
BAB 3
METODOLOGI PENELITIAN

Metodologi penelitian disusun untuk mengevaluasi dampak penerapan
Packed CKKS Homomorphic Encryption pada sistem Federated Learning untuk
klasifikasi kanker payudara. Fokus evaluasi mencakup tiga aspek, yaitu performa
model (AUC dan PR–AUC), efisiensi waktu komputasi (pelatihan lokal, agregasi,
enkripsi, dan dekripsi), serta biaya komunikasi (data transfer volume).

Tahapan penelitian mencakup studi literatur, pengumpulan dataset CBIS-
DDSM, pra-pemrosesan data, pembagian data berbasis patient id ke dalam
subset train, validation, dan test, serta distribusi data train ke tiga klien untuk
mencegah kebocoran data antar subset maupun lintas klien. Selanjutnya, diterapkan
data transformation yang meliputi perubahan ukuran citra, normalisasi intensitas,
dan peningkatan kontras menggunakan CLAHE sebelum data dimuat ke dalam
model. Pelatihan Federated Learning dilakukan menggunakan FedAvg dengan
pengaturan komunikasi berbasis pace, diintegrasikan dengan CKKS pada proses
komunikasi dan agregasi, serta top-k sparsification untuk mengurangi jumlah
pembaruan model yang dikirim pada setiap ronde. Evaluasi dilakukan pada mode
plain dan mode terenkripsi dengan variasi top-k untuk menganalisis trade-off antara
privasi, performa, dan overhead sistem.

3.1 Studi Literatur

Studi literatur dilakukan untuk memperoleh pemahaman yang komprehensif
mengenai konsep dan perkembangan terkini terkait Federated Learning (FL) dan
Homomorphic Encryption (HE) yang menjadi dasar penelitian ini. Tahapan ini
bertujuan untuk mengidentifikasi metode, algoritma, serta pendekatan yang relevan
dalam mendukung proses analisis dan perancangan sistem.

Proses studi literatur dilakukan melalui penelusuran berbagai sumber ilmiah,
seperti jurnal internasional, prosiding konferensi, serta artikel akademik yang
diperoleh dari basis data Scopus, Google Scholar, IEEE Xplore, SpringerLink, dan
ScienceDirect. Pencarian dilakukan menggunakan kata kunci seperti “Federated
Learning”, “Homomorphic Encryption”, “Packed HE”, dan “Breast Cancer
Classification”. Hasil penelusuran digunakan untuk memahami perkembangan
penelitian terdahulu, menemukan kesenjangan penelitian, serta menentukan
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pendekatan yang paling sesuai untuk diterapkan dalam penelitian ini.
Tahapan ini juga berperan dalam menentukan arah eksperimen yang

dilakukan, termasuk pemilihan algoritma FedAvg sebagai metode agregasi model,
penggunaan skema Packed Homomorphic Encryption (PHE) untuk perlindungan
privasi, serta penerapan model pada studi kasus klasifikasi kanker payudara. Hasil
kajian literatur menjadi dasar dalam perancangan sistem dan rancangan eksperimen
yang dijelaskan pada bagian selanjutnya.

3.2 Pengumpulan Data

Gambar 3.1. Flowchart pengumpulan data

Alur pada Gambar 3.1 merangkum proses pengambilan dataset CBIS-
DDSM dan pemuatan metadata awal yang digunakan dalam penelitian ini. Data
yang digunakan dalam penelitian ini berasal dari Curated Breast Imaging Subset of

Digital Database for Screening Mammography (CBIS-DDSM), yang merupakan
hasil kurasi dari Digital Database for Screening Mammography (DDSM) dan
disediakan secara publik di Kaggle. Dataset ini juga tersedia dalam versi
terdistribusi di Kaggle dengan struktur berkas yang telah disesuaikan untuk
kebutuhan analisis berbasis citra.

CBIS-DDSM berisi citra mamografi yang telah dianotasi oleh ahli radiologi
dengan dua kategori temuan utama, yaitu calcification dan mass lesion. Label
klasifikasi yang digunakan mencakup dua kelas, yaitu benign dan malignant.
Calcification menggambarkan endapan kalsium kecil yang tampak sebagai bintik
putih pada citra mamografi, sedangkan mass lesion mengacu pada massa jaringan
atau benjolan yang dapat mengindikasikan adanya pertumbuhan abnormal pada
area payudara. Contoh visual kategori benign dan malignant ditunjukkan pada
Gambar 3.2.
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Gambar 3.2. Contoh citra mamografi kategori benign dan malignant.

Koleksi resmi CBIS-DDSM pada TCIA terdiri atas sekitar 1.566 subjek
dengan lebih dari 10.239 citra dalam format DICOM. Pada penelitian ini, data
diakses dari versi Kaggle yang merupakan replikasi dari dataset TCIA tersebut.
Dataset ini menjadi dasar untuk tahap pra-pemrosesan metadata, pembagian dataset,
serta pelatihan model dalam skema Federated Learning.

3.2.1 Struktur Dataset

Dataset CBIS-DDSM menyediakan metadata kasus yang memuat informasi
identitas pasien, label patologi, serta jalur berkas citra. Ringkasan struktur kolom
yang digunakan pada penelitian ini disajikan pada Tabel 3.1.

Tabel 3.1. Struktur kolom pada berkas deskripsi dataset CBIS-DDSM

Kolom Keterangan

patient id Nomor identifikasi unik pasien
pathology Label patologi (BENIGN, BENIGN WITHOUT CALLBACK, MALIGNANT)
image file path Jalur citra mamografi (format JPEG)
cropped image path Jalur citra hasil pemotongan (cropped)
ROI mask path Jalur berkas penanda area lesi (Region of Interest)

Seluruh label pathology diseragamkan menjadi dua kelas biner:

• Benign: gabungan antara BENIGN dan BENIGN WITHOUT CALLBACK.
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• Malignant: diambil dari label MALIGNANT.

Empat berkas CSV digunakan sebagai sumber metadata utama, masing-masing
memuat deskripsi kasus untuk kategori calcification dan mass lesion pada subset
pelatihan dan pengujian. Ringkasan jumlah entri untuk setiap berkas ditunjukkan
pada Tabel 3.2.

Tabel 3.2. Ringkasan jumlah entri pada setiap berkas CSV CBIS-DDSM

Nama Berkas Kategori Jumlah Entri

calc case description train set.csv Calcification 1.546
calc case description test set.csv Calcification 326
mass case description train set.csv Mass lesion 1.318
mass case description test set.csv Mass lesion 378

3.3 Pra-pemrosesan Data

Gambar 3.3. Flowchart pra-pemrosesan data

Tahapan pra-pemrosesan metadata ditunjukkan pada Gambar 3.3, mulai
dari penggabungan berkas CSV hingga pembersihan entri tidak valid dan
duplikat. Tahap pra-pemrosesan data pada penelitian ini berfokus pada pengolahan
metadata untuk membentuk satu himpunan data yang konsisten sebelum dilakukan
pembagian dataset dan pelatihan model. Pra-pemrosesan mencakup penggabungan
berkas CSV, penyeragaman format kolom, validasi keterhubungan metadata dengan
berkas citra, serta pembersihan entri yang tidak valid atau duplikat.
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Empat berkas CSV pada CBIS-DDSM terdiri atas dua subset (pelatihan
dan pengujian) dan dua kategori temuan (calcification dan mass lesion). Untuk
mempermudah pengelolaan, dua berkas pelatihan (calc ...train... dan
mass ...train...) digabungkan menjadi satu metadata train, sedangkan dua
berkas pengujian (calc ...test... dan mass ...test...) digabungkan
menjadi satu metadata test. Selanjutnya, kedua metadata tersebut diseragamkan
struktur kolomnya agar konsisten dan dapat diproses dengan pipeline yang sama.

