seluruh klien. Setiap
klien mendekripsi ciphertext menggunakan kunci privat dan melakukan
normalisasi berdasarkan sum mask.  Vektor hasil dekripsi kemudian
direkonstruksi menjadi parameter model. Elemen bernilai nol akibat

sparsifikasi dipertahankan menggunakan parameter lokal yang bersesuaian,
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lalu vektor dipetakan kembali ke struktur fensor model untuk melanjutkan
pelatihan pada ronde berikutnya. Model global direpresentasikan sebagai

rata-rata dari model lokal hasil rekonstruksi tersebut.

9. Evaluasi dilakukan pada akhir setiap epoch menggunakan validation set

di masing-masing klien. Metrik yang dihitung meliputi validation loss,
akurasi, AUC, dan PR-AUC. Model terbaik disimpan berdasarkan penurunan
validation loss. Pelatihan dilanjutkan ke epoch berikutnya apabila nilai
terbaik masih mengalami perbaikan; penghitung patience dinaikkan ketika
tidak terjadi perbaikan hingga mencapai ambang tertentu, lalu proses
dihentikan melalui early stopping. Pengujian akhir dilakukan menggunakan

model terbaik yang tersimpan.

Gambar 3.8 menggambarkan tahapan komputasi utama dalam sistem
Federated Learning yang diusulkan. Alur proses meliputi inisialisasi model global,
pembentukan konteks CKKS, pelatihan dan enkripsi parameter lokal, agregasi
ciphertext di server, hingga dekripsi dan evaluasi model global pada setiap ronde
federasi.
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Gambar 3.8.

Alur proses Federated Learning dengan mekanisme Packed CKKS

Homomorphic Encryption
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Seluruh proses eksperimen dijalankan pada lingkungan komputasi berbasis
Ubuntu dengan spesifikasi perangkat keras dan perangkat lunak sebagaimana

ditunjukkan berikut:
 Sistem Operasi: Ubuntu 20.04.6 LTS (64-bit)

e Prosesor: Intel® Core™ i7-7700 CPU @ 3.60 GHz x 8

Memori (RAM): 32 GB
» Kartu Grafis: NV132 (NVIDIA)

» Kapasitas Penyimpanan: 4.5 TB

» Sistem Jendela: X11 (GNOME 3.36.8)

3.6.1 Threat Model

Threat model pada penelitian ini mendefinisikan ruang lingkup keamanan
sistem Federated Learning yang dianalisis, mencakup aset yang dilindungi, aktor
ancaman, serta asumsi keamanan yang digunakan dalam penerapan Homomorphic
Encryption.

Sistem Federated Learning terdiri atas sejumlah klien yang melakukan
pelatihan model secara lokal menggunakan data citra medis masing-masing dan
sebuah Parameter Server (PS) yang bertugas mengoordinasikan proses agregasi
parameter model global. PS tidak memiliki akses terhadap data mentah klien dan
hanya memproses pembaruan model dalam bentuk terenkripsi.

Aset utama yang dilindungi meliputi data citra medis lokal milik klien
serta informasi sensitif yang dapat tersirat dalam parameter atau pembaruan
model selama proses pelatihan federasi. Kebocoran informasi dari parameter
model berpotensi mengungkap karakteristik data medis klien dan menimbulkan
pelanggaran privasi.

Model ancaman yang digunakan mengikuti skenario honest-but-curious,
di mana PS dan klien diasumsikan menjalankan protokol Federated Learning
sesuai spesifikasi, tetapi tetap diperlakukan sebagai pihak yang tidak sepenuhnya
dipercaya karena berpotensi mencoba memperoleh informasi tambahan dari data
yang diterima. Skenario serangan aktif seperti manipulasi pembaruan model,
pengiriman parameter palsu, maupun kolusi antara PS dan klien tidak termasuk

dalam cakupan penelitian ini.
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Skema Homomorphic Encryption yang digunakan mengasumsikan satu
pasangan kunci kriptografi yang dibagikan (shared key pair) di antara seluruh
klien. Kunci publik digunakan oleh klien untuk mengenkripsi pembaruan model,
sedangkan kunci privat digunakan oleh klien untuk mendekripsi hasil agregasi
global. PS tidak memiliki akses ke kunci privat dan hanya melakukan operasi
aritmetika secara homomorfik pada ciphertext. Distribusi kunci diasumsikan
dilakukan melalui kanal yang aman, serta tidak terjadi kolusi antara PS dan klien.

Komunikasi antara klien dan PS diasumsikan dapat diobservasi oleh pihak
eksternal tanpa adanya modifikasi aktif selama transmisi. Perlindungan terhadap
ancaman inferensi dan kebocoran informasi dilakukan dengan memastikan bahwa
parameter model tetap berada dalam bentuk terenkripsi selama proses transmisi
dan agregasi melalui skema Packed CKKS Homomorphic Encryption. Pendekatan
ini digunakan sebagai simulasi untuk mengevaluasi dampak penggunaan
Homomorphic Encryption terhadap performa model dan overhead komputasi, dan
tidak dimaksudkan sebagai representasi langsung dari sistem Federated Learning

pada lingkungan produksi.

3.7 Implementasi Model

Implementasi model pada penelitian ini berfokus pada arsitektur
Convolutional Neural Network (CNN) yang digunakan sebagai model klasifikasi
pada setiap klien. Penelitian ini tidak mengusulkan arsitektur CNN baru, melainkan
mengadopsi arsitektur dari penelitian terdahulu dan menerapkannya secara identik
pada seluruh klien untuk menjaga konsistensi struktur model selama pelatihan
federatif. Model yang digunakan terdiri atas dua komponen, yaitu encoder
sebagai ekstraktor fitur dan classifier sebagai pemetaan fitur ke ruang keluaran
kelas, sehingga pembaruan parameter hasil pelatihan lokal dapat diagregasi secara
kompatibel pada tahap agregasi global sesuai mekanisme yang telah dijelaskan pada
bagian sebelumnya.

Ekstraksi fitur citra mamografi menggunakan encoder berbasis ResNet-22
(ViewResNetV2) yang diadopsi dari Jimenez-Sanchez et al. Encoder dirancang
untuk memproses citra mamografi grayscale beresolusi tinggi dan menghasilkan
representasi fitur yang stabil. Setiap sampel memuat empat view (L-CC, L-
MLO, R-CC, dan R-MLO) yang diproses menggunakan shared weights untuk
mempertahankan konsistensi representasi antar-view. Representasi fitur dari seluruh

view kemudian digabungkan melalui average pooling sehingga diperoleh satu
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vektor fitur global berdimensi 256. Encoder ResNet-22 tersusun atas lima
kelompok blok residual dengan konfigurasi [2,2,2,2,2] dan jumlah filter yang
meningkat bertahap dari 16 hingga 256, dengan Batch Normalization dan aktivasi
ReL.U pada tiap blok untuk mendukung stabilitas pelatihan.

