
BAB 3
METODOLOGI PENELITIAN

Bab ini menjelaskan metodologi penelitian yang digunakan untuk memprediksi stadium
kanker lambung berbasis data microRNA (miRNA) dengan metode seleksi fitur berbasis Fuzzy
Mutual Information (FMI) dan algoritma supervised machine learning. Seluruh tahapan dirancang
agar sesuai dengan karakteristik data miRNA yang berdimensi tinggi, tidak seimbang, serta
mengandung potensi redundansi fitur, dan diimplementasikan secara ketat dalam skema cross-
validation untuk mencegah kebocoran data (data leakage).

3.1 Metodologi Penelitian

Penelitian ini disusun secara sistematis melalui beberapa tahapan yang saling berkaitan
untuk menghasilkan model klasifikasi stadium kanker lambung berbasis data ekspresi miRNA.
Tahapan penelitian dimulai dari pengumpulan dan praproses data, dilanjutkan dengan seleksi
fitur berbasis True Fuzzy Mutual Information, penanganan ketidakseimbangan kelas, pelatihan
model machine learning, evaluasi performa model, hingga dokumentasi hasil penelitian. Untuk
memperjelas alur kerja penelitian secara menyeluruh, tahapan metodologi penelitian ini juga
direpresentasikan dalam bentuk flowchart. Flowchart digunakan untuk menggambarkan urutan
proses mulai dari pengumpulan data, praproses, seleksi fitur, pelatihan model klasifikasi, yaitu SVM,
Random Forest, dan KNN, hingga evaluasi kinerja secara visual dan sistematis. Dengan adanya
flowchart, hubungan antar tahapan serta aliran data pada setiap proses dapat dipahami dengan lebih
jelas, sehingga memudahkan pembaca dalam mengikuti logika dan implementasi penelitian secara
keseluruhan.
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Gambar 3.1. Flowchart Metodologi Penelitian

Secara umum, alur penelitian meliputi pengumpulan data dari dataset publik, pemetaan
label stadium kanker, normalisasi dan transformasi data, pemilihan fitur miRNA yang relevan
menggunakan pendekatan fuzzy, penanganan ketidakseimbangan kelas dengan teknik resampling,
pelatihan model klasifikasi, serta evaluasi menggunakan skema Stratified K-Fold Cross-Validation.
Setiap tahapan dirancang untuk memastikan bahwa model yang dihasilkan memiliki kinerja yang
stabil, objektif, dan mampu melakukan generalisasi dengan baik.

3.2 Pengumpulan dan Persipan Dataset

Data yang digunakan dalam penelitian ini merupakan data ekspresi microRNA (miRNA)
yang diperoleh dari XenaBrowser dan data klinik dari The Cancer Genome Atlas (TCGA). Dataset
ini mencakup data ekspresi miRNA serta informasi klinis pasien kanker lambung, termasuk AJCC
pathologic T-stage yang digunakan sebagai dasar pelabelan kelas.

Tahap persiapan data diawali dengan pemilihan fitur miRNA, yaitu seluruh kolom yang
merepresentasikan ekspresi miRNA dengan awalan penamaan “hsa”. Sebelum pengelompokan
kelas, dilakukan analisis distribusi variabel target AJCC pathologic T-stage untuk mengetahui
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sebaran data awal. Dari keseluruhan data TCGA yang tersedia, terdapat 436 sampel yang memiliki
informasi T-stage valid. Distribusi rinci stadium T ditunjukkan pada Tabel 3.1.

Tabel 3.1. Distribusi data berdasarkan AJCC pathologic T-stage pada dataset TCGA kanker
lambung.