Validasi dilakukan dengan memeriksa keberadaan patient id, label
pathology, serta jalur citra yang dapat diakses. Entri yang tidak memiliki
patient id atau label patologi yang valid dihapus. Duplikasi entri juga
dihapus untuk memastikan setiap citra/seri hanya dihitung satu kali pada tahap
pembagian dataset. Selain itu, bila metadata memuat pengenal seri (misalnya
SeriesInstanceUID/UID), validasi dilakukan dengan mencocokkan UID yang
diekstraksi dari jalur berkas dengan struktur direktori citra yang tersedia, sehingga
metadata benar-benar mereferensikan citra yang ada.

Hasil pra-pemrosesan metadata menghasilkan himpunan data yang
konsisten untuk tahap berikutnya, yaitu pembagian dataset dan pelatihan model.
Secara ringkas, output utama dari tahap ini adalah: (1) metadata gabungan untuk
subset train dan test, (2) label patologi yang telah diseragamkan menjadi dua kelas
biner (benign/malignant), serta (3) data yang telah dibersihkan dari entri tidak valid
dan duplikasi sehingga meminimalkan risiko kebocoran atau ketidakkonsistenan
saat pembagian data berbasis patient id.

3.4 Pembagian Dataset

Gambar 3.4. Flowchart pembagian dataset

Proses pembagian dataset berbasis patient id untuk membentuk tiga site

serta subset train, validation, dan test diilustrasikan pada Gambar 3.4. Pembagian
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dataset dirancang untuk mensimulasikan skenario Federated Learning sekaligus
mencegah kebocoran informasi lintas himpunan. Pembagian dilakukan berbasis
patient id sehingga seluruh citra milik pasien yang sama tidak tersebar ke
himpunan yang berbeda. Strategi ini penting untuk mencegah patient-level leakage,
yaitu kondisi ketika citra dari pasien yang sama muncul pada train dan test atau pada
klien yang berbeda.

Pada penelitian ini, setiap patient id dipetakan secara deterministik
ke tiga klien fiktif (site0, site1, dan site2) menggunakan fungsi hash
MD5(patient id) mod 3. Pemetaan deterministik memastikan replikasi
eksperimen, sekaligus menjaga bahwa setiap pasien hanya muncul pada satu site.

Setelah data dipetakan ke masing-masing site, dilakukan pembagian train

dan test dengan rasio 80%/20% pada setiap site. Selanjutnya, himpunan validation

dibentuk dengan mengambil 15% dari data train. Dengan demikian, proporsi akhir
pada setiap site menjadi sekitar 68% untuk train, 12% untuk validation, dan 20%
untuk test. Pemisahan dilakukan secara stratified terhadap label untuk menjaga
stabilitas proporsi benign dan malignant pada setiap split. Seluruh citra kemudian
diorganisasi ke dalam struktur direktori:

cbisdataset/site{0-2}/{train,val,test}/{benign,malignant}/.

Tabel 3.3 merangkum jumlah entri pada setiap kombinasi site/phase/label.
Dengan skema pembagian tersebut, distribusi data antarklien dapat dibuat relatif
seimbang dan seluruh pembagian tetap patient-disjoint antar site.

Tabel 3.3. Rekap jumlah data per site dan phase (entri per label).

Site
Train Val Test

Total
Benign Malignant Subtotal Benign Malignant Subtotal Benign Malignant Subtotal

site0 390 306 696 69 54 123 118 88 206 1.025

site1 383 338 721 68 60 128 136 84 220 1.069

site2 377 294 671 67 52 119 131 88 219 1.009

Total 1.150 938 2.088 204 166 370 385 260 645 3.103

Berdasarkan pembagian pada Tabel 3.3, setiap site memiliki subset train,
validation, dan test dengan distribusi label yang relatif seimbang. Selain
itu, pemetaan berbasis patient id memastikan tidak terjadi irisan pasien
antar site maupun antar subset, sehingga evaluasi model pada data test lebih
merepresentasikan kemampuan generalisasi pada pasien yang benar-benar baru.
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3.5 Data Transformation

Gambar 3.5. Flowchart data transformation

Gambar 3.5 mengilustrasikan transformasi citra pada tahap pemuatan data
sebelum pelatihan lokal. Data transformation diterapkan untuk menyesuaikan
representasi citra mamografi agar sesuai dengan masukan model CNN. Tahap ini
dilakukan secara lokal pada masing-masing klien dan bersifat on-the-fly, yaitu
dijalankan saat pemuatan data sebelum citra dimasukkan ke model pada proses
pelatihan lokal. Dengan pendekatan ini, data yang tersimpan pada direktori
site tetap mempertahankan struktur pembagian train/validation/test, sedangkan
transformasi citra dilakukan dinamis untuk setiap mini-batch.

Transformasi yang digunakan meliputi konversi citra menjadi grayscale

satu kanal untuk menyesuaikan karakteristik citra mamografi, perubahan ukuran
citra menjadi 2048 × 2048 piksel, peningkatan kontras lokal menggunakan
metode Contrast-Limited Adaptive Histogram Equalization (CLAHE), konversi ke
tensor numerik, serta normalisasi intensitas dengan mean=[0.5] dan std=[0.5].
Kombinasi transformasi ini bertujuan meningkatkan keterbacaan struktur jaringan
pada citra kontras rendah serta menstabilkan proses pelatihan.

Contoh hasil transformasi CLAHE ditunjukkan pada Gambar 3.6.
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(a) Citra asli (b) Setelah CLAHE

Gambar 3.6. Perbandingan citra mamografi sebelum dan sesudah peningkatan kontras
menggunakan Contrast-Limited Adaptive Histogram Equalization (CLAHE).

Implementasi transformasi citra dilakukan secara modular. Kelas
CLAHEPreprocess digunakan untuk melakukan CLAHE dan penyaringan halus
(Gaussian blur) guna mereduksi noise lokal.

1 import cv2
2 import numpy as np
3 from PIL import Image
4

5 class CLAHEPreprocess:
6 def __init__(self , clip_limit=2.0, tile_grid_size=(8,8)):
7 self.clip_limit = clip_limit
8 self.tile_grid_size = tile_grid_size
9

10 def __call__(self , img):
11 img_np = np.array(img)
12 if len(img_np.shape) == 3:
13 img_np = cv2.cvtColor(img_np , cv2.COLOR_RGB2GRAY)
14

15 clahe = cv2.createCLAHE(clipLimit=self.clip_limit ,
16 tileGridSize=self.tile_grid_size)
17 img_clahe = clahe.apply(img_np)
18 img_blur = cv2.GaussianBlur(img_clahe , (3, 3), 0)
19 return Image.fromarray(img_blur)

Kode 3.1: Implementasi transformasi CLAHE

Pipeline transformasi kemudian dibangun menggunakan
torchvision.transforms agar seluruh transformasi diterapkan berurutan
secara konsisten.
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1 from torchvision import transforms
2

3 data_transform = transforms.Compose([
4 transforms.Grayscale(num_output_channels=1),
5 transforms.Resize((2048, 2048)),
6 CLAHEPreprocess(clip_limit=2.0, tile_grid_size=(8,8)),
7 transforms.ToTensor(),
8 transforms.Normalize(mean=[0.5], std=[0.5])
9 ])

Kode 3.2: Konfigurasi pipeline data transformation

3.6 Arsitektur Sistem

Bagian ini menjelaskan rancangan sistem Federated Learning yang
mengintegrasikan Federated Averaging (FedAvg) dengan Packed CKKS

Homomorphic Encryption. Sistem memastikan proses pelatihan kolaboratif
berlangsung tanpa pertukaran data mentah antarklien, karena pembaruan model
dikomunikasikan dalam bentuk ciphertext. Arsitektur terdiri dari tiga komponen
utama: server global, klien lokal, dan modul enkripsi CKKS.

1. Server Global
Server menginisialisasi model global dan mendistribusikannya kepada
seluruh klien sebagai inisialisasi pelatihan lokal. Sinkronisasi parameter
dilakukan secara periodik berdasarkan parameter pace, yaitu ketika jumlah
langkah pelatihan lokal mencapai kelipatan tertentu atau ketika langkah
terakhir dalam satu epoch tercapai.

