BAB III

PELAKSANAAN KERJA

3.1 Kedudukan dan Koordinasi

3.1.1 Kedudukan

Pelaksanaan program Career Acceleration Program bertempat di
Dinas Corporate Strategy & Digital Transformation (TD) PT GMF AeroAsia
Tbk. Unit ini memegang peranan krusial sebagai pusat inovasi dan digitalisasi
bagi seluruh proses bisnis MRO perusahaan. Dinas TD bertanggung jawab
langsung kepada Direktur Utama (Chief Executive Officer), yang menegaskan
bahwa setiap inisiatif teknologi informasi merupakan prioritas strategis

korporasi.

Dalam struktur internal Dinas TD, terdapat pembagian fungsi yang

jelas guna mendukung efektivitas pengelolaan sumber daya manusia:

a. LCU (Learning Centre Unit)

Berfungsi sebagai unit pengelola administratif yang menjembatani
hubungan antara mahasiswa magang dengan kebijakan korporat. LCU
bertanggung jawab atas proses orientasi, pemantauan kehadiran harian,
serta pemenuhan standar jam kerja yang telah ditetapkan oleh

universitas dan perusahaan.

b. Unit TDI-2 (Digitalization & System Development):

Merupakan unit teknis di mana mahasiswa magang ditempatkan
secara operasional. Unit ini bertanggung jawab atas pengembangan,
integrasi, dan pemeliharaan perangkat lunak internal. Fokus utama di
unit ini adalah transformasi proses bisnis manual ke dalam ekosistem

digital berbasis web dan aplikasi.

Kedudukan fungsional mahasiswa magang adalah sebagai Backend
Developer Intern yang bertugas melakukan perancangan layanan API

menggunakan framework NestJS dan pengelolaan basis data PostgreSQL.
19

Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

Posisi ini berada di bawah supervisi Pembimbing Lapangan terkait
manajemen beban kerja dan Mentor Teknis terkait kualitas kode serta

arsitektur sistem seperti yang terlihat pada Gambar 3.1.

Direktur Utama / CEO -

Dinas Corporate Strategy &
Digital Transformation - TD

/ T

Department TDI-2 - Tim
Developer

A

Pembimbing Mentor

Learning Centre Unit -
Koordinator Administratif

; Laporan Kehadiran &
Vo e

Mahasiswa Magang -
Backend Developer

Gambar 3.1 Struktur Organisasi Unit Kerja

3.1.2 Koordinasi
Alur koordinasi pada Gambar 3.2 dirancang untuk memastikan setiap
tahapan pengembangan sistem terdokumentasi dengan baik dan selaras
dengan kebutuhan unit bisnis. Koordinasi dilakukan melalui dua jalur utama:
1. Koordinasi Administratif Dilakukan bersama pihak LCU untuk
memastikan seluruh kewajiban administratif terpenuhi, termasuk
pengisian Daily Task sebagai bukti aktivitas harian. Koordinasi ini
memastikan bahwa mahasiswa magang memahami budaya kerja serta

regulasi keselamatan kerja yang berlaku di lingkungan GMF AeroAsia.

20

Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

2. Koordinasi Teknis dan Operasional Koordinasi ini dilakukan secara
intensif di unit TDI-2 menggunakan beberapa kanal komunikasi
profesional:

a. Briefing Rutin: Dilakukan untuk menentukan prioritas fitur yang
akan dikembangkan, seperti modul Bizcase atau optimalisasi tabel
Master.

b. Diskusi Teknis dan Code Review: Dilakukan melalui pertemuan
tatap muka maupun melalui fitur komentar pada repositori
(Git/Bitbucket). Mentor teknis akan memberikan evaluasi terhadap
efisiensi logika, penanganan error, serta keamanan AP

c. Validasi Dokumentasi: Setiap endpoint API yang telah dibangun
dikoordinasikan melalui platform Swagger. Hal ini dilakukan untuk
memastikan tim frontend atau unit lain dapat mengonsumsi data API

secara akurat sesuai kontrak data yang disepakati.

Lcu Mentor/Supervisor (TDI-2) Mahasiswa Magang

Orientas| & Aturan Magang (Admin)

Penugasan Teknis (NestJS/PostgreSqQL)

i:loop [S1k luspengembangan]

Diskusi Logika & Code Review

HE P
i |+

Feedhack & Approval

ot B
Laporain Mingguan & Daily Task
Handover Fitur & Dokumentasi Swagger
Lcu Mentor/Supervisor (TDI-2) Mahasiswa Magang

Gambar 3.2 Bagan Alur Koordinasi Pekerjaan

3.2 Tugas yang Dilakukan
Seluruh aktivitas pengerjaan selama masa magang didokumentasikan untuk
memantau perkembangan proyek dan pemenuhan target kompetensi. Berikut

adalah rincian tugas yang telah diselesaikan:

21

Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

Tabel 3.1 Detail Pekerjaan yang Dilakukan

No.

Proyek

Uraian / Keterangan

Proyek 1: Pengembangan
Arsitektur Data Terintegrasi

Inisiasi arsitektur modular NestJS, perancangan skema
basis data modul Bizcase, serta pemetaan relasi entitas
menggunakan Prisma ORM.

Proyek 2: Implementasi Sistem
Validasi Keamanan melalui
Custom Decorator (No-HTML)

Pengembangan lapisan keamanan input menggunakan
Regular Expression (Regex) untuk mencegah serangan
Cross-Site Scripting (XSS) pada sistem.

Proyek 3: Optimalisasi
Dokumentasi API Interaktif
dengan Swagger Ul

Penyusunan dokumentasi teknis OpenAPI dan
standardisasi kontrak data antar-modul guna mendukung
kolaborasi tim pengembang.

Proyek 4: Pengembangan
Logika Bisnis Modul Bizcase
(Financial Mapping)

Implementasi layanan API untuk pengolahan data
operasional dan finansial serta transformasi data dari
DTO ke dalam basis data PostgreSQL.

Proyek 5:
Database Transaction
Audit Trail (Update V3)

Implementasi
dan

Penerapan prisma.$transaction untuk = menjamin
konsistensi data atomik serta otomatisasi pencatatan
jejak perubahan data pada sistem versi 3 (V3).

Proyek 6: Analisis Hasil
Pengujian Fungsional (Black-
box Testing)

Validasi fungsionalitas seluruh endpoint API
menggunakan Swagger Ul dan Postman untuk
memastikan integritas data serta penanganan error.

3.3 Uraian Pelaksanaan Kerja

Bagian ini memaparkan rincian teknis mengenai pengerjaan proyek

pengembangan backend sistem manajemen proyek internal di PT GMF AeroAsia

Tbk. Fokus pengerjaan dilakukan menggunakan tech stack utama berupa NestJS

sebagai framework aplikasi, Prisma sebagai Object-Relational Mapping (ORM),

dan PostgreSQL sebagai sistem manajemen basis data.

Setiap proyek dijalankan mengikuti siklus pengembangan perangkat lunak

yang sistematis, mulai dari analisis kebutuhan, perancangan skema, hingga tahap

pengujian fungsional.