T-stage Jumlah Sampel Persentase (%)
T1 8 1.8
T1a 2 0.5
T1b 16 3.7
T2 68 15.6
T2a 9 2.1
T2b 14 3.2
T3 192 44.0
T4 32 7.3
T4a 59 13.5
T4b 26 6.0
TX 10 2.3

Total 436 100

Sumber: Data TCGA Gastric Cancer

Gambar 3.2. T-stage Distribution

Selanjutnya, dilakukan pemetaan stadium kanker menjadi dua kelas, yaitu stadium awal
dan stadium lanjut. Sampel dengan label yang tidak valid atau tidak lengkap dikeluarkan dari
dataset. Penanganan nilai yang hilang pada data ekspresi miRNA, digunakan nilai median dari
masing-masing fitur. Untuk keperluan klasifikasi biner diatas, dua kelas klinis, yaitu stadium awal
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atau early stage terdiri dari gabungan T1, T1a, T1b, T2, T2a, dan T2b. Stadium lanjut atau late stage
terdiri atas T3, T4, T4a, dan T4b. Sampel dengan label TX dikeluarkan dari proses klasifikasi karena
tidak merepresentasikan stadium T yang jelas. Pengelompokan ini dilakukan berdasarkan pedoman
AJCC dan praktik klinis yang umum digunakan dalam penelitian kanker lambung. Ringkasan hasil
penggabungan kelas ditampilkan pada Tabel 3.2.

Tabel 3.2. Distribusi dataset berdasarkan pengelompokan stadium awal dan stadium lanjut.

Kategori Stadium Jumlah Sampel Persentase (%)
Stadium Awal (T1 + T2) 117 26.8
Stadium Lanjut (T3 + T4) 309 70.9

Total 426 100

Sumber: Data TCGA Gastric Cancer (setelah pembersihan data)

Apabila nilai ekspresi miRNA memiliki rentang yang besar, dilakukan transformasi
logaritmik menggunakan log2(x + 1) untuk mengurangi skewness distribusi data. Tahapan ini
bertujuan untuk menstabilkan variansi data sebelum dilakukan analisis lebih lanjut. Berdasarkan
analisis distribusi T-stage, terlihat bahwa jumlah sampel pada stadium lanjut jauh lebih dominan
dibandingkan stadium awal. Ketidakseimbangan distribusi kelas ini berpotensi memengaruhi kinerja
model klasifikasi apabila tidak ditangani dengan tepat. Oleh karena itu, pada tahap selanjutnya
diterapkan teknik penyeimbangan data menggunakan metode SMOTETomek untuk mengurangi bias
model terhadap kelas mayoritas.

Dataset kemudian dibagi menjadi tiga subset utama untuk keperluan pembelajaran dan
evaluasi model. Subset training digunakan untuk melatih model dan melakukan seleksi fitur, dengan
memastikan bahwa distribusi kelas seimbang setelah penerapan SMOTETomek. Subset validation
digunakan untuk menyesuaikan parameter model (hyperparameter tuning) dan memilih konfigurasi
terbaik sebelum evaluasi akhir, sehingga mengurangi risiko overfitting. Subset testing digunakan
untuk menilai performa akhir model secara independen, memberikan estimasi akurasi, sensitivitas,
spesifisitas, F1-score, dan AUC yang tidak bias. Pengelompokan stadium menjadi dua kelas utama,
yaitu stadium awal dan stadium lanjut, juga bertujuan untuk meningkatkan stabilitas model serta
relevansi klinis dari hasil prediksi.

3.3 Seleksi Fitur Berbasis True Fuzzy Mutual Information

Seleksi fitur dilakukan menggunakan pendekatan True Fuzzy Mutual Information
untuk mengidentifikasi miRNA yang paling relevan terhadap klasifikasi stadium kanker yang
dikembangkan berdasarkan teori fuzzy information [13]. Pendekatan ini dirancang untuk menangkap
hubungan nonlinier serta ketidakpastian yang umum terdapat pada data biologis berdimensi tinggi
seperti ekspresi miRNA. Berbeda dengan mutual information klasik yang bersifat diskrit dan keras
(crisp), pendekatan TFMI menggunakan relasi fuzzy memungkinkan representasi hubungan antar
sampel secara kontinu. Dengan demikian, metode ini lebih robust terhadap noise serta variasi nilai
ekspresi miRNA. Tahapan seleksi fitur terdiri dari normalisasi data, pembentukan relasi ekuivalensi
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fuzzy, perhitungan entropi fuzzy, entropi gabungan, hingga perhitungan nilai True Fuzzy Mutual
Information untuk setiap fitur miRNA.