Vektor fitur keluaran encoder menjadi masukan bagi classifier berbasis
Multi-Layer Perceptron (MLP) untuk menghasilkan probabilitas kelas. Classifier
terdiri dari beberapa lapisan fully connected yang dikombinasikan dengan ReLLU
dan Batch Normalization, serta Dropout (0,2) sebagai regularisasi guna mengurangi
risiko overfitting. Pembaruan bobot encoder dan classifier menjadi parameter yang
dikomunikasikan dalam proses federated learning, baik pada mode komunikasi

plain maupun mode terenkripsi, sesuai konfigurasi sistem.

3.8 Implementasi Federated Learning

Implementasi federated learning pada penelitian ini dirancang untuk
mendukung pelatihan model klasifikasi secara terdistribusi dengan tetap menjaga
privasi data lokal di setiap klien. Sistem terdiri atas tiga klien, yaitu site0, sitel,
dan site2, serta satu server global yang berperan sebagai koordinator agregasi
model. Seluruh proses pelatihan dilakukan tanpa pertukaran data mentah antarklien.
Setiap klien hanya mengirimkan pembaruan parameter model hasil pelatihan lokal
ke server, sehingga data sensitif tetap tersimpan secara lokal di masing-masing site.

Kerangka federated learning yang digunakan mengadopsi pendekatan yang
diperkenalkan oleh Jimenez-Sanchez et al. dengan mengintegrasikan mekanisme
adversarial domain alignment dan curriculum learning pada tahap pelatihan lokal.
Agregasi parameter global dilakukan menggunakan skema Federated Averaging
(FedAvg) yang dijalankan secara periodik mengikuti parameter pace. Selain
itu, penelitian ini menambahkan mekanisme early stopping di sisi server untuk
mengendalikan konvergensi model dan mencegah pelatihan berlebih. Dengan
kombinasi tersebut, sistem federated learning tidak hanya berfokus pada kolaborasi
pelatihan antar klien, tetapi juga pada stabilitas proses optimisasi dan generalisasi

model global.

3.8.1 Inisialisasi Klien dan Pembagian Dataset
Implementasi federated learning pada penelitian ini mengikuti pipeline

pelatihan yang diperkenalkan oleh Jimenez-Sanchez et al., termasuk tahap
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inisialisasi model menggunakan bobot pretrained. Bobot pretrained tersebut
dimuat pada awal eksekusi sebagai inisialisasi parameter sebelum proses
optimisasi federasi dimulai. ~ Untuk memastikan proses inisialisasi berjalan
sesuai implementasi referensi, sistem mencetak status pemuatan bobot pretrained
serta ringkasan pembagian jumlah sampel (train/validation/test) pada tiap klien
ditunjukkan pada Gambar 3.9.

[DATA] sited (idx=0): train=696 wval=123 test=2006
[DATA] sitel (idx=1): train=721 val=128 test=220

[DATA] site2 (idx=2): train=671 val=119 test=219
loading pretrained weights
Start optimization

Gambar 3.9. Output runtime pemuatan bobot pretrained dan ringkasan pembagian data
(train/validation/test) pada masing-masing klien.

3.8.2 Skema Pelatihan Federated Learning

Pelatihan federated learning dijalankan secara sinkron dengan pembaruan
model global yang dilakukan secara periodik. Pada setiap klien, model dilatih
secara lokal selama sejumlah langkah pelatihan (nsteps) dalam satu epoch.
Parameter pace digunakan untuk mengatur frekuensi komunikasi antara klien dan
server, sehingga agregasi global dapat dilakukan beberapa kali dalam satu epoch
tanpa harus menunggu seluruh proses pelatihan lokal selesai. Pada penelitian ini,
konfigurasi pace dan nsteps diatur sedemikian rupa sehingga dalam satu epoch
dapat terjadi beberapa ronde agregasi global.

Pada setiap ronde agregasi, server menerima pembaruan parameter dari
seluruh klien dan membentuk model global baru. Model hasil agregasi tersebut
kemudian didistribusikan kembali ke masing-masing klien sebagai inisialisasi
pelatihan lokal selanjutnya. Skema ini memungkinkan pertukaran informasi
antar klien terjadi secara bertahap dan berulang, sehingga proses pembelajaran
kolaboratif dapat berlangsung secara lebih stabil meskipun distribusi data pada
setiap klien tidak identik. Frekuensi agregasi global yang dipicu oleh parameter

pace ditunjukkan melalui output runtime pada Gambar 3.10.
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[PACE] FedAvg at step 40/120 JI[PACE] FedAvg at step 80/128 [PACE] FedAvg at step 120/120
_[[Ki{'s] weights_client = {0: OQI#[CKKS] weights_client = {0: o.3Jl[CKKS] weights_client = {@: ©

} }
[COMM] step 40/120 | up=3.855}{§[comm] step 8e/12e | up=3.7922<jll[comMM] step 126/126 | up=3.84

Gambar 3.10. Contoh output runtime pemicu agregasi FedAvg pada langkah ke-40, ke-80,
dan ke-120 dari total nsteps=120 dalam satu epoch, sesuai pengaturan parameter pace=40.

3.8.3 Strategi Curriculum Learning

Prediksi seluruh data
train lokal

v

Simpan prediksi
benar/zalah tiap sampel

Current Epoch =
epochs_adversarial?

Bandingkan prediksi
epoch sekarang dan
sebelumnya

Gunakan data loader
normal

Hitung bobot sampel
berdasarkan perubahan
performa

Bentuk data loader
berbobot (Weighted
Sampling

v

Training model
menggunakan data loader
terpilih

Gambar 3.11. Alur strategi curriculum learning pada pelatihan lokal.

Alur pada Gambar 3.11 merangkum mekanisme curriculum learning yang
digunakan untuk menyesuaikan prioritas sampel selama pelatihan lokal. Pada awal
epoch, model melakukan prediksi pada seluruh data frain lokal dan menyimpan
status prediksi benar/salah untuk setiap sampel. Jika epoch saat ini telah melewati
fase adversarial (misalnya epoch > n_epochs_adversarial), prediksi pada epoch
berjalan dibandingkan dengan epoch sebelumnya untuk mengukur perubahan
performa per sampel. Perubahan ini kemudian digunakan untuk menghitung bobot
sampel, sehingga sampel yang mengalami penurunan prediksi atau lebih sulit

dipelajari memperoleh bobot lebih tinggi. Selanjutnya, bobot tersebut digunakan
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untuk membentuk data loader berbobot melalui Weighted Sampling agar sampel
prioritas lebih sering muncul pada iterasi pelatihan berikutnya. Apabila fase
adversarial belum selesai, pelatihan dilakukan menggunakan data loader normal
tanpa pembobotan.