3.3.1 Proses Pelaksanaan

Berikut adalah rincian enam proyek utama yang mencakup proses
perancangan, implementasi, hingga tahap pengujian fungsional sistem. Tahap
pengembangan sistem dilakukan secara menyeluruh mulai dari tingkat basis
data. Fokus utama pengerjaan meliputi perancangan dan pembuatan modul-

modul database untuk kebutuhan Bizcase, yang mencakup pendefinisian
22

Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

skema relasional yang masif pada PostgreSQL melalui Prisma ORM. Selain
pembangunan struktur data, dilakukan pula pendefinisian sistem validasi
(validator) dari tahap awal pengembangan. Hal ini diwujudkan melalui
pembuatan custom decorator @NoHtml untuk menjamin integritas dan
keamanan setiap data yang masuk ke dalam sistem, memastikan bahwa
seluruh input telah melewati proses filter keamanan sebelum disimpan ke

dalam basis data.

3.3.1.1 Tahap Orientasi Teknis dan Pembelajaran Mandiri
Fase orientasi teknis dan adaptasi dijalankan pada awal masa
pelaksanaan Career Acceleration Program di unit TDI-2 PT GMF
AeroAsia Tbk sebagai persiapan sebelum terlibat langsung dalam
pengerjaan proyek sistem manajemen proyek internal. Pada tahap ini,
pengarahan diberikan oleh Pembimbing Lapangan untuk melakukan
pembelajaran mandiri melalui materi tutorial pada platform YouTube.
Materi yang dipelajari secara spesifik mencakup konsep-konsep dasar
pengembangan backend serta tech stack yang relevan dengan

kebutuhan operasional perusahaan.

Sebagai bentuk validasi terhadap hasil pembelajaran mandiri
tersebut, sesi evaluasi berkala dilaksanakan bersama mentor. Sesi ini
dilakukan melalui tanya jawab interaktif guna mendiskusikan tingkat
pemahaman terkait materi video yang telah ditonton. Proses tersebut
bertujuan untuk memastikan kesiapan landasan teoretis yang kuat
sebelum dilakukan implementasi logika pemrograman yang lebih
kompleks pada modul Bizcase maupun pengembangan Project versi

3 (V3).

3.3.1.2 Proyek 1: Pengembangan Arsitektur Data Terintegrasi
Proyek pertama ini merupakan fondasi paling krusial dalam

pengembangan sistem manajemen proyek internal di unit TDI-2 PT

GMF AeroAsia Tbk. Pengembangan ini difokuskan pada perancangan

dan implementasi arsitektur data untuk modul Bizcase, yang

23

Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

merupakan inti dari logika bisnis sistem untuk mengelola kelayakan

proyek dari sisi teknis dan finansial.

1. Analisis Relasi Data Analisis dan Perancangan Skema Basis
Data (Prisma ORM)

Mahasiswa magang melakukan perancangan skema basis
data yang melibatkan relasi ome-to-many antara tabel master
dengan sub-entitas pada modul Bizcase. Sub-entitas ini mencakup
rincian teknis seperti Bizcase Efficiency, Bizcase Migration, serta
pemetaan kebutuhan infrastruktur (/nfra Needs). Perancangan ini
sangat krusial agar setiap data finansial dan efisiensi yang diinput

dapat terelasi secara akurat ke entitas utama proyek.

Tahap awal pengerjaan dimulai dengan perancangan skema
basis data relasional menggunakan Prisma ORM. Mahasiswa
magang melakukan pemetaan kebutuhan bisnis ke dalam bentuk
model objek pada file schema.prisma. Model Bizcase dirancang
untuk memiliki struktur data yang sangat kompleks karena harus
mampu mengakomodasi berbagai parameter proyek yang bersifat

dinamis.

Dalam perancangannya, model ini dilengkapi dengan atribut
id sebagai primary key berbasis autoincrement serta uniqueld
yang menggunakan tipe data String dengan generator
gen random_uuid() untuk keamanan akses APIL Selain itu,
diimplementasikan kolom audit otomatis seperti createdAt dan
updatedAt guna memenuhi standar kepatuhan (compliance)
perusahaan. Cuplikan kode skema basis data tersebut dapat dilihat

pada Gambar 3.3 di bawah ini.

24

Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

Gambar 3.3 schema.prisma model Bizcase

2. Arsitektur Relasi Entitas dan Sub-Entitas

Karakteristik utama dari proyek ini adalah penanganan relasi
one-to-many yang sangat masif antara entitas Bizcase dengan
berbagai sub-entitas operasionalnya. Berdasarkan rancangan
teknis pada Gambar 3.3, model Bizcase bertindak sebagai entitas
induk yang menaungi berbagai sub-entitas seperti bclnfraNeeds
untuk kebutuhan infrastruktur, bcRisk untuk analisis risiko,

hingga bcCostEfficiency untuk pengolahan data efisiensi biaya.

Setiap relasi didefinisikan secara eksplisit menggunakan tipe

data array (misal: BclnfraNeeds[]), yang memungkinkan Prisma
25

Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

Client untuk melakukan nested query secara efisien. Integrasi ini
memastikan bahwa saat pengguna melakukan pembaruan pada
data utama, seluruh data pada entitas anak tetap sinkron dan

terjaga integritasnya.
3. Implementasi Struktur Folder Modular pada NestJS

Guna mendukung skalabilitas sistem, mahasiswa magang
menerapkan pola organisasi kode berbasis modular. Di dalam
direktori src/modules/bizcase, kode program dipecah menjadi
beberapa sub-modul yang merepresentasikan setiap sub-entitas
yang ada pada skema basis data. Struktur folder modular ini secara

visual dipaparkan dalam gambar berikut.

“ PMO-IT-NEST @& Ea C O

g src

~ (g modules

~ | activity
» BB dio

ontroller.ts

26

Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

» Il bc-service-category
> B bc-testing-s

» M bc-upgrade-patchig
“ [bizcase

B interfaces

X master-activi
master-activit

' master-activity

» I master-infra-needs

> IR master-pe

> B master-testing

Gambar 3.4 Struktur Folder Modular sre/modules/bizcase

Penerapan pola pada Gambar 3.4 dirancang agar setiap
komponen fungsional memiliki tanggung jawab tunggal (Single
Responsibility Principle). Sebagai contoh, modul activity di dalam
bizcase memiliki sub-direktori dtos untuk validasi data masukan,
interfaces untuk pendefinisian kontrak data, serta file controller,
module, dan service yang berdiri sendiri. Pola ini mempermudah
tim pengembang di TDI-2 dalam melakukan debugging dan
pemeliharaan kode tanpa mengganggu fungsionalitas modul

lainnya.

27

Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

4. Manajemen Dependensi melalui Registry Module

Tahap akhir dari Proyek 1 adalah melakukan registrasi
seluruh komponen ke dalam BizcaseModule. File
bizcase.module.ts berperan sebagai pengatur lalu lintas

dependensi menggunakan teknik Dependency Injection.

'f@nestjs,/common’
roller }

'.[bizcase.controller’

ase.service”

Gambar 3.5 bizcase.module.ts

Berdasarkan implementasi pada Gambar 3.5, BizcaseService
dan PrismaService didaftarkan di dalam array providers agar
dapat diinjeksikan dan digunakan di seluruh lingkup modul
Bizcase. Selain itu, BizcaseController didaftarkan pada array
controllers untuk mengekspos endpoint API ke publik, sementara
BizcaseService dimasukkan ke dalam array exports agar
fungsinya dapat diakses oleh modul lain di luar lingkup Bizcase

jika diperlukan integrasi lintas modul di masa mendatang.

