
BAB 3
PELAKSANAAN KERJA MAGANG

Kegiatan magang ini dilaksanakan di PT Adicipta Inovasi Teknologi dengan
penempatan sebagai Quality Engineer Intern pada Departemen Software Testing.
Selama pelaksanaan magang dilakukan pengembangan serta eksekusi automation

testing untuk menjaga dan memastikan kualitas perangkat lunak internal perusahaan
agar sesuai dengan standar dan spesifikasi yang telah ditentukan.

Sepanjang periode kegiatan, dilaksanakan berbagai aktivitas pengujian
otomatis, khususnya pada track kedua program magang. Pengujian difokuskan
pada layanan aplikasi sisi backend melalui API. Seluruh proses pengujian dilakukan
menggunakan Katalon Studio sebagai alat utama, dengan penerapan skenario uji
yang merepresentasikan alur bisnis secara menyeluruh (end-to-end), termasuk
verifikasi data pada database.

Sebagian informasi teknis terkait sistem internal maupun data perusahaan
tidak dapat dijelaskan secara detail dalam laporan ini karena bersifat rahasia dan
dilindungi oleh kebijakan internal perusahaan. Oleh karena itu, penyusunan laporan
disajikan secara umum agar tetap menggambarkan pengalaman dan ruang lingkup
pekerjaan selama magang tanpa melanggar ketentuan kerahasiaan yang berlaku.

3.1 Kedudukan dan Koordinasi

Sebagai Quality Engineer selama proses magang, penempatan dilakukan
pada Departemen Software Testing dengan peran utama dalam memastikan kualitas
perangkat lunak berfungsi sesuai dengan kebutuhan dan ketentuan yang ditetapkan.

Dalam pelaksanaannya, posisi ini berada dalam bimbingan langsung Senior

Automation Engineer yang berperan memberikan arahan teknis serta melakukan
penilaian terhadap tugas-tugas yang dikerjakan. Selain itu, kegiatan magang juga
berada dalam pengawasan dan koordinasi Section Head Quality Engineering serta
Head of Software Testing Department.

Koordinasi pekerjaan dilaksanakan melalui rapat mingguan (weekly

meeting) menggunakan platform Microsoft Teams. Rapat ini bertujuan untuk
menyampaikan pembaruan progres pekerjaan, mendiskusikan kendala yang
dihadapi, serta menyusun rencana kerja dan menentukan prioritas tugas untuk
periode selanjutnya.

8
Implementasi End-to-End Automation..., Kyla Arynda Salsabila, Universitas Multimedia Nusantara



3.2 Tugas yang Dilakukan

Selama pelaksanaan magang track 2, tanggung jawab utama yang dijalankan
meliputi pengembangan lanjutan skrip automation testing yang telah dikembangkan
pada periode pertama. Adapun tugas yang dilaksanakan adalah sebagai berikut:

1. Mengembangkan skrip berbahasa Groovy untuk automation testing melalui
platform Katalon Studio yang difokuskan pada pengujian core multifinance

system (CONFINS). Pengembangan ini meliputi penyusunan skenario uji
otomatis yang merepresentasikan alur proses bisnis aplikasi secara nyata
melalui pengujian API atau sisi backend secara end-to-end.

2. Secara langsung melaksanakan validasi data pada database menggunakan
SQL sebagai bagian dari pengujian backend melalui PostgreSQL, khususnya
pada pengujian layanan API. Proses validasi dilakukan untuk memastikan
kesesuaian data yang diproses oleh API dengan data yang tersimpan di
database, dari seluruh aspek seperti nilai, hasil perhitungan, serta keterkaitan
antara entitas data.

3. Membangun skrip automation testing dengan fokus pada pengujian bersifat
end-to-end, yang mencakup integrasi antar modul sistem, verifikasi hasil
keluaran pada setiap tahap proses, serta pengecekan kesesuaian data antara
API dan database. Pendekatan ini memastikan seluruh alur bisnis berjalan
sesuai dengan ketentuan fungsional yang telah ditetapkan.

3.3 Uraian Pelaksanaan Magang

Pelaksanaan magang dilakukan pada periode Juli 2025 hingga Februari 2025
dengan pembatasan cangkuman terakhir pada Desember 2025. Pada periode kedua
ini, proses kegiatan magang mencakup lanjutan dari proyek utama dengan rincian
pelaksanaan kerja magang pada Tabel 3.1.

9
Implementasi End-to-End Automation..., Kyla Arynda Salsabila, Universitas Multimedia Nusantara



Tabel 3.1. Pekerjaan yang dilakukan tiap minggu selama pelaksanaan kerja magang

Minggu Ke - Pekerjaan yang dilakukan

1-4 Melanjutkan Pengerjaan Skrip Automation pada sistem
CONFINS meliputi pembuatan API Master untuk digunakan
pada flow e2e.

5-6 Membangun skrip pada format e2e mencakup pemanggilan
test case, validasi database, dan validasi pada journal.

7-9 Melakukan pembangunan skrip e2e testing serta enhancement
validasi journal, dan melakukan testing / running skrip
automation testing.

10 - 11 Melakukan enhancement pada skrip automation testing

yang sudah ada serta berkontribusi dalam beberapa proyek
pengujian lain di bawah tim Software Testing, sambil
menunggu dimulainya proses pengembangan lanjutan untuk
sistem CONFINS LMS Konventional.

12 - 13 Mempersiapkan dan melanjutkan pengembangan lanjutan
CONFINS LMS Konventional, pengembangan skrip master
dan e2e tambahan untuk skenario baru.

14 - 20 Melanjutkan pengembangan lanjutan CONFINS LMS
Konventional, pengembangan skrip e2e sekanrio baru dan
testing untuk skrip tersebut, disertai proses raise dan retest
issue yang ditemukan saat proses development.

3.3.1 Konsep dan Struktur Pengujian End-to-End pada Automation Testing

Software testing merupakan proses berkelanjutan dan iteratif yang dilakukan
pada setiap tahap pengembangan perangkat lunak, mulai dari analisis kebutuhan,
perancangan, pengembangan, rilis, hingga pemeliharaan. Tahapan ini memiliki
peran penting dalam memastikan kualitas, keandalan, dan stabilitas sistem secara
menyeluruh [5]. Dalam praktiknya, saat ini automation testing menjadi salah
satu pendekatan yang banyak digunakan karena memungkinkan eksekusi kasus
uji secara otomatis melalui skrip yang ditulis menggunakan bahasa pemrograman
seperti Groovy, Python, Java, atau JavaScript. Pendekatan ini mampu mengurangi
intervensi manual, mempercepat proses pengujian, serta meningkatkan konsistensi
hasil uji [6].

10
Implementasi End-to-End Automation..., Kyla Arynda Salsabila, Universitas Multimedia Nusantara



A Automation Testing

Automation testing adalah metode untuk pengujian software yang
memanfaatkan skrip dan (testing tools) untuk mengeksekusi kasus uji secara
otomatis tanpa ketergantungan tinggi pada intervensi pengujian secara manual
[7]. Pendekatan ini bertujuan untuk meningkatkan efisiensi, akurasi, serta
konsistensi dalam proses pengujian, terutama pada skenario yang bersifat berulang
atau memiliki kompleksitas tinggi sehingga dapat dijalankan secara regresi
[8]. Dalam lingkungan pengembangan modern, automation testing menjadi
krusial karena mampu mempercepat siklus pengujian, mendeteksi isu lebih
dini, serta mendukung praktik pengembangan berkelanjutan seperti Continuous

Integration dan Continuous Delivery (CI/CD). Pemanfaatan bahasa pemrograman
dan framework pengujian memungkinkan otomatisasi untuk memodelkan alur
proses bisnis secara terstruktur dan konsisten, sehingga kualitas perangkat lunak
dapat dipertahankan pada setiap tahap pengembangan.