Strategi curriculum learning diterapkan untuk mengatur distribusi
kemunculan sampel pelatihan secara adaptif selama proses pelatihan lokal.
Pendekatan ini juga mengacu pada metode yang diperkenalkan oleh Jimenez-
Sanchez et al., di mana tingkat kesulitan sampel ditentukan berdasarkan dinamika
performa prediksi model antar epoch. Sampel yang cenderung lebih sulit dipelajari
atau mengalami penurunan performa prediksi diberikan bobot yang lebih besar,
sehingga memiliki peluang lebih tinggi untuk dipilih pada proses pelatihan
berikutnya.

Pendekatan curriculum learning ini mendorong model untuk belajar secara
bertahap, dimulai dari sampel yang relatif lebih mudah hingga sampel yang lebih
kompleks. Dalam konteks federated learning, strategi ini berperan penting untuk
menjaga stabilitas optimisasi ketika model harus beradaptasi dengan distribusi data

yang berbeda pada setiap klien dan mengalami pembaruan global secara periodik.

3.8.4 Mekanisme Adversarial Domain Alignment

Perbedaan distribusi data antarklien ditangani melalui mekanisme
adversarial domain alignment yang mengacu pada metode Jiménez-Sénchez et al.
Pendekatan ini bertujuan menyelaraskan representasi fitur yang dihasilkan encoder
agar bersifat domain-invariant, sehingga model global menjadi lebih robust
terhadap variasi data antar site. Setiap klien mempertahankan sebuah domain
discriminator yang dilatih untuk membedakan asal domain dari representasi fitur,
sementara encoder dioptimasi secara adversarial untuk menghasilkan fitur yang

sulit dibedakan oleh discriminator tersebut.
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Tiap site i latih classifier
pada batch lokal

v

Simpan fitur encoder T_i
dari batch tersebut

v

Untuk tiap pasangan
site (i # j), jalankan
Discriminator D_i pada
(i_i) dan (1_j)

!

Hitung lossD (untuk
D_i) dan lossG (untuk
encoder)

Current Epoch ==
epochs_adversarial?

Backprop lossG lalu ‘Skip update adversarial
update encoder (warm-up), lanjut training
(optimizerG) step berikutnya

Gambar 3.12. Alur mekanisme adversarial domain alignment pada pelatihan lokal.

Backprop lossD lalu
update discriminator
(optimizerD)

Alur pada Gambar 3.12 merangkum proses penyelarasan fitur lintas domain
pada pelatihan lokal. Setiap site terlebih dahulu melatih classifier pada mini-batch
lokal dan menyimpan representasi fitur f; dari encoder. Selanjutnya, untuk setiap
pasangan site (i, j), discriminator D; membedakan fitur dari domain asal (f;) dan
domain lain (f;) untuk menghitung loss discriminator (£p) dan loss generator
(Z;). Pembaruan komponen adversarial diaktifkan setelah melewati fase warm-
up, yaitu ketika epoch memenuhi kondisi epoch > n_epochs_adversarial;
sebelum kondisi tersebut terpenuhi, langkah adversarial dilewati agar representasi
dasar untuk klasifikasi terbentuk lebih stabil.

Aktivasi mekanisme adversarial tidak dilakukan sejak awal pelatihan.
Proses penyelarasan fitur baru diaktifkan setelah model melewati fase pelatihan
awal selama sejumlah epoch tertentu. Penundaan ini bertujuan memastikan bahwa
encoder telah mempelajari representasi fitur dasar yang cukup stabil untuk tugas
klasifikasi sebelum dilakukan penyelarasan lintas domain. Dengan strategi ini,
proses adversarial domain alignment dapat berjalan lebih terkendali dan tidak

mengganggu konvergensi awal model.
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Keluaran pelatihan adversarial dipantau melalui pencetakan nilai loss
komponen Kklasifikasi dan komponen adversarial selama pelatihan lokal
berlangsung. Nilai tersebut dicetak secara periodik mengikuti siklus pelatihan
yang dipicu oleh parameter pace, sehingga dalam satu epoch dapat terjadi
beberapa kali pembaruan model yang melibatkan langkah klasifikasi dan langkah
adversarial. Contoh keluaran debug nilai loss komponen tersebut ditunjukkan pada
Gambar 3.13.

L1: 0.5857236, L2: 0.5660121, L3: 0.5913585
Gl: 1.6023010, G2: 1.5690714, G3: 2.0994733

D1: 1.7045149, D2: 1.7665485, D3: 1.3941645

Gambar 3.13. Contoh output runtime yang menampilkan nilai /oss komponen pelatihan,
termasuk komponen terkait mekanisme adversarial domain alignment (mis. loss generator
dan loss discriminator) yang dipantau selama pelatihan lokal.

3.8.5 Validasi, Early Stopping, dan Pengujian

Evaluasi performa model dilakukan pada akhir setiap epoch menggunakan
validation set di masing-masing klien. Metrik yang dihitung pada tahap validasi
dibatasi pada validation loss dan akurasi. Nilai validation loss digunakan sebagai
indikator utama untuk memantau konvergensi model dan menentukan model terbaik
selama proses pelatihan. Model dengan nilai validation loss terendah disimpan
sebagai kandidat model terbaik untuk setiap klien.

Mekanisme early stopping digunakan untuk menghentikan pelatihan
ketika model tidak lagi menunjukkan peningkatan performa pada data validasi.
Mekanisme ini dikendalikan oleh parameter patience, yang menyatakan jumlah
maksimum epoch berturut-turut tanpa perbaikan nilai validation loss. Proses
pelatihan dihentikan secara otomatis apabila nilai validation loss global tidak
mengalami penurunan selama jumlah epoch tersebut. Implementasi early stopping
dijalankan setelah proses validasi pada setiap epoch. Logika pemantauan nilai

validation loss dan penghentian pelatihan ditunjukkan pada Kode 3.3.

if avg_loss < best_loss:

best_loss = avg_loss
patience_counter = 0
torch.save ({"state_dict": local_models[i].state_dict ()},

os.path.join (COMM_PATH, "agg", f"best_site{i}.pt"))
else:

patience_counter += 1
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9

if patience_counter >= args.patience:

print ("[SERVER] Early stopping at epoch #{ epoch }. Best
val_loss ={ best_val loss :.4f}")
stop_training = True

Kode 3.3: Implementasi mekanisme early stopping (main.py)

Verifikasi runtime dilakukan melalui keluaran program yang menunjukkan
penghentian pelatihan sebelum mencapai jumlah epoch maksimum ketika tidak
terjadi perbaikan nilai validation loss. Contoh keluaran runtime early stopping
ditunjukkan pada Gambar 3.14.