3.3.1.3 Proyek 2: Implementasi Sistem Validasi Keamanan
melalui Custom Decorator (No-HTML)

Proyek kedua difokuskan pada penguatan lapisan keamanan
aplikasi dari sisi imput pengguna. Dalam lingkungan industri
penerbangan seperti PT GMF AeroAsia Tbk, integritas data adalah hal
yang mutlak. Ancaman serangan siber seperti Cross-Site Scripting
(XSS) menjadi perhatian utama, di mana penyerang dapat mencoba
memasukkan skrip berbahaya melalui kolom input teks yang

kemudian dapat tereksekusi di sisi peramban pengguna lain.

28

Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

1. Analisis Risiko dan Perancangan Keamanan

Pada modul Bizcase dan Master, terdapat banyak kolom
bertipe string yang memungkinkan pengguna memasukkan
deskripsi panjang. Tanpa validasi yang ketat, kolom-kolom ini
rentan disalahgunakan untuk menyisipkan tag HTML atau tag
<script>. Meskipun [library validasi standar menyediakan
pengecekan tipe data, diperlukan logika tambahan yang spesifik
untuk mendeteksi pola karakter yang menyerupai struktur HTML.

Oleh karena itu, dirancang sebuah Custom Decorator
bernama @NoHtml. Keputusan menggunakan custom decorator
diambil agar logika validasi ini bersifat reusable (dapat digunakan
kembali) di seluruh DTO (Data Transfer Object) dalam aplikasi
tanpa perlu menulis ulang logika pengecekan di setiap fungsi

service.

2. Implementasi Logika Validator (Custom Decorator)

Implementasi dilakukan dengan memanfaatkan fungsi
registerDecorator dari pustaka class-validator. Mahasiswa
magang menyusun fungsi NoHtml yang menerima parameter
ValidationOptions. Inti dari validator ini terletak pada penggunaan
Regular Expression (Regex) untuk mendeteksi keberadaan tag

skrip.

29

Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

(validationOptions datic
" propertyllame

pro
idationOptions

{_args: ValidationArguments) {

"HTML tags are not allowed in this field.®

Gambar 3.6 no-html.decorator.ts

Berdasarkan ~Gambar 3.6, logika wvalidate akan
mengembalikan nilai true jika input bukan merupakan string atau
jika inmput tidak mengandung pola yang didefinisikan dalam
scriptPattern. Jika pola terdeteksi, maka validator akan
mengembalikan pesan kesalahan standar, yaitu "HTML tags are
not allowed in this field", yang juga dapat dikustomisasi melalui

properti defaultMessage.
3. Penerapan pada Data Transfer Object (DTO)

Setelah decorator berhasil dibangun, tahap selanjutnya
adalah mengimplementasikannya pada kontrak data sistem. Salah
satu contoh penerapannya adalah pada modul Bizcase Infra Needs,
khususnya pada file bc_infra need.dto.ts. Dekorator @NoHtml
diletakkan bersamaan dengan dekorator validasi lainnya untuk

memastikan pemeriksaan berlapis.

30

Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

nal({
The estimated data size required (e.g., 500 GB, 2 TB)"
5ee GB-

‘dataSize must be a string® })

‘dataSize must not exceed 255 characters® })
tags are not allowed in this field® })

Gambar 3.7 Penerapan Decorator pada bc_infra_need.dto.ts

Pada Gambar 3.7, atribut dataSize memiliki aturan validasi
yang sangat ketat. Selain harus berupa string dengan panjang
maksimal 255 karakter, atribut ini wajib melewati pengecekan
@NoHtml. Jika seorang pengguna mencoba memasukkan nilai
seperti 500 GB <script>alert(1)</script>, maka sistem secara
otomatis akan menolak permintaan tersebut sebelum data
mencapai lapisan service atau basis data, sehingga keamanan

sistem tetap terjaga secara preventif.
4. Integrasi dengan NestJS ValidationPipe

Seluruh sistem validasi ini terintegrasi secara otomatis
dengan ValidationPipe global pada NestJS. Hal ini memastikan
bahwa setiap kali terjadi permintaan HTTP (POST atau PUT),
sistem akan memvalidasi payload berdasarkan dekorator yang ada
pada DTO terkait. Pendekatan ini tidak hanya meningkatkan
keamanan, tetapi juga memastikan pesan kesalahan yang
dikembalikan ke pengguna (melalui response body) bersifat
informatif dan konsisten sesuai dengan standar API yang

dikembangkan di TDI-2.

3.3.1.4 Proyek 3: Optimalisasi Dokumentasi API Interaktif
dengan Swagger Ul

Proyek ketiga berfokus pada penyediaan infrastruktur
dokumentasi teknis yang komprehensif untuk seluruh layanan API di

dalam sistem manajemen proyek. Dalam lingkungan kerja yang

31

Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

kolaboratif seperti pada unit TDI-2, sinkronisasi antar-pengembang
sangat bergantung pada ketersediaan kontrak data yang jelas dan

mudah diakses.
1. Analisis Kebutuhan Kolaborasi dan Standardisasi

Sebelum adanya dokumentasi interaktif, proses integrasi
antara bagian backend dan frontend sering kali terhambat oleh
perbedaan pemahaman mengenai struktur data dan parameter
request. Oleh karena itu, diimplementasikan standar OpenAPI
menggunakan Swagger Ul. Strategi ini memungkinkan sistem
untuk menghasilkan dokumentasi secara otomatis dari kode
sumber, sehingga dokumentasi selalu sinkron dengan versi

aplikasi terbaru yang sedang dikembangkan.

2. Implementasi Dekorator dan Pemetaan Modul

Proses integrasi dilakukan dengan menyematkan berbagai
dekorator Swagger pada lapisan Controller dan Data Transfer
Object (DTO). Mahasiswa magang mengelompokkan setiap
modul fungsional menggunakan dekorator @ApiTags agar

tampilan dokumentasi menjadi terorganisir dengan baik.

Penyusunan dilakukan secara mendetail dengan memberikan
informasi mengenai tujuan setiap endpoint melalui
@ApiOperation, serta mendefinisikan berbagai kemungkinan
respon HTTP (seperti 200 OK, 201 Created, 400 Bad Request,
hingga 404 Not Found) melalui dekorator @ApiResponse. Hasil
dari kategorisasi modul tersebut secara visual dipaparkan dalam

gambar 3.8 berikut.