Pada konteks pengujian untuk sistem produk CONFINS, pada track kedua
magang ini, menggunakan tools utama untuk proses development serta testing
adalah sebagai berikut.

1. Katalon
Katalon merupakan platform automation testing yang dimanfaatkan untuk
melakukan pengujian terhadap aplikasi pada produk AdIns. Versi Katalon
yang digunakan dalam kegiatan magang ini adalah versi 10.0.0. Platform ini
merupakan antarmuka yang mendukung pengujian berbasis skrip, baik untuk
API maupun UI.

2. PostgreSQL
Sebagai sistem manajemen basis data relasional berbasis SQL, PostgreSQL
digunakan oleh software tester dalam proses pengecekan dan verifikasi
data. Perangkat ini berfungsi untuk menyimpan, mengelola, serta mengakses
data menggunakan bahasa SQL. Dalam implementasi automation testing,
PostgreSQL dimanfaatkan untuk memvalidasi data pada sisi backend,
menjalankan query guna memastikan konsistensi data, serta mendukung
penerapan pengujian berbasis data (data-driven testing) yang terintegrasi
dengan Katalon.

11
Implementasi End-to-End Automation..., Kyla Arynda Salsabila, Universitas Multimedia Nusantara



3. Postman

Merupakan tools yang digunakan untuk melakukan pengujian Application

Programming Interface (API) secara manual. Postman berfungsi untuk
memverifikasi akurasi payload sebelum diimplementasikan ke dalam skrip
automation yang bersifat reusable. Pengujian menggunakan Postman
umumnya dilakukan sebelum proses pengembangan test case master, untuk
memastikan kesesuaian response yang akan divalidasi, baik untuk skenario
positif maupun negatif.

4. VSCode
Visual Studio Code (VSCode) dimanfaatkan sebagai alat bantu dalam
penyelesaian file yang mengalami konflik saat proses Pull Request (PR).
Konflik umumnya muncul akibat perbedaan perubahan antara branch

pengembangan dan branch master. VSCode secara otomatis menandai
bagian kode yang bertentangan, termasuk perubahan dari branch lokal

(current change) dan perubahan dari branch tujuan penggabungan (incoming

change). Untuk menyelesaikan konflik tersebut, tersedia beberapa opsi
seperti Accept Current Change, Accept Incoming Change, Accept Both

Changes, atau melakukan pengeditan manual sesuai kebutuhan. File

disimpan dan ditandai sebagai resolved saat konflik diselesaikan dan
kemudian dilanjutkan dengan proses commit lalu push.

5. JIRA
Digunakan oleh tim Quality Engineer sebagai sarana perencanaan,
pemantauan, dan pengelolaan tugas maupun laporan bug selama pelaksanaan
sprint pengembangan perangkat lunak. Melalui JIRA, tim dapat mencatat
bug, mengatur backlog, serta mengaitkan hasil pengujian dengan ticket yang
relevan. Untuk mendukung manajemen pengujian, tim QE memanfaatkan
plugin Zephyr Scale yang menyediakan fitur pembuatan test case,
pelaksanaan test run, serta untuk melaporkan hasil pengujian Katalon yang
sudah terintegrasi.

6. Bitbucket
Bitbucket adalah platform source code management berbasis Git yang
dikembangkan oleh Atlassian. Bitbucket digunakan untuk pengelolaan
repository, manajemen branch, serta proses pull request, dan terintegrasi
dengan tools lain seperti JIRA. Dalam kegiatan testing, Bitbucket berfungsi

12
Implementasi End-to-End Automation..., Kyla Arynda Salsabila, Universitas Multimedia Nusantara



sebagai repositori penyimpanan skrip automation testing sekaligus sebagai
media pemantauan perubahan kode. Selain itu, Bitbucket digunakan oleh
Senior Automation Engineer pada proses code review pada saat pull request

diajukan, guna memastikan tidak terjadi konflik dengan branch lain sebelum
skrip digabungkan ke dalam branch master.

Penggunaan tools berikut diterapkan dalam automation testing life cycle

(ATLC) yang merupakan dasar dari proses automation testing yang digambarkan
seperti berikut pada Gambar 3.1.

Gambar 3.1. Automation testing life cycle

Sumber: [9]

Tahapan automation dimulai dari analisa kebutuhan pengujian untuk
mengidentifikasi modul, skenario, serta area aplikasi yang dibutuhkan dan
cocok untuk diotomatisasi. Tahap ini memastikan bahwa upaya otomasi
sesuai dengan tujuan kualitas dan prioritas dalam alur bisnis. Selanjutnya,
tahapan kedua berfokus pada pemilihan automation tool yang paling sesuai,
dengan mempertimbangkan aspek seperti kompatibilitas teknologi untuk aplikasi,
dukungan integrasi, kemudahan pemeliharaan, serta efisiensi eksekusi. Sesuai
dengan penjelasan tools yang digunakan di atas, produk yang dipakai adalah
Katalon.

13
Implementasi End-to-End Automation..., Kyla Arynda Salsabila, Universitas Multimedia Nusantara



Pada tahap ketiga, dilakukan penyusunan test plan, desain skenario uji,
serta strategi otomasi yang menentukan cakupan pengujian, struktur skrip, dan
pendekatan validasi yang akan digunakan. Selanjutnya, pada tahap keempat
mencakup environment setup, yaitu proses menyiapkan lingkungan pengujian
otomatis, termasuk persiapan server yang akan digunakan, pengaturan format
data, integrasi dengan sistem pendukung, serta penyiapan test repository. Setelah
lingkungan siap, tahapan kelima melibatkan pembangunan skrip pengujian otomatis
(automation test script development) serta eksekusi awal untuk memastikan bahwa
skrip berjalan stabil dan sesuai harapan. Tahapan ini biasanya mencakup pembuatan
fungsi reusable, struktur kontrol, serta validasi terhadap response, database, dan
komponen pendukung lainnya.

Terakhir, pada tahap keenam dilakukan analisis hasil pengujian dalam
format test suite report. Pada tahap ini dilakukan pemeriksaan mendalam terhadap
log eksekusi, kegagalan yang terjadi, serta proses yang berhasil. Keseluruhan
tahapan ATLC tersebut memastikan bahwa proses otomasi berjalan secara terukur,
terstandarisasi, serta mampu memberikan kontribusi langsung terhadap peningkatan
kualitas perangkat lunak. Selain meningkatkan efisiensi pengujian, ATLC juga
menjadi fondasi penting untuk memastikan bahwa setiap komponen otomatisasi
dapat saling terintegrasi dengan baik. Hal ini sangat krusial sebagai dasar dalam
membangun pengujian End-to-End, yang akan dibahas lebih lanjut pada subbab
berikutnya.

B Konsep End-to-End Testing

Dalam automation testing, penerapan end-to-end (E2E) testing merupakan
pendekatan pengujian yang memverifikasi bahwa seluruh alur bisnis aplikasi
berjalan sesuai harapan dari sisi user. Dalam konteks produk yang diuji, pengujian
dimulai dari pemanggilan API hingga verifikasi pemrosesan data di sisi backend

dari seluruh titik endpoint [10]. Dalam konteks automation testing, E2E testing

sangat penting karena menguji integrasi penuh antar komponen sistem, termasuk
interaksi antar layanan, alur otentikasi, pemrosesan data, serta penyimpanan di basis
data untuk memastikan sistem sebagai satu kesatuan berfungsi dengan benar.