Pada setiap ronde agregasi, server menerima pembaruan dari klien dalam
bentuk ciphertext CKKS beserta mask sparsifikasi. Agregasi dilakukan secara
langsung pada domain homomorfik menggunakan operasi linear CKKS
berupa penjumlahan dan perkalian skalar untuk membentuk ciphertext global.
Bobot agregasi klien ditetapkan secara seragam

(
wi =

1
K

)
atau proporsional

terhadap jumlah data latih lokal
(

wi =
ni

∑ j n j

)
sesuai konfigurasi sistem.

Server menghitung sum mask sebagai faktor normalisasi yang
merepresentasikan total kontribusi efektif pada setiap batch terenkripsi.
Hasil agregasi berupa pasangan (ciphertext global, sum mask) kemudian
dibroadcast kembali ke seluruh klien untuk digunakan pada ronde berikutnya.
Parameter global per ronde, metrik evaluasi, waktu komputasi, serta biaya
komunikasi dicatat untuk kebutuhan analisis.
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2. Klien Lokal
Klien menjalankan pelatihan secara mandiri menggunakan data lokal tanpa
mengirimkan data mentah ke server. Setiap klien menyimpan model
klasifikasi dan diskriminator domain. Model klasifikasi mempelajari prediksi
label pada distribusi data masing-masing site, sedangkan diskriminator
domain mendukung penyelarasan representasi fitur lintas klien.

Pelatihan lokal dilakukan selama nsteps pada setiap epoch. Pada setiap
langkah, model klasifikasi diperbarui dengan meminimalkan cross-entropy

loss. Mekanisme feature alignment diterapkan melalui pembelajaran
adversarial, di mana representasi fitur encoder diberi gangguan noise kecil,
diskriminator domain dilatih untuk membedakan asal domain, dan encoder

dioptimasi agar menghasilkan representasi yang lebih invariant terhadap
domain, sehingga pergeseran distribusi antarklien dapat ditekan.

Strategi curriculum learning diterapkan setelah fase adversarial tertentu.
Prediksi benar dan salah pada data latih dihitung pada awal setiap epoch

untuk membentuk bobot sampling, sehingga sampel yang relatif sulit atau
terlupakan memperoleh probabilitas pemilihan yang lebih besar pada epoch

berikutnya.

Pada momen agregasi berbasis pace, parameter model diubah ke dalam
bentuk vektor satu dimensi melalui proses flattening dan dipartisi menjadi
batch berukuran tetap. Sparsifikasi top-k diterapkan pada tingkat batch

dengan memilih batch yang memiliki rata-rata magnitudo absolut tertinggi.
Batch terpilih dienkripsi menggunakan CKKS dan dikirim ke server bersama
mask sparsifikasi. Setelah menerima pembaruan global, klien mendekripsi
ciphertext, melakukan normalisasi menggunakan sum mask, merekonstruksi
parameter model, dan melanjutkan pelatihan pada ronde berikutnya.

3. Packed CKKS Homomorphic Encryption

Modul enkripsi menerapkan skema CKKS melalui pustaka TenSEAL.
Konteks CKKS dibangkitkan satu kali pada awal pelatihan dan dibagikan
sebagai konteks publik agar seluruh klien menggunakan konfigurasi enkripsi
yang identik, sedangkan kunci privat dipertahankan pada sisi klien untuk
keperluan dekripsi.

Parameter model dipadatkan (packing) ke dalam slot-slot CKKS sehingga
satu ciphertext dapat memuat banyak elemen parameter secara simultan.
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Untuk menekan biaya komunikasi, sparsifikasi top-k diterapkan pada tingkat
batch hasil packing. Server melakukan agregasi langsung pada ciphertext

terpilih tanpa mengakses parameter individual klien. Nilai sum mask

digunakan pada tahap dekripsi untuk menormalkan hasil agregasi sesuai
kontribusi efektif tiap batch, sehingga kerahasiaan pembaruan model dan
efisiensi komunikasi tetap terjaga.

Gambar 3.7. Arsitektur sistem Federated Learning dengan integrasi Packed CKKS
Homomorphic Encryption

Seluruh proses pelatihan berlangsung secara iteratif sepanjang beberapa
epoch, dengan agregasi federasi yang dijalankan secara periodik mengikuti
parameter pace. Urutan prosesnya adalah sebagai berikut:

1. Server membentuk direktori komunikasi bersama dan menginisialisasi model
global. Model ini kemudian didistribusikan ke seluruh klien sebagai
inisialisasi parameter pelatihan lokal. Pada tahap ini ditetapkan seluruh
parameter federasi, meliputi jumlah epoch, jumlah langkah lokal per epoch

(nsteps), nilai pace, ukuran batch enkripsi, serta rasio sparsifikasi top-k.

2. Konteks Packed CKKS Homomorphic Encryption diinisialisasi satu kali pada
awal pelatihan. Konteks ini memuat parameter skema CKKS dan kunci
yang diperlukan untuk operasi homomorfik. Konteks publik disimpan pada
direktori komunikasi agar seluruh klien menggunakan konfigurasi enkripsi
yang identik, sementara kunci privat tetap berada di sisi klien untuk keperluan
dekripsi.
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3. Pada setiap epoch, masing-masing klien menjalankan pelatihan lokal selama
nsteps menggunakan data lokal. Pembaruan model klasifikasi dilakukan
dengan meminimalkan cross-entropy loss. Secara paralel, mekanisme feature

alignment diterapkan melalui pembelajaran adversarial lintas-site, di mana
representasi fitur diberi gangguan noise kecil dan diskriminator domain
dilatih untuk membedakan asal domain, sementara encoder dioptimasi agar
menghasilkan representasi yang invariant terhadap domain.

4. Setelah fase adversarial tertentu, strategi curriculum learning diterapkan.
Pada awal setiap epoch, klien menghitung prediksi benar/salah pada data
latih untuk membentuk bobot sampling. Bobot ini digunakan dalam weighted

sampler sehingga sampel yang lebih sulit memperoleh probabilitas pemilihan
yang lebih besar pada epoch berikutnya.

5. Ketika jumlah langkah lokal mencapai kelipatan pace, atau ketika langkah
lokal terakhir dalam satu epoch tercapai, proses komunikasi federasi
dijalankan. Setiap klien menyiapkan pembaruan parameter model untuk
dikirim ke server secara aman.

6. Parameter model lokal diubah ke dalam bentuk vektor satu dimensi melalui
proses flattening dan dipartisi ke dalam batch sesuai ukuran slot enkripsi
CKKS. Sparsifikasi top-k diterapkan pada tingkat batch dengan memilih
batch yang memiliki rata-rata magnitudo absolut tertinggi. Hanya batch

terpilih yang dienkripsi menjadi ciphertext dan dikirim ke server bersama
mask sparsifikasi.

7. Server menerima ciphertext dan mask dari seluruh klien, kemudian
melakukan agregasi homomorfik secara langsung pada ciphertext aktif
menggunakan operasi linear CKKS. Agregasi dapat dilakukan secara seragam
atau berbobot sesuai konfigurasi, sehingga menghasilkan ciphertext global

dan sum mask yang merepresentasikan kontribusi efektif pada setiap batch.
Seluruh proses agregasi dilakukan tanpa mendekripsi pembaruan klien.

8. Ciphertext global dan sum mask dibroadcast kembali ke seluruh klien. Setiap
klien mendekripsi ciphertext menggunakan kunci privat dan melakukan
normalisasi berdasarkan sum mask. Vektor hasil dekripsi kemudian
direkonstruksi menjadi parameter model. Elemen bernilai nol akibat
sparsifikasi dipertahankan menggunakan parameter lokal yang bersesuaian,
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lalu vektor dipetakan kembali ke struktur tensor model untuk melanjutkan
pelatihan pada ronde berikutnya. Model global direpresentasikan sebagai
rata-rata dari model lokal hasil rekonstruksi tersebut.