[SERVER] & Patience: 15/15

[SERVER] @) Early stopping at epoch #48. Best val_loss=0.5442

Gambar 3.14. Contoh output runtime yang menunjukkan aktivasi mekanisme early stopping
ketika nilai validation loss tidak mengalami perbaikan selama sejumlah epoch berturut-
turut.

Pengujian akhir (final test) dijalankan setelah pelatihan dihentikan
menggunakan model terbaik yang tersimpan. Tahap ini mengevaluasi performa
model pada fest set di masing-masing klien menggunakan metrik akurasi, AUC,
dan PR—-AUC untuk menilai kemampuan generalisasi model terhadap data yang

tidak digunakan selama pelatihan.

3.8.6 Parameter dan Konfigurasi Sistem Federasi

Konfigurasi sistem Federated Learning yang digunakan dalam implementasi
ini dirangkum pada Tabel 3.4.

Tabel 3.4. Konfigurasi dan parameter utama Federated Learning

Parameter Nilai / Keterangan
Framework PyTorch dan TenSEAL
Jumlah klien 3 (site0, sitel, site2)
Jumlah epoch federasi 100

Langkah lokal per epoch (nsteps) | 120

Interval agregasi (pace) 40

Lanjut pada halaman berikutnya
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Tabel 3.4 Konfigurasi dan parameter utama Federated Learning (lanjutan)

Parameter Nilai / Keterangan
Jumlah agregasi per epoch 3 kali
Optimizer Adam
Learning rate 1x107
Weight decay 1x1074
Batch size validasi & test 4
Ukuran citra masukan 2048 x 2048 (grayscale)
Jumlah kelas 2 (benign, malignant)
Curriculum learning Aktif setelah epoch 5
Early stopping (patience) 15 epoch tanpa perbaikan

3.9 Implementasi Packed CKKS Homomorphic Encryption

Bagian ini menjelaskan penerapan Packed CKKS Homomorphic Encryption
pada mode ckks. Berbeda dari mode plain, pembaruan parameter klien tidak
dikirim dalam bentuk plaintext, melainkan dienkripsi dan diagregasi langsung
dalam domain ciphertext. Seluruh alur CKKS dijalankan di dalam main.py pada
setiap momen agregasi berbasis pace. Seluruh tahapan implementasi divalidasi
melalui runtime debugging yang secara eksplisit mencetak struktur data, ukuran
parameter, rentang indeks (flat range), batch terenkripsi, serta hasil dekripsi. Output
debug ini digunakan sebagai dasar dokumentasi implementasi, di mana setiap
potongan kode yang disajikan pada subbagian berikut memiliki korespondensi

langsung dengan hasil debug yang ditampilkan selama eksekusi sistem.

3.9.1 Inisialisasi Konteks CKKS

Konteks CKKS dibangkitkan sekali di awal pelatihan ketika mode ckks
dipilih.  Konteks diserialisasi lengkap beserta secret key dan disimpan di
COMM_PATH/context params. Klien kemudian memuat konteks ini setiap kali
menjalankan enkripsi maupun dekripsi parameter.

I ckks_ctx = ts.context (

ts.SCHEME_TYPE.CKKS,
poly_modulus_degree=8192,

56

Implementasi Packed CKKS..., Stefanie Veronica Wijaya, Universitas Multimedia Nusantara



3 layer_shapes

coeff_mod_bit_sizes=[60, 40, 40, 60]
)
ckks_ctx.global_scale = 2**40
ckks_ctx.generate_galois_keys ()

params = ckks_ctx.serialize (save_secret_key=True)

with open(os.path.join (COMM_PATH, "context_params"), "wb") as f:

f.write (params)

Kode 3.4: Inisialisasi dan penyimpanan konteks CKKS

Keberhasilan penyimpanan konteks dan kelanjutan proses pelatihan dapat dilihat
pada Gambar 3.15.

[CKKS] dir(ctx) filtered: ['__module__', 'auto_mod_switch', 'auto_rescale’,
'generate_galois_keys', 'generate_relin_keys', 'global_scale', 'has_galois_keys', '
ic_key', 'has_relin_keys', 'has_secret_key', 'public_key', 'relin_keys', 'secret_key']
loaded OK

has_secret_key: True

has_galois_keys: True

global_scale: 1099511627776.0

[CKKS] Context saved —./comm/context_params (bytes=704882)

Gambar 3.15. Output debug saat konteks CKKS berhasil diserialisasi dan disimpan ke
COMM_PATH/context _params.

3.9.2 Serialisasi Parameter, Packing Batch, dan Enkripsi Top-k

Alur Packed CKKS pada sisi klien mencakup serialisasi parameter model,
pembagian parameter ke dalam batch, serta enkripsi batch terpilih menggunakan
strategi sparsifikasi fop-k. Seluruh tahapan dijalankan pada setiap momen agregasi
federasi yang dipicu oleh parameter pace. Proses ini menyiapkan pembaruan
parameter dalam bentuk ciphertext agar dapat diagregasi secara homomorfik di sisi
server.

Ekstraksi parameter model lokal dilakukan menggunakan fungsi
params_tolist. - Parameter model dikonversi dari struktur state dictionary
menjadi vektor satu dimensi (flattened list). Fungsi ini juga menghasilkan metadata
berupa jumlah elemen tiap lapisan (params_num) serta bentuk asli parameter
(layer_shape). Metadata tersebut digunakan untuk melacak rentang indeks (flat
range) setiap lapisan dan memungkinkan rekonstruksi parameter ke bentuk semula
setelah proses agregasi global.

params_lists = {}

params_nums = {}

I
—
—
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for i in range(n_sites):

params_list

, param

local_models[i])

params_lists[i]

params_nums

layer_shapes[i]

] =

s_num,

layer_shape = params_tolist (

params_list

params_num

layer_shape

total_sum = sum(params_num.values ())

batch_num = int (np.ceil (total_sum / args.enc_batch_size))

Kode 3.5: Serialisasi parameter per klien dan perhitungan jumlah batch

Verifikasi runtime dilakukan dengan mencetak struktur lapisan, rentang
indeks parameter, serta jumlah total parameter setelah proses flattening. Contoh

output debug pada awal dan akhir proses params_tolist ditunjukkan pada

Gambar 3.16.

[DBG] params_tolist
[DBG] layer encoder

[DBG] layer encoder
[DBG] layer encoder
layer encoder
layer encoder
layer encoder
layer encoder

encoder

[DBG] layer encoder.
[DBG] layer encoder.
.view_resnet.
.view_resnet.
.view_resnet.
view_resnet.
.view resnet.
view_resnet.
.view_resnet
.view_resnet.
view_resnet.
view_resnet.
.view_resnet.

layer encoder.

layer encoder.

layer encoder.
layer encoder.