Pseudocode pada Kode 3.1 menggambarkan alur seleksi fitur berbasis True Fuzzy Mutual
Information yang digunakan dalam penelitian ini. Setiap fitur miRNA dievaluasi berdasarkan tingkat
ketergantungannya terhadap label stadium kanker dengan mempertimbangkan ketidakpastian data
melalui relasi ekuivalensi fuzzy. Fitur kemudian diurutkan berdasarkan nilai TFMI tertinggi dan
dipilih sejumlah k fitur terbaik sebagai masukan model klasifikasi.

1

2 Input:
3 X : matrix ekspresi miRNA (n_samples x n_features)
4 y : label kelas stadium kanker (Early / Late)
5 k : jumlah fitur terpilih
6

7 Output:
8 SelectedFeatures : daftar miRNA terpilih
9

10 # Step 1: Normalisasi Data
11 X_norm <- MinMaxNormalization(X)
12

13 # Step 2: Inisialisasi skor TFMI
14 TFMI_scores <- empty list
15

16 # Step 3: Hitung TFMI untuk setiap fitur miRNA
17 for each feature f in X_norm.columns:
18

19 # 3.1 Bentuk relasi ekuivalensi fuzzy untuk fitur f
20 R_f <- ComputeFuzzyEquivalenceRelation(X_norm[f])
21

22 # 3.2 Bentuk relasi ekuivalensi fuzzy untuk label kelas
23 R_y <- ComputeFuzzyEquivalenceRelation(y)
24

25 # 3.3 Hitung fuzzy entropy masing -masing relasi
26 H_f <- FuzzyEntropy(R_f)
27 H_y <- FuzzyEntropy(R_y)
28

29 # 3.4 Hitung fuzzy joint entropy
30 H_fy <- FuzzyJointEntropy(R_f, R_y)
31

32 # 3.5 Hitung True Fuzzy Mutual Information
33 TFMI_f <- H_f + H_y - H_fy
34

35 # 3.6 Simpan skor TFMI
36 TFMI_scores.append(TFMI_f)
37

38 # Step 4: Urutkan fitur berdasarkan skor TFMI
39 RankedFeatures <- SortDescending(TFMI_scores)
40

41 # Step 5: Pilih k fitur terbaik
42 SelectedFeatures <- RankedFeatures[0:k]
43

44 return SelectedFeatures

Kode 3.1: Pseudocode seleksi fitur miRNA menggunakan True Fuzzy Mutual Information

3.3.1 Normalisasi Data Min-Max Scaling

Sebelum memasuki tahapan seleksi fitur berbasis fuzzy, seluruh data ekspresi miRNA
dinormalisasi menggunakan metode Min-Max Scaling. Normalisasi ini bertujuan untuk
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menyamakan skala seluruh fitur ke dalam rentang [0,1], sehingga setiap fitur memiliki kontribusi
yang sebanding dalam proses perhitungan jarak dan derajat keanggotaan fuzzy.

Pada data genomik, khususnya ekspresi miRNA, perbedaan rentang nilai antar fitur
dapat sangat signifikan. Apabila kondisi ini tidak ditangani, fitur dengan skala nilai yang lebih
besar akan mendominasi proses perhitungan relasi fuzzy dan berpotensi menyebabkan bias dalam
pengukuran ketergantungan fitur terhadap kelas target. Oleh karena itu, normalisasi Min-Max dipilih
karena mampu mempertahankan distribusi relatif data serta sesuai untuk integrasi dengan fungsi
keanggotaan berbasis jarak [20].

x′ =
x− xmin

xmax − xmin
(3.1)

di mana:

• x merupakan nilai asli dari suatu fitur miRNA,

• xmin dan xmax masing-masing adalah nilai minimum dan maksimum fitur tersebut,

• x′ adalah nilai hasil normalisasi dalam rentang [0,1].

Normalisasi ini dilakukan secara independen untuk setiap fitur miRNA agar struktur variasi
biologis antar fitur tetap terjaga sebelum proses analisis fuzzy dilakukan.

