BAB II

LANDASAN TEORI

2.1 Penelitian Terdahulu

Penelitian terdahulu menjadi landasan penting dalam memahami konsep,
metode, serta pendekatan teknis yang relevan dengan perancangan basis data dan
integrasi modul dalam Project Management Information System (PMIS). Kajian
dilakukan untuk memetakan kontribusi ilmiah pada bidang integritas data,
normalisasi relasional, integrasi skema, dan metodologi Database System
Development Life Cycle (DBSDLC), serta memahami konteks digitalisasi sistem
pada industri Maintenance, Repair, and Overhaul (MRO). Tabel 2.1 merangkum

penelitian yang relevan dengan fokus penelitian ini.

Tabel 2.1 Ringkasan Penelitian Terdahulu yang Relevan

Peneliti &
No. Fokus Penelitian | Metode / Teori | Temuan Utama & Relevansi
Tahun
Menjelaskan prinsip entity,
)) referential, dan domain integrity.
Yesin et al., | Integritas data) .
1 Data Integrity Relevan sebagai dasar

2021 [23] relasional
memastikan schema Bizcase

bebas inkonsistensi.

Menunjukkan dampak kegagalan

. Integrity i
Olivier, Pelanggaran aturan FK/PK terhadap anomali data.
2 Constraint
2023 [24] integritas Penting untuk analisis akar
Analysis
masalah redudansi Bizcase.
Menguraikan teknik [linguistic
Hammad et
Schema dan constraint-based matching.
3 | al, 2021 | Integrasi skema
23] Matching Relevan untuk integrasi Bizreq—
Bizcase—Risk.
Menawarkan pendekatan
Holistic
Yousfi et al., | Integrasi multi- integrasi multi-modul.
4 Schema
2020 [26] skema Mendukung kebutuhan
Matching
konsolidasi skema PRISMA.
8

Perancangan dan Implementasi Basis Data, Tresya Meisel Adieputri, Universitas Multimedia
Nusantara

Peneliti &
No. Fokus Penelitian | Metode / Teori | Temuan Utama & Relevansi
Tahun
Menjelaskan eliminasi partial

s Sug, 2020 | Normalisasi INF— | Relational dan transitive dependency.

[27] 3NF Normalization | Penting untuk perbaikan struktur
bc_*.
Menunjukkan pentingnya FD

6 Li et al., | DB design berbasis | Functional sebagai dasar normalisasi
2024 [28] FD Dependency relasional. Mendukung

rekonstruksi tabel Bizcase.
Memvalidasi DBSDLC sebagai
o) pendekatan terstruktur untuk
Setiyadi, Implementasi

7 DBSDLC pengembangan database.

2021 [2] DBSDLC o)
Menjadi metodologi utama
penelitian.

) DBSDLC dinilai lebih tepat

Aminu & .

SDLC vs | Comparative untuk sistem berbasis data

8 | Ogwueleka, i)

2020 [1] DBSDLC Study dibanding SDLC umum.
Menguatkan pemilihan metode.
Menunjukkan pentingnya

Zyluk et al., o integrasi data real-time dalam

9 Digitalisasi MRO | Case Study)) o
2025 [7] industri aviasi. Mendukung

konteks PRISMA di GMF.
ORM seperti Prisma mengurangi

Majerik & | Akses data A kompleksitas query dan

10 | Borkovcova, | menggunakan) meningkatkan efisiensi backend.

Architecture) .

2023 [9] ORM Relevan untuk implementasi
penelitian.

11 | Vijayakumar | Prioritas MoSCoW Menunjukkan efektivitas teknik
et al.,, 2024 | Kebutuhan Prioritization prioritas dalam pengembangan
[29] sistem. Relevan sebagai dasar

adaptasi teknik M-D-1.

Penelitian yang dilakukan oleh Yesin et al. dan Olivier memberikan dasar
teoretis yang kuat terkait integritas data, khususnya entity integrity dan referential
integrity, yang berperan penting dalam menjaga konsistensi dan keakuratan data
pada database relasional. Temuan tersebut relevan dengan permasalahan awal pada

9

Perancangan dan Implementasi Basis Data, Tresya Meisel Adieputri, Universitas Multimedia
Nusantara

modul Bizcase yang menunjukkan potensi duplikasi dan ketidaksesuaian relasi

antar-entitas[23], [24].