9. Evaluasi dilakukan pada akhir setiap epoch menggunakan validation set

di masing-masing klien. Metrik yang dihitung meliputi validation loss,
akurasi, AUC, dan PR–AUC. Model terbaik disimpan berdasarkan penurunan
validation loss. Pelatihan dilanjutkan ke epoch berikutnya apabila nilai
terbaik masih mengalami perbaikan; penghitung patience dinaikkan ketika
tidak terjadi perbaikan hingga mencapai ambang tertentu, lalu proses
dihentikan melalui early stopping. Pengujian akhir dilakukan menggunakan
model terbaik yang tersimpan.

Gambar 3.8 menggambarkan tahapan komputasi utama dalam sistem
Federated Learning yang diusulkan. Alur proses meliputi inisialisasi model global,
pembentukan konteks CKKS, pelatihan dan enkripsi parameter lokal, agregasi
ciphertext di server, hingga dekripsi dan evaluasi model global pada setiap ronde
federasi.

Gambar 3.8. Alur proses Federated Learning dengan mekanisme Packed CKKS
Homomorphic Encryption
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Seluruh proses eksperimen dijalankan pada lingkungan komputasi berbasis
Ubuntu dengan spesifikasi perangkat keras dan perangkat lunak sebagaimana
ditunjukkan berikut:

• Sistem Operasi: Ubuntu 20.04.6 LTS (64-bit)

• Prosesor: Intel® Core™ i7-7700 CPU @ 3.60 GHz × 8

• Memori (RAM): 32 GB

• Kartu Grafis: NV132 (NVIDIA)

• Kapasitas Penyimpanan: 4.5 TB

• Sistem Jendela: X11 (GNOME 3.36.8)

3.6.1 Threat Model

Threat model pada penelitian ini mendefinisikan ruang lingkup keamanan
sistem Federated Learning yang dianalisis, mencakup aset yang dilindungi, aktor
ancaman, serta asumsi keamanan yang digunakan dalam penerapan Homomorphic

Encryption.
Sistem Federated Learning terdiri atas sejumlah klien yang melakukan

pelatihan model secara lokal menggunakan data citra medis masing-masing dan
sebuah Parameter Server (PS) yang bertugas mengoordinasikan proses agregasi
parameter model global. PS tidak memiliki akses terhadap data mentah klien dan
hanya memproses pembaruan model dalam bentuk terenkripsi.

Aset utama yang dilindungi meliputi data citra medis lokal milik klien
serta informasi sensitif yang dapat tersirat dalam parameter atau pembaruan
model selama proses pelatihan federasi. Kebocoran informasi dari parameter
model berpotensi mengungkap karakteristik data medis klien dan menimbulkan
pelanggaran privasi.

Model ancaman yang digunakan mengikuti skenario honest-but-curious,
di mana PS dan klien diasumsikan menjalankan protokol Federated Learning

sesuai spesifikasi, tetapi tetap diperlakukan sebagai pihak yang tidak sepenuhnya
dipercaya karena berpotensi mencoba memperoleh informasi tambahan dari data
yang diterima. Skenario serangan aktif seperti manipulasi pembaruan model,
pengiriman parameter palsu, maupun kolusi antara PS dan klien tidak termasuk
dalam cakupan penelitian ini.
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Skema Homomorphic Encryption yang digunakan mengasumsikan satu
pasangan kunci kriptografi yang dibagikan (shared key pair) di antara seluruh
klien. Kunci publik digunakan oleh klien untuk mengenkripsi pembaruan model,
sedangkan kunci privat digunakan oleh klien untuk mendekripsi hasil agregasi
global. PS tidak memiliki akses ke kunci privat dan hanya melakukan operasi
aritmetika secara homomorfik pada ciphertext. Distribusi kunci diasumsikan
dilakukan melalui kanal yang aman, serta tidak terjadi kolusi antara PS dan klien.

Komunikasi antara klien dan PS diasumsikan dapat diobservasi oleh pihak
eksternal tanpa adanya modifikasi aktif selama transmisi. Perlindungan terhadap
ancaman inferensi dan kebocoran informasi dilakukan dengan memastikan bahwa
parameter model tetap berada dalam bentuk terenkripsi selama proses transmisi
dan agregasi melalui skema Packed CKKS Homomorphic Encryption. Pendekatan
ini digunakan sebagai simulasi untuk mengevaluasi dampak penggunaan
Homomorphic Encryption terhadap performa model dan overhead komputasi, dan
tidak dimaksudkan sebagai representasi langsung dari sistem Federated Learning

pada lingkungan produksi.

3.7 Implementasi Model

Implementasi model pada penelitian ini berfokus pada arsitektur
Convolutional Neural Network (CNN) yang digunakan sebagai model klasifikasi
pada setiap klien. Penelitian ini tidak mengusulkan arsitektur CNN baru, melainkan
mengadopsi arsitektur dari penelitian terdahulu dan menerapkannya secara identik
pada seluruh klien untuk menjaga konsistensi struktur model selama pelatihan
federatif. Model yang digunakan terdiri atas dua komponen, yaitu encoder

sebagai ekstraktor fitur dan classifier sebagai pemetaan fitur ke ruang keluaran
kelas, sehingga pembaruan parameter hasil pelatihan lokal dapat diagregasi secara
kompatibel pada tahap agregasi global sesuai mekanisme yang telah dijelaskan pada
bagian sebelumnya.

Ekstraksi fitur citra mamografi menggunakan encoder berbasis ResNet-22
(ViewResNetV2) yang diadopsi dari Jimenez-Sánchez et al. Encoder dirancang
untuk memproses citra mamografi grayscale beresolusi tinggi dan menghasilkan
representasi fitur yang stabil. Setiap sampel memuat empat view (L-CC, L-
MLO, R-CC, dan R-MLO) yang diproses menggunakan shared weights untuk
mempertahankan konsistensi representasi antar-view. Representasi fitur dari seluruh
view kemudian digabungkan melalui average pooling sehingga diperoleh satu
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vektor fitur global berdimensi 256. Encoder ResNet-22 tersusun atas lima
kelompok blok residual dengan konfigurasi [2,2,2,2,2] dan jumlah filter yang
meningkat bertahap dari 16 hingga 256, dengan Batch Normalization dan aktivasi
ReLU pada tiap blok untuk mendukung stabilitas pelatihan.

Vektor fitur keluaran encoder menjadi masukan bagi classifier berbasis
Multi-Layer Perceptron (MLP) untuk menghasilkan probabilitas kelas. Classifier

terdiri dari beberapa lapisan fully connected yang dikombinasikan dengan ReLU
dan Batch Normalization, serta Dropout (0,2) sebagai regularisasi guna mengurangi
risiko overfitting. Pembaruan bobot encoder dan classifier menjadi parameter yang
dikomunikasikan dalam proses federated learning, baik pada mode komunikasi
plain maupun mode terenkripsi, sesuai konfigurasi sistem.

3.8 Implementasi Federated Learning

Implementasi federated learning pada penelitian ini dirancang untuk
mendukung pelatihan model klasifikasi secara terdistribusi dengan tetap menjaga
privasi data lokal di setiap klien. Sistem terdiri atas tiga klien, yaitu site0, site1,
dan site2, serta satu server global yang berperan sebagai koordinator agregasi
model. Seluruh proses pelatihan dilakukan tanpa pertukaran data mentah antarklien.
Setiap klien hanya mengirimkan pembaruan parameter model hasil pelatihan lokal
ke server, sehingga data sensitif tetap tersimpan secara lokal di masing-masing site.

Kerangka federated learning yang digunakan mengadopsi pendekatan yang
diperkenalkan oleh Jimenez-Sánchez et al. dengan mengintegrasikan mekanisme
adversarial domain alignment dan curriculum learning pada tahap pelatihan lokal.
Agregasi parameter global dilakukan menggunakan skema Federated Averaging

(FedAvg) yang dijalankan secara periodik mengikuti parameter pace. Selain
itu, penelitian ini menambahkan mekanisme early stopping di sisi server untuk
mengendalikan konvergensi model dan mencegah pelatihan berlebih. Dengan
kombinasi tersebut, sistem federated learning tidak hanya berfokus pada kolaborasi
pelatihan antar klien, tetapi juga pada stabilitas proses optimisasi dan generalisasi
model global.