3.3.2 Relasi Ekuivalensi Fuzzy (Fuzzy Equivalence Relation)

Setelah proses normalisasi, tahap selanjutnya adalah pembentukan relasi ekuivalensi fuzzy
antar sampel. Relasi ini bertujuan untuk merepresentasikan tingkat kemiripan antar sampel
berdasarkan nilai ekspresi suatu fitur miRNA secara kontinu, tidak bersifat biner seperti pada
pendekatan klasik.

Dalam penelitian ini, relasi ekuivalensi fuzzy dihitung menggunakan fungsi keanggotaan
berbasis Gaussian [21]. Pemilihan fungsi Gaussian didasarkan pada kemampuannya dalam
merepresentasikan kedekatan antar nilai secara halus dan stabil terhadap variasi data, yang sangat
sesuai untuk karakteristik data biologis yang bersifat noisy dan tidak pasti [11].

R(xi,x j) = exp
(
− (xi − x j)

2

2σ2

)
(3.2)

di mana:

• xi dan x j adalah nilai fitur miRNA dari dua sampel yang dibandingkan,

• σ merupakan parameter lebar (spread) dari fungsi Gaussian,

• R(xi,x j) ∈ [0,1] menyatakan tingkat kemiripan fuzzy antara dua sampel.

Nilai relasi yang mendekati 1 menunjukkan tingkat kemiripan yang tinggi, sedangkan nilai
yang mendekati 0 menunjukkan perbedaan yang signifikan antar sampel.
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3.3.3 Entropi Fuzzy (Fuzzy Entropy)

Entropy fuzzy digunakan untuk mengukur tingkat ketidakpastian atau keragaman informasi
yang terkandung dalam suatu fitur miRNA berdasarkan relasi ekuivalensi fuzzy. Semakin tinggi
nilai entropi, semakin besar ketidakpastian yang dimiliki fitur tersebut dalam merepresentasikan
pola data.

Untuk setiap sampel, terlebih dahulu dihitung nilai rata-rata derajat keanggotaan fuzzy
terhadap seluruh sampel lainnya. Nilai ini kemudian digunakan untuk menghitung entropi fuzzy
fitur secara keseluruhan [22].

H f =−1
n

n

∑
i=1

log2(φi) (3.3)

dengan:

• n adalah jumlah total sampel,

• φi merupakan rata-rata derajat keanggotaan fuzzy sampel ke-i terhadap seluruh sampel
lainnya.

Entropi fuzzy yang rendah mengindikasikan bahwa fitur memiliki struktur informasi yang
lebih teratur dan berpotensi lebih relevan untuk proses klasifikasi.

3.3.4 Entropi Fuzzy Label (Fuzzy Entropy of Class Label)

Selain entropi pada fitur, penelitian ini juga menghitung entropi fuzzy pada label kelas
target, yaitu stadium kanker lambung (Early dan Late stage). Entropi ini digunakan sebagai acuan
ketidakpastian kelas sebelum dikaitkan dengan fitur miRNA.

Relasi fuzzy pada label dibentuk menggunakan relasi kesetaraan keras (crisp equivalence),
di mana dua sampel dianggap memiliki kemiripan penuh jika berasal dari kelas yang sama, dan nol
jika berasal dari kelas yang berbeda [6].

H(Y ) =−1
n

n

∑
i=1

log2(φ
Y
i ) (3.4)

di mana φY
i merepresentasikan derajat keanggotaan fuzzy sampel ke-i terhadap kelas target.

3.3.5 Entropi Gabungan Fuzzy (Fuzzy Joint Entropy)

Entropi gabungan fuzzy mengukur tingkat ketidakpastian bersama antara suatu fitur miRNA
dan label kelas. Relasi gabungan ini dibentuk dengan mengombinasikan relasi fuzzy fitur dan relasi
fuzzy label menggunakan operator minimum sebagai representasi irisan fuzzy [12].

H( f ,Y ) =−1
n

n

∑
i=1

log2(φ
fY

i ) (3.5)
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di mana φ
fY

i merupakan derajat keanggotaan gabungan antara fitur dan label kelas untuk
sampel ke-i.