E2E testing juga berperan utama dalam mengidentifikasi isu atau bug

integrasi yang mungkin tidak terdeteksi dalam pengujian unit atau dalam konteks
development—pada penelitian ini berada pada level test case master—seperti
kesalahan alur bisnis, masalah dependensi antar layanan, atau inkonsistensi data.

14
Implementasi End-to-End Automation..., Kyla Arynda Salsabila, Universitas Multimedia Nusantara



Selain itu, E2E testing mendukung praktik continuous testing atau regression testing

dalam pipeline CI/CD, karena memberikan dasar pengujian bahwa alur aplikasi
yang kompleks tetap valid saat dilakukan deployment.

Struktur E2E test case biasanya mencakup skenario end-to-end yang
mencerminkan proses nyata pengguna dalam produk CONFINS. Pengujian dimulai
dari awal penggunaan API yang membentuk data hingga validasi jurnal keuangan.
Dalam kerangka otomatisasi, E2E test suite bersifat lebih menyeluruh dibandingkan
functional test, dengan format yang harus diorganisasi dengan baik agar mudah
dipelihara, mudah dijalankan kembali, serta mampu memberikan cakupan lengkap
terhadap fitur utama dalam aplikasi. Berikut merupakan perbandingan E2E test dan
functional test berdasarkan Katalon.

Aspek Pengujian Fungsional Pengujian End-to-End
Lingkup Pengujian terbatas pada

satu bagian kode atau satu
aplikasi.

Pengujian mencakup banyak
aplikasi dan kelompok
pengguna.

Tujuan Memastikan perangkat
lunak memenuhi kriteria
penerimaan.

Memastikan proses tetap
berjalan setelah adanya
perubahan.

Metode
Pengujian

Menguji bagaimana satu
pengguna berinteraksi
dengan aplikasi.

Menguji bagaimana beberapa
pengguna bekerja lintas
aplikasi.

Yang
Divalidasi

Validasi hasil dari setiap
pengujian berdasarkan input
dan output.

Validasi bahwa setiap
langkah dalam proses telah
diselesaikan.

Tabel 3.2. Perbandingan Pengujian Fungsional dan Pengujian End-to-End

Sumber: [11]

Struktur pengujian perangkat lunak umumnya digambarkan melalui test

automation pyramid, yang membagi jenis pengujian berdasarkan cakupan, tujuan,
serta tingkatannya. Setiap lapisan memiliki peran yang berbeda dalam memastikan
kualitas sistem secara menyeluruh. Secara umum, pengujian dapat dikelompokkan
menjadi beberapa kategori sebagai berikut:

1. Unit Tests
Pengujian unit/master berfokus pada komponen individu, seperti fungsi atau
metode, untuk memastikan bahwa setiap bagian kecil dari sistem bekerja
dengan benar secara terisolasi. Contohnya adalah pengujian terhadap satu
API yang berdiri sendiri tanpa ketergantungan pada modul lain.

15
Implementasi End-to-End Automation..., Kyla Arynda Salsabila, Universitas Multimedia Nusantara



2. Integration Tests
Setelah komponen individual berfungsi dengan baik, langkah berikutnya
adalah menguji bagaimana komponen-komponen tersebut bekerja ketika
digabungkan. Komponen yang telah lulus unit test tetap dapat mengalami
kegagalan saat diintegrasikan, biasanya akibat kesalahan komunikasi data.
Integration test memastikan aliran data antar modul berjalan dengan baik
serta antarmuka antar komponen berfungsi sebagaimana mestinya.

3. End-to-End (E2E) Tests
End-to-end test memvalidasi satu alur secara keseluruhan atau skenario bisnis
aplikasi, mulai dari API untuk antarmuka pengguna hingga proses di sisi
back-end, untuk memastikan sistem bekerja sebagai satu kesatuan. Pengujian
ini memberikan keyakinan tinggi terhadap pemenuhan kebutuhan bisnis,
tetapi membutuhkan waktu lebih lama dan bersifat kompleks. Oleh karena
itu, jumlah E2E test biasanya dibatasi pada alur yang benar-benar kritikal dan
umum digunakan.

C Transisi Master Test Case ke End-to-End

Master test case atau unit test merupakan pengujian komponen secara
individu yang berfokus pada satu fungsi, contohnya seperti API untuk penambahan
user yang berdiri sendiri tanpa bantuan API lain untuk menjalankan prosesnya.
Transisi dari master test case menuju pengujian end-to-end dilakukan ketika
beberapa API atau layanan telah saling terhubung untuk membentuk satu alur
proses bisnis yang utuh. Pada tahap ini, setiap unit yang sebelumnya diuji secara
terpisah mulai dikombinasikan dan dijalankan dalam urutan yang menyerupai
kondisi nyata di sistem. Pengujian end-to-end bertujuan untuk memvalidasi bahwa
seluruh rangkaian proses—mulai dari input awal, pemanggilan API secara berantai,
pengolahan data, hingga penyimpanan ke database—berjalan secara konsisten dan
menghasilkan output yang sesuai.

Selain itu, penggunaan global variable, dynamic variables, serta
penyimpanan response antar step menjadi bagian penting dalam membangun
skenario E2E secara efisien. Hal ini memastikan bahwa setiap API yang saling
bergantung dapat dijalankan dalam alur yang konsisten tanpa memerlukan input

manual. Dalam penerapan ini, penyimpanan response dilakukan ke dalam file
JSON. Berikut merupakan proses penyimpanan data untuk integrasi End-to-End.

16
Implementasi End-to-End Automation..., Kyla Arynda Salsabila, Universitas Multimedia Nusantara



Gambar 3.2. Alur pembangunan skrip API sampai penyimpanan data

Pada Gambar 3.2, alur pengujian dimulai dari Object Repository yang berisi
endpoint API yang disimpan dan dikelola. Pada tahap ini, endpoint API diinput
bersama dengan global variable untuk pengaturan header yang berisi API key

dan base URL yang akan digunakan sebagai titik awal proses pengujian, termasuk
payload yang bersifat dinamis dan dapat diisi di test case sesuai kebutuhan.

Selanjutnya, proses pengujian berlanjut ke tahap pembangunan struktur
payload pada level test case sesuai kebutuhan API, termasuk parameter yang
bersifat mandatory serta variabel default yang akan digunakan untuk pengujian
awal sebelum disusun menjadi end-to-end. Setelah payload tersusun, request API

dikirim menggunakan endpoint dengan data yang telah disiapkan.
Kemudian, proses masuk ke tahap validasi response, di mana hasil response

API diverifikasi untuk memastikan kesesuaiannya dengan ekspektasi, baik dari sisi
status code maupun isi response. Pada saat yang sama, dilakukan pula validasi ke
database untuk memastikan data yang masuk sesuai dengan hasil pemrosesan API

dan benar-benar tersimpan di sistem backend.
Dari hasil response yang berhasil divalidasi, proses berlanjut ke tahap

penyimpanan data ke dalam file JSON dengan timestamp tertentu. Path file tersebut
kemudian disimpan ke dalam global variable untuk digunakan kembali pada proses
berikutnya dalam rangkaian skenario end-to-end. Berikut merupakan gambaran alur
penggunaan path dalam global variable untuk menghubungkan data antar alur pada
struktur End-to-End.

Gambar 3.3. Tahapan selanjutnya untuk menyambungkan antar data di End-to-End

Alur pada proses Gambar 3.3 ini menggambarkan bagaimana setiap called

17
Implementasi End-to-End Automation..., Kyla Arynda Salsabila, Universitas Multimedia Nusantara



test case terintegrasi di dalam skenario end-to-end sehingga membentuk rangkaian
pengujian yang utuh dan berkesinambungan. Pada level end-to-end, data dari JSON

proses sebelumnya atau test case yang pertama dijalankan akan digunakan kembali
melalui JSON Path Global Variable yang telah disimpan dari proses sebelumnya.
Data ini kemudian dimasukkan sebagai input ke dalam payload API berikutnya
untuk memastikan setiap layanan menerima nilai yang relevan dan konsisten,
contohnya seperti nomor konsumen atau nomor dokumen yang dibuat dari hasil
response API sebelumnya.

