

19
Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

BAB III

PELAKSANAAN KERJA

3.1 Kedudukan dan Koordinasi

3.1.1 Kedudukan

Pelaksanaan program Career Acceleration Program bertempat di

Dinas Corporate Strategy & Digital Transformation (TD) PT GMF AeroAsia

Tbk. Unit ini memegang peranan krusial sebagai pusat inovasi dan digitalisasi

bagi seluruh proses bisnis MRO perusahaan. Dinas TD bertanggung jawab

langsung kepada Direktur Utama (Chief Executive Officer), yang menegaskan

bahwa setiap inisiatif teknologi informasi merupakan prioritas strategis

korporasi.

Dalam struktur internal Dinas TD, terdapat pembagian fungsi yang

jelas guna mendukung efektivitas pengelolaan sumber daya manusia:

a. LCU (Learning Centre Unit)

Berfungsi sebagai unit pengelola administratif yang menjembatani

hubungan antara mahasiswa magang dengan kebijakan korporat. LCU

bertanggung jawab atas proses orientasi, pemantauan kehadiran harian,

serta pemenuhan standar jam kerja yang telah ditetapkan oleh

universitas dan perusahaan.

b. Unit TDI-2 (Digitalization & System Development):

Merupakan unit teknis di mana mahasiswa magang ditempatkan

secara operasional. Unit ini bertanggung jawab atas pengembangan,

integrasi, dan pemeliharaan perangkat lunak internal. Fokus utama di

unit ini adalah transformasi proses bisnis manual ke dalam ekosistem

digital berbasis web dan aplikasi.

Kedudukan fungsional mahasiswa magang adalah sebagai Backend

Developer Intern yang bertugas melakukan perancangan layanan API

menggunakan framework NestJS dan pengelolaan basis data PostgreSQL.

20
Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

Posisi ini berada di bawah supervisi Pembimbing Lapangan terkait

manajemen beban kerja dan Mentor Teknis terkait kualitas kode serta

arsitektur sistem seperti yang terlihat pada Gambar 3.1.

Gambar 3.1 Struktur Organisasi Unit Kerja

3.1.2 Koordinasi

Alur koordinasi pada Gambar 3.2 dirancang untuk memastikan setiap

tahapan pengembangan sistem terdokumentasi dengan baik dan selaras

dengan kebutuhan unit bisnis. Koordinasi dilakukan melalui dua jalur utama:

1. Koordinasi Administratif Dilakukan bersama pihak LCU untuk

memastikan seluruh kewajiban administratif terpenuhi, termasuk

pengisian Daily Task sebagai bukti aktivitas harian. Koordinasi ini

memastikan bahwa mahasiswa magang memahami budaya kerja serta

regulasi keselamatan kerja yang berlaku di lingkungan GMF AeroAsia.

21
Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

2. Koordinasi Teknis dan Operasional Koordinasi ini dilakukan secara

intensif di unit TDI-2 menggunakan beberapa kanal komunikasi

profesional:

a. Briefing Rutin: Dilakukan untuk menentukan prioritas fitur yang

akan dikembangkan, seperti modul Bizcase atau optimalisasi tabel

Master.

b. Diskusi Teknis dan Code Review: Dilakukan melalui pertemuan

tatap muka maupun melalui fitur komentar pada repositori

(Git/Bitbucket). Mentor teknis akan memberikan evaluasi terhadap

efisiensi logika, penanganan error, serta keamanan API.

c. Validasi Dokumentasi: Setiap endpoint API yang telah dibangun

dikoordinasikan melalui platform Swagger. Hal ini dilakukan untuk

memastikan tim frontend atau unit lain dapat mengonsumsi data API

secara akurat sesuai kontrak data yang disepakati.

Gambar 3.2 Bagan Alur Koordinasi Pekerjaan

3.2 Tugas yang Dilakukan

Seluruh aktivitas pengerjaan selama masa magang didokumentasikan untuk

memantau perkembangan proyek dan pemenuhan target kompetensi. Berikut

adalah rincian tugas yang telah diselesaikan:

22
Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

Tabel 3.1 Detail Pekerjaan yang Dilakukan

No. Proyek Uraian / Keterangan

1
Proyek 1: Pengembangan

Arsitektur Data Terintegrasi

Inisiasi arsitektur modular NestJS, perancangan skema

basis data modul Bizcase, serta pemetaan relasi entitas

menggunakan Prisma ORM.

2

Proyek 2: Implementasi Sistem

Validasi Keamanan melalui

Custom Decorator (No-HTML)

Pengembangan lapisan keamanan input menggunakan

Regular Expression (Regex) untuk mencegah serangan

Cross-Site Scripting (XSS) pada sistem.

3

Proyek 3: Optimalisasi

Dokumentasi API Interaktif

dengan Swagger UI

Penyusunan dokumentasi teknis OpenAPI dan

standardisasi kontrak data antar-modul guna mendukung

kolaborasi tim pengembang.

4

Proyek 4: Pengembangan

Logika Bisnis Modul Bizcase

(Financial Mapping)

Implementasi layanan API untuk pengolahan data

operasional dan finansial serta transformasi data dari

DTO ke dalam basis data PostgreSQL.

5

Proyek 5: Implementasi

Database Transaction dan

Audit Trail (Update V3)

Penerapan prisma.$transaction untuk menjamin

konsistensi data atomik serta otomatisasi pencatatan

jejak perubahan data pada sistem versi 3 (V3).

6

Proyek 6: Analisis Hasil

Pengujian Fungsional (Black-

box Testing)

Validasi fungsionalitas seluruh endpoint API

menggunakan Swagger UI dan Postman untuk

memastikan integritas data serta penanganan error.

3.3 Uraian Pelaksanaan Kerja

Bagian ini memaparkan rincian teknis mengenai pengerjaan proyek

pengembangan backend sistem manajemen proyek internal di PT GMF AeroAsia

Tbk. Fokus pengerjaan dilakukan menggunakan tech stack utama berupa NestJS

sebagai framework aplikasi, Prisma sebagai Object-Relational Mapping (ORM),

dan PostgreSQL sebagai sistem manajemen basis data.

Setiap proyek dijalankan mengikuti siklus pengembangan perangkat lunak

yang sistematis, mulai dari analisis kebutuhan, perancangan skema, hingga tahap

pengujian fungsional.