32

Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

Master Testing Module ~

fui/master-testing Gelall Master Testing records ~

fvl/master-testin, e v

/vi/master-testing/{uniqueId} GetMaster Testing by uniqueld v

/vi/master-testing/{uniqueId} Update an exisling Master Testing v

‘ /vi/master-testing/{uniqueld} Delete (soft delete) a MasterTesting record v
Master Period Module v
Master Activity Module v
Master Infra Needs Module v
Bizcase ~

/bi: ate N

fbizcase/{uniqueTd} Update an exisiing Bizcase v

‘ fbizcase/{uniqueId} Delete a Bizcase record ~
Bc Activity Module ~

fbc-activity Creat rd v

/bc-activity/{uniqueld} Updale an Activity record v

‘ fbe-activity/{uniqueId] Delete an Actvity record ~
Bc Infra Needs Module v
Bc Risk Module v
Bc Testing Scope Module v
Bc Service Category Module v
Bc Data Migration Module v
Bc Cost Efficiency Module v
Bc Cost Manage Service Module v
Bc Cost Implementation Module v
Bc Upgrade Patching Module v

Gambar 3.8 Dashboard Utama Swagger Ul

3. Visualisasi Kontrak Data dan Pengujian Fungsional

(Sandbox)

Salah satu keunggulan utama dari implementasi ini adalah
fitur pengujian langsung (sandbox) yang tersedia di dalam portal
Swagger. Pengembang frontend dapat melihat struktur request
body yang dibutuhkan serta contoh data (Example Value) tanpa

perlu membuka kode program.

Sebagai contoh, pada modul Bc Testing Scope dalam
Gambar3.9, disediakan dokumentasi lengkap untuk operasi
pembuatan data baru (POST). Dokumentasi ini merinci atribut apa
saja yang wajib dikirimkan, seperti bizcaseld, masterTestingld,

dan reason.

33

Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

Bc Testing Scope Module A~
/bc-testing-scope Create a new Testing Scope record A

Adds a new Testing Scope entry for a specific Bizcase.

Parameters Try it out

No parameters

Request body "**"

Example Value | Schema

Responses

Code Description Links.

201 Testing Scope successfully created No links

edia type

application/json ~

Controls Accept header

Example Value | Schema

400 Validation failed No links

Gambar 3.9 API POST untuk Modul Bc Testing Scope

Selain operasi pembuatan data, portal Swagger juga
mendokumentasikan proses pembaruan (PUT) dan penghapusan
data (DELETE) secara spesifik menggunakan parameter uniqueld
berbasis UUID. Hal ini memastikan bahwa pengembang lain
memahami cara melakukan manipulasi data pada catatan tertentu

secara tepat dan dapat dilihat pada Gambar 3.10 dan Gambar 3.11.

34

Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

[be-testing-seope/{uniqueld} Updatea Testing Scope record

Modify an existing Testing Scope entry by its uniqueld

Parameters | Tryitout
Name Description

uniqueld aued

e uniqueld

(path)

Request body "=

Example Value | Schema

quired for regression verification”,
"2025-9-11716:48:042"

Responses.
Code Description Links
200 Testing Scope successfully updated No links
Controls Accept header
Example Value | Schema
RSTITEN
“uniqueld”: "55008400-229b-4104-3716- 4466554400087 ,
“bizcasera™: 2,
asterTestingld™: 1,
eason red for regression verification”,
Createda
“updatedsy”:
404 Testing Scope not found. No links
500 Server error while updating Testing Scope. No links
L2051 /bc-testing-scope/{uniqueld} Delete a Testing Scope record @ A
Permanently removes a Testing Scope record based on its unique UUID.
Parameters Try it out
Name Description
unigueld * reasred
e uniqueld
(patn)
Responses
Code Description Links
200 Testing Scope successfully deleted. No links
Ivecia type
Cantrols Accept header.
Example Value | Schema
zcaserd”s 2,
“masterTestingld": 1,
"Required for regression verification”,
6:372",
404 Testing Scope not found for the given uniqueld No links

Gambar 3.11 Dokumentasi API DELETE untuk Modul Be Testing Scope

35

Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

4. Validasi Respon dan Penanganan Error

Swagger Ul juga dimanfaatkan untuk memvalidasi apakah
penanganan kesalahan (error handling) sudah bekerja sesuai
ekspektasi. Berdasarkan Gambar 3.10, portal dokumentasi tidak
hanya menampilkan respon sukses, tetapi juga skema respon jika
data tidak ditemukan (404 Not Found) atau jika validasi gagal
(400 Validation failed). Dengan adanya informasi ini, tim frontend
dapat membangun logika penanganan error pada antarmuka
pengguna secara lebih presisi, sehingga meningkatkan kualitas
pengalaman pengguna secara keseluruhan di sistem GMF

AeroAsia.

3.3.1.5 Proyek 4: Pengembangan Logika Bisnis Modul Bizcase
(Financial Mapping)

Proyek keempat merupakan inti dari fungsionalitas sistem
manajemen proyek internal di PT GMF AeroAsia Tbk. Pada tahap ini,
mahasiswa magang bertanggung jawab mengembangkan logika bisnis
yang kompleks untuk menangani data operasional dan finansial pada
modul Bizcase. Pengerjaan dilakukan dengan memisahkan tanggung
jawab antara Entry Point (Controller) dan Logika Bisnis (Service)
sesuai dengan arsitektur NestJS guna memastikan kode mudah

dirawat (maintainable) dan diuji.
1. Implementasi Arsitektur API pada Lapisan Controller

Pengerjaan diawali dengan menyediakan endpoint API
melalui BizcaseController. Lapisan ini bertugas mengatur jalur
lalu lintas permintaan HTTP serta melakukan pengemasan data
(data wrapping) agar sesuai dengan standar kontrak API yang

telah disepakati bersama tim pengembang lain.
Mahasiswa magang mengimplementasikan berbagai
dekorator Swagger untuk meningkatkan kualitas dokumentasi

36

Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

teknis. Sebagai contoh, dekorator @ApiOperation digunakan
untuk memberikan ringkasan fungsi secara eksplisit kepada
pengguna API, sementara @ApiBody dengan referensi
BizcaseCreateDTO menjamin bahwa payload data yang
dikirimkan oleh sistem frontend telah melewati proses validasi

tipe data sebelum masuk ke tahap pemrosesan logika.

*Bizcase’
‘bizcase’

bizcaseService

‘Create a new Bizcase record’

'Add a new Bizcase entry with required project and case details.’

‘Bizcase successfully created.’

‘Invalid request payload or missing required fields.'

‘Server error during Bizcase creation.’

body

Gambar 3.12 Cuplikan Kode bizcase.controller.ts untuk Method POST

Berdasarkan Gambar 3.12, terlihat bahwa setiap fungsi
dalam controller bersifat asinkronus (async) yang mengembalikan
objek Promise. Hal ini sangat penting untuk menjaga performa
aplikasi agar tetap responsif, terutama saat menangani operasi
basis data yang masif. Penggunaan status kode
HttpStatus. CREATED (201) pada endpoint pembuatan data baru
memberikan respon yang standar secara industri, yang
menandakan bahwa catatan Bizcase berhasil dibentuk di dalam

sistem.

37

Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

2. Pengembangan Logika Bisnis dan Transformasi Data pada

Lapisan Service

Seluruh inti dari pemrosesan data diletakkan di dalam
BizcaseService. Lapisan ini mengelola integrasi antara model
Bizcase utama dengan berbagai sub-entitas teknisnya. Dalam
proses pengembangan, mahasiswa magang merancang fungsi
yang mampu melakukan transformasi data secara dinamis dari
format Data Transfer Object (DTO) ke dalam skema basis data
PostgreSQL melalui Prisma ORM.