Dari data tersebut, proses berpindah ke level called test case selanjutnya
sesuai kebutuhan, yaitu bagian di mana permintaan API dikirimkan dan responsnya
divalidasi, baik melalui pengecekan nilai pada API response maupun verifikasi
terhadap data di database. Jika seluruh validasi berhasil, informasi penting akan
disimpan kembali sesuai kebutuhan dalam format JSON serta diperbarui ke dalam
Global Variable Path agar dapat digunakan oleh proses selanjutnya.

Proses ini berjalan secara berulang sesuai kebutuhan skenario dan jumlah
test case yang harus dipanggil dalam satu rangkaian end-to-end. Pada file level
end-to-end, dilakukan juga validasi lanjutan seperti pengecekan journal maupun
pengambilan data tambahan dari database untuk memastikan integritas proses.
Setelah seluruh validasi pada tahap tersebut selesai, sistem kemudian memanggil
test case berikutnya dan mengulangi pola yang sama. Siklus ini terus berlanjut
hingga seluruh rangkaian proses bisnis berhasil diverifikasi, sehingga memastikan
bahwa setiap langkah berjalan konsisten dan sesuai harapan dari awal hingga akhir
skenario end-to-end.

3.3.2 Development End-to-End API Automation Testing pada Produk Core
Multifinance System (CONFINS)

Dalam penerapan produk CONFINS, konsep End-to-End bertujuan untuk
melakukan validasi berdasarkan skenario yang dibentuk. Skenario tersebut
mencakup pemanggilan test case master API, validasi data, proses end of day

(EOD), serta validasi ke dalam data journal engine. Proses pengujian ini berfokus
pada dua level utama, yaitu pembangunan test case master serta pembangunan alur
untuk end-to-end.

18
Implementasi End-to-End Automation..., Kyla Arynda Salsabila, Universitas Multimedia Nusantara



A API Master Level Test Case

Dalam master test case, setiap API yang dibutuhkan dari suatu modul
disusun dalam folder masing-masing. Setiap API umumnya memiliki positive case

dan negative case, serta dirancang bersifat dinamis pada bagian input agar dapat
digunakan berulang kali dalam berbagai kebutuhan skenario end-to-end. Struktur
ini memungkinkan respons dan data yang diambil untuk disimpan ke dalam global
variable secara efisien dan terstandarisasi, sehingga setiap elemen dapat digunakan
kembali (reusable) tanpa perlu membangun ulang logika atau payload pada setiap
test case.

1. Positive Test Case
Positive test case merupakan skenario pengujian yang digunakan untuk
memastikan bahwa sistem berfungsi sesuai harapan ketika diberikan input

yang valid. Dalam konteks end-to-end, tipe test case ini lebih sering
digunakan karena menghasilkan data yang dapat dimanfaatkan kembali pada
proses bisnis berikutnya. Variasi yang digunakan biasanya bergantung pada
jenis data yang diperlukan oleh API dan umumnya menghasilkan respons 200
OK sebagai indikasi bahwa proses berhasil dijalankan. Berikut adalah contoh
pseudocode pada Kode 3.1 untuk case positif.

1

2 TEST CASE: Payment Process
3 DEPENDENCIES:
4 - Call Master Test Case: Receipt From Regist
5 - Call Master Test Case: Receipt From Proses
6 - Utility Classes: DB, DateUtils , CommonAction ,

CheckStatus , ValidateSchemaJson
7

8 BEGIN
9 LOAD required global variables and request payloads

10 EXTRACT important fields (NoXX , ReceiptFormNo , Date)
11

12 PREPARE dynamic values:
13 - Generate No
14 - Determine Request Date
15 - Build allocation list (only include non-empty

fields)
16 - Set auto when allocation list is empty
17

18 SEND Payment API REQUEST with all parameters
19

20 VERIFY response.statusCode == 200
21

22 IF response is valid THEN
23 PARSE response
24 ASSERT response header fields are correct
25

26 WAIT until payment status is processed
27 VALIDATE Prepaid Matching when allocation code

requires it
28

19
Implementasi End-to-End Automation..., Kyla Arynda Salsabila, Universitas Multimedia Nusantara



29 QUERY database for payment transaction info
30 ASSERT critical fields match the input
31 dbData = data from database
32

33 assert dbData.trxNo == trxNo
34 assert dbData.payNo == json.PayNo
35 assert dbData.receive == RcvAmt
36

37 VALIDATE allocation amount logic (scenario based)
38

39 SAVE final data into JSON file
40 finalData = {
41 trxNo , dbData.payCode , trxAmt ,
42 RefallocCode , allocAmt , voucherNo
43 }
44

45 filePath = "JSON/payXX_Code.json"
46 jsonTool.save(finalData , filePath)
47 GlobalVariable.payment_XX = filePath
48 STORE file path into Global Variables
49 ELSE
50 LOG "API Payment Proses Failed"
51 ENDIF
52 END

Kode 3.1: Pseudocode API positif proses payment

Pseudocode di atas menggambarkan alur utama proses master dalam skenario
end-to-end yang paling sering digunakan, yaitu proses payment, dimulai dari
pemanggilan test case untuk pembuatan nomor transaksi. Setelah itu, sistem
melakukan inisialisasi berbagai utilitas dan kelas helper seperti database

handler, date utility, action utility, hingga JSON parser untuk memuat data
dari global variable yang dihasilkan oleh test case sebelumnya. Data penting
seperti payment number, value date, reference number, dan nomor formulir
penerimaan kemudian diekstraksi dan dipersiapkan sebagai parameter request

sesuai yang nantinya dipanggil di end-to-end.

Selanjutnya, sistem membangun struktur payload secara dinamis melalui
mapping yang hanya memasukkan field yang memiliki nilai valid. Payload

tersebut kemudian dikirimkan ke API untuk payment, dan respons yang
diterima diverifikasi untuk memastikan status 200 Success. Jika respons valid,
data JSON diparsing untuk mendapatkan nomor transaksi pembayaran, yang
kemudian digunakan untuk proses verifikasi lanjutan ke database.

Pada tahap akhir, hasil akhir transaksi dikumpulkan ke dalam struktur data,
disimpan dalam file JSON untuk keperluan dokumentasi atau kebutuhan test

case berikutnya, dan kemudian disimpan sebagai global variable. Alur ini
merupakan alur positif pada level unit case untuk digunakan nantinya dalam
karakteristik pengujian end-to-end, di mana satu proses bisnis tidak hanya
menguji API, tetapi juga memastikan integritas data antar modul, validasi

20
Implementasi End-to-End Automation..., Kyla Arynda Salsabila, Universitas Multimedia Nusantara



database, hingga menghasilkan output yang dapat digunakan kembali pada
tahapan selanjutnya.

2. Negative Test Case
Negative test case digunakan untuk menguji bagaimana sistem menangani
input yang tidak valid, kondisi error, atau skenario yang tidak sesuai
dengan aturan bisnis. Pengujian ini memastikan bahwa sistem mampu
memberikan respons error yang tepat sesuai dengan apa yang tidak sesuai
ketentuan payload, serta menampilkan pesan kesalahan yang informatif.
Meskipun tidak selalu digunakan dalam alur end-to-end, negative test case

sangat penting untuk memverifikasi ketahanan sistem dan memastikan bahwa
mekanisme validasi telah diterapkan dengan benar, dan jika digunakan
dalam end-to-end yang diperlukan adalah validasi input yang salah sebelum
melakukan validasi kasus positifnya.