Penelitian Hammad et al. dan Yousfi et al. berfokus pada integrasi skema,
termasuk schema matching dan holistic schema integration, yang relevan dalam
konteks integrasi antar modul PRISMA seperti Bizreq, Bizcase, dan Risk
Management[25], [26]. Sementara itu, Sug dan Li et al. menegaskan bahwa
normalisasi hingga 3NF dan analisis functional dependency merupakan langkah
penting untuk mengurangi anomali struktur dan redudansi data[27], [28]. Hal ini

mendukung perancangan ulang struktur tabel bc_* dalam penelitian ini.

Dari sisi metodologis, Setiyadi dan Aminu & Ogwueleka menunjukkan bahwa
DBSDLC memberikan tahapan analitis dan desain yang lebih terstruktur dibanding
SDLC umum, sehingga lebih sesuai untuk pengembangan sistem berbasis data[1],
[2]. Penelitian Zyluk et al. memberikan konteks industri terkait digitalisasi dan
kebutuhan integrasi data pada sektor MRO[7]. Selain itu, Majerik & Borkovcova
menguatkan pentingnya penggunaan ORM untuk mempermudah pengelolaan data

pada sistem backend berbasis enterprise sepertt PRISMA[9].

Selain aspek teknis basis data, kajian literatur juga menyoroti pentingnya
manajemen kebutuhan data yang efektif. Penelitian Vijayakumar et al. menegaskan
bahwa dalam pengembangan sistem yang kompleks, penerapan teknik prioritas
kebutuhan (requirements prioritization) seperti metode MoSCoW sangat krusial
untuk mencegah pembengkakan ruang lingkup dan memastikan fitur-fitur kritis
dapat diselesaikan tepat waktu [29]. Temuan ini menjadi landasan bagi penelitian
ini untuk mengadopsi pendekatan prioritas M-D-1 (Mandatory-Desirable-

Inessential) dalam proses seleksi atribut modul Bizcase.

Melengkapi tinjauan metodologis tersebut, kajian ini juga meninjau konsep
dasar dari sistem yang dikembangkan. Secara umum, Project Management
Information System (PMIS) didefinisikan sebagai sistem berbasis perangkat lunak
yang dirancang untuk membantu manajer proyek dalam merencanakan,
melaksanakan, dan memantau perkembangan proyek. Fungsi utama PMIS secara

universal adalah menyediakan informasi yang akurat guna mendukung
10

Perancangan dan Implementasi Basis Data, Tresya Meisel Adieputri, Universitas Multimedia
Nusantara

pengambilan keputusan manajerial, pengelolaan sumber daya, serta penjadwalan

waktu (scheduling) yang efisien [1].

Di dalam kerangka manajemen proyek, dokumen Business Case memegang
peranan vital sebagai instrumen justifikasi investasi. Secara teoritis, Business Case
adalah dokumen yang menyajikan alasan logis di balik inisiatif proyek, mencakup
analisis biaya-manfaat (cost-benefit analysis), estimasi risiko, dan proyeksi dampak
bisnis yang diharapkan. Dokumen ini menjadi dasar validasi apakah suatu proyek

layak untuk disetujui atau ditolak oleh manajemen [16].

Namun, penerapan konsep umum tersebut memiliki tantangan tersendiri dalam
industri yang sangat tergulasi seperti Maintenance, Repair, and Overhaul (MRO)
penerbangan. Penelitian Zyluk et al. dan Alharasees et al. menunjukkan bahwa
dalam konteks aviasi, PMIS tidak hanya berfungsi sebagai alat administratif,
melainkan sebagai infrastruktur kritis untuk menjamin integritas data operasional
dan keselamatan[7], [16]. Oleh karena itu, penelitian ini menggunakan definisi
umum tersebut sebagai landasan untuk kemudian menganalisis bagaimana konsep
PMIS dan Business Case perlu diadaptasi secara teknis melalui pendekatan
DBSDLC dan normalisasi basis data untuk memenuhi kebutuhan integrasi data

yang kompleks di PT GMF AeroAsia Tbk.