3.3.1 Proses Pelaksanaan

Berikut adalah rincian enam proyek utama yang mencakup proses

perancangan, implementasi, hingga tahap pengujian fungsional sistem. Tahap

pengembangan sistem dilakukan secara menyeluruh mulai dari tingkat basis

data. Fokus utama pengerjaan meliputi perancangan dan pembuatan modul-

modul database untuk kebutuhan Bizcase, yang mencakup pendefinisian

23
Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

skema relasional yang masif pada PostgreSQL melalui Prisma ORM. Selain

pembangunan struktur data, dilakukan pula pendefinisian sistem validasi

(validator) dari tahap awal pengembangan. Hal ini diwujudkan melalui

pembuatan custom decorator @NoHtml untuk menjamin integritas dan

keamanan setiap data yang masuk ke dalam sistem, memastikan bahwa

seluruh input telah melewati proses filter keamanan sebelum disimpan ke

dalam basis data.

3.3.1.1 Tahap Orientasi Teknis dan Pembelajaran Mandiri

Fase orientasi teknis dan adaptasi dijalankan pada awal masa

pelaksanaan Career Acceleration Program di unit TDI-2 PT GMF

AeroAsia Tbk sebagai persiapan sebelum terlibat langsung dalam

pengerjaan proyek sistem manajemen proyek internal. Pada tahap ini,

pengarahan diberikan oleh Pembimbing Lapangan untuk melakukan

pembelajaran mandiri melalui materi tutorial pada platform YouTube.

Materi yang dipelajari secara spesifik mencakup konsep-konsep dasar

pengembangan backend serta tech stack yang relevan dengan

kebutuhan operasional perusahaan.

Sebagai bentuk validasi terhadap hasil pembelajaran mandiri

tersebut, sesi evaluasi berkala dilaksanakan bersama mentor. Sesi ini

dilakukan melalui tanya jawab interaktif guna mendiskusikan tingkat

pemahaman terkait materi video yang telah ditonton. Proses tersebut

bertujuan untuk memastikan kesiapan landasan teoretis yang kuat

sebelum dilakukan implementasi logika pemrograman yang lebih

kompleks pada modul Bizcase maupun pengembangan Project versi

3 (V3).

3.3.1.2 Proyek 1: Pengembangan Arsitektur Data Terintegrasi

Proyek pertama ini merupakan fondasi paling krusial dalam

pengembangan sistem manajemen proyek internal di unit TDI-2 PT

GMF AeroAsia Tbk. Pengembangan ini difokuskan pada perancangan

dan implementasi arsitektur data untuk modul Bizcase, yang

24
Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

merupakan inti dari logika bisnis sistem untuk mengelola kelayakan

proyek dari sisi teknis dan finansial.

1. Analisis Relasi Data Analisis dan Perancangan Skema Basis

Data (Prisma ORM)

Mahasiswa magang melakukan perancangan skema basis

data yang melibatkan relasi one-to-many antara tabel master

dengan sub-entitas pada modul Bizcase. Sub-entitas ini mencakup

rincian teknis seperti Bizcase Efficiency, Bizcase Migration, serta

pemetaan kebutuhan infrastruktur (Infra Needs). Perancangan ini

sangat krusial agar setiap data finansial dan efisiensi yang diinput

dapat terelasi secara akurat ke entitas utama proyek.

Tahap awal pengerjaan dimulai dengan perancangan skema

basis data relasional menggunakan Prisma ORM. Mahasiswa

magang melakukan pemetaan kebutuhan bisnis ke dalam bentuk

model objek pada file schema.prisma. Model Bizcase dirancang

untuk memiliki struktur data yang sangat kompleks karena harus

mampu mengakomodasi berbagai parameter proyek yang bersifat

dinamis.

Dalam perancangannya, model ini dilengkapi dengan atribut

id sebagai primary key berbasis autoincrement serta uniqueId

yang menggunakan tipe data String dengan generator

gen_random_uuid() untuk keamanan akses API. Selain itu,

diimplementasikan kolom audit otomatis seperti createdAt dan

updatedAt guna memenuhi standar kepatuhan (compliance)

perusahaan. Cuplikan kode skema basis data tersebut dapat dilihat

pada Gambar 3.3 di bawah ini.

25
Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

Gambar 3.3 schema.prisma model Bizcase

2. Arsitektur Relasi Entitas dan Sub-Entitas

Karakteristik utama dari proyek ini adalah penanganan relasi

one-to-many yang sangat masif antara entitas Bizcase dengan

berbagai sub-entitas operasionalnya. Berdasarkan rancangan

teknis pada Gambar 3.3, model Bizcase bertindak sebagai entitas

induk yang menaungi berbagai sub-entitas seperti bcInfraNeeds

untuk kebutuhan infrastruktur, bcRisk untuk analisis risiko,

hingga bcCostEfficiency untuk pengolahan data efisiensi biaya.

Setiap relasi didefinisikan secara eksplisit menggunakan tipe

data array (misal: BcInfraNeeds[]), yang memungkinkan Prisma

26
Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

Client untuk melakukan nested query secara efisien. Integrasi ini

memastikan bahwa saat pengguna melakukan pembaruan pada

data utama, seluruh data pada entitas anak tetap sinkron dan

terjaga integritasnya.

3. Implementasi Struktur Folder Modular pada NestJS

Guna mendukung skalabilitas sistem, mahasiswa magang

menerapkan pola organisasi kode berbasis modular. Di dalam

direktori src/modules/bizcase, kode program dipecah menjadi

beberapa sub-modul yang merepresentasikan setiap sub-entitas

yang ada pada skema basis data. Struktur folder modular ini secara

visual dipaparkan dalam gambar berikut.

27
Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

Gambar 3.4 Struktur Folder Modular src/modules/bizcase

Penerapan pola pada Gambar 3.4 dirancang agar setiap

komponen fungsional memiliki tanggung jawab tunggal (Single

Responsibility Principle). Sebagai contoh, modul activity di dalam

bizcase memiliki sub-direktori dtos untuk validasi data masukan,

interfaces untuk pendefinisian kontrak data, serta file controller,

module, dan service yang berdiri sendiri. Pola ini mempermudah

tim pengembang di TDI-2 dalam melakukan debugging dan

pemeliharaan kode tanpa mengganggu fungsionalitas modul

lainnya.

28
Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

4. Manajemen Dependensi melalui Registry Module

Tahap akhir dari Proyek 1 adalah melakukan registrasi

seluruh komponen ke dalam BizcaseModule. File

bizcase.module.ts berperan sebagai pengatur lalu lintas

dependensi menggunakan teknik Dependency Injection.