1

2 TEST CASE: Payment Transaction dengan Empty Mandatory Field
3 BEGIN
4 PREPARE request payload for "PayProses"
5 SET ValDt = empty
6 SET other parameters = valid values
7 INCLUDE mandatory allocation list
8

9 SEND request to Payment API
10

11 VERIFY response.statusCode == 200
12

13 IF response is received THEN
14 PARSE response JSON
15

16 ASSERT HeaderObj.StatusCode == 400
17 ASSERT HeaderObj.Message == "Validation Failed"
18 ASSERT HeaderObj.ErrorMessages is not empty
19

20 EXTRACT first error detail
21 ASSERT error.Field == "ValDt"
22 ASSERT error.Message indicates invalid or null

mandatory input
23

24 LOG "Negative case validated: Mandatory Field empty
triggers correct validation error"

25 ELSE
26 LOG "Unexpected response: No response received"
27 ENDIF
28 END

Kode 3.2: Pseudocode kasus negatif mandatory field kosong

Pada Kode 3.2, skenario negative test case ini menguji API untuk memastikan
bahwa validasi berjalan dengan benar ketika terdapat mandatory field yang
tidak diisi pada saat pengiriman request. Ketika API dipanggil dengan
parameter yang tidak lengkap, server tetap merespons permintaan tersebut,

21
Implementasi End-to-End Automation..., Kyla Arynda Salsabila, Universitas Multimedia Nusantara



namun hasil verifikasi menunjukkan bahwa status yang diterima adalah
Validation Failed. Respons ini berisi informasi yang menjelaskan bahwa
terdapat kolom wajib yang tidak diberikan nilainya, sehingga proses tidak
dapat dilanjutkan.

Pendekatan ini digunakan pada kasus end-to-end apabila skenario yang
diberikan mencakup validasi kasus negatif. Selain itu, negative test case

umumnya juga digunakan untuk keperluan regression testing maupun pada
level unit testing.

Master test case, yang terdiri dari skenario positif maupun negatif,
merupakan tahapan pembangunan skenario end-to-end. Seluruh skenario ini
dikembangkan terlebih dahulu agar setiap alur API dapat tervalidasi secara
individual. Setelah rangkaian skenario pada level master selesai dibangun, proses
integrasi kemudian dilakukan pada test case end-to-end dengan cara memanggil
atau menggabungkan test case tersebut ke dalam satu alur pengujian yang utuh.

Penyusunan master test case ini juga mengikuti alur kerja yang terstruktur,
dimulai dari tahap analisis dan desain oleh Senior Automation Engineer hingga
tahap implementasi dan eksekusi oleh QE Staff. Dengan adanya proses yang
sistematis ini, setiap komponen dapat diuji secara konsisten serta siap digunakan
kembali pada level pengujian selanjutnya. Alur pada Gambar 3.4 berikut
memberikan gambaran mengenai proses pembangunan test case pada level master

sebelum digunakan dalam skenario end-to-end.

22
Implementasi End-to-End Automation..., Kyla Arynda Salsabila, Universitas Multimedia Nusantara



Gambar 3.4. Proses pembangunan test case master pada automasi testing CONFINS

B End-to-End Level Test Case

Setelah test case master sudah terbangun sesuai kebutuhan yang sudah
diterapkan, melalui test case tersebut dibangunlah alur end-to-end sesuai kebutuhan
alur bisnis tertentu. Proses dari pembangunan case end-to-end ditampilkan pada
Gambar 3.5 sebagai berikut.

23
Implementasi End-to-End Automation..., Kyla Arynda Salsabila, Universitas Multimedia Nusantara



Gambar 3.5. Proses pembangunan test case end-to-end pada automasi testing CONFINS

Alur pada Gambar 3.5 di atas menggambarkan proses kerja antara tiga peran
utama dalam proses pembangunan end-to-end (e2e), dimulai dari requirements

atau Head Requirements, kemudian Senior Automation Engineer yang ditulis
sebagai Sr. Automation Engineer pada gambar, serta Automation Engineer/QE

Staff. Proses dimulai dari sisi Head Requirements yang bertanggung jawab dalam
menyusun requirement-level test end-to-end scenario. Skenario ini berfungsi
sebagai dasar dalam pembuatan base scenario yang selanjutnya menjadi acuan bagi
tim Automation dalam membangun test case.

Setelah kebutuhan dan skenario dasar selesai disusun, Sr. Automation

Engineer akan membuat tiket task test case end-to-end berdasarkan requirement

tersebut. Pada tahap ini, Sr. Automation Engineer melakukan task assignment serta
memastikan bahwa arah pengembangan test case telah sesuai dengan kebutuhan
yang ditetapkan. Pada sisi Automation Engineer/QE Staff, proses dimulai
dari memahami alur bisnis dan requirement yang telah diberikan. Selanjutnya
dilakukan pembangunan serta eksplorasi existing test case yang akan digunakan
atau digabungkan untuk membentuk satu alur skenario secara utuh.

Secara lebih rinci, di dalam satu end-to-end case terdapat berbagai aspek

24
Implementasi End-to-End Automation..., Kyla Arynda Salsabila, Universitas Multimedia Nusantara



atau struktur isi yang harus diperhatikan sesuai dengan Gambar 3.5. Setiap aspek
tersebut membentuk alur pengujian yang memastikan bahwa proses bisnis dapat
berjalan dari awal hingga akhir tanpa hambatan.

1. Pre-condition dan pengaturan DB input
Melakukan inisialisasi data awal, setup database, dan konfigurasi prasyarat
sebelum skenario dijalankan yang ditampilkan pada Kode 3.3.

1

2 BEGIN
3 INITIALIZE helper objects
4 CREATE jsonAction AS ValidateSchemaJson
5 CREATE checkStat AS CheckStatus
6 CREATE db connection
7 CREATE dbCheck AS Check
8 CREATE dateUtils AS DateUtils
9

10 PREPARE business date
11 CALL db.getBDate() -> businessDMap
12 CONVERT businessDMap INTO formatted bDate
13 USING DateUtils.convertToBDt()
14

15 LOG "Initialization completed: All helper
components loaded."

16

17 END
Kode 3.3: Pseudocode Tahap Inisialisasi Komponen Test E2E

2. Pemanggilan test case
Kode 3.4 adalah eksekusi test case level unit master sebagai bagian dari
rangkaian pengujian.

1 BEGIN
2

3 CALL TestCase "Activation Process"
4 PARAMS = {}
5 FAILURE_HANDLING = STOP_ON_FAILURE
6

7 CALL TestCase "Submit NonTaXX"
8 PARAMS = {}
9 FAILURE_HANDLING = STOP_ON_FAILURE

10

11 CALL TestCase "Request Deactivate"
12 PARAMS:
13 ProcessNo = ProcessNo
14 requestDtTime = businessDate
15 FAILURE_HANDLING = STOP_ON_FAILURE
16

17 CALL TestCase "Recov - EndDeal Total"

25
Implementasi End-to-End Automation..., Kyla Arynda Salsabila, Universitas Multimedia Nusantara



18 PARAMS:
19 dealxx = dealxx
20 FAILURE_HANDLING = STOP_ON_FAILURE
21

22 CALL TestCase "Recov"
23 PARAMS:
24 ProcessNo = ProcessNo
25 requestDtTime = businessDate
26 FAILURE_HANDLING = STOP_ON_FAILURE
27

28 CALL TestCase "Update Contract Status to EXP"
29 PARAMS:
30 AgrmntNo = ""
31 Code = GlobalVariable.Key
32 FAILURE_HANDLING = STOP_ON_FAILURE
33

34 END
Kode 3.4: Pseudocode contoh tahap pemanggilan test case E2E

3. Pelaksanaan Automated Process (jika diperlukan)
Menjalankan proses siklus automatisasi sesuai kebutuhan logika bisnis pada
skenario tertentu. Proses pada Kode 3.5 ini adalah proses otomasi secara API
sesuai kebutuhan skenario. Berikut adalah contoh cara pemanggilannya.