[PACE] FedAvg at step 40/120

START

.view_resnet.
view_resnet.
.layer_list.
layer_list.
.0.0
layer_list.

view_resnet

first_conv

layer_list

layer_list

layer

first_conv.
.welght flat_range: 0..783 (size=784)

layer_list.
layer_list.0.0.
.layer_list.0.0
layer_list.
layer_list.
list.o.
layer_list.0.0

weilght shape: type=list, len=4

0.0.
0.0.

weight shape: type=list, len=1

.weight flat_range: 784..799 (size=16)

.bias shape: type= , len=1

.bias flat_range: 800..815 (size=16)

.running_mean shape: type=list, len=1
.running_mean flat_range: 816..831 (size=16)
.running_var shape: type=list, len=1

.running_var flat_range: 832..847 (size=16)
.num_batches_tracked shape: type=list, len=0
.num_batches_tracked flat_range: 848..848 (size=1)

.convl.weight shape: type=list, len=4
.convl.weight flat_range: 849..3152 (size=2304)

layer bn2.running_wvar flat_range: 2845544..2845607 (size=64)

layer bn2.num_batches_tracked shape: type=list, len=0

layer bn2.num_batches tracked flat_range: 2845608..2 D8 (size=1)
params_tolist AFTER flatten (global): type=list, len 6089
params_tolist TOTAL flattened params: 2845609

Gambar 3.16. Output debug awal dan akhir proses params_tolist yang menunjukkan

pemetaan parameter model ke vektor satu dimensi beserta rentang indeks tiap lapisan.

Pembagian batch dilakukan secara berurutan berdasarkan indeks pada
vektor parameter global dengan ukuran tetap sesuai parameter enc batch_size.
Sparsifikasi kemudian diterapkan pada tingkat batch menggunakan strategi top-k.
Nilai rata-rata magnitudo absolut dihitung pada setiap bafch untuk menentukan

batch terpilih. Batch terpilih direpresentasikan sebagai mask biner, sementara batch

lainnya diabaikan pada ronde komunikasi tersebut.

Enkripsi Packed CKKS dijalankan hanya pada batch terpilih.

batch dienkripsi menjadi satu ciphertext yang memuat ribuan parameter sekaligus.
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Informasi mask digunakan untuk menandai posisi ciphertext terhadap indeks batch
pada vektor global.

I cipher_lists = {}

> masks = {}

4 for 1 in range(n_sites):
5 cipher, mask = enc_params (
6 params_lists[i],

7 {},

8 args,

9 epoch)

10 cipher_lists[i] = cipher
11 masks[i] = mask

Kode 3.6: Sparsifikasi fop-k dan enkripsi batch per klien dengan Packed CKKS

Verifikasi runtime pada tahap enkripsi dilakukan dengan mencetak jumlah
batch terpilih, jumlah ciphertext yang dihasilkan, serta keterkaitan batch terenkripsi
terhadap lapisan model. Contoh output debug pada awal dan akhir proses
enc_params ditunjukkan pada Gambar 3.17.
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[DBG] enc_params START epoch=0
[DBG] params_list BEFORE encrypt: type=list, len=2845609
[DBG] enc settings: {'isBatch': True, 'batch_size': 4696, 'topk': 0.2, 'isSpars': '
[DBG] enc_params AFTER encrypt -> num_cipher: 139
[DBG][CIPHER] first cipher: bytes_len=334282
[DBG][CIPHER] head=\x8a\x02\x80\x20\x12\xbo\xb3\x14\x5e\xa1\x10\x04\x01\x02\x00% %00\ xb9\x12\x05\ x 00\\6
%72\ x2d\x10\xab\xbc\x66\xd1\x1e\x29\x71\x7a\x19\x41\ x1c\x7a\ xde\x3F\xdB\xb9\ xbb\x24\ x28\xdB\x1f .
[DBG] enc_params mask: type=list, len=695
[DBG] enc_params first cipher bytes_len: 334282
[DBG] enc_params first cipher bytes_head: type=list, len=10
[DBG] selected batches (topk): type=list, len=139
[DBGI[ENC] ... (134 batch lain disembunyikan)
[DBG][ENC] batch @ flat_range=0..4095 overlaps layers:
- encoder.view_resnet.first_conv.weight
- encoder.view_resnet.layer_list.0.0.bnl.weight
encoder.view_resnet.layer_list.0.0.bnl.bias
- encoder.view_resnet.layer_list.0.08.bnl.running_mean
- encoder.view_resnet.layer_list.0.@8.bnl.running_var
encoder.view_resnet.layer_list.0.0.bnl.num_batches_tracked
- encoder.view_resnet.layer_list.e€ n2.weight
- encoder.view_resnet.layer_list.0.08.bn2.bias
encc-der.vlew_resnet‘layer list. ,bnz.runntng_mean
- encoder.view resnet.layer_list.0.0.bn2.running_var
- encoder.view_resnet.layer_list.0.8.bn2.num _batches_tracked
- encoder.view_resnet.layer_list.0.0.conv2.weight
[DBG][ENC] batch 1 flat_range=4096..8191 overlaps layers:
- encoder.view_resnet.layer_list.0.0.conv2.weight
- encoder. vLew rpsnet ldyer LLSt ﬂ a. downsample 8.weight

]
]
L]
]
- encoder.view_resnet.layer_list.0.8.convl.welght
[}
]
9
9

[DBG][ENC] batch 3 flat range=12288..16383 overlaps layers:

- encoder.view resnet.layer list.1.8.convl.weight
encoder.view_resnet.layer_list.1.0.bn2.weight
encoder.view resnet.layer list.1.0.bn2.bias
encoder.view resnet.layer list.1.8.bn2.running mean
encoder.view_resnet.layer_list.1.0.bn2.running_var
encoder.view_resnet.layer_list.1.0.bn2.num_batches_ tracked
encoder.view resnet.layer list.1.0.conv2.weight

[DBG][ENC] batch 4 flat range=16384..20479 overlaps layers:

- encoder.view_resnet.layer_list.1.0.conv2.weight

[DBG] enc_params END

Gambar 3.17. output debug awal dan akhir proses enkripsi batch terpilih menggunakan
Packed CKKS, termasuk informasi mask top-k, jumlah ciphertext, dan keterkaitan batch
dengan lapisan model.

3.9.3 Agregasi Homomorfik Ciphertext di Server

Agregasi model global dilakukan langsung pada domain ciphertext
menggunakan operasi linear pada skema CKKS. Agregasi dijalankan pada tingkat
batch yang aktif berdasarkan mask hasil sparsifikasi top-k. Setiap ciphertext batch
dari klien dijumlahkan secara homomorfik dan dikalikan dengan bobot kontribusi
klien. Implementasi ini mendukung dua skema pembobotan, yaitu pembobotan
seragam dan pembobotan proporsional terhadap ukuran data pelatihan lokal.