Berdasarkan kajian literatur tersebut, penelitian sebelumnya telah membahas
integritas data, integrasi skema, normalisasi relasional, serta penerapan DBSDLC
pada berbagai konteks. Namun, belum terdapat penelitian yang secara spesifik
menerapkan pendekatan tersebut pada modul Bizcase dalam lingkungan PMIS
industri aviasi. Selain itu, belum ditemukan kajian yang secara terstruktur
mengevaluasi integrasi data antara modul Bizreq, Bizcase, dan Risk Management
melalui rekonstruksi skema basis data, normalisasi, serta penerapan integritas
relasional. Oleh sebab itu, penelitian ini difokuskan untuk merancang ulang struktur
basis data modul Bizcase menggunakan DBSDLC guna meningkatkan konsistensi,
mengurangi redudansi, dan memperkuat integrasi data pada sistem PRISMA di

GMF AeroAsia.

11

Perancangan dan Implementasi Basis Data, Tresya Meisel Adieputri, Universitas Multimedia
Nusantara

2.2 Teori yang berkaitan

Perancangan basis data yang terstruktur dan terintegrasi memerlukan
pemahaman mendalam terhadap konsep dasar data relasional. Konsep ini meliputi
integritas data, mekanisme pengendalian hubungan antar entitas, teknik integrasi
skema, normalisasi untuk menghilangkan anomali, serta metodologi
pengembangan basis data yang sistematis. Teori-teori berikut digunakan sebagai
dasar akademik bagi proses analisis, perancangan, dan implementasi basis data

pada modul Bizcase di PRISMA.

2.2.1 Data Integrity

Data integrity merupakan konsep inti yang menjamin bahwa data di
dalam database selalu konsisten, akurat, dan valid meskipun terjadi operasi
pembaruan atau penghapusan. Menurut Yesin et al., integritas data terdiri dari

beberapa komponen[23]:
1. Entity Integrity

Menjamin setiap entitas memiliki identitas unik melalui primary key
yang tidak boleh bernilai nu// maupun duplikat. Aturan ini memastikan

bahwa setiap baris data dapat direferensikan dengan benar.
2. Referential Integrity

Menjaga konsistensi referensi antar tabel melalui penggunaan foreign
key. Setiap nilai FK harus merujuk pada nilai PK yang valid pada tabel

induk. Pelanggaran aturan ini umumnya menyebabkan data orphan.
3. Domain Integrity

Mengontrol nilai yang dapat dimasukkan ke dalam kolom melalui tipe

data, panjang karakter, rentang nilai, dan constraints lainnya.
4. User-Defined Integrity
Aturan tambahan yang didefinisikan berdasarkan kebutuhan khusus

aplikasi, seperti kombinasi nilai tertentu yang wajib unik.

12

Perancangan dan Implementasi Basis Data, Tresya Meisel Adieputri, Universitas Multimedia
Nusantara

Olivier menekankan bahwa pelanggaran integritas sering menjadi
akar munculnya anomali, duplikasi, dan konflik pembaruan (update
conflict). Oleh karena itu, teori integritas data memberikan landasan bagi

rekonstruksi schema Bizcase untuk meminimalkan inkonsistensi[24].

2.2.2 Referential Integrity

Referential integrity menjadi aspek penting dalam menjaga konsistensi
relasi master—detail pada sistem PRISMA. Referential integrity mengatur
bagaimana perubahan pada tabel induk berdampak pada tabel anak melalui

aturan foreign key actions, seperti:
1. CASCADE: perubahan pada entitas induk diteruskan ke entitas anak.

2. SET NULL / SET DEFAULT: nilai pada tabel anak dirubah menjadi

null atau nilai default.

3. RESTRICT /NO ACTION: perubahan tidak diperbolehkan jika masih

ada referensi.

Kim memperingatkan bahwa desain relasi yang tidak tepat misalnya
referensi siklikal dapat menimbulkan deadlock ketika FK menggunakan
CASCADE[30]. Sementara He et al. menyatakan bahwa enforcement
referential integrity dapat dilakukan secara deklaratif (melalui DDL) atau

prosedural (melalui trigger)[31].