1

2 BEGIN
3 # Menunggu proses berjalan
4 CALL checkStat.waitIsProcesRun("1")
5

6 # Menunggu proses selesai
7 CALL checkStat.waitIsProcessRun("0")
8

9 # Memanggil Test Case untuk API Otomatisasi
10 CALL TestCase "API otomatisasi proses"
11 PARAMETERS = {}
12 FAILURE_HANDLING = STOP_ON_FAILURE
13

14 # Memanggil Test Case untuk API lanjutan
otomastisasi proses

15 CALL TestCase "API otomatisasi proses"
16 PARAMETERS = {}
17 FAILURE_HANDLING = STOP_ON_FAILURE
18

19 END
Kode 3.5: Pseudocode pemanggilan automated process

4. Validasi komponen terkait
Memverifikasi hasil proses pada sisi proses, transaksi, atau modul pendukung

26
Implementasi End-to-End Automation..., Kyla Arynda Salsabila, Universitas Multimedia Nusantara



lainnya untuk memastikan keakuratan data. Berikut adalah contoh format
validasi jurnal pada Kode 3.6.

1 BEGIN
2 LOAD json data from GlobalVariable.payment
3 EXTRACT PaXX
4 EXTRACT RcvXX and AllocXX as decimal values
5

6 WAIT until validation appears for PayRcvXX
7

8 RETRIEVE actual validation rows by PayRcvXX
9

10 COMPUTE valueDate and postingDate using
business date

11

12 PREPARE expected journal rows:
13 ROW 1:
14 payAllocCode = "-"
15 amount = RcvXX
16 DebOrCred = "DEBET"
17 officeCode = Global.offCode
18 postingDate = computed postDate
19 valueDate = computed valueDate
20 originCurrCode = ""
21

22 ROW 2:
23 payAllocCode = "PRE_XX"
24 amount = AllocationXX
25 DebOrCred = "CREDIT"
26 officeCode = Global.offCode
27 postingDate = computed postDate
28 valueDate = computed valueDate
29 originCurrCode = ""
30

31 ASSERT actual rows match expected rows
32

33 END
Kode 3.6: Pseudocode validasi proses dari hasil API payment

5. Penambahan konfigurasi atau settings tambahan
Menambahkan konfigurasi atau pengaturan tambahan apabila dibutuhkan
untuk penyelesaian skenario pengujian. Proses ini biasanya berupa
pengaturan tambahan selama proses testing berlangsung seperti pada Kode
3.7.

1

2 BEGIN
3 LOG "Initialize additional configuration

settings"
4

27
Implementasi End-to-End Automation..., Kyla Arynda Salsabila, Universitas Multimedia Nusantara



5 // Setting 1: Update Option
6 CALL db.updateSetting("X", "XX_XX")
7 EXPECT configuration updated successfully
8

9 // Setting 2: Disable Auto Allocation Feature
10 CALL db.updateSetting("0", "AUTO_XX")
11 EXPECT flag correctly stored in system
12

13 // Setting 3: Set Maximum Retry for Automation
Process

14 CALL db.updateSetting("1", "MAX_RETRY")
15 VERIFY configuration applies
16

17 LOG "All additional settings applied
successfully"

18

19 END
Kode 3.7: Pseudocode tambahan pengaturan konfigurasi

Setelah test case dibuat, dilakukan proses testing dalam tahap development
untuk memastikan script berjalan sesuai desain. Jika hasilnya sudah valid,
engineer membuat pull request untuk dilakukan review dan integrasi. Bila
ditemukan kebutuhan perbaikan atau optimasi, dilakukan proses enhancement
sebelum disetujui untuk masuk ke tahap selanjutnya. Berikut adalah contoh salah
satu test case end-to-end secara lengkap pada Kode 3.8 dari generate data hingga
tahap akhir agreement.

1

2 TEST CASE: End-to-End Financial Flow
3

4 BEGIN
5

6 INITIALIZE helper classes:
7 jsonAction = ValidateSchemaJson
8 checkStat = CheckStatus
9 db = db

10 assertJournal = JournalAssertion
11 dbJournal = Journal
12 dateUtils = DateUtils
13

14 FETCH business date from DB
15 CONVERT business date into required format
16

17 CALL TestCase "Activation Data"
18 params = {}
19

20 APPLY additional system settings
21 db.updateGeneralSetting("x", "xx_XX")

28
Implementasi End-to-End Automation..., Kyla Arynda Salsabila, Universitas Multimedia Nusantara



22

23 RUN Automated multiple cycles:
24 WAIT until process starts (flag = ’1’)
25 WAIT until process ends (flag = ’0’)
26

27

28 LOAD number activation result from Global Variable
29 EXTRACT UniqueNo
30

31 WAIT until UniqueNo data appears in mirror table
32

33 FETCH recognized amounts
34 CALCULATE:
35 xxAfter = xxInterest - totalRecog
36 xxGross = xxInterest + xxPrincipal
37

38 CALL TestCase "Submit Non Process"
39

40 LOAD NonAccrual response
41 EXTRACT nonAccrualXX
42

43 WAIT for validation posting for nonACNo
44

45 FETCH actual validation rows
46 PREPARE expected journal rows (ARXX , ARX, UCI,

OTHER)
47 ASSERT actual vs expected using assertJournal
48

49 CALL TestCase "Request Deactivation"
50 params = { UniqueNo , requestDtTime =

businessDate }
51

52 LOAD cutOff response
53 EXTRACT Trx
54

55 WAIT for posting for Trx
56

57 FETCH DB cut off amounts (Amt, xxAmt , xxxAmt)
58 PREPARE expected journal rows
59 ASSERT actual vs expected
60

61 CALL TestCase "Payment Trx"
62 params = { RcvAmt , UniqueNo ,

RefPaymentAllocCode = PRE_XX , AllocAmt }
63

64 LOAD payment result
65 EXTRACT PayRcvNo
66

67 WAIT for journal posting for PayRcvNo

29
Implementasi End-to-End Automation..., Kyla Arynda Salsabila, Universitas Multimedia Nusantara



68

69 PREPARE expected journal rows:
70 DEBET "-" for RAmt
71 CREDIT "PRE_XX" for AllAmt
72 ASSERT actual vs expected
73

74 WAIT for UniqueNo mirror replication to Recovery
75

76 CALL TestCase "Deal Amount"
77 params = { dealAmt = ntfAmt / 2 }
78

79 LOAD deal amount response
80 EXTRACT trxNoDealXX
81

82 WAIT for journal posting
83

84 PREPARE expected journal rows:
85 DEBET PREPAID
86 CREDIT OTHALXX
87 ASSERT actual vs expected
88

89 CALL TestCase "Debt Forgiveness"
90 params = { uniqueNo , requestDtTime =

businessDate }
91

92 CALL TestCase "Update Contract Stat Code to Exp"
93 params = { uniqueNo , Code = Key }
94

95 END

Kode 3.8: Pseudocode End-to-End Test Flow

Pseudocode diatas menggambarkan salah satu alur lengkap pengujian end-
to-end pada proses finansial di sistem CONFINS, dimulai dari inisialisasi seluruh
kebutuhan yang diperlukan untuk validasi JSON, pengecekan status, akses database,
hingga verifikasi jurnal. Setelah diinisialisasi, sistem mengambil business date
langsung dari database dan mengubahnya ke format yang dibutuhkan untuk proses
transaksi.