Salah satu aspek yang paling teknis dalam pengerjaan ini
adalah penanganan data nested (bertingkat). Saat sebuah catatan
Bizcase dibuat, service harus memastikan bahwa identitas unik
(uniqueld) berbasis UUID dihasilkan secara otomatis melalui
fungsi gen _random_uuid() di tingkat basis data guna memitigasi
risiko keamanan akses data. Selain itu, dilakukan pemetaan
terhadap variabel operasional seperti sFlowProcess dan sUseCase
agar data tersimpan dengan integritas referensial yang kuat.

Dokumentasi dapat dilihat pada Gambar 3.13.

38

Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

ror

Failed to fetch bizcases:

uniqueld

Bizcase with uniqueld '${uniqueld}' not found

Gambar 3.13 Cuplikan Logika Pemrosesan Data pada bizcase.service.ts

3. Verifikasi Integritas Data Melalui Prisma Studio

Setelah logika bisnis berhasil diimplementasikan, tahap
selanjutnya adalah melakukan verifikasi data secara langsung
pada tingkat fisik basis data. Mahasiswa magang menggunakan
Prisma Studio sebagai alat inspeksi data real-time guna
memastikan bahwa setiap atribut finansial dan operasional telah

tersimpan pada kolom yang tepat di PostgreSQL.

3 @ localhost5555 summase @ 8 %) QM = D L B R @ - Dox

Gambar 3.14 Data Modul Bizcase pada Prisma Studio
39

Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

Melalui Gambar 3.14, dapat divalidasi bahwa sistem secara
otomatis mengelola kolom audit seperti createdAt dan updatedAt.
Terdapat pula kolom projectTypeld yang menunjukkan
keberhasilan integrasi relasi antar-tabel yang sebelumnya telah
dirancang pada tahap inisiasi proyek. Keberadaan data pada kolom
operasional seperti bsSummary dan sModuleApp menunjukkan
bahwa alur koordinasi data dari pengguna hingga ke basis data
telah berjalan sesuai dengan spesifikasi teknis yang ditetapkan

oleh unit TDI-2 PT GMF AeroAsia Tbk.

3.3.1.6 Proyek S: Implementasi Database Transaction dan Audit
Trail (Update V3)

Proyek kelima berfokus pada penguatan keandalan sistem
saat melakukan manipulasi data yang kompleks pada modul Project
dan Bizcase versi 3 (V3). Pada tahap ini, mahasiswa magang
mengimplementasikan mekanisme Database Transaction untuk
menjamin konsistensi data serta sistem Audit Trail guna mencatat

setiap aktivitas perubahan data secara transparan.
1. Urgensi dan Mekanisme Database Transaction

Dalam sistem manajemen proyek di PT GMF AeroAsia
Tbk, satu aksi pembaruan (update) sering kali melibatkan
perubahan pada beberapa tabel yang saling berelasi secara
bersamaan. Tanpa mekanisme transaksi, terdapat risiko di mana
salah satu tabel berhasil diperbarui namun tabel lainnya gagal
akibat kendala teknis, @ yang akan menyebabkan

ketidakkonsistenan data (data anomaly).

Untuk memitigasi risiko tersebut, mahasiswa magang
menerapkan fitur prisma.$transaction. Mekanisme ini memastikan
prinsip Atomisitas, di mana serangkaian operasi basis data

dianggap sebagai satu kesatuan tunggal; jika salah satu operasi

40

Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

gagal, maka seluruh rangkaian operasi akan dibatalkan (rollback)

dan basis data kembali ke kondisi semula.

Y
L

("updateProjectV3() called for®, uniqueld)

updatedUniquelId

updatedUniqueld

oject.uniqueld

(!updatedUniqueld) Error(Update did not complete”)

Gambar 3.15 Implementasi $transaction pada project.service.ts

Berdasarkan Gambar 3.15, terlihat bahwa sebelum
melakukan pembuatan data transaksi proyek yang baru, sistem
terlebih dahulu menghapus data transaksi lama di dalam blok
transaksi yang sama. Hal ini memastikan tidak terjadi duplikasi

data atau sisa data lama yang tidak valid di dalam PostgreSQL.
2. Standarisasi Transaction Client pada Interface

Guna mendukung keterhubungan antar-layanan (cross-
service communication), mahasiswa magang merancang interface
layanan yang mendukung parameter transaksi opsional (trx).
Teknik ini memungkinkan sebuah modul untuk membagikan

instance transaksi yang sama ke modul lain, sehingga seluruh

41

Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

operasi di berbagai modul tetap berada dalam satu siklus transaksi

yang sinkron.

ce-create.dto’
ce-update.dto’

"$connect” "$disconnect’ "$use’ *$extends”

"$connect’ "$disconnect’ "$use’ *$extends”

‘$connect’ | '$disconnect’ | '$use’ | '$extends’

Gambar 3.16 Pendefinisian Interface dengan Parameter trx

Penerapan pada Gambar 3.16 menunjukkan
profesionalisme koding, di mana mahasiswa magang membatasi
akses PrismaClient menggunakan fungsi Omit agar fungsi-fungsi
sistemik seperti $connect atau $disconnect tidak dapat dipanggil
secara tidak sengaja di tengah proses transaksi, yang dapat

menyebabkan pemutusan koneksi secara mendadak.
3. Implementasi Otomatisasi Audit Trail

Selain aspek transaksi, Proyek 5 juga mencakup
implementasi sistem jejak audit (audit trail). Hal ini diwujudkan
melalui pendefinisian kolom audit pada skema basis data yang
secara otomatis mencatat identitas pengguna dan waktu

perubahan.

Setiap entitas, termasuk entitas Bizcase, dilengkapi dengan

atribut updatedAt yang menggunakan dekorator @updatedAt

42

Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

serta atribut updatedBy yang menyimpan ID pengguna yang
melakukan perubahan terakhir. Implementasi ini sangat krusial
bagi GMF AeroAsia untuk kebutuhan kepatuhan (compliance)
dan transparansi operasional, sehingga setiap perubahan pada
parameter proyek dapat dilacak kembali jika terjadi anomali di

masa depan.
4. Validasi Pengambilan Data Kompleks (Find Logic)

Untuk memastikan seluruh data yang telah diproses secara
aman melalui transaksi dapat disajikan kembali dengan akurat,
mahasiswa magang mengembangkan fungsi pengambilan data
(find) yang mendalam. Fungsi ini memanfaatkan fitur include
pada Prisma untuk mengambil data dari berbagai tabel relasi

dalam satu kali kueri (single fetch).

43

Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

Gambar 3.17 Cuplikan Fungsi findAll dengan Nested Include

Melalui implementasi pada Gambar 3.17, sistem dapat
menyajikan informasi proyek secara utuh, mulai dari detail tipe
proyek hingga rincian business case terkait, tanpa perlu
melakukan pemanggilan API berulang kali. Integrasi antara
mekanisme transaksi yang aman dan pengambilan data yang
efisien ini menjadi standar kualitas pengembangan aplikasi yang

diterapkan selama masa magang di TDI-2.

3.3.1.7 Proyek 6: Analisis Hasil Pengujian Fungsional (Black-
box Testing)

Setelah seluruh proses implementasi logika bisnis dan
integrasi basis data pada modul manajemen proyek (V3) selesai
dilakukan, tahap selanjutnya adalah pengujian fungsional sistem.
Tahap ini bertujuan untuk memastikan bahwa setiap endpoint API
yang dikembangkan telah berfungsi sesuai dengan spesifikasi
kebutuhan sistem dan kontrak data (data contract) yang telah
ditetapkan. Metode pengujian yang digunakan pada proyek ini adalah

44

Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

Black-box Testing, yaitu metode pengujian yang berfokus pada
kesesuaian input dan output sistem tanpa meninjau struktur kode

internal secara langsung.