Gambar 3.5 bizcase.module.ts

Berdasarkan implementasi pada Gambar 3.5, BizcaseService

dan PrismaService didaftarkan di dalam array providers agar

dapat diinjeksikan dan digunakan di seluruh lingkup modul

Bizcase. Selain itu, BizcaseController didaftarkan pada array

controllers untuk mengekspos endpoint API ke publik, sementara

BizcaseService dimasukkan ke dalam array exports agar

fungsinya dapat diakses oleh modul lain di luar lingkup Bizcase

jika diperlukan integrasi lintas modul di masa mendatang.

3.3.1.3 Proyek 2: Implementasi Sistem Validasi Keamanan

melalui Custom Decorator (No-HTML)

Proyek kedua difokuskan pada penguatan lapisan keamanan

aplikasi dari sisi input pengguna. Dalam lingkungan industri

penerbangan seperti PT GMF AeroAsia Tbk, integritas data adalah hal

yang mutlak. Ancaman serangan siber seperti Cross-Site Scripting

(XSS) menjadi perhatian utama, di mana penyerang dapat mencoba

memasukkan skrip berbahaya melalui kolom input teks yang

kemudian dapat tereksekusi di sisi peramban pengguna lain.

29
Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

1. Analisis Risiko dan Perancangan Keamanan

Pada modul Bizcase dan Master, terdapat banyak kolom

bertipe string yang memungkinkan pengguna memasukkan

deskripsi panjang. Tanpa validasi yang ketat, kolom-kolom ini

rentan disalahgunakan untuk menyisipkan tag HTML atau tag

<script>. Meskipun library validasi standar menyediakan

pengecekan tipe data, diperlukan logika tambahan yang spesifik

untuk mendeteksi pola karakter yang menyerupai struktur HTML.

Oleh karena itu, dirancang sebuah Custom Decorator

bernama @NoHtml. Keputusan menggunakan custom decorator

diambil agar logika validasi ini bersifat reusable (dapat digunakan

kembali) di seluruh DTO (Data Transfer Object) dalam aplikasi

tanpa perlu menulis ulang logika pengecekan di setiap fungsi

service.

2. Implementasi Logika Validator (Custom Decorator)

Implementasi dilakukan dengan memanfaatkan fungsi

registerDecorator dari pustaka class-validator. Mahasiswa

magang menyusun fungsi NoHtml yang menerima parameter

ValidationOptions. Inti dari validator ini terletak pada penggunaan

Regular Expression (Regex) untuk mendeteksi keberadaan tag

skrip.

30
Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

Gambar 3.6 no-html.decorator.ts

Berdasarkan Gambar 3.6, logika validate akan

mengembalikan nilai true jika input bukan merupakan string atau

jika input tidak mengandung pola yang didefinisikan dalam

scriptPattern. Jika pola terdeteksi, maka validator akan

mengembalikan pesan kesalahan standar, yaitu "HTML tags are

not allowed in this field", yang juga dapat dikustomisasi melalui

properti defaultMessage.

3. Penerapan pada Data Transfer Object (DTO)

Setelah decorator berhasil dibangun, tahap selanjutnya

adalah mengimplementasikannya pada kontrak data sistem. Salah

satu contoh penerapannya adalah pada modul Bizcase Infra Needs,

khususnya pada file bc_infra_need.dto.ts. Dekorator @NoHtml

diletakkan bersamaan dengan dekorator validasi lainnya untuk

memastikan pemeriksaan berlapis.

31
Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

Gambar 3.7 Penerapan Decorator pada bc_infra_need.dto.ts

Pada Gambar 3.7, atribut dataSize memiliki aturan validasi

yang sangat ketat. Selain harus berupa string dengan panjang

maksimal 255 karakter, atribut ini wajib melewati pengecekan

@NoHtml. Jika seorang pengguna mencoba memasukkan nilai

seperti 500 GB <script>alert(1)</script>, maka sistem secara

otomatis akan menolak permintaan tersebut sebelum data

mencapai lapisan service atau basis data, sehingga keamanan

sistem tetap terjaga secara preventif.

4. Integrasi dengan NestJS ValidationPipe

Seluruh sistem validasi ini terintegrasi secara otomatis

dengan ValidationPipe global pada NestJS. Hal ini memastikan

bahwa setiap kali terjadi permintaan HTTP (POST atau PUT),

sistem akan memvalidasi payload berdasarkan dekorator yang ada

pada DTO terkait. Pendekatan ini tidak hanya meningkatkan

keamanan, tetapi juga memastikan pesan kesalahan yang

dikembalikan ke pengguna (melalui response body) bersifat

informatif dan konsisten sesuai dengan standar API yang

dikembangkan di TDI-2.

3.3.1.4 Proyek 3: Optimalisasi Dokumentasi API Interaktif

dengan Swagger UI

Proyek ketiga berfokus pada penyediaan infrastruktur

dokumentasi teknis yang komprehensif untuk seluruh layanan API di

dalam sistem manajemen proyek. Dalam lingkungan kerja yang

32
Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

kolaboratif seperti pada unit TDI-2, sinkronisasi antar-pengembang

sangat bergantung pada ketersediaan kontrak data yang jelas dan

mudah diakses.

1. Analisis Kebutuhan Kolaborasi dan Standardisasi

Sebelum adanya dokumentasi interaktif, proses integrasi

antara bagian backend dan frontend sering kali terhambat oleh

perbedaan pemahaman mengenai struktur data dan parameter

request. Oleh karena itu, diimplementasikan standar OpenAPI

menggunakan Swagger UI. Strategi ini memungkinkan sistem

untuk menghasilkan dokumentasi secara otomatis dari kode

sumber, sehingga dokumentasi selalu sinkron dengan versi

aplikasi terbaru yang sedang dikembangkan.

2. Implementasi Dekorator dan Pemetaan Modul

Proses integrasi dilakukan dengan menyematkan berbagai

dekorator Swagger pada lapisan Controller dan Data Transfer

Object (DTO). Mahasiswa magang mengelompokkan setiap

modul fungsional menggunakan dekorator @ApiTags agar

tampilan dokumentasi menjadi terorganisir dengan baik.

Penyusunan dilakukan secara mendetail dengan memberikan

informasi mengenai tujuan setiap endpoint melalui

@ApiOperation, serta mendefinisikan berbagai kemungkinan

respon HTTP (seperti 200 OK, 201 Created, 400 Bad Request,

hingga 404 Not Found) melalui dekorator @ApiResponse. Hasil

dari kategorisasi modul tersebut secara visual dipaparkan dalam

gambar 3.8 berikut.