Pengujian diawali dengan menjalankan test case untuk mempersiapkan data
awal. Setelah itu dilakukan pengaturan tambahan jika dibutuhkan sesuai kebutuhan
skenario. Tahap berikutnya adalah menjalankan siklus aktualisasi API untuk
simulasi end of day yang dibutuhkan oleh rangkaian skenario sampai benar-benar
selesai.

Ketika data aktivasi agreement sudah tersedia, nomor kontrak diambil dari
global variable dan ditunggu hingga mirror table kepada seluruh database selesai.

30
Implementasi End-to-End Automation..., Kyla Arynda Salsabila, Universitas Multimedia Nusantara



Kemudian recognized interest dihitung ulang karena menjadi dasar untuk proses
API selanjutnya. Setelah API Non Accrual dipanggil, nomor transaksinya diambil
lalu diverifikasi jurnalnya dengan membandingkan nilai aktual dari database dengan
jurnal yang seharusnya terbentuk, seimbang antara credit dan debitnya.

Proses kemudian dilanjutkan dengan tahap request deactivation hingga
pembentukan assertasi yang juga divalidasi. Setelah selesai, dilakukan proses
pembayaran terkahir yang membentuk validasi penerimaan pembayaran dan
kembali divalidasi komponennya. Ketika agreement sudah tercermin ke modul
akhir pada recovery, pengujian berlanjut pada proses API Deal Amount yang juga
menghasilkan jurnal. Jurnal ini dicek kembali apakah sesuai rule yang sudah
ditetapkan. Setelah seluruh alur recovery selesai, dilakukan proses akhir untuk
Debt Forgiveness dan akhirnya perubahan status contract menjadi expired sebagai
langkah penutup dalam end-to-end flow tersebut.

Penjelasan ini mencerminkan bahwa keseluruhan alur pseudocode bertujuan
memastikan setiap proses bisnis, mulai dari aktivasi, non accrual, write off,
payment, recovery, hingga update status, berjalan sesuai aturan bisnis dan seluruh
jurnal yang dihasilkan benar adanya dari sisi backend.

3.3.3 Proses Testing End-to-End API Automation Testing pada Produk Core
Multifinance System (CONFINS)

Proses testing dalam skrip end-to-end melewati beberapa tahap dan juga
beberapa proses pengecekan, dalam testing API digunakan test suite dan test

suite collection untuk melakukan pengujian agar bisa menampilkan bentuk report.
Struktur isi test suite collection adalah seperti berikut.

31
Implementasi End-to-End Automation..., Kyla Arynda Salsabila, Universitas Multimedia Nusantara



Gambar 3.6. Struktur isi test suite collection

Gambar 3.6 di atas menggambarkan struktur test suite collection yang
digunakan dalam proses pengujian otomatis. Di dalam satu test suite collection

terdapat beberapa test suite, dan setiap test suite terdiri dari sejumlah test case

yang mewakili skenario pengujian tertentu. Setiap test case kemudian berisi test

script yang menjalankan langkah–langkah pengujian secara otomatis. Dengan
struktur bertingkat ini, pengujian dapat diatur dengan eksekusi secara paralel
maupun berurutan, serta memudahkan pembuatan laporan yang komprehensif untuk
keseluruhan rangkaian tes.

A Test Suite

Sesuai Gambar 3.6, di dalam test suite terdapat test case yang dapat
dipanggil satu atau lebih sehingga dapat dijalankan secara bersamaan. Sebuah test

suite pada dasarnya merupakan kumpulan dari beberapa test case. Setiap test case

juga dapat menjadi bagian dari test suite yang berbeda, tergantung pada kebutuhan
pengujian. Pengelompokan test case ke dalam sebuah test suite biasanya dilakukan
berdasarkan logika tertentu, komponen tertentu, atau fitur/aturan bisnis. Selain
itu, sebuah test suite dapat digunakan secara dinamis untuk memastikan cakupan
terhadap berbagai kebutuhan atau requirements yang harus divalidasi dalam proses
pengujian. Pada pengujian CONFINS, test suite digunakan untuk mengelompokan
test case end-to-end berdasarkan skenario tertentu, agar mendapatkan report yang

32
Implementasi End-to-End Automation..., Kyla Arynda Salsabila, Universitas Multimedia Nusantara



bisa dianalisa setelahnya. Berikut adalah contoh tampilan test suite yang digunakan
pada Gambar 3.7.

Gambar 3.7. Tampilan test suite collection

Didalam sebuah test suite, ada beberapa fitur yang dapat dilakukan
untuk mempermudah pengujian dan mengelola seluruh skenario E2E dalam satu
wadah eksekusi. Pada bagian atas terdapat konfigurasi execution information,
untukmengatur implicit timeout apakah memakai default atau mengatur sendiri
batas waktu tunggu element, eksekusi yang gagal juga dapat diulang secara otomatis
sesuai dengan kebutuhan testing, baik langsung setelah gagal atau setelah seluruh
test selesai, sehingga cocok untuk meminimalkan false fail akibat flakiness.

Panel utama di bawahnya menampilkan daftar test case yang termasuk
dalam test suite beserta informasi seperti ID test case, status, hasil eksekusi terakhir,
dan rata-rata durasi runtime, sehingga memudahkan monitoring performa dan
stabilitas test. Secara keseluruhan, tampilan ini memungkinkan untuk mengatur
urutan testing, menjalankan test secara batch, memantau stabilitas test, melakukan
retry otomatis, dan melihat hasil riwayat running skrip.

B Test Suite Collection

Setelah test case dimasukkan ke dalam test suite, setiap test suite akan
menghasilkan report secara individu. Namun, untuk dapat melihat hasil pengujian
sebagai satu kesatuan yang terintegrasi, beberapa test suite kemudian digabungkan

33
Implementasi End-to-End Automation..., Kyla Arynda Salsabila, Universitas Multimedia Nusantara



ke dalam sebuah test suite collection. Dengan menggunakan test suite collection,
proses eksekusi dapat dijalankan secara berurutan maupun parallel, sehingga
seluruh alur pengujian end-to-end dapat dievaluasi secara menyeluruh. Selain itu,
test suite collection memungkinkan pengelolaan skenario pengujian yang lebih
kompleks serta mempermudah pembuatan report yang komprehensif, mencakup
semua test suite yang termasuk di dalamnya formatnya seperti pada Gambar 3.8.

Gambar 3.8. Tampilan test suite collection

Di dalam sebuah test suite collection terdapat beberapa opsi untuk
menjalankan proses eksekusi. Skrip dapat dijalankan secara parallel maupun
sequence dengan melakukan pengaturan pada parameter max concurrency instance

dan delay between instance. Pengaturan ini memungkinkan penyesuaian terkait
jumlah proses yang dapat berjalan bersamaan serta jeda waktu antar eksekusi,
sehingga alur pengujian dapat disesuaikan dengan kebutuhan dan kapasitas
environment pengujian. Berikut adalah fitur test suite collection secara lebih
lengkap pada Tabel 3.3.

34
Implementasi End-to-End Automation..., Kyla Arynda Salsabila, Universitas Multimedia Nusantara



Tabel 3.3. Fitur pada Test Suite Collection untuk API Testing

Fitur Deskripsi
Run with Digunakan untuk memilih environment yang akan digunakan

dalam menjalankan test suite, seperti Chrome, Firefox, atau API

environment yang terkait dengan jenis pengujian.

