

DAFTAR PUSTAKA

- [1] S. S. Jha and Z. Topol, “Adapting to Artificial Intelligence: Radiologists and Pathologists as Information Specialists,” *JAMA*, vol. 316, no. 22, pp. 2353–2354, 2016.
- [2] B. A. Molitoris and P. Dagher, “Renal pathophysiology: Core principles,” *Clinical Journal of the American Society of Nephrology*, vol. 13, no. 3, pp. 336–345, 2018.
- [3] J. J. Hsieh et al., “Renal cell carcinoma,” *Nature Reviews Disease Primers*, vol. 3, 17009, 2017.
- [4] S. Silverman, “Cystic Diseases of the Kidney,” *AJR American Journal of Roentgenology*, vol. 207, no. 6, pp. 1184–1193, 2016.
- [5] J. M. Brady and R. P. Looney, “Challenges and opportunities in medical image analysis,” *Philosophical Transactions of the Royal Society A*, vol. 366, no. 1873, pp. 2323–2339, 2008.
- [6] Heller, N., et al. (2019). “The KiTS19 Challenge: Kidney Tumor Segmentation 2019 Dataset.” *arXiv preprint arXiv:1904.00445*.
- [7] N. Heller et al., “The KiTS19 Challenge: Automatic Kidney Tumor Segmentation,” *Medical Image Analysis*, vol. 67, p. 101821, 2021.
- [8] B. K. Pederson et al., “Time and Expertise Required for Manual Segmentation of Kidney Tumors in CT Images,” *Journal of Digital Imaging*, vol. 33, no. 2, pp. 302–310, 2020.
- [9] N. Heller et al., “The KiTS19 Challenge: Automatic Kidney Tumor Segmentation,” *Medical Image Analysis*, vol. 67, p. 101821, 2021.
- [10] C. Li et al., “A Multi-Task Framework for Kidney, Tumor, and Cyst Segmentation in Abdominal CT,” *IEEE Transactions on Medical Imaging*, vol. 41, no. 6, pp. 1414–1426, 2022.

- [11] O. Ronneberger et al., “U-Net: Convolutional Networks for Biomedical Image Segmentation,” *MICCAI*, 2015.
- [12] Z. Zhang, X. Liu, and Y. Wang, “Road Extraction by Deep Residual U-Net,” *IEEE Geoscience and Remote Sensing Letters*, vol. 15, no. 5, pp. 749–753, 2018.
- [13] S. Jha et al., “ResUNet++: An Advanced Architecture for Medical Image Segmentation,” *ISIC Skin Lesion Analysis Workshop*, 2019.
- [14] G. Litjens et al., “Deep learning in radiology: an overview of the concepts and a survey of the state of the art with focus on MRI,” European Society of Radiology, 2017.
- [15] W. Zhao, D. Jiang, J. Peña Queralta, T. Westerlund, “Multi-Scale Supervised 3D U-Net for Kidneys and Kidney Tumor Segmentation,” arXiv:2004.08108, 2020.
- [16] J. Wen, Z. Li, Z. Shen, Y. Zheng, and S. Zheng, “Squeeze-and-Excitation Encoder-Decoder Network for Kidney and Kidney Tumor Segmentation in CT Images,” in *Proc. Int. Conf. Medical Image Computing and Computer-Assisted Intervention (MICCAI)*, 2021, pp. 1–12.
- [17] Lin, C., Fu, R., and Zheng, S., “Kidney and Kidney Tumor Segmentation Using a Two-Stage Cascade Framework,” in *Proc. MICCAI Kidney Tumor Segmentation Challenge (KiTS21)*, 2021, pp. 1–12.
- [18] Sun, P., Mo, Z., Hu, F., et al., “Segmentation of kidney mass using AgDenseU-Net 2.5D model,” *Computers in Biology and Medicine*, vol. 150, p. 106223, Nov. 2022.
- [19] P. Sun, Z. Mo, F. Hu, X. Song, T. Mo, B. Yu, Y. Zhang, and Z. Chen, “2.5D MFFAU-Net: a convolutional neural network for kidney segmentation,” *BMC Medical Informatics and Decision Making*, vol. 23, no. 92, 2023, doi: 10.1186/s12911-023-02189-1.

- [20] H. G. Fogo and M. R. Anders, “Chronic kidney disease: Diagnosis and classification,” *The Lancet*, vol. 398, no. 10298, pp. 786–802, 2021.
- [21] A. Levin, J. Tonelli, and M. Bonventre, “Global kidney health: A call to action,” *Kidney International*, vol. 95, no. 2, pp. 246–260, 2019.
- [22] H. Moch et al., “The 2022 WHO Classification of Tumours of the Urinary System and Male Genital Organs—Part A: Renal Tumours,” *European Urology*, vol. 82, no. 3, pp. 237–275, 2022.
- [23] J. J. Smith, K. Rowe, and M. C. Patel, “Imaging of kidney cysts and diagnosis using Bosniak classification,” *Radiology*, vol. 300, no. 1, pp. 10–25, 2021.
- [24] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” *Nature*, vol. 521, pp. 436–444, 2015.
- [25] G. Litjens et al., “A survey on deep learning in medical image analysis,” *Medical Image Analysis*, vol. 42, pp. 60–88, 2017.
- [26] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks for biomedical image segmentation,” in *Proc. MICCAI*, 2015, pp. 234–241.
- [27] M. H. Hesamian, W. Jia, X. He, and P. Kennedy, “Deep learning techniques for medical image segmentation: Achievements and challenges,” *Journal of Digital Imaging*, vol. 32, no. 4, pp. 582–596, 2019.
- [28] Z. Zhou et al., “UNet++: A nested U-Net architecture for medical image segmentation,” in *Proc. DLMIA*, pp. 3–11, 2018.
- [29] Z. Zhou, M. R. Siddiquee, N. Tajbakhsh, and J. Liang, “UNet++: Redesigning skip connections to exploit multiscale features in image segmentation,” *IEEE Trans. Med. Imaging*, vol. 39, no. 6, pp. 1856–1867, 2020.
- [30] Z. Gu, J. Cheng, H. Fu, K. Zhou, H. Hao, Y. Zhao, T. Zhang, S. Gao, and J. Liu, “CE-Net: Context Encoder Network for 2D Medical Image Segmentation,”

IEEE Transactions on Medical Imaging, vol. 38, no. 10, pp. 2281–2292, 2019.