33
Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

Gambar 3.8 Dashboard Utama Swagger UI

3. Visualisasi Kontrak Data dan Pengujian Fungsional

(Sandbox)

Salah satu keunggulan utama dari implementasi ini adalah

fitur pengujian langsung (sandbox) yang tersedia di dalam portal

Swagger. Pengembang frontend dapat melihat struktur request

body yang dibutuhkan serta contoh data (Example Value) tanpa

perlu membuka kode program.

Sebagai contoh, pada modul Bc Testing Scope dalam

Gambar3.9, disediakan dokumentasi lengkap untuk operasi

pembuatan data baru (POST). Dokumentasi ini merinci atribut apa

saja yang wajib dikirimkan, seperti bizcaseId, masterTestingId,

dan reason.

34
Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

Gambar 3.9 API POST untuk Modul Bc Testing Scope

Selain operasi pembuatan data, portal Swagger juga

mendokumentasikan proses pembaruan (PUT) dan penghapusan

data (DELETE) secara spesifik menggunakan parameter uniqueId

berbasis UUID. Hal ini memastikan bahwa pengembang lain

memahami cara melakukan manipulasi data pada catatan tertentu

secara tepat dan dapat dilihat pada Gambar 3.10 dan Gambar 3.11.

35
Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

Gambar 3.10 Dokumentasi API PUT untuk Modul Bc Testing Scope

Gambar 3.11 Dokumentasi API DELETE untuk Modul Bc Testing Scope

36
Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

4. Validasi Respon dan Penanganan Error

Swagger UI juga dimanfaatkan untuk memvalidasi apakah

penanganan kesalahan (error handling) sudah bekerja sesuai

ekspektasi. Berdasarkan Gambar 3.10, portal dokumentasi tidak

hanya menampilkan respon sukses, tetapi juga skema respon jika

data tidak ditemukan (404 Not Found) atau jika validasi gagal

(400 Validation failed). Dengan adanya informasi ini, tim frontend

dapat membangun logika penanganan error pada antarmuka

pengguna secara lebih presisi, sehingga meningkatkan kualitas

pengalaman pengguna secara keseluruhan di sistem GMF

AeroAsia.

3.3.1.5 Proyek 4: Pengembangan Logika Bisnis Modul Bizcase

(Financial Mapping)

Proyek keempat merupakan inti dari fungsionalitas sistem

manajemen proyek internal di PT GMF AeroAsia Tbk. Pada tahap ini,

mahasiswa magang bertanggung jawab mengembangkan logika bisnis

yang kompleks untuk menangani data operasional dan finansial pada

modul Bizcase. Pengerjaan dilakukan dengan memisahkan tanggung

jawab antara Entry Point (Controller) dan Logika Bisnis (Service)

sesuai dengan arsitektur NestJS guna memastikan kode mudah

dirawat (maintainable) dan diuji.

1. Implementasi Arsitektur API pada Lapisan Controller

Pengerjaan diawali dengan menyediakan endpoint API

melalui BizcaseController. Lapisan ini bertugas mengatur jalur

lalu lintas permintaan HTTP serta melakukan pengemasan data

(data wrapping) agar sesuai dengan standar kontrak API yang

telah disepakati bersama tim pengembang lain.

Mahasiswa magang mengimplementasikan berbagai

dekorator Swagger untuk meningkatkan kualitas dokumentasi

37
Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

teknis. Sebagai contoh, dekorator @ApiOperation digunakan

untuk memberikan ringkasan fungsi secara eksplisit kepada

pengguna API, sementara @ApiBody dengan referensi

BizcaseCreateDTO menjamin bahwa payload data yang

dikirimkan oleh sistem frontend telah melewati proses validasi

tipe data sebelum masuk ke tahap pemrosesan logika.

Gambar 3.12 Cuplikan Kode bizcase.controller.ts untuk Method POST

Berdasarkan Gambar 3.12, terlihat bahwa setiap fungsi

dalam controller bersifat asinkronus (async) yang mengembalikan

objek Promise. Hal ini sangat penting untuk menjaga performa

aplikasi agar tetap responsif, terutama saat menangani operasi

basis data yang masif. Penggunaan status kode

HttpStatus.CREATED (201) pada endpoint pembuatan data baru

memberikan respon yang standar secara industri, yang

menandakan bahwa catatan Bizcase berhasil dibentuk di dalam

sistem.

38
Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

2. Pengembangan Logika Bisnis dan Transformasi Data pada

Lapisan Service

Seluruh inti dari pemrosesan data diletakkan di dalam

BizcaseService. Lapisan ini mengelola integrasi antara model

Bizcase utama dengan berbagai sub-entitas teknisnya. Dalam

proses pengembangan, mahasiswa magang merancang fungsi

yang mampu melakukan transformasi data secara dinamis dari

format Data Transfer Object (DTO) ke dalam skema basis data

PostgreSQL melalui Prisma ORM.

Salah satu aspek yang paling teknis dalam pengerjaan ini

adalah penanganan data nested (bertingkat). Saat sebuah catatan

Bizcase dibuat, service harus memastikan bahwa identitas unik

(uniqueId) berbasis UUID dihasilkan secara otomatis melalui

fungsi gen_random_uuid() di tingkat basis data guna memitigasi

risiko keamanan akses data. Selain itu, dilakukan pemetaan

terhadap variabel operasional seperti sFlowProcess dan sUseCase

agar data tersimpan dengan integritas referensial yang kuat.

Dokumentasi dapat dilihat pada Gambar 3.13.

39
Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

Gambar 3.13 Cuplikan Logika Pemrosesan Data pada bizcase.service.ts

3. Verifikasi Integritas Data Melalui Prisma Studio

Setelah logika bisnis berhasil diimplementasikan, tahap

selanjutnya adalah melakukan verifikasi data secara langsung

pada tingkat fisik basis data. Mahasiswa magang menggunakan

Prisma Studio sebagai alat inspeksi data real-time guna

memastikan bahwa setiap atribut finansial dan operasional telah

tersimpan pada kolom yang tepat di PostgreSQL.

Gambar 3.14 Data Modul Bizcase pada Prisma Studio

40
Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

Melalui Gambar 3.14, dapat divalidasi bahwa sistem secara

otomatis mengelola kolom audit seperti createdAt dan updatedAt.

Terdapat pula kolom projectTypeId yang menunjukkan

keberhasilan integrasi relasi antar-tabel yang sebelumnya telah

dirancang pada tahap inisiasi proyek. Keberadaan data pada kolom

operasional seperti bsSummary dan sModuleApp menunjukkan

bahwa alur koordinasi data dari pengguna hingga ke basis data

telah berjalan sesuai dengan spesifikasi teknis yang ditetapkan

oleh unit TDI-2 PT GMF AeroAsia Tbk.