Proses agregasi menghasilkan agg_cipher sebagai ciphertext global dan
sum_mask sebagai faktor normalisasi untuk setiap indeks barch. Normalisasi
diperlukan karena tidak seluruh klien selalu mengirim batch pada indeks yang
sama akibat sparsifikasi. Nilai sum_mask digunakan pada tahap dekripsi untuk

menyesuaikan hasil agregasi dengan jumlah kontribusi yang valid pada setiap batch.
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if args.weighted:
total_train = sum(len(trainsets[i]) for i in range(n_sites))
weights_client = {i: len(trainsets[i]) / total_train for 1 in
range (n_sites) }

elisiex:

weights_client = {i: 1.0 / n_sites for i in range(n_sites)}
print ("[CKKS] weights_client =", weights_client)

sum_mask, agg_cipher = ckks_aggregate (
cipher_lists,
masks,
weights_client,
args,

batch_num

Kode 3.7: Pemilihan bobot klien dan agregasi homomorfik ciphertext CKKS

Verifikasi runtime dilakukan dengan mencetak nilai weights_client pada
setiap ronde agregasi untuk memastikan skema pembobotan yang digunakan sesuai
konfigurasi eksperimen. Contoh keluaran debug yang menampilkan bobot klien
ditunjukkan pada Gambar 3.18.

[DBG] enc_params END
[CKKS] weights_client = {@: ©.3333333333333333, 1: 0.3453065134099617, 2: 0.321360153256705}

[DBG] dec_params START

Gambar 3.18. output debug yang menampilkan bobot kontribusi klien (weights_client)
pada tahap agregasi homomorfik ciphertext.

3.9.4 Dekripsi dan Rekonstruksi Parameter Model

Tahap ini memulihkan parameter global hasil agregasi homomorfik ke dalam
domain plaintext dan merekonstruksi parameter tersebut ke bentuk model yang
dapat digunakan kembali pada pelatihan lokal. Setiap klien mendekripsi ciphertext
agregat menggunakan konteks CKKS privat yang sama dengan yang digunakan
pada tahap enkripsi. Proses ini menghasilkan vektor parameter global dalam bentuk
flattened list.

Normalisasi hasil dekripsi dilakukan menggunakan sum mask untuk
menyesuaikan kontribusi batch yang valid pada setiap indeks. Batch yang tidak

dikirim pada tahap sparsifikasi menghasilkan nilai nol pada plaintext. Nilai nol
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1

2

tersebut dipertahankan pada tahap dekripsi dan akan digantikan dengan parameter

lokal yang bersesuaian pada proses rekonstruksi model.

decrypted_global = {}

3 for i in range(n_sites):

dec_list = dec_params (
agg_cipher, # aggregated ciphertext
sum_mask, # mask hasil agregasi
{}, # enc_tools tidak digunakan
args,
[] # randk_list tidak digunakan
)

decrypted_global [i] dec_list.tolist ()

Kode 3.8: Dekripsi ciphertext agregat per klien

Verifikasi runtime dilakukan dengan mencetak status dekripsi serta cuplikan
nilai hasil dekripsi untuk memastikan proses pemulihan plaintext berjalan sesuai
konfigurasi CKKS. Contoh keluaran debug proses dekripsi ditunjukkan pada
Gambar 3.19.

[CKKS] weilghts_client = {0: ©.3333333333333333, 1: 0.3453065134099617, 2: 0.321360153256705}
[DBG] dec_params START
[DBG] cipher_list BEFORE decrypt: num_cipher=695
[DBG][CIPHER] cipher[8]: bytes_len=131217
[DBG][CIPHER] head=\x0a\x02\x80\x20\x12\x80\x81\x08)\x5e\xal1\x10\x04\x01)x02\x00\x00\x80\x00\x02\x00\x00\
xda\x3f\xf3\x2a\xb3\x76\x9d\xec\xd1\xBe\xa7\xel\x4d\x7c\xba\x11\xe9\xde\x2a\xed\x1a\x5b\x85\xf9 ...
[DBG][CIPHER] cipher[1]: bytes_len=131217
[DBG][CIPHER] head=\x0a\x02\x80\x20\x12\x80\x81\x08\x5e\xa1\x10\x04\x01)\x02\x00\x00\x80\x00\x02\x00\x00)\
xda\x3f\xf3\x2a\xb3\x76\x9d\xec\xd1\xBe\xa7\xel\x4d\x7c\xba\x11\xe9\ xde\x2a\xed\x1a\x5b\x05\xf9 ...
[DBG][CIPHER] cipher[2]: bytes len=131217
[DBG][CIPHER] head=\x0a\x02\x80\x20\x12\x80\x81\x08\x5e\xal}x10\x04\x01\x02\x00\x00\x80\x00\x02\x00\x00}
xda\x3f\xF3\x2a\xb3\x76\x9d\xec\xd1\xBe\xa7\xel\x4d\x7c\xba\x11\xe9\xde\x2a\xed\x1a\x5b\x05\xf9 ...

... 692 cipher lain disembunyikan

sum_masks: type=list, len=695

randk_list: type=list, len=0

dec settings: {'isBatch': True, 'batch_size': 4096}

dec_params first cipher bytes_len: 131217

dec_params first cipher bytes_head: type=list, len=16

dec_params AFTER decrypt (plain list/global): type=ndarray, len=2846728

dec_params AFTER decrypt (plain head): type=ndarray, len=18

dec_params END

Gambar 3.19. Contoh output debug proses dec_params yang menunjukkan dekripsi
ciphertext agregat CKKS menjadi parameter global dalam bentuk flattened list.

Rekonstruksi parameter global ke bentuk model dilakukan menggunakan
params_tomodel.  Proses diawali dengan pemetaan ulang parameter lokal
menggunakan params_tolist untuk memperoleh metadata jumlah elemen dan
bentuk asli setiap lapisan. Parameter global hasil dekripsi kemudian dimasukkan
kembali ke struktur model. Elemen bernilai nol pada vektor global digantikan
dengan parameter lokal yang bersesuaian sehingga lapisan yang tidak berkontribusi

pada ronde tersebut tetap mempertahankan nilai sebelumnya.
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2

for i in range(n_sites):
params_list, params_num, layer_shape = params_tolist (
local_models[1i])
params_tomodel (
local_models[i],
decrypted_global[i],
params_nums [i],
layer_shapes|[i],
args,

params_lists[i]

Kode 3.9: Rekonstruksi parameter global ke model lokal

Keberhasilan proses rekonstruksi diverifikasi melalui output runtime yang
mencetak status awal dan akhir pemetaan parameter kembali ke setiap lapisan
model. Contoh output debug pada awal dan akhir proses params_tomodel
ditunjukkan pada Gambar 3.20.