Pengujian fungsional ini difokuskan pada validasi perilaku
sistem dari sudut pandang pengguna (consumer perspective),
khususnya pada modul Project dan Bizcase versi 3 (V3), guna
memastikan bahwa seluruh fitur yang disediakan dapat berjalan secara
konsisten, aman, dan sesuai dengan kebutuhan operasional

perusahaan.
1. Metodologi dan Perangkat Pengujian

Pengujian dilakukan untuk memverifikasi bahwa seluruh
fitur backend API telah memenuhi kebutuhan pengguna serta
mampu menangani skenario penggunaan yang kompleks. Proses

pengujian dilakukan melalui dua perangkat utama, yaitu:

a) Swagger UI: Digunakan untuk pengujian interaktif dan

validasi dokumentasi OpenAPI secara real-time.

b) Postman: Digunakan untuk pengujian logika kueri yang lebih
mendalam, terutama pada operasi pengambilan data (GET)
dan pembaruan data (PUT) yang melibatkan transaksi basis

data yang kompleks.

Kombinasi kedua perangkat tersebut memungkinkan proses
pengujian dilakukan secara menyeluruh, baik dari sisi
dokumentasi API maupun validasi perilaku sistem dalam berbagai

skenario pengujian.
2. Pengujian Interaktif melalui Swagger Ul

Swagger Ul digunakan sebagai tahap awal pengujian untuk
memverifikasi kesesuaian skema request dan response secara
visual. Pada pengujian modul Be Risk, dilakukan simulasi

45

Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

penginputan data risiko proyek untuk memvalidasi efektivitas
Data Transfer Object (DTO) serta logika layanan (service logic)

yang telah diimplementasikan.
a) Skenario Pengujian POST:

Penulis mengirimkan payload JSON yang berisi atribut
bizcaseld dan deskripsi risiko teknis ke endpoint terkait.
Permintaan tersebut diproses melalui BizcaseService sesuai

dengan alur logika bisnis yang telah dirancang.
b) Hasil Eksekusi:

Berdasarkan hasil pengujian pada Gambar 3.18, sistem
memberikan respons dengan status kode 201 Created, yang
menandakan bahwa data berhasil disimpan. Pada response
body, sistem secara otomatis menghasilkan uniqueld berbasis
UUID serta mengisi kolom audit createdAt sesuai dengan
skema basis data yang telah dirancang pada Proyek 1. Hasil ini
menunjukkan bahwa mekanisme validasi DTO dan proses

penyimpanan data telah berjalan dengan baik.

46

Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

Bc Risk Module ~
fbe-risk Create anew BC Risk record ~
Parameters

Mo parameters

Request body applicationijson -

Responses

Request URL

Server response

Cade Details

2 Response body

Responses
Code Description Links
20 BC Risk created successfully o links

heia type

applicationjjson ~

Canlrols Accept header

Example Value | Schema

400 Invalid data hio links

500 Failed to create record Mo links:

Gambar 3.18 Screenshot Hasil Pengujian API POST pada Modul Bc Risk di
Swagger

3. Validasi Logika Get dan Put (Postman)

Selain pengujian melalui Swagger Ul, dilakukan pengujian
lanjutan menggunakan Postman untuk memvalidasi logika
pengambilan data (GET) dan pembaruan data (PUT). Pengujian

menggunakan Postman memberikan fleksibilitas dalam

47

Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

pengaturan environment variables serta kemudahan dalam

memantau struktur respons dan waktu eksekusi permintaan.

a) Validasi Logika Pengambilan Data (GET - Find Logic)

Pengujian menggunakan Postman difokuskan pada

validasi fungsionalitas pengambilan data masif pada

modul proyek versi 3 (V3). Berdasarkan cuplikan kode

pada file project.service.ts, fungsi findProjectV3

dirancang untuk menarik data secara atomik dan
menyeluruh menggunakan blok transaksi.

Fungsi ini memiliki kompleksitas tinggi karena
menggunakan fitur include Prisma untuk mengambil
belasan tabel relasi dalam satu kali kueri (single fetch).
Relasi yang ditarik mencakup:

a. Data Administrasi: masterRequestType, document,
dan progressLog.

b. Data Transaksi & Risiko: projectTransaction dan
riskHazard.

c. Data Bizcase Terintegrasi: Objek bizcase ditarik
secara mendalam (deep nested) mencakup
beclnfraNeeds, bcTestingScope, bcCostEfficiency,
hingga bcRisk.

Pengujian melalui Postman membuktikan bahwa
respon JSON yang dihasilkan tetap akurat dan cepat
meskipun volume data relasi yang ditarik sangat besar. Hal
ini memastikan tim frontend mendapatkan data yang
lengkap tanpa perlu melakukan pemanggilan API secara
berulang kali (n+1 query problem) seperti yang terlihat
pada Gambar 3.19.

48

Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

HoamomBLihn9s®09re

Gambar 3. 19 Respon JSON GET Project V3 pada Postman

b) Validasi Logika Pembaruan Data (PUT - Update
Logic)

Pengujian pembaruan data difokuskan pada
penggunaan uniqueld berbasis UUID (Universally Unique
Identifier) untuk menjamin keamanan dan keakuratan
data. Berbeda dengan identitas numerik (autoincrement),
penggunaan UUID yang dihasilkan melalui fungsi
gen _random_uuid() pada tingkat basis data bertujuan
untuk memitigasi risiko keamanan berupa eksploitasi
enumerasi ID oleh pihak yang tidak berwenang.

Dalam pengujian ini, penulis melakukan simulasi
pembaruan data pada modul Project dan Bizcase V3
melalui endpoint PUT. Secara teknis, proses ini
mengeksekusi metode updateProjectV3 pada lapisan
service yang mengimplementasikan = mekanisme
prisma.$transaction. Penggunaan transaksi ini sangat
krusial karena satu aksi pembaruan melibatkan manipulasi
pada beberapa tabel relasi sekaligus, seperti tabel

projectTransaction yang memerlukan proses pembersihan

49

Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

data lama (deleteMany) sebelum memasukkan data baru

(createMany) dalam satu siklus atomik.

API Network

Haomomacin -9 ®omge0

Gambar 3.20 Pengujian PUT (updateProjectV3) pada Postman

Berdasarkan hasil pengujian pada Gambar 3.20,
sistem memberikan respons dengan status kode 200 OK.
Pada bagian response body, terlihat bahwa kolom
updatedAt telah diperbarui secara otomatis oleh Prisma
ORM sesuai dengan stempel waktu eksekusi permintaan.
Hasil ini memvalidasi beberapa aspek teknis sebagai
berikut:

a. Integritas Transaksi:

Mekanisme prisma.$transaction berhasil menjaga
konsistensi data, di mana seluruh perubahan pada
entitas induk dan anak tersimpan secara utuh tanpa
adanya data yang korup.

b. Keamanan Akses:

Penggunaan uniqueld sebagai parameter pencarian
pada kueri findUnique terbukti akurat dalam
mengidentifikasi catatan spesifik yang akan

diperbarui.