3.3.1.6 Proyek 5: Implementasi Database Transaction dan Audit

Trail (Update V3)

Proyek kelima berfokus pada penguatan keandalan sistem

saat melakukan manipulasi data yang kompleks pada modul Project

dan Bizcase versi 3 (V3). Pada tahap ini, mahasiswa magang

mengimplementasikan mekanisme Database Transaction untuk

menjamin konsistensi data serta sistem Audit Trail guna mencatat

setiap aktivitas perubahan data secara transparan.

1. Urgensi dan Mekanisme Database Transaction

Dalam sistem manajemen proyek di PT GMF AeroAsia

Tbk, satu aksi pembaruan (update) sering kali melibatkan

perubahan pada beberapa tabel yang saling berelasi secara

bersamaan. Tanpa mekanisme transaksi, terdapat risiko di mana

salah satu tabel berhasil diperbarui namun tabel lainnya gagal

akibat kendala teknis, yang akan menyebabkan

ketidakkonsistenan data (data anomaly).

Untuk memitigasi risiko tersebut, mahasiswa magang

menerapkan fitur prisma.$transaction. Mekanisme ini memastikan

prinsip Atomisitas, di mana serangkaian operasi basis data

dianggap sebagai satu kesatuan tunggal; jika salah satu operasi

41
Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

gagal, maka seluruh rangkaian operasi akan dibatalkan (rollback)

dan basis data kembali ke kondisi semula.

Gambar 3.15 Implementasi $transaction pada project.service.ts

Berdasarkan Gambar 3.15, terlihat bahwa sebelum

melakukan pembuatan data transaksi proyek yang baru, sistem

terlebih dahulu menghapus data transaksi lama di dalam blok

transaksi yang sama. Hal ini memastikan tidak terjadi duplikasi

data atau sisa data lama yang tidak valid di dalam PostgreSQL.

2. Standarisasi Transaction Client pada Interface

Guna mendukung keterhubungan antar-layanan (cross-

service communication), mahasiswa magang merancang interface

layanan yang mendukung parameter transaksi opsional (trx).

Teknik ini memungkinkan sebuah modul untuk membagikan

instance transaksi yang sama ke modul lain, sehingga seluruh

42
Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

operasi di berbagai modul tetap berada dalam satu siklus transaksi

yang sinkron.

Gambar 3.16 Pendefinisian Interface dengan Parameter trx

Penerapan pada Gambar 3.16 menunjukkan

profesionalisme koding, di mana mahasiswa magang membatasi

akses PrismaClient menggunakan fungsi Omit agar fungsi-fungsi

sistemik seperti $connect atau $disconnect tidak dapat dipanggil

secara tidak sengaja di tengah proses transaksi, yang dapat

menyebabkan pemutusan koneksi secara mendadak.

3. Implementasi Otomatisasi Audit Trail

Selain aspek transaksi, Proyek 5 juga mencakup

implementasi sistem jejak audit (audit trail). Hal ini diwujudkan

melalui pendefinisian kolom audit pada skema basis data yang

secara otomatis mencatat identitas pengguna dan waktu

perubahan.

Setiap entitas, termasuk entitas Bizcase, dilengkapi dengan

atribut updatedAt yang menggunakan dekorator @updatedAt

43
Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

serta atribut updatedBy yang menyimpan ID pengguna yang

melakukan perubahan terakhir. Implementasi ini sangat krusial

bagi GMF AeroAsia untuk kebutuhan kepatuhan (compliance)

dan transparansi operasional, sehingga setiap perubahan pada

parameter proyek dapat dilacak kembali jika terjadi anomali di

masa depan.

4. Validasi Pengambilan Data Kompleks (Find Logic)

Untuk memastikan seluruh data yang telah diproses secara

aman melalui transaksi dapat disajikan kembali dengan akurat,

mahasiswa magang mengembangkan fungsi pengambilan data

(find) yang mendalam. Fungsi ini memanfaatkan fitur include

pada Prisma untuk mengambil data dari berbagai tabel relasi

dalam satu kali kueri (single fetch).

44
Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

Gambar 3.17 Cuplikan Fungsi findAll dengan Nested Include

Melalui implementasi pada Gambar 3.17, sistem dapat

menyajikan informasi proyek secara utuh, mulai dari detail tipe

proyek hingga rincian business case terkait, tanpa perlu

melakukan pemanggilan API berulang kali. Integrasi antara

mekanisme transaksi yang aman dan pengambilan data yang

efisien ini menjadi standar kualitas pengembangan aplikasi yang

diterapkan selama masa magang di TDI-2.

3.3.1.7 Proyek 6: Analisis Hasil Pengujian Fungsional (Black-

box Testing)

Setelah seluruh proses implementasi logika bisnis dan

integrasi basis data pada modul manajemen proyek (V3) selesai

dilakukan, tahap selanjutnya adalah pengujian fungsional sistem.

Tahap ini bertujuan untuk memastikan bahwa setiap endpoint API

yang dikembangkan telah berfungsi sesuai dengan spesifikasi

kebutuhan sistem dan kontrak data (data contract) yang telah

ditetapkan. Metode pengujian yang digunakan pada proyek ini adalah

45
Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

Black-box Testing, yaitu metode pengujian yang berfokus pada

kesesuaian input dan output sistem tanpa meninjau struktur kode

internal secara langsung.

Pengujian fungsional ini difokuskan pada validasi perilaku

sistem dari sudut pandang pengguna (consumer perspective),

khususnya pada modul Project dan Bizcase versi 3 (V3), guna

memastikan bahwa seluruh fitur yang disediakan dapat berjalan secara

konsisten, aman, dan sesuai dengan kebutuhan operasional

perusahaan.

1. Metodologi dan Perangkat Pengujian

Pengujian dilakukan untuk memverifikasi bahwa seluruh

fitur backend API telah memenuhi kebutuhan pengguna serta

mampu menangani skenario penggunaan yang kompleks. Proses

pengujian dilakukan melalui dua perangkat utama, yaitu:

a) Swagger UI: Digunakan untuk pengujian interaktif dan

validasi dokumentasi OpenAPI secara real-time.

b) Postman: Digunakan untuk pengujian logika kueri yang lebih

mendalam, terutama pada operasi pengambilan data (GET)

dan pembaruan data (PUT) yang melibatkan transaksi basis

data yang kompleks.

Kombinasi kedua perangkat tersebut memungkinkan proses

pengujian dilakukan secara menyeluruh, baik dari sisi

dokumentasi API maupun validasi perilaku sistem dalam berbagai

skenario pengujian.