parans_tonodel START
global_Llist BEFORE to-model: type= 1en=2846720

to-model layer encoder.view_resnet .weight incoming flat head: type=list, len=5

to-model layer encoder.view_resnet. 3 .weight flat_range: 0..783

to-model layer encoder.vie T .weight AFTER reshape: tensor shape=(16, 1, 7, 7), dtype=torch.float64
to-model layer enceder.vie ot. .8.0.bn1.weight incoming flat head: type st, len=5

to-model layer encoder.view_resnet. .8.bnl.weight flat_range: 784..799

to-model layer encoder.view_resnet.la a . eight AFTER reshape: tensor shape=(16,), dtype=torch.float64
to-model layer encoder.view_resnet. . . incoming flat head: type=list, len=5

to-model layer encoder.view_resnet.1: .0.0. flat_rang 80 15

to-model layer encoder.vi S| .0. AFTER reshape: tensor sh 16,), dtype=torch.float64
to-model layer encoder. 5 A 5 o .running_mean incoming flat type=list, len=5

to-model layer encoder.view_resnet. .6.0.bn1.running_mean flat_range 31

to-model layer encoder.view_resnet. . 0.0. .running_mean AFTER reshape: tensor shape=(16,), dtype=torch.float64
to-model layer encoder.view_resnet. st.0.0. .running_var incoming flat head: type=list, len=5

to-model layer encoder.view_resnet.layer_ .0.bnl.running_var flat_range: 832..847

to-model layer encoder.view_resnet. q X running_var AFTER reshape: tensor shape=(16,), dtype=torch.float64
to-model layer encoder.view_resnet.la i . um_batches_tracked incoming flat head: type=list, len=1

to-model layer encoder.view_resnet . m_batches_tracked flat_range: 848..848

to-model layer encoder. 0.0, . batches_tracked AFTER resha ensor shape=(), dtype=torch.float64
to-model layer encoder.vi . .0.0. ight incoming flat head: type=list, len=5

to-model layer encoder. 5 .0.0.convl.weight flat_range: 849..3152

to-model layer encoder. .layer_list.0.0.convl.weight AFTER reshape: tensor shape=(16, 16, 3, 3), dtype=torch.floaté4
to-model layer encoder. S| .layer_ .e.bn2. ht incoming flat head: type=list, len=5

to-model layer encoder. Nayer_ .0. ht flat_range: 3153..3168

to-model layer encoder. layer_ .6.0.bn2.weight AFTER reshape: tensor shape=(16,), dtype=torch.floats4

to-model running_var incoming flat head:

to-model bn2.running_var flat_range: 2845544,

to-model lay bn2.running_wvar AFTER reshape: tensor shape=(64,), dtype=torch.float64
to-model bn2.num_batches_tracked incoming flat head ype=list, len=1

to-model bn2.num_batches_tracked flat_range: 2845608..2845608

to-model bn2.num_batches_tracked AFTER reshape: tensor shape=(), dtype=torch.float64
params_tomodel DONE

Gambar 3.20. output debug awal dan akhir proses rekonstruksi parameter global ke dalam
struktur model lokal menggunakan params_tomodel.

Setelah seluruh klien selesai direkonstruksi, model hasil pembaruan
digunakan sebagai parameter awal untuk ronde federasi berikutnya. Dengan
mekanisme ini, proses pelatihan dapat berlanjut secara iteratif dengan
memanfaatkan hasil agregasi homomorfik tanpa mengungkapkan parameter model
individual pada sisi server. Parameter yang digunakan dalam eksperimen ini
ditunjukkan pada Tabel 3.5.
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Tabel 3.5. Parameter konfigurasi mekanisme Packed CKKS Homomorphic Encryption pada
sistem federasi.

Parameter Nilai / Keterangan
Skema Packed CKKS
Library TenSEAL

poly_modulus_degree 8192
coeff mod.bit_sizes [60, 40, 40, 60]

global_scale ol
enc_batch_size 4096
isSpars topk

topk 0,2; 0,5; 0,8

Implementasi ini memungkinkan agregasi parameter dalam domain
terenkripsi secara efisien. Pendekatan batched packing mengemas ribuan parameter
dalam satu ciphertext, sementara sparsifikasi fop-k menekan data transfer volume
(MB) tanpa mengorbankan kualitas model secara signifikan. Penjagaan privasi
dipertahankan karena server tidak pernah memegang secret key dan seluruh operasi
agregasi dilakukan pada ciphertext. Alur lengkap integrasi mekanisme HE ke dalam

FL dapat digambarkan dalam diagram pada Gambar 3.21.
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Server-side Aggregation/

Client-side Training & Encryption/

?

Load model global dari ronde sebelumnya

v

Lakukan pelatihan lokal pada data klien

v

Flatten parameter model ke format 10

v

Tunggu seluruh klien selesai upload paket terenkripsi

v

Agregasi ciphertexi akiif sesuai mask (ckks_aggregate)

v

Simpan hasil agregasi {sum_mask, global_cipher}

v

Kirim hasil ciphertext global ke seluruh klien

Client-side Decryption & Update/

Terima hasil agregasi ciphertext global

v

Bagi parameter menjadi batch (enc_batch_size = 4096) Mual konleks privat (secrel-key)

Hitung rata-rata magnitudo tiap baich Dekripsi balch terenkripsi

Pilih batch bernilai tertinggi (Top-k sparsification) Normalisasi hasil dengan sum_mask

Maskibatchilainliaiaild0) Gabungkan hasil dekripsi menjadi daftar bobot global
Enkripsi batch terpilih dengan konieks publik (public-key) Rekonstruksi model menggunakan params_fomodel()

Bentuk paket {site_id, mask, cipher, batch_num} Evaluasi performa (Acc, val_loss)

v I

Y

EitipakerEelseniey Simpan metrik hasil ronde

Y

Early Stopping? LKi)@

| Tidak

- "Client-side Training & Encryption"

v

Gambar 3.21. Alur Integrasi Packed CKKS HE.

3.9.5 Implikasi Rekonstruksi Model pada Skema Top-k

Penerapan Packed CKKS Homomorphic Encryption dengan mekanisme fop-
k sparsification menghasilkan pola pembaruan model yang berbeda dari federated
learning konvensional. Pada setiap ronde federasi, hanya subset parameter dengan
kontribusi terbesar yang dikirim ke server dan diagregasikan secara homomorfik,
sedangkan parameter lain tetap dipertahankan secara lokal pada masing-masing
klien. Skema ini membuat sinkronisasi model tidak lagi bersifat penuh, melainkan
parsial dan bergantung pada parameter terpilih pada setiap ronde.

Rekonstruksi parameter dilakukan dengan memasukkan hasil agregasi
pada indeks batch yang berkontribusi dan mempertahankan nilai parameter lokal

sebelumnya pada batch yang tidak dikirim. Konsekuensinya, model hasil
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rekonstruksi pada tiap klien tidak selalu identik secara parameter, meskipun seluruh
klien menerima keluaran agregasi global yang sama. Perbedaan tersebut merupakan
karakteristik yang inheren dari sparsifikasi fop-k, bukan indikasi kegagalan agregasi
maupun dekripsi.