3.3.6 True Fuzzy Mutual Information (TFMI)

Nilai True Fuzzy Mutual Information (TFMI) digunakan sebagai ukuran utama dalam
proses seleksi fitur. TFMI mengukur seberapa besar informasi yang dibagikan antara suatu fitur
miRNA dan label stadium kanker dengan mempertimbangkan ketidakpastian dan sifat kontinu data
melalui pendekatan fuzzy. [12, 13]

T FMI( f ,Y ) = H( f )+H(Y )−H( f ,Y ) (3.6)

Nilai TFMI yang tinggi menunjukkan bahwa fitur miRNA tersebut memiliki hubungan
informasi yang kuat dengan kelas stadium kanker. Oleh karena itu, fitur-fitur dengan nilai
TFMI tertinggi dipilih sebagai subset fitur optimal untuk tahap pelatihan model machine learning
selanjutnya.

3.4 Penanganan Ketidakseimbangan Kelas

Distribusi kelas pada data klinis kanker lambung umumnya bersifat tidak seimbang, di mana
jumlah sampel pada stadium lanjut (Late stage) jauh lebih dominan dibandingkan stadium awal
(Early stage). Ketidakseimbangan kelas ini dapat menyebabkan model machine learning menjadi
bias terhadap kelas mayoritas, sehingga menurunkan kemampuan model dalam mengenali pola pada
kelas minoritas dan menghasilkan performa prediksi yang tidak representatif [14].

Untuk mengatasi permasalahan tersebut, penelitian ini menerapkan teknik hybrid
resampling SMOTETomek, yang merupakan kombinasi dari metode Synthetic Minority Over-
sampling Technique (SMOTE) dan Tomek Links. Pendekatan ini bertujuan tidak hanya untuk
meningkatkan jumlah sampel pada kelas minoritas, tetapi juga untuk membersihkan batas keputusan
antar kelas dari sampel yang bersifat ambigu atau berpotensi menjadi noise [15].

3.4.1 Synthetic Minority Over-sampling Technique (SMOTE)

SMOTE merupakan metode oversampling yang menghasilkan sampel sintetis baru pada
kelas minoritas dengan memanfaatkan hubungan kedekatan antar sampel dalam ruang fitur. Berbeda
dengan random oversampling yang hanya menduplikasi data, SMOTE membentuk sampel baru
melalui interpolasi linier antara sampel minoritas dan tetangga terdekatnya (k-nearest neighbors)
[23].

Secara matematis, pembentukan sampel sintetis SMOTE dapat dinyatakan sebagai berikut:

xnew = xi +λ · (xnn − xi), λ ∈ [0,1] (3.7)

di mana:
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• xi adalah sampel pada kelas minoritas

• xnn adalah salah satu tetangga terdekat dari xi

• λ adalah bilangan acak dalam interval [0,1]

• xnew merupakan sampel sintetis yang dihasilkan

Dengan mekanisme ini, SMOTE mampu memperluas distribusi kelas minoritas secara lebih
alami dan kontinu, sehingga membantu model mempelajari karakteristik kelas minoritas dengan
lebih baik.

3.4.2 Tomek Links

Meskipun SMOTE efektif dalam meningkatkan keseimbangan kelas, proses oversampling
dapat memperkenalkan sampel sintetis yang berada terlalu dekat dengan kelas mayoritas. Oleh
karena itu, digunakan metode Tomek Links sebagai tahap undersampling untuk membersihkan batas
kelas [23].

Tomek Link didefinisikan sebagai pasangan dua sampel (xi,x j) dari kelas yang berbeda
yang saling menjadi tetangga terdekat satu sama lain. Keberadaan pasangan ini menunjukkan area
tumpang tindih (overlapping) antar kelas. Dalam penelitian ini, sampel dari kelas mayoritas yang
terlibat dalam Tomek Link dihapus untuk memperjelas batas keputusan antar kelas.

3.4.3 Kombinasi SMOTETomek

SMOTETomek menggabungkan keunggulan SMOTE dan Tomek Links dalam satu pipeline
resampling. Tahapan kerjanya dapat dirangkum sebagai berikut:

1. Menghasilkan sampel sintetis pada kelas minoritas menggunakan SMOTE.

2. Mengidentifikasi pasangan Tomek Links pada data hasil oversampling.

3. Menghapus sampel mayoritas yang terlibat dalam Tomek Links untuk mengurangi
ambiguitas dan noise.

Pendekatan ini menghasilkan dataset pelatihan yang lebih seimbang sekaligus memiliki
batas kelas yang lebih jelas, sehingga meningkatkan stabilitas dan performa model klasifikasi [15].