Execution Mode Kolom ini memungkinkan pengguna menentukan cara
menjalankan proses pengujian. Terdapat dua opsi utama,
yaitu sequential dan parallel. Pada mode sequential, seluruh test

suite dijalankan satu per satu secara berurutan. Sementara itu,
pada mode parallel, beberapa test suite dapat dijalankan secara
bersamaan. Mode ini juga dapat dikonfigurasi dengan parameter
seperti max concurrency instance dan delay between instance

untuk mengatur jumlah proses paralel dan jeda antar eksekusi.

Profile Mengatur execution profile yang berisi nilai global variabel untuk
setiap proses eksekusi test suite, sehingga lebih mudah untuk
berpindah environment / server pengujian dengan nilai berbeda,
seperti perubahan base URL. Penggunaan execution profile

memungkinkan konsistensi data uji, pengaturan environment,
serta fleksibilitas dalam mengeksekusi skenario yang sama
dengan konfigurasi yang berbeda.

Execute Digunakan untuk memilih test suite mana saja yang akan
dijalankan dalam test suite collection. Setelah dipilih, seluruh
test suite tersebut dapat dieksekusi sesuai konfigurasi yang telah
ditentukan. Fitur ini memastikan hanya test suite yang relevan
saja yang dijalankan dalam satu rangkaian eksekusi.

Pada implementasinya di environment CONFINS, beberapa proses
pengujian dijalankan secara parallel untuk meningkatkan efisiensi waktu serta
mengoptimalkan pemanggilan API EOD yang dapat mengubah tengat waktu pada
kontrak. Dengan metode ini, beberapa agreement dapat diproses secara bersamaan
dalam rentang waktu yang sama sesuai dengan grouping skenario yang telah
ditetapkan sebelumnya. Setiap skenario atau rangkaian API yang dijalankan
memiliki struktur eksekusi yang serupa sebagaimana digambarkan pada Gambar
3.8. Melalui pendekatan parallel execution ini, hasil keseluruhan proses dapat
dievaluasi lebih cepat dan lebih komprehensif melalui testing report, sehingga

35
Implementasi End-to-End Automation..., Kyla Arynda Salsabila, Universitas Multimedia Nusantara



identifikasi keberhasilan ataupun kegagalan langkah pengujian dapat dilakukan
secara lebih efektif.

C Testing Report

Setelah proses testing dijalankan dalam test suite collection, katalon akan
mengerluarkan report yang dapat dianalisa atau dilihat kembali untuk memastikan
alur bisnis sudah sesuai dan tidak ada proses yang terlewatkan, berikut adalah
tampilan dari hasil testing report pada Gambar 3.9.

Gambar 3.9. Tampilan hasil testing report test suite collection

Pada Gambar 3.9 ditampilkan tampilan awal hasil report dari proses
pengujian. Pada halaman ini terdapat beberapa tautan yang mengarah pada report

untuk setiap test suite. Seluruh report tersebut dihasilkan secara otomatis oleh
Katalon dan dapat dibuka melalui browser untuk melihat detail hasil pengujian pada
masing-masing test suite. Kemudian dapat dilihat isi dari setiap hasil pengujian
seperti berikut.

36
Implementasi End-to-End Automation..., Kyla Arynda Salsabila, Universitas Multimedia Nusantara



Gambar 3.10. Tampilan hasil testing report test suite

Pada Gambar 3.10 ditampilkan isi report pada level test suite. Di dalamnya
terdapat daftar test case yang diuji, dan setiap test case menampilkan detail hasil
pengujian API. Melalui tampilan ini, dapat terlihat dengan jelas status eksekusi
setiap langkah pengujian, apakah berhasil atau mengalami kegagalan, sehingga
memudahkan dalam melakukan analisis hasil testing. Berikut adalah tampilan
secara detail isi dari laporan level test case pada Gambar 3.11.

Gambar 3.11. Tampilan hasil testing report test case

Didalam report yang dihasilkan, setiap langkah eksekusi dapat diamati
secara detail sehingga memudahkan pengecekan apakah seluruh proses berjalan
sesuai alur yang diharapkan. Informasi seperti hasil respons API, nilai yang
di asertasi, serta status setiap tahapan ditampilkan secara jelas sehingga dapat

37
Implementasi End-to-End Automation..., Kyla Arynda Salsabila, Universitas Multimedia Nusantara



memastikan bahwa perilaku sistem sudah sesuai dengan kebutuhan skenario dan
cepat mengidentifikasi apabila terjadi penyimpangan atau kegagalan. Sebagai
perbandingan, berikut adalah contoh tampilan test suite yang memiliki kegagalan
pada Gambar 3.12.

Gambar 3.12. Tampilan hasil testing report test case failed case

Test report menampilkan lima jenis hasil eksekusi, yaitu passed, failed,
error (misalnya karena masalah koneksi), incomplete, dan skipped. Pada contoh di
atas terlihat bahwa beberapa tahap berstatus gagal karena terdapat ketidaksesuaian
pada proses validasi di sisi backend. Melalui report ini, QE dapat langsung
mengidentifikasi langkah mana yang tidak memenuhi kebutuhan skenario, apakah
karena nilai yang tidak sesuai, respons API yang salah, atau kegagalan proses
pada sistem. Dengan demikian, report memudahkan proses analisis dan perbaikan
karena setiap step dieksekusi secara terperinci dan ditampilkan lengkap beserta
pesan kegagalannya.

3.4 Kendala dan Solusi yang Ditemukan

Selama periode kerja magang track kedua di PT Adicipta Inovasi Teknologi
sebagai Quality Engineer atau QA Automation Engineer, terdapat beberapa kendala
yang muncul selama proses development dan testing sebagai berikut:

1. Terjadi perubahan kebutuhan (requirement) yang cukup dinamis selama
proses testing, sehingga beberapa test case harus diperbarui agar tetap sesuai
dengan alur bisnis dan logika sistem terbaru.

38
Implementasi End-to-End Automation..., Kyla Arynda Salsabila, Universitas Multimedia Nusantara



2. Ditemukan kebutuhan untuk melakukan eksplorasi tambahan pada pengujian
skenario tertentu, terutama ketika diperlukan mekanisme khusus seperti
perulangan (looping), penyimpanan data JSON dengan penanda waktu
(timestamp), atau trik tertentu agar data antar proses tidak saling tertukar,
khususnya saat menjalankan beberapa skenario yang bersifat pararel.

Melalui kendala tersebut, dilakukan beberapa solusi yang efektif sebagai berikut:

1. Untuk menghadapi perubahan requirement, setiap pembaruan dilakukan
sesuai prosedur. Pendekatan test case yang bersifat reusable juga
dimanfaatkan, sehingga perubahan cukup diterapkan pada modul tertentu
tanpa perlu memodifikasi keseluruhan rangkaian skenario.

2. Pada skenario yang membutuhkan penanganan khusus, digunakan
pendekatan dynamic data handling, seperti menambahkan timestamp
pada penyimpanan JSON, menggunakan variable global sementara, atau
membangun fungsi utilitas yang mampu mengeksekusi proses berulang
secara otomatis agar data tetap konsisten dan tidak tertukar antar proses.

39
Implementasi End-to-End Automation..., Kyla Arynda Salsabila, Universitas Multimedia Nusantara


	BAB 3 Pelaksanaan Kerja Magang
	3.1 Kedudukan dan Koordinasi
	3.2 Tugas yang Dilakukan
	3.3 Uraian Pelaksanaan Magang
	3.3.1 Konsep dan Struktur Pengujian End-to-End pada Automation Testing
	3.3.2 Development End-to-End API Automation Testing pada Produk Core Multifinance System (CONFINS) 
	3.3.3 Proses Testing End-to-End API Automation Testing pada Produk Core Multifinance System (CONFINS) 

	3.4 Kendala dan Solusi yang Ditemukan