3.8.1 Inisialisasi Klien dan Pembagian Dataset

Implementasi federated learning pada penelitian ini mengikuti pipeline
pelatihan yang diperkenalkan oleh Jimenez-Sánchez et al., termasuk tahap
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inisialisasi model menggunakan bobot pretrained. Bobot pretrained tersebut
dimuat pada awal eksekusi sebagai inisialisasi parameter sebelum proses
optimisasi federasi dimulai. Untuk memastikan proses inisialisasi berjalan
sesuai implementasi referensi, sistem mencetak status pemuatan bobot pretrained

serta ringkasan pembagian jumlah sampel (train/validation/test) pada tiap klien
ditunjukkan pada Gambar 3.9.

Gambar 3.9. Output runtime pemuatan bobot pretrained dan ringkasan pembagian data
(train/validation/test) pada masing-masing klien.

3.8.2 Skema Pelatihan Federated Learning

Pelatihan federated learning dijalankan secara sinkron dengan pembaruan
model global yang dilakukan secara periodik. Pada setiap klien, model dilatih
secara lokal selama sejumlah langkah pelatihan (nsteps) dalam satu epoch.
Parameter pace digunakan untuk mengatur frekuensi komunikasi antara klien dan
server, sehingga agregasi global dapat dilakukan beberapa kali dalam satu epoch

tanpa harus menunggu seluruh proses pelatihan lokal selesai. Pada penelitian ini,
konfigurasi pace dan nsteps diatur sedemikian rupa sehingga dalam satu epoch

dapat terjadi beberapa ronde agregasi global.
Pada setiap ronde agregasi, server menerima pembaruan parameter dari

seluruh klien dan membentuk model global baru. Model hasil agregasi tersebut
kemudian didistribusikan kembali ke masing-masing klien sebagai inisialisasi
pelatihan lokal selanjutnya. Skema ini memungkinkan pertukaran informasi
antar klien terjadi secara bertahap dan berulang, sehingga proses pembelajaran
kolaboratif dapat berlangsung secara lebih stabil meskipun distribusi data pada
setiap klien tidak identik. Frekuensi agregasi global yang dipicu oleh parameter
pace ditunjukkan melalui output runtime pada Gambar 3.10.
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Gambar 3.10. Contoh output runtime pemicu agregasi FedAvg pada langkah ke-40, ke-80,
dan ke-120 dari total nsteps=120 dalam satu epoch, sesuai pengaturan parameter pace=40.

3.8.3 Strategi Curriculum Learning

Gambar 3.11. Alur strategi curriculum learning pada pelatihan lokal.

Alur pada Gambar 3.11 merangkum mekanisme curriculum learning yang
digunakan untuk menyesuaikan prioritas sampel selama pelatihan lokal. Pada awal
epoch, model melakukan prediksi pada seluruh data train lokal dan menyimpan
status prediksi benar/salah untuk setiap sampel. Jika epoch saat ini telah melewati
fase adversarial (misalnya epoch> n epochs adversarial), prediksi pada epoch

berjalan dibandingkan dengan epoch sebelumnya untuk mengukur perubahan
performa per sampel. Perubahan ini kemudian digunakan untuk menghitung bobot
sampel, sehingga sampel yang mengalami penurunan prediksi atau lebih sulit
dipelajari memperoleh bobot lebih tinggi. Selanjutnya, bobot tersebut digunakan
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untuk membentuk data loader berbobot melalui Weighted Sampling agar sampel
prioritas lebih sering muncul pada iterasi pelatihan berikutnya. Apabila fase
adversarial belum selesai, pelatihan dilakukan menggunakan data loader normal
tanpa pembobotan.

Strategi curriculum learning diterapkan untuk mengatur distribusi
kemunculan sampel pelatihan secara adaptif selama proses pelatihan lokal.
Pendekatan ini juga mengacu pada metode yang diperkenalkan oleh Jimenez-
Sánchez et al., di mana tingkat kesulitan sampel ditentukan berdasarkan dinamika
performa prediksi model antar epoch. Sampel yang cenderung lebih sulit dipelajari
atau mengalami penurunan performa prediksi diberikan bobot yang lebih besar,
sehingga memiliki peluang lebih tinggi untuk dipilih pada proses pelatihan
berikutnya.

Pendekatan curriculum learning ini mendorong model untuk belajar secara
bertahap, dimulai dari sampel yang relatif lebih mudah hingga sampel yang lebih
kompleks. Dalam konteks federated learning, strategi ini berperan penting untuk
menjaga stabilitas optimisasi ketika model harus beradaptasi dengan distribusi data
yang berbeda pada setiap klien dan mengalami pembaruan global secara periodik.

3.8.4 Mekanisme Adversarial Domain Alignment

Perbedaan distribusi data antarklien ditangani melalui mekanisme
adversarial domain alignment yang mengacu pada metode Jiménez-Sánchez et al.

Pendekatan ini bertujuan menyelaraskan representasi fitur yang dihasilkan encoder

agar bersifat domain-invariant, sehingga model global menjadi lebih robust

terhadap variasi data antar site. Setiap klien mempertahankan sebuah domain

discriminator yang dilatih untuk membedakan asal domain dari representasi fitur,
sementara encoder dioptimasi secara adversarial untuk menghasilkan fitur yang
sulit dibedakan oleh discriminator tersebut.

52
Implementasi Packed CKKS..., Stefanie Veronica Wijaya, Universitas Multimedia Nusantara



Gambar 3.12. Alur mekanisme adversarial domain alignment pada pelatihan lokal.

Alur pada Gambar 3.12 merangkum proses penyelarasan fitur lintas domain
pada pelatihan lokal. Setiap site terlebih dahulu melatih classifier pada mini-batch

lokal dan menyimpan representasi fitur fi dari encoder. Selanjutnya, untuk setiap
pasangan site (i, j), discriminator Di membedakan fitur dari domain asal ( fi) dan
domain lain ( f j) untuk menghitung loss discriminator (LD) dan loss generator

(LG). Pembaruan komponen adversarial diaktifkan setelah melewati fase warm-

up, yaitu ketika epoch memenuhi kondisi epoch ≥ n epochs adversarial;
sebelum kondisi tersebut terpenuhi, langkah adversarial dilewati agar representasi
dasar untuk klasifikasi terbentuk lebih stabil.

Aktivasi mekanisme adversarial tidak dilakukan sejak awal pelatihan.
Proses penyelarasan fitur baru diaktifkan setelah model melewati fase pelatihan
awal selama sejumlah epoch tertentu. Penundaan ini bertujuan memastikan bahwa
encoder telah mempelajari representasi fitur dasar yang cukup stabil untuk tugas
klasifikasi sebelum dilakukan penyelarasan lintas domain. Dengan strategi ini,
proses adversarial domain alignment dapat berjalan lebih terkendali dan tidak
mengganggu konvergensi awal model.
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Keluaran pelatihan adversarial dipantau melalui pencetakan nilai loss

komponen klasifikasi dan komponen adversarial selama pelatihan lokal
berlangsung. Nilai tersebut dicetak secara periodik mengikuti siklus pelatihan
yang dipicu oleh parameter pace, sehingga dalam satu epoch dapat terjadi
beberapa kali pembaruan model yang melibatkan langkah klasifikasi dan langkah
adversarial. Contoh keluaran debug nilai loss komponen tersebut ditunjukkan pada
Gambar 3.13.

Gambar 3.13. Contoh output runtime yang menampilkan nilai loss komponen pelatihan,
termasuk komponen terkait mekanisme adversarial domain alignment (mis. loss generator
dan loss discriminator) yang dipantau selama pelatihan lokal.