50

Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

c. Otomatisasi Audit:
Kolom updatedAt dan updatedBy berhasil mencatat
jejak perubahan (audit trail), yang merupakan
persyaratan fungsional penting dalam sistem

manajemen proyek di PT GMF AeroAsia Tbk.

3.3.2 Kendala yang Ditemukan

Selama pelaksanaan program magang di unit TDI-2 PT GMF
AeroAsia Tbk, ditemukan berbagai tantangan teknis maupun operasional
yang menuntut kemampuan analisis mendalam dalam proses
pengembangan sistem manajemen proyek versi 3 (V3). Kendala-kendala ini
muncul seiring dengan kompleksitas tech stack yang digunakan serta
standar integritas data yang sangat ketat di industri penerbangan. Berikut

adalah penjabaran mendalam mengenai kendala-kendala tersebut:

1. Kompleksitas Pemetaan Relasi Data pada Skema Basis Data
Eksisting
Tantangan utama yang dihadapi adalah memahami dan memetakan
relasi antar-tabel pada skema basis data PostgreSQL yang sudah sangat
luas. Mengingat model Bizcase memiliki belasan sub-entitas yang saling
bergantung seperti bclnfraNeeds, bcRisk, dan bcCostEfficiency,
penentuan strategi relasi pada Prisma ORM menjadi sangat kompleks.
Kesalahan dalam pendefinisian kunci tamu (foreign key) atau tipe
relasi (seperti one-to-one vs one-to-many) berpotensi menyebabkan
kegagalan saat proses pengambilan data (querying) atau
ketidakkonsistenan data saat dilakukan penghapusan catatan induk. Hal
ini memerlukan ketelitian ekstra karena setiap data finansial harus
terhubung secara akurat dengan ID proyek terkait.
2. Kurva Pembelajaran Arsitektur Modular NestJS yang Ketat
Implementasi arsitektur modular pada NestJS menuntut pemahaman
mendalam mengenai konsep Dependency Injection dan manajemen
Providers. Kendala muncul saat harus mengatur keterhubungan antar-

51

Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

modul, misalnya bagaimana modul Project dapat mengakses fungsi
pada BizcaseService tanpa menyebabkan circular dependency
(ketergantungan melingkar) yang dapat mengakibatkan aplikasi gagal
dijalankan.

Selain itu, penggunaan dekorator yang sangat intensif pada lapisan
Controller dan DTO memerlukan waktu adaptasi tambahan guna
memastikan seluruh metadata API terkonfigurasi dengan benar sesuai
standar dokumentasi OpenAPI yang diinginkan perusahaan.

3. Penanganan Edge Cases pada Logika Validasi Keamanan (XSS)

Dalam mengembangkan dekorator kustom @NoHtml untuk
keamanan, kendala ditemukan pada tahap perancangan ekspresi reguler
(regex) yang mampu mendeteksi tag berbahaya secara akurat tanpa
mengganggu input data yang valid.

Tantangannya adalah membedakan antara input teks normal yang
mungkin mengandung karakter khusus (seperti simbol < atau > untuk
perbandingan data teknis) dengan tag HTML asli yang bersifat
instruksional.

Ketidaktepatan dalam penyusunan regex ini dapat menyebabkan
false positive, di mana sistem menolak data yang sah, yang pada
akhirnya dapat menghambat pengalaman pengguna saat menginput data
operasional di GMF AeroAsia.

4. Sinkronisasi Logika Bisnis MRO yang Dinamis dan Masif

Prosestransformasi proses bisnis manual ke dalam ekosistem digital
pada modul Bizcase memerlukan pemahaman mendalam terhadap
logika industri MRO (Maintenance, Repair, and Overhaul). Kendala
ditemukan saat melakukan penyelarasan perhitungan efisiensi finansial
dan pemetaan data migrasi dari sistem versi sebelumnya (V2) ke versi
3.

Banyaknya variabel finansial seperti estimasi pendapatan
(cRevenue) dan biaya operasional (cOperatingCost) yang bersifat

opsional namun tetap harus terintegrasi dalam laporan manajerial

52

Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

menuntut logika pengkondisian yang rumit pada lapisan service agar
tidak terjadi error saat manipulasi data dilakukan.
5. Manajemen Transaksi pada Operasi Data Masif dan Bertingkat
Saat mengembangkan fitur pembaruan proyek yang melibatkan
penghapusan data lama dan pembuatan data transaksi baru secara
simultan, tantangan teknis muncul dalam menjaga atomisitas transaksi.
Kesulitan dialami saat melakukan debugging pada blok kode
prisma.$transaction ketika terjadi kegagalan di salah satu sub-proses,
seperti saat proses deleteMany berhasil namun createMany gagal.
Tanpa penanganan kesalahan (error handling) yang presisi dan
penggunaan Transaction Client (trx) yang benar, kegagalan di tengah
proses dapat meninggalkan data "sampah" (junk data) yang merusak

integritas basis data PostgreSQL secara keseluruhan.

Selain aspek teknis dalam pengembangan perangkat lunak, terdapat
pula kendala non-teknis yang dihadapi selama menjalankan program Career
Acceleration Program di lingkungan PT GMF AeroAsia Tbk. Kendala ini
berkaitan erat dengan penyesuaian diri terhadap budaya kerja industri

penerbangan yang memiliki standar disiplin dan regulasi yang sangat tinggi.

1. Adaptasi Budaya Kerja dan Disiplin Waktu Industri Penerbangan
Sebagai mahasiswa, transisi menuju lingkungan kerja profesional
dengan jadwal yang sangat ketat menjadi tantangan tersendiri. Penulis
diwajibkan mengikuti jam operasional kantor secara penuh (Work from
Office) mulai pukul 07.00 WIB hingga 16.00 WIB.

Standar disiplin yang diterapkan di GMF AeroAsia sangat tinggi, di
mana ketepatan waktu memulai dan mengakhiri pekerjaan merupakan
bagian dari penilaian profesionalisme. Hal ini menuntut manajemen
waktu yang sangat baik untuk menjaga produktivitas dalam durasi 9 jam
kerja per hari di tengah tekanan proyek pengembangan sistem yang

dinamis.

53

Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

2. Prosedur Keamanan dan Regulasi Area Terbatas

Bekerja di kawasan Bandara Internasional Soekarno-Hatta
mengharuskan setiap personel mematuhi regulasi keamanan yang
sangat ketat. Penulis harus melewati berbagai tahapan administratif
yang kompleks, mulai dari proses Security Clearance secara daring
hingga pengurusan kartu identitas akses (Pass Intern).

Kendala muncul saat proses koordinasi akses area terbatas ini
memerlukan waktu dan kepatuhan prosedur yang birokratis, yang mana
hal ini merupakan pengalaman baru bagi penulis dalam lingkungan kerja
skala enterprise.

3. Sinkronisasi Dokumentasi Administratif dan Tugas Harian

Kewajiban administratif untuk mendokumentasikan setiap aktivitas
harian melalui formulir Daily Task (PRO-STEP 03) menuntut ketelitian
dalam pencatatan. Kendala dirasakan saat penulis harus merinci setiap
progres teknis pengembangan backend ke dalam bahasa administratif
yang dapat dipahami oleh pihak universitas maupun pihak Learning
Centre Unit (LCU) GMF. Sering kali terdapat penumpukan laporan
administratif yang harus diselesaikan di sela-sela fokus pengerjaan
logika koding yang kompleks.