2. Pengujian Interaktif melalui Swagger UI

Swagger UI digunakan sebagai tahap awal pengujian untuk

memverifikasi kesesuaian skema request dan response secara

visual. Pada pengujian modul Bc Risk, dilakukan simulasi

46
Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

penginputan data risiko proyek untuk memvalidasi efektivitas

Data Transfer Object (DTO) serta logika layanan (service logic)

yang telah diimplementasikan.

a) Skenario Pengujian POST:

Penulis mengirimkan payload JSON yang berisi atribut

bizcaseId dan deskripsi risiko teknis ke endpoint terkait.

Permintaan tersebut diproses melalui BizcaseService sesuai

dengan alur logika bisnis yang telah dirancang.

b) Hasil Eksekusi:

Berdasarkan hasil pengujian pada Gambar 3.18, sistem

memberikan respons dengan status kode 201 Created, yang

menandakan bahwa data berhasil disimpan. Pada response

body, sistem secara otomatis menghasilkan uniqueId berbasis

UUID serta mengisi kolom audit createdAt sesuai dengan

skema basis data yang telah dirancang pada Proyek 1. Hasil ini

menunjukkan bahwa mekanisme validasi DTO dan proses

penyimpanan data telah berjalan dengan baik.

47
Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

Gambar 3.18 Screenshot Hasil Pengujian API POST pada Modul Bc Risk di

Swagger

3. Validasi Logika Get dan Put (Postman)

Selain pengujian melalui Swagger UI, dilakukan pengujian

lanjutan menggunakan Postman untuk memvalidasi logika

pengambilan data (GET) dan pembaruan data (PUT). Pengujian

menggunakan Postman memberikan fleksibilitas dalam

48
Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

pengaturan environment variables serta kemudahan dalam

memantau struktur respons dan waktu eksekusi permintaan.

a) Validasi Logika Pengambilan Data (GET – Find Logic)

Pengujian menggunakan Postman difokuskan pada

validasi fungsionalitas pengambilan data masif pada

modul proyek versi 3 (V3). Berdasarkan cuplikan kode

pada file project.service.ts, fungsi findProjectV3

dirancang untuk menarik data secara atomik dan

menyeluruh menggunakan blok transaksi.

Fungsi ini memiliki kompleksitas tinggi karena

menggunakan fitur include Prisma untuk mengambil

belasan tabel relasi dalam satu kali kueri (single fetch).

Relasi yang ditarik mencakup:

a. Data Administrasi: masterRequestType, document,

dan progressLog.

b. Data Transaksi & Risiko: projectTransaction dan

riskHazard.

c. Data Bizcase Terintegrasi: Objek bizcase ditarik

secara mendalam (deep nested) mencakup

bcInfraNeeds, bcTestingScope, bcCostEfficiency,

hingga bcRisk.

Pengujian melalui Postman membuktikan bahwa

respon JSON yang dihasilkan tetap akurat dan cepat

meskipun volume data relasi yang ditarik sangat besar. Hal

ini memastikan tim frontend mendapatkan data yang

lengkap tanpa perlu melakukan pemanggilan API secara

berulang kali (n+1 query problem) seperti yang terlihat

pada Gambar 3.19.

49
Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

Gambar 3. 19 Respon JSON GET Project V3 pada Postman

b) Validasi Logika Pembaruan Data (PUT – Update

Logic)

Pengujian pembaruan data difokuskan pada

penggunaan uniqueId berbasis UUID (Universally Unique

Identifier) untuk menjamin keamanan dan keakuratan

data. Berbeda dengan identitas numerik (autoincrement),

penggunaan UUID yang dihasilkan melalui fungsi

gen_random_uuid() pada tingkat basis data bertujuan

untuk memitigasi risiko keamanan berupa eksploitasi

enumerasi ID oleh pihak yang tidak berwenang.

Dalam pengujian ini, penulis melakukan simulasi

pembaruan data pada modul Project dan Bizcase V3

melalui endpoint PUT. Secara teknis, proses ini

mengeksekusi metode updateProjectV3 pada lapisan

service yang mengimplementasikan mekanisme

prisma.$transaction. Penggunaan transaksi ini sangat

krusial karena satu aksi pembaruan melibatkan manipulasi

pada beberapa tabel relasi sekaligus, seperti tabel

projectTransaction yang memerlukan proses pembersihan

50
Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

data lama (deleteMany) sebelum memasukkan data baru

(createMany) dalam satu siklus atomik.

Gambar 3.20 Pengujian PUT (updateProjectV3) pada Postman

Berdasarkan hasil pengujian pada Gambar 3.20,

sistem memberikan respons dengan status kode 200 OK.

Pada bagian response body, terlihat bahwa kolom

updatedAt telah diperbarui secara otomatis oleh Prisma

ORM sesuai dengan stempel waktu eksekusi permintaan.

Hasil ini memvalidasi beberapa aspek teknis sebagai

berikut:

a. Integritas Transaksi:

Mekanisme prisma.$transaction berhasil menjaga

konsistensi data, di mana seluruh perubahan pada

entitas induk dan anak tersimpan secara utuh tanpa

adanya data yang korup.

b. Keamanan Akses:

Penggunaan uniqueId sebagai parameter pencarian

pada kueri findUnique terbukti akurat dalam

mengidentifikasi catatan spesifik yang akan

diperbarui.

51
Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

c. Otomatisasi Audit:

Kolom updatedAt dan updatedBy berhasil mencatat

jejak perubahan (audit trail), yang merupakan

persyaratan fungsional penting dalam sistem

manajemen proyek di PT GMF AeroAsia Tbk.

3.3.2 Kendala yang Ditemukan

Selama pelaksanaan program magang di unit TDI-2 PT GMF

AeroAsia Tbk, ditemukan berbagai tantangan teknis maupun operasional

yang menuntut kemampuan analisis mendalam dalam proses

pengembangan sistem manajemen proyek versi 3 (V3). Kendala-kendala ini

muncul seiring dengan kompleksitas tech stack yang digunakan serta

standar integritas data yang sangat ketat di industri penerbangan. Berikut

adalah penjabaran mendalam mengenai kendala-kendala tersebut:

1. Kompleksitas Pemetaan Relasi Data pada Skema Basis Data

Eksisting

Tantangan utama yang dihadapi adalah memahami dan memetakan

relasi antar-tabel pada skema basis data PostgreSQL yang sudah sangat

luas. Mengingat model Bizcase memiliki belasan sub-entitas yang saling

bergantung seperti bcInfraNeeds, bcRisk, dan bcCostEfficiency,

penentuan strategi relasi pada Prisma ORM menjadi sangat kompleks.