3.4.4 Penerapan pada Pipeline Penelitian

Dalam penelitian ini, teknik SMOTETomek hanya diterapkan pada data pelatihan di setiap
fold Stratified K-Fold Cross-Validation. Pendekatan ini bertujuan untuk mencegah terjadinya data
leakage antara data pelatihan dan data pengujian, serta memastikan bahwa evaluasi performa model
tetap valid dan tidak bias [24].

Dengan penerapan SMOTETomek, diharapkan model machine learning mampu
mempelajari pola diskriminatif antara stadium awal dan stadium lanjut kanker lambung secara
lebih seimbang dan robust, terutama dalam konteks data genomik berdimensi tinggi seperti ekspresi
miRNA.
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3.5 Machine Learning Model

Pada penelitian ini, tiga algoritma machine learning digunakan untuk melakukan klasifikasi
stadium kanker berdasarkan ekspresi miRNA, yaitu Support Vector Machine (SVM), Random
Forest (RF), dan K-Nearest Neighbors (KNN). Setiap model dipilih berdasarkan kemampuan
mereka dalam menangani dataset tidak seimbang dan potensi multikolinearitas antar fitur. Tabel
3.3 memperlihatkan parameter utama yang digunakan untuk membangun ketiga model machine
learning dalam penelitian ini. Untuk SVM, kernel diubah menjadi RBF agar mampu menangkap
hubungan non-linear antar fitur, dengan C=1 untuk menyeimbangkan regularisasi dan generalisasi,
gamma diset ke scale, serta class weight seimbang untuk mengatasi ketidakseimbangan kelas. Pada
Random Forest, jumlah tree ditingkatkan dari default 100 menjadi 200 untuk meningkatkan stabilitas
model, dan class weight disesuaikan agar kelas minoritas tetap diperhatikan. Sementara pada KNN,
jumlah tetangga ditingkatkan menjadi 7 dan bobot distance-based digunakan untuk memberikan
pengaruh lebih besar pada tetangga yang lebih dekat, dengan jarak Euclidean sebagai metrik utama.
Penentuan parameter ini dilakukan melalui eksperimen awal dan literatur terkait agar model dapat
memberikan performa optimal tanpa overfitting.

Tabel 3.3. Parameter default dan nilai yang digunakan untuk tuning model machine learning

Model Parameter Default Yang Digunakan
SVM (RBF) Kernel linear Radial Basis Function

C (Regularisasi) 1.0 1
Gamma auto scale
Class weight None balanced

Random Forest Jumlah trees 100 200
Criterion Gini Gini
Class weight None balanced
Random state None 42

K-Nearest Neighbors Jumlah tetangga (k) 5 7
Bobot uniform distance
Metode jarak Minkowski (p=2) Euclidean

Catatan: Tabel menunjukkan perbandingan antara nilai default dan parameter yang

digunakan setelah proses tuning untuk membangun model akhir pada dataset klasifikasi
stadium kanker.

3.5.1 Support Vector Machine (SVM)

SVM digunakan dengan kernel Radial Basis Function (RBF) yang mampu menangkap
hubungan non-linear antar fitur. Parameter regularization C diset ke 1 untuk menyeimbangkan
kompleksitas model dan kemampuan generalisasi, sedangkan gamma menggunakan nilai scale
untuk mengatur pengaruh setiap sampel terhadap pembentukan decision boundary [25]. SVM juga
menggunakan class weight seimbang (balanced) untuk menangani ketidakseimbangan kelas pada
dataset.
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3.5.2 Random Forest (RF)

RF adalah metode ensemble berbasis bagging yang membangun banyak decision tree secara
independen dan mengambil keputusan melalui majority voting. Model ini dikonfigurasi dengan 200
trees dan class weight seimbang untuk mengurangi bias terhadap kelas mayoritas. Keunggulan RF
adalah kemampuan untuk menangkap interaksi kompleks antar fitur serta memberikan informasi
penting tentang kontribusi setiap fitur terhadap klasifikasi [26].