4. Komunikasi Lintas Fungsi dan Pemahaman Proses Bisnis MRO

Dalam lingkungan TDI-2, penulis tidak hanya berkomunikasi
dengan sesama pengembang, tetapi juga harus memahami kebutuhan
dari berbagai unit bisnis terkait. Kendala komunikasi sering kali muncul
saat mencoba menerjemahkan proses bisnis perawatan pesawat (MRO)
yang sangat teknis dan spesifik ke dalam logika pemrograman yang
efisien. Diperlukan kemampuan komunikasi yang adaptif untuk
menjembatani perbedaan terminologi antara kebutuhan operasional di

hangar dengan keterbatasan teknis di sisi pengembangan sistem digital.

3.3.3 Solusi atas Kendala yang Ditemukan
Sebagai respons terhadap berbagai tantangan teknis maupun non-

teknis yang dihadapi, mahasiswa magang melakukan serangkaian langkah
54

Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

solutif yang sistematis. Implementasi solusi ini tidak hanya bertujuan untuk
menyelesaikan hambatan sesaat, tetapi juga untuk memastikan bahwa
arsitektur sistem yang dibangun memiliki kualitas standar industri. Berikut

adalah rincian solusi yang diimplementasikan:

1. Analisis Skema Relasional dan Optimalisasi Pemetaan Prisma
Untuk mengatasi kompleksitas relasi data, dilakukan analisis
mendalam terhadap file schema.prisma guna memastikan setiap relasi
one-to-many antara entitas Bizcase dan sub-entitasnya terdefinisi
dengan akurat. Solusi teknis yang diambil adalah dengan memanfaatkan
dekorator (@relation untuk mengatur field dan references secara
eksplisit, guna menjaga integritas referensial data. Selain itu, dilakukan
validasi data secara berkala menggunakan Prisma Studio untuk
memantau apakah data relasional telah masuk ke tabel yang tepat di
PostgreSQL.
2. Penerapan Arsitektur Modular dan Manajemen Dependensi
Hambatan pada kurva pembelajaran NestJS diatasi dengan
menerapkan pemisahan tanggung jawab yang ketat (Separation of
Concerns) melalui pembuatan modul-modul terpisah. Solusi ini
mencakup pengorganisasian folder modul fungsional seperti master-
activity, bc-infra-needs, dan be-risk di bawah direktori src/modules.
Manajemen dependensi diatur secara efisien melalui BizcaseModule
yang mendaftarkan BizcaseService dan PrismaService sebagai
providers, sehingga memudahkan pemeliharaan kode.
3. Pengembangan dan Pengujian Unit Custom Decorator Keamanan
Solusi terhadap risiko keamanan XSS dilakukan dengan
mengembangkan kustom dekorator @NoHtml berbasis Regular
Expression (Regex) yang presisi. Keberhasilan solusi ini divalidasi
dengan menerapkannya pada berbagai DTO, seperti pada atribut
dataSize di modul Bizcase Infra Needs. Dengan integrasi ini, sistem
secara otomatis menolak permintaan yang mengandung tag skrip

berbahaya dan memberikan respon kesalahan yang informatif.
55

Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

4. Pemanfaatan Swagger Ul untuk Koordinasi dan Validasi API
Kendala komunikasi teknis diatasi dengan optimalisasi dokumentasi
interaktif menggunakan Swagger UI. Portal Swagger digunakan sebagai
media validasi kontrak data antara tim backend dan frontend, di mana
setiap endpoint seperti proses pembuatan (POST) atau penghapusan
(DELETE) data dapat diuji secara langsung di lingkungan sandbox.
5. Implementasi Transaksi Atomik untuk Konsistensi Data
Tantangan pada manajemen transaksi diatasi dengan
mengimplementasikan fungsi prisma.$transaction pada operasi data
bertingkat, terutama pada fitur pembaruan proyek. Solusi inovatif yang
diterapkan adalah penggunaan parameter transaksi (trx) yang
dioperasikan antar-layanan melalui inferface yang terstandarisasi. Jika
terjadi kesalahan pada salah satu proses, sistem secara otomatis akan
memicu instruksi rollback, sehingga menjamin integritas basis data
PostgreSQL.
6. Manajemen Waktu dan Kedisiplinan Mandiri
Guna beradaptasi dengan budaya kerja WFO yang ketat (07.00 -
16.00 WIB), mahasiswa magang menerapkan strategi manajemen waktu
yang disiplin. Hal ini mencakup perencanaan jadwal keberangkatan
lebih awal untuk memastikan kehadiran tepat waktu serta penyusunan
prioritas tugas harian guna menjaga produktivitas selama 9 jam kerja di
lingkungan GMF AeroAsia.
7. Proaktif dalam Prosedur Keamanan dan Administrasi
Kendala birokrasi keamanan diatasi dengan bersikap proaktif dalam
mengikuti setiap tahapan Security Clearance dan pengurusan akses area
terbatas. Pemenuhan kewajiban administratif, seperti pengisian formulir
Daily Task (PRO-STEP 03), dilakukan secara rutin setiap sore hari
sebelum jam kerja berakhir untuk memastikan seluruh progres teknis
terdokumentasi dengan akurat dan tepat waktu.

8. Peningkatan Komunikasi Lintas Fungsi

56

Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

Untuk memahami proses bisnis MRO yang kompleks, mahasiswa
magang melakukan diskusi rutin dan sesi tanya jawab dengan Mentor
Teknis serta tim pengembang senior di unit TDI-2. Komunikasi ini
bertujuan untuk menyelaraskan pemahaman teknis dengan kebutuhan
operasional di lapangan, sehingga logika sistem yang dikembangkan,
seperti modul Bizcase, benar-benar relevan dengan proses bisnis nyata

di perusahaan.

57

Pengembangan Layanan Backend, Tresya Meisel Adieputri, Universitas Multimedia Nusantara

	BAB III PELAKSANAAN KERJA
	1.
	2.
	3.
	3.1 Kedudukan dan Koordinasi
	3.2 Tugas yang Dilakukan
	3.3 Uraian Pelaksanaan Kerja
	3.3.1 Proses Pelaksanaan
	3.3.1.1 Tahap Orientasi Teknis dan Pembelajaran Mandiri
	3.3.1.2 Proyek 1: Pengembangan Arsitektur Data Terintegrasi
	3.3.1.3 Proyek 2: Implementasi Sistem Validasi Keamanan melalui Custom Decorator (No-HTML)
	3.3.1.4 Proyek 3: Optimalisasi Dokumentasi API Interaktif dengan Swagger UI
	3.3.1.5 Proyek 4: Pengembangan Logika Bisnis Modul Bizcase (Financial Mapping)
	3.3.1.6 Proyek 5: Implementasi Database Transaction dan Audit Trail (Update V3)
	3.3.1.7 Proyek 6: Analisis Hasil Pengujian Fungsional (Black-box Testing)

	3.3.2 Kendala yang Ditemukan
	3.3.3 Solusi atas Kendala yang Ditemukan