3.8.5 Validasi, Early Stopping, dan Pengujian

Evaluasi performa model dilakukan pada akhir setiap epoch menggunakan
validation set di masing-masing klien. Metrik yang dihitung pada tahap validasi
dibatasi pada validation loss dan akurasi. Nilai validation loss digunakan sebagai
indikator utama untuk memantau konvergensi model dan menentukan model terbaik
selama proses pelatihan. Model dengan nilai validation loss terendah disimpan
sebagai kandidat model terbaik untuk setiap klien.

Mekanisme early stopping digunakan untuk menghentikan pelatihan
ketika model tidak lagi menunjukkan peningkatan performa pada data validasi.
Mekanisme ini dikendalikan oleh parameter patience, yang menyatakan jumlah
maksimum epoch berturut-turut tanpa perbaikan nilai validation loss. Proses
pelatihan dihentikan secara otomatis apabila nilai validation loss global tidak
mengalami penurunan selama jumlah epoch tersebut. Implementasi early stopping

dijalankan setelah proses validasi pada setiap epoch. Logika pemantauan nilai
validation loss dan penghentian pelatihan ditunjukkan pada Kode 3.3.

1 if avg_loss < best_loss:

2 best_loss = avg_loss

3 patience_counter = 0

4 torch.save({"state_dict": local_models[i].state_dict()},

5 os.path.join(COMM_PATH , "agg", f"best_site{i}.pt"))

6 else:

7 patience_counter += 1
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8 if patience_counter >= args.patience:

9 print("[SERVER] Early stopping at epoch #{ epoch }. Best

val_loss ={ best_val_loss :.4f}")

10 stop_training = True

Kode 3.3: Implementasi mekanisme early stopping (main.py)

Verifikasi runtime dilakukan melalui keluaran program yang menunjukkan
penghentian pelatihan sebelum mencapai jumlah epoch maksimum ketika tidak
terjadi perbaikan nilai validation loss. Contoh keluaran runtime early stopping

ditunjukkan pada Gambar 3.14.

Gambar 3.14. Contoh output runtime yang menunjukkan aktivasi mekanisme early stopping
ketika nilai validation loss tidak mengalami perbaikan selama sejumlah epoch berturut-
turut.

Pengujian akhir (final test) dijalankan setelah pelatihan dihentikan
menggunakan model terbaik yang tersimpan. Tahap ini mengevaluasi performa
model pada test set di masing-masing klien menggunakan metrik akurasi, AUC,
dan PR–AUC untuk menilai kemampuan generalisasi model terhadap data yang
tidak digunakan selama pelatihan.

3.8.6 Parameter dan Konfigurasi Sistem Federasi

Konfigurasi sistem Federated Learning yang digunakan dalam implementasi
ini dirangkum pada Tabel 3.4.

Tabel 3.4. Konfigurasi dan parameter utama Federated Learning

Parameter Nilai / Keterangan

Framework PyTorch dan TenSEAL

Jumlah klien 3 (site0, site1, site2)

Jumlah epoch federasi 100

Langkah lokal per epoch (nsteps) 120

Interval agregasi (pace) 40

Lanjut pada halaman berikutnya
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Tabel 3.4 Konfigurasi dan parameter utama Federated Learning (lanjutan)

Parameter Nilai / Keterangan

Jumlah agregasi per epoch 3 kali

Optimizer Adam

Learning rate 1×10−5

Weight decay 1×10−4

Batch size validasi & test 4

Ukuran citra masukan 2048×2048 (grayscale)

Jumlah kelas 2 (benign, malignant)

Curriculum learning Aktif setelah epoch 5

Early stopping (patience) 15 epoch tanpa perbaikan

3.9 Implementasi Packed CKKS Homomorphic Encryption

Bagian ini menjelaskan penerapan Packed CKKS Homomorphic Encryption

pada mode ckks. Berbeda dari mode plain, pembaruan parameter klien tidak
dikirim dalam bentuk plaintext, melainkan dienkripsi dan diagregasi langsung
dalam domain ciphertext. Seluruh alur CKKS dijalankan di dalam main.py pada
setiap momen agregasi berbasis pace. Seluruh tahapan implementasi divalidasi
melalui runtime debugging yang secara eksplisit mencetak struktur data, ukuran
parameter, rentang indeks (flat range), batch terenkripsi, serta hasil dekripsi. Output

debug ini digunakan sebagai dasar dokumentasi implementasi, di mana setiap
potongan kode yang disajikan pada subbagian berikut memiliki korespondensi
langsung dengan hasil debug yang ditampilkan selama eksekusi sistem.

3.9.1 Inisialisasi Konteks CKKS

Konteks CKKS dibangkitkan sekali di awal pelatihan ketika mode ckks

dipilih. Konteks diserialisasi lengkap beserta secret key dan disimpan di
COMM PATH/context params. Klien kemudian memuat konteks ini setiap kali
menjalankan enkripsi maupun dekripsi parameter.

1 ckks_ctx = ts.context(

2 ts.SCHEME_TYPE.CKKS ,

3 poly_modulus_degree=8192,
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4 coeff_mod_bit_sizes=[60, 40, 40, 60]

5 )

6 ckks_ctx.global_scale = 2**40

7 ckks_ctx.generate_galois_keys()

8 params = ckks_ctx.serialize(save_secret_key=True)

9

10 with open(os.path.join(COMM_PATH , "context_params"), "wb") as f:

11 f.write(params)

Kode 3.4: Inisialisasi dan penyimpanan konteks CKKS

Keberhasilan penyimpanan konteks dan kelanjutan proses pelatihan dapat dilihat
pada Gambar 3.15.

Gambar 3.15. Output debug saat konteks CKKS berhasil diserialisasi dan disimpan ke
COMM PATH/context params.

3.9.2 Serialisasi Parameter, Packing Batch, dan Enkripsi Top-k

Alur Packed CKKS pada sisi klien mencakup serialisasi parameter model,
pembagian parameter ke dalam batch, serta enkripsi batch terpilih menggunakan
strategi sparsifikasi top-k. Seluruh tahapan dijalankan pada setiap momen agregasi
federasi yang dipicu oleh parameter pace. Proses ini menyiapkan pembaruan
parameter dalam bentuk ciphertext agar dapat diagregasi secara homomorfik di sisi
server.

Ekstraksi parameter model lokal dilakukan menggunakan fungsi
params tolist. Parameter model dikonversi dari struktur state dictionary

menjadi vektor satu dimensi (flattened list). Fungsi ini juga menghasilkan metadata
berupa jumlah elemen tiap lapisan (params num) serta bentuk asli parameter
(layer shape). Metadata tersebut digunakan untuk melacak rentang indeks (flat

range) setiap lapisan dan memungkinkan rekonstruksi parameter ke bentuk semula
setelah proses agregasi global.

1 params_lists = {}

2 params_nums = {}

3 layer_shapes = {}
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4

5 for i in range(n_sites):

6 params_list , params_num , layer_shape = params_tolist(

local_models[i])

7 params_lists[i] = params_list

8 params_nums[i] = params_num

9 layer_shapes[i] = layer_shape

10

11 total_sum = sum(params_num.values())

12 batch_num = int(np.ceil(total_sum / args.enc_batch_size))

Kode 3.5: Serialisasi parameter per klien dan perhitungan jumlah batch

Verifikasi runtime dilakukan dengan mencetak struktur lapisan, rentang
indeks parameter, serta jumlah total parameter setelah proses flattening. Contoh
output debug pada awal dan akhir proses params tolist ditunjukkan pada
Gambar 3.16.

Gambar 3.16. Output debug awal dan akhir proses params tolist yang menunjukkan
pemetaan parameter model ke vektor satu dimensi beserta rentang indeks tiap lapisan.