3.5.3 K-Nearest Neighbors (KNN)

KNN adalah algoritma instance-based learning yang melakukan klasifikasi berdasarkan
kedekatan jarak antar sampel. Parameter k ditetapkan sebanyak 7 tetangga terdekat dan pemberian
bobot distance-based memastikan sampel yang lebih dekat memiliki pengaruh lebih besar pada
prediksi akhir [27]. KNN tidak membuat asumsi distribusi data dan sensitif terhadap skala, sehingga
normalisasi fitur menjadi langkah penting sebelum pelatihan.

3.6 Metrik Evaluasi Kinerja Model

Kinerja model klasifikasi dievaluasi menggunakan sejumlah metrik yang relevan dengan
konteks medis, yaitu accuracy, precision, recall (sensitivitas), specificity, F1-score, dan Area
Under the Curve (AUC). Pemilihan metrik ini bertujuan untuk memberikan gambaran komprehensif
terhadap performa model, baik dari aspek keseluruhan prediksi maupun kemampuan model dalam
membedakan kelas minoritas dan mayoritas. Definisi formal dari setiap metrik adalah sebagai
berikut [28].

Accuracy =
T P+T N

T P+T N +FP+FN
(3.8)

Precision =
T P

T P+FP
(3.9)

Recall =
T P

T P+FN
(3.10)

Speci f icity =
T N

T N +FP
(3.11)

F1 =
2×Precision×Recall

Precision+Recall
(3.12)

Di samping metrik di atas, AUC digunakan untuk menilai kemampuan model dalam membedakan
kelas positif dan negatif pada berbagai ambang keputusan. Nilai AUC memberikan indikasi seberapa
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baik model dapat memisahkan kelas, dengan nilai 1 menunjukkan pemisahan sempurna dan 0,5
menunjukkan performa sebanding dengan tebakan acak.

3.7 Analisis Confusion Matrix dan Kurva ROC

3.7.1 Confusion Matrix

Confusion matrix dianalisis untuk mengevaluasi distribusi prediksi benar dan salah pada
masing-masing kelas. Analisis dilakukan baik dalam bentuk matriks agregat maupun matriks
ternormalisasi (normalized confusion matrix). Pendekatan ini memungkinkan identifikasi pola
kesalahan klasifikasi, terutama untuk stadium lanjut yang memiliki prioritas klinis lebih tinggi.
Dengan demikian, evaluasi berbasis confusion matrix tidak hanya menilai performa keseluruhan,
tetapi juga memberikan informasi granular mengenai kesalahan spesifik yang dilakukan model.

3.7.2 Kurva ROC

Kurva ROC (Receiver Operating Characteristic) dihitung untuk masing-masing fold pada
cross-validation, kemudian dirata-ratakan untuk menilai stabilitas performa model. Kurva ROC
rata-rata memberikan gambaran menyeluruh mengenai kemampuan diskriminatif model dalam
membedakan kelas pada seluruh iterasi. Nilai AUC yang diperoleh dari kurva ini menjadi indikator
utama kualitas prediksi model, khususnya dalam konteks klasifikasi yang tidak seimbang.

3.8 Dokumentasi dan Analisis Stabilitas Fitur

Tahap akhir metodologi meliputi dokumentasi dan analisis stabilitas fitur. Dokumentasi
mencakup pelaporan performa model, visualisasi confusion matrix, kurva ROC, serta analisis
frekuensi kemunculan fitur miRNA yang terpilih pada seluruh fold dan lintas model. Analisis
frekuensi fitur ini bertujuan untuk mengidentifikasi miRNA yang secara konsisten muncul sebagai
prediktor penting, sehingga memiliki potensi untuk dijadikan kandidat biomarker stadium kanker
lambung. Dengan pendekatan ini, penelitian tidak hanya menghasilkan model klasifikasi yang
optimal, tetapi juga memberikan insight biologis mengenai fitur-fitur yang paling relevan dengan
progresi penyakit.
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