Nilai rfop-k mengendalikan tingkat sinkronisasi global serta karakteristik
pembaruan parameter dalam sistem federasi terenkripsi. Rasio top-k yang lebih
besar mendorong perilaku sistem mendekati sinkronisasi penuh, sedangkan rasio
yang lebih kecil memperbesar proporsi parameter yang tetap lokal dan memperkuat
konsensus parsial antar klien. Karakteristik ini juga memunculkan efek regularisasi
implisit karena sebagian parameter bertahan dari ronde ke ronde, sehingga
pembaruan model menjadi lebih stabil terhadap variasi pembaruan lokal.

3.10 [Evaluasi dan Pengukuran

Bagian ini menjelaskan metode evaluasi untuk mengukur kinerja sistem
Federated Learning dengan agregasi terenkripsi berbasis CKKS. Evaluasi
mencakup performa model, efisiensi komputasi, dan efisiensi komunikasi (data
transfer volume). Seluruh eksperimen dijalankan melalui main.py. Pelaporan
hasil mengacu pada ronde terbaik (best round), yaitu ronde ketika metrik evaluasi

mencapai nilai maksimum selama pelatihan.

3.10.1 Evaluasi Performa Model

Evaluasi performa model dilakukan melalui dua tahap, yaitu validasi pada
setiap epoch dan pengujian akhir (final test) setelah proses pelatihan selesai.
Pada setiap epoch, validasi dijalankan di sisi klien menggunakan fungsi val ()
yang didefinisikan pada client.py. Model yang dievaluasi merupakan model
lokal masing-masing klien, yang telah diperbarui melalui proses dekripsi dan
rekonstruksi parameter hasil agregasi CKKS.

Pada tahap validasi, nilai validation loss dan akurasi dihitung untuk setiap
klien. Nilai tersebut kemudian dirata-ratakan untuk memperoleh metrik global pada
epoch bersangkutan. Rata-rata validation loss digunakan sebagai kriteria pemilihan

model terbaik dan sebagai acuan mekanisme early stopping.

v_losses = []

2 v_accs = []

for i in range(n_sites):
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vloss, vacc, _, _ = val (

p—
local_models[i], val_loaders[i], device
)
v_losses.append(vloss)

v_accs.append (vacc)

avg_loss float (np.mean(v_losses))

> avg_acc = float (np.mean(v_accs))

Kode 3.10: Validasi per-klien dan perhitungan metrik global (main.py)

Model terbaik pada setiap klien disimpan secara terpisah sebagai
best_site{i}.pt ketika nilai validation loss global mencapai nilai minimum.
Proses pelatihan dihentikan secara otomatis apabila tidak terjadi perbaikan nilai
validation loss selama sejumlah epoch berturut-turut sesuai parameter patience.

Pengujian akhir (final test) dijalankan satu kali setelah proses pelatihan
berhenti. Pada tahap ini, model terbaik masing-masing klien dimuat dan dievaluasi
menggunakan test set. Metrik yang dihitung meliputi akurasi (ACC), AUC, dan
PR-AUC.

best_path = os.path.join (COMM_PATH, "agg", f"best_site{i}.pt")
checkpoint = torch.load(best_path)

test_model = Classifier().to(device)

test_model.load_state_dict (checkpoint["state_dict"])

acc, roc_auc, pr_auc, cm, _ = final_test (

test_model, test_loaders[i], device, test_loaders[i].dataset

Kode 3.11: Pengujian akhir model terbaik per klien (main.py)

3.10.2 Efisiensi Komputasi

Efisiensi komputasi diukur berdasarkan durasi pelatihan lokal dan durasi
proses agregasi federasi selama pelatihan berlangsung. Pelatihan lokal dilakukan
pada inner loop di masing-masing klien, sedangkan agregasi federasi dijalankan
secara periodik sesuai parameter pace. Pada setiap event agregasi, sistem mencatat
durasi proses agregasi end-to-end, yaitu sejak parameter lokal siap dipertukarkan
hingga model hasil agregasi tersedia kembali untuk digunakan pada langkah

berikutnya.
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Total waktu agregasi federasi per epoch dihitung sebagai penjumlahan durasi
seluruh event agregasi yang terjadi pada epoch tersebut. Waktu pelatihan lokal
didefinisikan sebagai durasi inner loop dikurangi total waktu agregasi federasi,
sehingga waktu pelatihan merepresentasikan komputasi murni untuk pembaruan
model lokal (tanpa memasukkan waktu agregasi).

Pada mode CKKS, terdapat overhead tambahan akibat proses enkripsi
dan dekripsi parameter. Waktu enkripsi (encryption time) dicatat ketika klien
mengenkripsi parameter model (setelah packing dan sparsifikasi top-k) sebelum
dikirim untuk agregasi. Waktu dekripsi (decryption time) dicatat ketika klien
mendekripsi hasil agregasi terenkripsi dan merekonstruksi kembali parameter
model. Nilai waktu enkripsi dan dekripsi dilaporkan sebagai rata-rata per epoch
untuk menggambarkan overhead komputasi yang ditambahkan oleh mekanisme

homomorphic encryption.

3.10.3 Efisiensi Data Transfer Volume (MB)

Efisiensi komunikasi diukur berdasarkan data transfer volume, yaitu total
ukuran data yang dikirim (upload) dan diterima (download) selama proses agregasi
federasi. Pengukuran dilakukan pada setiap event agregasi dan dinyatakan dalam
satuan megabyte (MB), kemudian diakumulasikan untuk memperoleh total volume
komunikasi per epoch.

Pada mode CKKS, ukuran data upload dihitung dari paket yang dikirim
klien ke server setelah proses packing dan sparsifikasi top-k. Paket tersebut memuat
ciphertext batch terpilih, mask biner yang menandai batch yang dienkripsi, serta
metadata yang diperlukan untuk rekonstruksi, seperti jumlah batch. Ukuran paket
ditentukan dari hasil serialisasi struktur data sebelum dikirimkan.

Ukuran data download dihitung dari bundle global yang di broadcast
server ke seluruh klien setelah proses agregasi terenkripsi selesai. Bundle ini
memuat ciphertext hasil agregasi global serta informasi normalisasi yang diperlukan
agar klien dapat melakukan dekripsi dan merekonstruksi parameter model secara
konsisten.

Nilai upload dan download dijumlahkan untuk memperoleh total data
transfer volume pada setiap event agregasi. Seluruh volume komunikasi pada event
agregasi dalam satu epoch kemudian diakumulasikan sebagai total data transfer

volume per epoch.
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