Pembagian batch dilakukan secara berurutan berdasarkan indeks pada
vektor parameter global dengan ukuran tetap sesuai parameter enc batch size.
Sparsifikasi kemudian diterapkan pada tingkat batch menggunakan strategi top-k.
Nilai rata-rata magnitudo absolut dihitung pada setiap batch untuk menentukan
batch terpilih. Batch terpilih direpresentasikan sebagai mask biner, sementara batch

lainnya diabaikan pada ronde komunikasi tersebut.
Enkripsi Packed CKKS dijalankan hanya pada batch terpilih. Setiap

batch dienkripsi menjadi satu ciphertext yang memuat ribuan parameter sekaligus.
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Informasi mask digunakan untuk menandai posisi ciphertext terhadap indeks batch

pada vektor global.

1 cipher_lists = {}

2 masks = {}

3

4 for i in range(n_sites):

5 cipher , mask = enc_params(

6 params_lists[i],

7 {},

8 args ,

9 epoch)

10 cipher_lists[i] = cipher

11 masks[i] = mask

Kode 3.6: Sparsifikasi top-k dan enkripsi batch per klien dengan Packed CKKS

Verifikasi runtime pada tahap enkripsi dilakukan dengan mencetak jumlah
batch terpilih, jumlah ciphertext yang dihasilkan, serta keterkaitan batch terenkripsi
terhadap lapisan model. Contoh output debug pada awal dan akhir proses
enc params ditunjukkan pada Gambar 3.17.
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Gambar 3.17. output debug awal dan akhir proses enkripsi batch terpilih menggunakan
Packed CKKS, termasuk informasi mask top-k, jumlah ciphertext, dan keterkaitan batch
dengan lapisan model.

3.9.3 Agregasi Homomorfik Ciphertext di Server

Agregasi model global dilakukan langsung pada domain ciphertext

menggunakan operasi linear pada skema CKKS. Agregasi dijalankan pada tingkat
batch yang aktif berdasarkan mask hasil sparsifikasi top-k. Setiap ciphertext batch

dari klien dijumlahkan secara homomorfik dan dikalikan dengan bobot kontribusi
klien. Implementasi ini mendukung dua skema pembobotan, yaitu pembobotan
seragam dan pembobotan proporsional terhadap ukuran data pelatihan lokal.

Proses agregasi menghasilkan agg cipher sebagai ciphertext global dan
sum mask sebagai faktor normalisasi untuk setiap indeks batch. Normalisasi
diperlukan karena tidak seluruh klien selalu mengirim batch pada indeks yang
sama akibat sparsifikasi. Nilai sum mask digunakan pada tahap dekripsi untuk
menyesuaikan hasil agregasi dengan jumlah kontribusi yang valid pada setiap batch.
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1 if args.weighted:

2 total_train = sum(len(trainsets[i]) for i in range(n_sites))

3 weights_client = {i: len(trainsets[i]) / total_train for i in

range(n_sites)}

4 else:

5 weights_client = {i: 1.0 / n_sites for i in range(n_sites)}

6

7 print("[CKKS] weights_client =", weights_client)

8

9 sum_mask , agg_cipher = ckks_aggregate(

10 cipher_lists ,

11 masks ,

12 weights_client ,

13 args ,

14 batch_num

15 )

Kode 3.7: Pemilihan bobot klien dan agregasi homomorfik ciphertext CKKS

Verifikasi runtime dilakukan dengan mencetak nilai weights client pada
setiap ronde agregasi untuk memastikan skema pembobotan yang digunakan sesuai
konfigurasi eksperimen. Contoh keluaran debug yang menampilkan bobot klien
ditunjukkan pada Gambar 3.18.

Gambar 3.18. output debug yang menampilkan bobot kontribusi klien (weights client)
pada tahap agregasi homomorfik ciphertext.

3.9.4 Dekripsi dan Rekonstruksi Parameter Model

Tahap ini memulihkan parameter global hasil agregasi homomorfik ke dalam
domain plaintext dan merekonstruksi parameter tersebut ke bentuk model yang
dapat digunakan kembali pada pelatihan lokal. Setiap klien mendekripsi ciphertext

agregat menggunakan konteks CKKS privat yang sama dengan yang digunakan
pada tahap enkripsi. Proses ini menghasilkan vektor parameter global dalam bentuk
flattened list.

Normalisasi hasil dekripsi dilakukan menggunakan sum mask untuk
menyesuaikan kontribusi batch yang valid pada setiap indeks. Batch yang tidak
dikirim pada tahap sparsifikasi menghasilkan nilai nol pada plaintext. Nilai nol
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tersebut dipertahankan pada tahap dekripsi dan akan digantikan dengan parameter
lokal yang bersesuaian pada proses rekonstruksi model.

1 decrypted_global = {}

2

3 for i in range(n_sites):

4 dec_list = dec_params(

5 agg_cipher , # aggregated ciphertext

6 sum_mask , # mask hasil agregasi

7 {}, # enc_tools tidak digunakan

8 args ,

9 [] # randk_list tidak digunakan

10 )

11 decrypted_global[i] = dec_list.tolist()

Kode 3.8: Dekripsi ciphertext agregat per klien

Verifikasi runtime dilakukan dengan mencetak status dekripsi serta cuplikan
nilai hasil dekripsi untuk memastikan proses pemulihan plaintext berjalan sesuai
konfigurasi CKKS. Contoh keluaran debug proses dekripsi ditunjukkan pada
Gambar 3.19.

Gambar 3.19. Contoh output debug proses dec params yang menunjukkan dekripsi
ciphertext agregat CKKS menjadi parameter global dalam bentuk flattened list.

Rekonstruksi parameter global ke bentuk model dilakukan menggunakan
params tomodel. Proses diawali dengan pemetaan ulang parameter lokal
menggunakan params tolist untuk memperoleh metadata jumlah elemen dan
bentuk asli setiap lapisan. Parameter global hasil dekripsi kemudian dimasukkan
kembali ke struktur model. Elemen bernilai nol pada vektor global digantikan
dengan parameter lokal yang bersesuaian sehingga lapisan yang tidak berkontribusi
pada ronde tersebut tetap mempertahankan nilai sebelumnya.
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1 for i in range(n_sites):

2 params_list , params_num , layer_shape = params_tolist(

local_models[i])

3 params_tomodel(

4 local_models[i],

5 decrypted_global[i],

6 params_nums[i],

7 layer_shapes[i],

8 args ,

9 params_lists[i]

10 )

Kode 3.9: Rekonstruksi parameter global ke model lokal

Keberhasilan proses rekonstruksi diverifikasi melalui output runtime yang
mencetak status awal dan akhir pemetaan parameter kembali ke setiap lapisan
model. Contoh output debug pada awal dan akhir proses params tomodel

ditunjukkan pada Gambar 3.20.

Gambar 3.20. output debug awal dan akhir proses rekonstruksi parameter global ke dalam
struktur model lokal menggunakan params tomodel.

Setelah seluruh klien selesai direkonstruksi, model hasil pembaruan
digunakan sebagai parameter awal untuk ronde federasi berikutnya. Dengan
mekanisme ini, proses pelatihan dapat berlanjut secara iteratif dengan
memanfaatkan hasil agregasi homomorfik tanpa mengungkapkan parameter model
individual pada sisi server. Parameter yang digunakan dalam eksperimen ini
ditunjukkan pada Tabel 3.5.
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Tabel 3.5. Parameter konfigurasi mekanisme Packed CKKS Homomorphic Encryption pada
sistem federasi.

Parameter Nilai / Keterangan

Skema Packed CKKS

Library TenSEAL
poly modulus degree 8192
coeff mod bit sizes [60, 40, 40, 60]
global scale 240

enc batch size 4096
isSpars topk

topk 0,2; 0,5; 0,8

Implementasi ini memungkinkan agregasi parameter dalam domain
terenkripsi secara efisien. Pendekatan batched packing mengemas ribuan parameter
dalam satu ciphertext, sementara sparsifikasi top-k menekan data transfer volume

(MB) tanpa mengorbankan kualitas model secara signifikan. Penjagaan privasi
dipertahankan karena server tidak pernah memegang secret key dan seluruh operasi
agregasi dilakukan pada ciphertext. Alur lengkap integrasi mekanisme HE ke dalam
FL dapat digambarkan dalam diagram pada Gambar 3.21.
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Gambar 3.21. Alur Integrasi Packed CKKS HE.