Kesalahan dalam pendefinisian kunci tamu (foreign key) atau tipe

relasi (seperti one-to-one vs one-to-many) berpotensi menyebabkan

kegagalan saat proses pengambilan data (querying) atau

ketidakkonsistenan data saat dilakukan penghapusan catatan induk. Hal

ini memerlukan ketelitian ekstra karena setiap data finansial harus

terhubung secara akurat dengan ID proyek terkait.

2. Kurva Pembelajaran Arsitektur Modular NestJS yang Ketat

Implementasi arsitektur modular pada NestJS menuntut pemahaman

mendalam mengenai konsep Dependency Injection dan manajemen

Providers. Kendala muncul saat harus mengatur keterhubungan antar-

52
Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

modul, misalnya bagaimana modul Project dapat mengakses fungsi

pada BizcaseService tanpa menyebabkan circular dependency

(ketergantungan melingkar) yang dapat mengakibatkan aplikasi gagal

dijalankan.

Selain itu, penggunaan dekorator yang sangat intensif pada lapisan

Controller dan DTO memerlukan waktu adaptasi tambahan guna

memastikan seluruh metadata API terkonfigurasi dengan benar sesuai

standar dokumentasi OpenAPI yang diinginkan perusahaan.

3. Penanganan Edge Cases pada Logika Validasi Keamanan (XSS)

Dalam mengembangkan dekorator kustom @NoHtml untuk

keamanan, kendala ditemukan pada tahap perancangan ekspresi reguler

(regex) yang mampu mendeteksi tag berbahaya secara akurat tanpa

mengganggu input data yang valid.

Tantangannya adalah membedakan antara input teks normal yang

mungkin mengandung karakter khusus (seperti simbol < atau > untuk

perbandingan data teknis) dengan tag HTML asli yang bersifat

instruksional.

Ketidaktepatan dalam penyusunan regex ini dapat menyebabkan

false positive, di mana sistem menolak data yang sah, yang pada

akhirnya dapat menghambat pengalaman pengguna saat menginput data

operasional di GMF AeroAsia.

4. Sinkronisasi Logika Bisnis MRO yang Dinamis dan Masif

Prosestransformasi proses bisnis manual ke dalam ekosistem digital

pada modul Bizcase memerlukan pemahaman mendalam terhadap

logika industri MRO (Maintenance, Repair, and Overhaul). Kendala

ditemukan saat melakukan penyelarasan perhitungan efisiensi finansial

dan pemetaan data migrasi dari sistem versi sebelumnya (V2) ke versi

3.

Banyaknya variabel finansial seperti estimasi pendapatan

(cRevenue) dan biaya operasional (cOperatingCost) yang bersifat

opsional namun tetap harus terintegrasi dalam laporan manajerial

53
Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

menuntut logika pengkondisian yang rumit pada lapisan service agar

tidak terjadi error saat manipulasi data dilakukan.

5. Manajemen Transaksi pada Operasi Data Masif dan Bertingkat

Saat mengembangkan fitur pembaruan proyek yang melibatkan

penghapusan data lama dan pembuatan data transaksi baru secara

simultan, tantangan teknis muncul dalam menjaga atomisitas transaksi.

Kesulitan dialami saat melakukan debugging pada blok kode

prisma.$transaction ketika terjadi kegagalan di salah satu sub-proses,

seperti saat proses deleteMany berhasil namun createMany gagal.

Tanpa penanganan kesalahan (error handling) yang presisi dan

penggunaan Transaction Client (trx) yang benar, kegagalan di tengah

proses dapat meninggalkan data "sampah" (junk data) yang merusak

integritas basis data PostgreSQL secara keseluruhan.

Selain aspek teknis dalam pengembangan perangkat lunak, terdapat

pula kendala non-teknis yang dihadapi selama menjalankan program Career

Acceleration Program di lingkungan PT GMF AeroAsia Tbk. Kendala ini

berkaitan erat dengan penyesuaian diri terhadap budaya kerja industri

penerbangan yang memiliki standar disiplin dan regulasi yang sangat tinggi.

1. Adaptasi Budaya Kerja dan Disiplin Waktu Industri Penerbangan

Sebagai mahasiswa, transisi menuju lingkungan kerja profesional

dengan jadwal yang sangat ketat menjadi tantangan tersendiri. Penulis

diwajibkan mengikuti jam operasional kantor secara penuh (Work from

Office) mulai pukul 07.00 WIB hingga 16.00 WIB.

Standar disiplin yang diterapkan di GMF AeroAsia sangat tinggi, di

mana ketepatan waktu memulai dan mengakhiri pekerjaan merupakan

bagian dari penilaian profesionalisme. Hal ini menuntut manajemen

waktu yang sangat baik untuk menjaga produktivitas dalam durasi 9 jam

kerja per hari di tengah tekanan proyek pengembangan sistem yang

dinamis.

54
Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

2. Prosedur Keamanan dan Regulasi Area Terbatas

Bekerja di kawasan Bandara Internasional Soekarno-Hatta

mengharuskan setiap personel mematuhi regulasi keamanan yang

sangat ketat. Penulis harus melewati berbagai tahapan administratif

yang kompleks, mulai dari proses Security Clearance secara daring

hingga pengurusan kartu identitas akses (Pass Intern).

Kendala muncul saat proses koordinasi akses area terbatas ini

memerlukan waktu dan kepatuhan prosedur yang birokratis, yang mana

hal ini merupakan pengalaman baru bagi penulis dalam lingkungan kerja

skala enterprise.

3. Sinkronisasi Dokumentasi Administratif dan Tugas Harian

Kewajiban administratif untuk mendokumentasikan setiap aktivitas

harian melalui formulir Daily Task (PRO-STEP 03) menuntut ketelitian

dalam pencatatan. Kendala dirasakan saat penulis harus merinci setiap

progres teknis pengembangan backend ke dalam bahasa administratif

yang dapat dipahami oleh pihak universitas maupun pihak Learning

Centre Unit (LCU) GMF. Sering kali terdapat penumpukan laporan

administratif yang harus diselesaikan di sela-sela fokus pengerjaan

logika koding yang kompleks.