- [31] D. Jha, P. H. Smedsrud, M. A. Riegler, D. Johansen, T. de Lange, P. Halvorsen, and H. D. Johansen, “ResUNet++: An advanced architecture for medical image segmentation,” *in Proc. 2019 Int. Symp. ISM*, 2019.
- [32] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs,” *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 40, no. 4, pp. 834–848, 2018.
- [33] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” *Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 770–778, 2016.
- [34] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual transformations for deep neural networks (ResNeXt),” *Proc. CVPR*, 2017.
- [35] K. He et al., "ResNet in Medical Image Analysis: A Comprehensive Review," *IEEE Reviews in Biomedical Engineering*, vol. 16, pp. 156-170, 2023.
- [36] N. A. Al-Humaidan and M. Prince, “A Classification of Arab Ethnicity Based on Face Image using Deep Learning Approach,” *IEEE Access*, vol. 9, pp. 53875–53888, 2021, doi: 10.1109/ACCESS.2021.3069022.]
- [37] F. Chollet et al., "Python for Deep Learning in Medical Imaging: Best Practices and Case Studies," *IEEE Transactions on Medical Imaging*, vol. 40, no. 1, pp. 1-12, 2021.

- [38] R. R. Selvaraju et al., "Optimizing Python-based Deep Learning Pipelines for Medical Image Analysis," *IEEE Journal of Biomedical and Health Informatics*, vol. 26, no. 3, pp. 1023-1033, 2022.
- [39] M. Abadi et al., "TensorFlow-Keras for Medical Image Analysis: Performance Optimization Techniques," *IEEE Access*, vol. 9, pp. 12345-12356, 2021.]
- [40] C. R. Harris et al., "Array programming with NumPy," *Nature*, vol. 585, no. 7825, pp. 357–362, Sep. 2020, doi: 10.1038/s41586-020-2649-2..
- [41] R. Dhanday, J. Pearson, and C. Willis, "Implementation of the RX algorithm in TensorFlow for high-performance computing," *SPIE Remote Sensing*, p. 41, Aug. 2023, doi: 10.11117/12.2680369
- [42] J. Unpingco, "Visualizing data," in *Springer eBooks*, 2021, pp. 157–259. doi: 10.1007/978-3-030-68952-0_6.
- [43] I. Ullah, F. Ali, B. Shah, S. El-Sappagh, T. Abuhmed, and S. H. Park, "A deep learning based dual encoder–decoder framework for anatomical structure segmentation in chest X-ray images," *Scientific Reports*, vol. 13, no. 1, Jan. 2023, doi: 10.1038/s41598-023-27815-w.
- [44] P. Mudjirahardjo, N. Rahmadwati, and V. Firmansyah, "Building Detection Using Convolutional Neural Network (CNN) U-Net Architecture on Satellite Imagery," *12th Electrical Power, Electronics, Communications, Controls and Informatics Seminar (EECCIS)*, pp. 214–219, Oct. 2024, doi: 10.1109/eeccis62037.2024.10839937.
- [45] "Segmentation For Object-Based Image Analysis (OBIA) Using Tensorflow Framework", AMAR, vol. 3, no. 2, pp. 54–71, Feb. 2025, doi: 10.63075/s4gfe370
- [46] A. Paszke et al., "PyTorch: An imperative style, high-performance deep learning library," *Advances in Neural Information Processing Systems (NeurIPS)*, 2019.

- [47]. T. Carneiro, R. Viana, L. N. Medeiros, J. D. B. Albuquerque, and T. I. Ren, “Deep Learning in Cloud Platforms: A Survey,” *IEEE Access*, vol. 8, pp. 191071–191086, 2020
- [48] A. Rianti, N. W. Abdul Majid, and A. Fauzi, “CRISP-DM: Metodologi Proyek Data Science,” *Prosiding Seminar Nasional Teknologi Informasi dan Bisnis*, 2021.
- [49] A. Azevedo and M. F. Santos, “KDD, SEMMA and CRISP-DM: a parallel overview,” *IADIS International Conference on Internet Technologies & Society*, 2008.
- [50] N. Hidayati, J. Suntoro, and G. Guntoro Setiaji, “Perbandingan Metodologi CRISP-DM dan SEMMA dalam Prediksi Kualitas Perangkat Lunak,” *Jurnal Sains dan Informatika*, vol. 6, no. 2, 2021.
- [51] C. Shearer, "The CRISP-DM model: The new blueprint for data mining," *Journal of Data Warehousing*, vol. 5, no. 4, pp. 13–22, 2000.
- [52] F. Chollet, *Deep Learning with Python*, 2nd ed. Shelter Island, NY, USA: Manning Publications, 2021.
- [53] . Paszke et al., “PyTorch: An Imperative Style, High-Performance Deep Learning Library,” in *Advances in Neural Information Processing Systems*, vol. 32, 2019, pp. 8024–8035.
- [54] “Why and how to use Google Colab,” TechTarget, 2025.