3.9.5 Implikasi Rekonstruksi Model pada Skema Top-k

Penerapan Packed CKKS Homomorphic Encryption dengan mekanisme top-

k sparsification menghasilkan pola pembaruan model yang berbeda dari federated

learning konvensional. Pada setiap ronde federasi, hanya subset parameter dengan
kontribusi terbesar yang dikirim ke server dan diagregasikan secara homomorfik,
sedangkan parameter lain tetap dipertahankan secara lokal pada masing-masing
klien. Skema ini membuat sinkronisasi model tidak lagi bersifat penuh, melainkan
parsial dan bergantung pada parameter terpilih pada setiap ronde.

Rekonstruksi parameter dilakukan dengan memasukkan hasil agregasi
pada indeks batch yang berkontribusi dan mempertahankan nilai parameter lokal
sebelumnya pada batch yang tidak dikirim. Konsekuensinya, model hasil
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rekonstruksi pada tiap klien tidak selalu identik secara parameter, meskipun seluruh
klien menerima keluaran agregasi global yang sama. Perbedaan tersebut merupakan
karakteristik yang inheren dari sparsifikasi top-k, bukan indikasi kegagalan agregasi
maupun dekripsi.

Nilai top-k mengendalikan tingkat sinkronisasi global serta karakteristik
pembaruan parameter dalam sistem federasi terenkripsi. Rasio top-k yang lebih
besar mendorong perilaku sistem mendekati sinkronisasi penuh, sedangkan rasio
yang lebih kecil memperbesar proporsi parameter yang tetap lokal dan memperkuat
konsensus parsial antar klien. Karakteristik ini juga memunculkan efek regularisasi
implisit karena sebagian parameter bertahan dari ronde ke ronde, sehingga
pembaruan model menjadi lebih stabil terhadap variasi pembaruan lokal.

3.10 Evaluasi dan Pengukuran

Bagian ini menjelaskan metode evaluasi untuk mengukur kinerja sistem
Federated Learning dengan agregasi terenkripsi berbasis CKKS. Evaluasi
mencakup performa model, efisiensi komputasi, dan efisiensi komunikasi (data

transfer volume). Seluruh eksperimen dijalankan melalui main.py. Pelaporan
hasil mengacu pada ronde terbaik (best round), yaitu ronde ketika metrik evaluasi
mencapai nilai maksimum selama pelatihan.

3.10.1 Evaluasi Performa Model

Evaluasi performa model dilakukan melalui dua tahap, yaitu validasi pada
setiap epoch dan pengujian akhir (final test) setelah proses pelatihan selesai.
Pada setiap epoch, validasi dijalankan di sisi klien menggunakan fungsi val()

yang didefinisikan pada client.py. Model yang dievaluasi merupakan model
lokal masing-masing klien, yang telah diperbarui melalui proses dekripsi dan
rekonstruksi parameter hasil agregasi CKKS.

Pada tahap validasi, nilai validation loss dan akurasi dihitung untuk setiap
klien. Nilai tersebut kemudian dirata-ratakan untuk memperoleh metrik global pada
epoch bersangkutan. Rata-rata validation loss digunakan sebagai kriteria pemilihan
model terbaik dan sebagai acuan mekanisme early stopping.

1 v_losses = []

2 v_accs = []

3

4 for i in range(n_sites):
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5 vloss , vacc , _, _, _ = val(

6 local_models[i], val_loaders[i], device

7 )

8 v_losses.append(vloss)

9 v_accs.append(vacc)

10

11 avg_loss = float(np.mean(v_losses))

12 avg_acc = float(np.mean(v_accs))

Kode 3.10: Validasi per-klien dan perhitungan metrik global (main.py)

Model terbaik pada setiap klien disimpan secara terpisah sebagai
best site{i}.pt ketika nilai validation loss global mencapai nilai minimum.
Proses pelatihan dihentikan secara otomatis apabila tidak terjadi perbaikan nilai
validation loss selama sejumlah epoch berturut-turut sesuai parameter patience.

Pengujian akhir (final test) dijalankan satu kali setelah proses pelatihan
berhenti. Pada tahap ini, model terbaik masing-masing klien dimuat dan dievaluasi
menggunakan test set. Metrik yang dihitung meliputi akurasi (ACC), AUC, dan
PR–AUC.

1 best_path = os.path.join(COMM_PATH , "agg", f"best_site{i}.pt")

2 checkpoint = torch.load(best_path)

3

4 test_model = Classifier().to(device)

5 test_model.load_state_dict(checkpoint["state_dict"])

6

7 acc, roc_auc , pr_auc , cm, _ = final_test(

8 test_model , test_loaders[i], device , test_loaders[i].dataset

9 )

Kode 3.11: Pengujian akhir model terbaik per klien (main.py)

3.10.2 Efisiensi Komputasi

Efisiensi komputasi diukur berdasarkan durasi pelatihan lokal dan durasi
proses agregasi federasi selama pelatihan berlangsung. Pelatihan lokal dilakukan
pada inner loop di masing-masing klien, sedangkan agregasi federasi dijalankan
secara periodik sesuai parameter pace. Pada setiap event agregasi, sistem mencatat
durasi proses agregasi end-to-end, yaitu sejak parameter lokal siap dipertukarkan
hingga model hasil agregasi tersedia kembali untuk digunakan pada langkah
berikutnya.
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Total waktu agregasi federasi per epoch dihitung sebagai penjumlahan durasi
seluruh event agregasi yang terjadi pada epoch tersebut. Waktu pelatihan lokal
didefinisikan sebagai durasi inner loop dikurangi total waktu agregasi federasi,
sehingga waktu pelatihan merepresentasikan komputasi murni untuk pembaruan
model lokal (tanpa memasukkan waktu agregasi).

Pada mode CKKS, terdapat overhead tambahan akibat proses enkripsi
dan dekripsi parameter. Waktu enkripsi (encryption time) dicatat ketika klien
mengenkripsi parameter model (setelah packing dan sparsifikasi top-k) sebelum
dikirim untuk agregasi. Waktu dekripsi (decryption time) dicatat ketika klien
mendekripsi hasil agregasi terenkripsi dan merekonstruksi kembali parameter
model. Nilai waktu enkripsi dan dekripsi dilaporkan sebagai rata-rata per epoch

untuk menggambarkan overhead komputasi yang ditambahkan oleh mekanisme
homomorphic encryption.

3.10.3 Efisiensi Data Transfer Volume (MB)

Efisiensi komunikasi diukur berdasarkan data transfer volume, yaitu total
ukuran data yang dikirim (upload) dan diterima (download) selama proses agregasi
federasi. Pengukuran dilakukan pada setiap event agregasi dan dinyatakan dalam
satuan megabyte (MB), kemudian diakumulasikan untuk memperoleh total volume
komunikasi per epoch.

Pada mode CKKS, ukuran data upload dihitung dari paket yang dikirim
klien ke server setelah proses packing dan sparsifikasi top-k. Paket tersebut memuat
ciphertext batch terpilih, mask biner yang menandai batch yang dienkripsi, serta
metadata yang diperlukan untuk rekonstruksi, seperti jumlah batch. Ukuran paket
ditentukan dari hasil serialisasi struktur data sebelum dikirimkan.

Ukuran data download dihitung dari bundle global yang di broadcast

server ke seluruh klien setelah proses agregasi terenkripsi selesai. Bundle ini
memuat ciphertext hasil agregasi global serta informasi normalisasi yang diperlukan
agar klien dapat melakukan dekripsi dan merekonstruksi parameter model secara
konsisten.

Nilai upload dan download dijumlahkan untuk memperoleh total data

transfer volume pada setiap event agregasi. Seluruh volume komunikasi pada event
agregasi dalam satu epoch kemudian diakumulasikan sebagai total data transfer

volume per epoch.
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