4. Komunikasi Lintas Fungsi dan Pemahaman Proses Bisnis MRO

Dalam lingkungan TDI-2, penulis tidak hanya berkomunikasi

dengan sesama pengembang, tetapi juga harus memahami kebutuhan

dari berbagai unit bisnis terkait. Kendala komunikasi sering kali muncul

saat mencoba menerjemahkan proses bisnis perawatan pesawat (MRO)

yang sangat teknis dan spesifik ke dalam logika pemrograman yang

efisien. Diperlukan kemampuan komunikasi yang adaptif untuk

menjembatani perbedaan terminologi antara kebutuhan operasional di

hangar dengan keterbatasan teknis di sisi pengembangan sistem digital.

3.3.3 Solusi atas Kendala yang Ditemukan

Sebagai respons terhadap berbagai tantangan teknis maupun non-

teknis yang dihadapi, mahasiswa magang melakukan serangkaian langkah

55
Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

solutif yang sistematis. Implementasi solusi ini tidak hanya bertujuan untuk

menyelesaikan hambatan sesaat, tetapi juga untuk memastikan bahwa

arsitektur sistem yang dibangun memiliki kualitas standar industri. Berikut

adalah rincian solusi yang diimplementasikan:

1. Analisis Skema Relasional dan Optimalisasi Pemetaan Prisma

Untuk mengatasi kompleksitas relasi data, dilakukan analisis

mendalam terhadap file schema.prisma guna memastikan setiap relasi

one-to-many antara entitas Bizcase dan sub-entitasnya terdefinisi

dengan akurat. Solusi teknis yang diambil adalah dengan memanfaatkan

dekorator @relation untuk mengatur field dan references secara

eksplisit, guna menjaga integritas referensial data. Selain itu, dilakukan

validasi data secara berkala menggunakan Prisma Studio untuk

memantau apakah data relasional telah masuk ke tabel yang tepat di

PostgreSQL.

2. Penerapan Arsitektur Modular dan Manajemen Dependensi

Hambatan pada kurva pembelajaran NestJS diatasi dengan

menerapkan pemisahan tanggung jawab yang ketat (Separation of

Concerns) melalui pembuatan modul-modul terpisah. Solusi ini

mencakup pengorganisasian folder modul fungsional seperti master-

activity, bc-infra-needs, dan bc-risk di bawah direktori src/modules.

Manajemen dependensi diatur secara efisien melalui BizcaseModule

yang mendaftarkan BizcaseService dan PrismaService sebagai

providers, sehingga memudahkan pemeliharaan kode.

3. Pengembangan dan Pengujian Unit Custom Decorator Keamanan

Solusi terhadap risiko keamanan XSS dilakukan dengan

mengembangkan kustom dekorator @NoHtml berbasis Regular

Expression (Regex) yang presisi. Keberhasilan solusi ini divalidasi

dengan menerapkannya pada berbagai DTO, seperti pada atribut

dataSize di modul Bizcase Infra Needs. Dengan integrasi ini, sistem

secara otomatis menolak permintaan yang mengandung tag skrip

berbahaya dan memberikan respon kesalahan yang informatif.

56
Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

4. Pemanfaatan Swagger UI untuk Koordinasi dan Validasi API

Kendala komunikasi teknis diatasi dengan optimalisasi dokumentasi

interaktif menggunakan Swagger UI. Portal Swagger digunakan sebagai

media validasi kontrak data antara tim backend dan frontend, di mana

setiap endpoint seperti proses pembuatan (POST) atau penghapusan

(DELETE) data dapat diuji secara langsung di lingkungan sandbox.

5. Implementasi Transaksi Atomik untuk Konsistensi Data

Tantangan pada manajemen transaksi diatasi dengan

mengimplementasikan fungsi prisma.$transaction pada operasi data

bertingkat, terutama pada fitur pembaruan proyek. Solusi inovatif yang

diterapkan adalah penggunaan parameter transaksi (trx) yang

dioperasikan antar-layanan melalui interface yang terstandarisasi. Jika

terjadi kesalahan pada salah satu proses, sistem secara otomatis akan

memicu instruksi rollback, sehingga menjamin integritas basis data

PostgreSQL.

6. Manajemen Waktu dan Kedisiplinan Mandiri

Guna beradaptasi dengan budaya kerja WFO yang ketat (07.00 -

16.00 WIB), mahasiswa magang menerapkan strategi manajemen waktu

yang disiplin. Hal ini mencakup perencanaan jadwal keberangkatan

lebih awal untuk memastikan kehadiran tepat waktu serta penyusunan

prioritas tugas harian guna menjaga produktivitas selama 9 jam kerja di

lingkungan GMF AeroAsia.

7. Proaktif dalam Prosedur Keamanan dan Administrasi

Kendala birokrasi keamanan diatasi dengan bersikap proaktif dalam

mengikuti setiap tahapan Security Clearance dan pengurusan akses area

terbatas. Pemenuhan kewajiban administratif, seperti pengisian formulir

Daily Task (PRO-STEP 03), dilakukan secara rutin setiap sore hari

sebelum jam kerja berakhir untuk memastikan seluruh progres teknis

terdokumentasi dengan akurat dan tepat waktu.

8. Peningkatan Komunikasi Lintas Fungsi

57
Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

Untuk memahami proses bisnis MRO yang kompleks, mahasiswa

magang melakukan diskusi rutin dan sesi tanya jawab dengan Mentor

Teknis serta tim pengembang senior di unit TDI-2. Komunikasi ini

bertujuan untuk menyelaraskan pemahaman teknis dengan kebutuhan

operasional di lapangan, sehingga logika sistem yang dikembangkan,

seperti modul Bizcase, benar-benar relevan dengan proses bisnis nyata

di perusahaan.

	BAB III PELAKSANAAN KERJA
	1.
	2.
	3.
	3.1 Kedudukan dan Koordinasi
	3.2 Tugas yang Dilakukan
	3.3 Uraian Pelaksanaan Kerja
	3.3.1 Proses Pelaksanaan
	3.3.1.1 Tahap Orientasi Teknis dan Pembelajaran Mandiri
	3.3.1.2 Proyek 1: Pengembangan Arsitektur Data Terintegrasi
	3.3.1.3 Proyek 2: Implementasi Sistem Validasi Keamanan melalui Custom Decorator (No-HTML)
	3.3.1.4 Proyek 3: Optimalisasi Dokumentasi API Interaktif dengan Swagger UI
	3.3.1.5 Proyek 4: Pengembangan Logika Bisnis Modul Bizcase (Financial Mapping)
	3.3.1.6 Proyek 5: Implementasi Database Transaction dan Audit Trail (Update V3)
	3.3.1.7 Proyek 6: Analisis Hasil Pengujian Fungsional (Black-box Testing)

	3.3.2 Kendala yang Ditemukan
	3.3.3 Solusi atas Kendala yang Ditemukan