Bagi PRISMA, mekanisme ini penting karena modul Bizcase memiliki
banyak tabel detail seperti bc activity detail, bc cost item, dan

bc efficiency detail sehingga setiap perubahan harus konsisten antar-entitas.

2.2.3 Schema Integration
Integrasi skema diperlukan ketika sistem memiliki modul berbeda yang
harus saling berkomunikasi. Integrasi skema melibatkan penyatuan entitas,

atribut, tipe data, dan relasi dari beberapa skema menjadi struktur terpadu.

Hammad et al. menguraikan tiga pendekatan utama schema

matching[25]:
13

Perancangan dan Implementasi Basis Data, Tresya Meisel Adieputri, Universitas Multimedia
Nusantara

1. Linguistic-Based Matching

Cocok berdasarkan kemiripan nama atribut, misalnya activity name

dan name_activity.
2. Constraint-Based Matching

Memanfaatkan metadata seperti tipe data, batasan nilai, dan definisi

kunci.
3. Instance-Based Matching
Berdasarkan kesamaan nilai pada data aktual.

Yousfi et al. mengusulkan holistic schema matching untuk kasus multi-
modul, di mana lebih dari dua skema harus diintegrasikan sekaligus[26].
Teknik ini relevan untuk integrasi modul Bizreq, Bizcase, dan Risk
Management pada PRISMA yang masing-masing memiliki struktur dan entitas

berbeda.

2.2.4 Normalization Theory
Normalisasi merupakan proses mengorganisasi atribut dalam struktur
relasional untuk menghilangkan redudansi dan memastikan konsistensi data.

Sug dan Li et al. menjelaskan beberapa bentuk normalisasi[27], [28]:
1. First Normal Form (1NF)
Atribut harus atomik dan tidak boleh mengandung nilai berulang.
2. Second Normal Form (2NF)

Tidak boleh ada partial dependency, yaitu atribut non-kunci tidak

boleh hanya bergantung pada sebagian composite primary key.
3. Third Normal Form (3NF)

Tidak boleh ada transitive dependency, yaitu atribut non-kunci tidak

boleh bergantung pada atribut non-kunci lainnya.

Normalisasi memastikan tidak terjadi anomali seperti:
14

Perancangan dan Implementasi Basis Data, Tresya Meisel Adieputri, Universitas Multimedia
Nusantara

a. update anomaly
b. delete anomaly
c. insert anomaly

Bagi sistem PRISMA, normalisasi diperlukan untuk menata ulang tabel
bc * agar setiap komponen Bizcase (cost, activity, efficiency, dll.) dapat

diakses dengan konsisten tanpa redudansi.

2.2.5 Teknik Elicitation Requirements (M-D-I)

Dalam pengembangan sistem perangkat Iunak yang kompleks,
penentuan prioritas kebutuhan (requirements prioritization) merupakan
langkah krusial untuk memastikan bahwa fitur-fitur yang dikembangkan
memberikan nilai maksimal bagi pengguna dalam batasan waktu dan sumber
daya yang tersedia [32], [33]. Tanpa prioritas yang jelas, proses pengembangan
berisiko mengalami pembengkakan ruang lingkup dan kegagalan dalam

memenuhi fungsi inti bisnis [34].

Penelitian ini mengadaptasi teknik MoSCoW, yang merupakan salah satu
metode prioritas paling efektif dalam pengembangan perangkat lunak modern
[29]. Untuk kebutuhan spesifik sistem PRISMA, kategori MoSCoW dipetakan
menjadi model M-D-I (Mandatory, Desirable, Inessential) dengan definisi

sebagai berikut:

1. Mandatory (M) — Setara dengan Must Have: Merupakan kebutuhan kritis
yang wajib dipenuhi agar sistem dapat beroperasi. Jika kebutuhan ini
diabaikan, sistem dianggap gagal memberikan fungsionalitas utamanya.
Dalam konteks basis data, ini mencakup integritas data dasar dan alur proses

utama bisnis [29], [35].

2. Desirable (D) — Setara dengan Should Have: Merupakan kebutuhan
penting yang memiliki prioritas tinggi namun tidak bersifat kritis (critical).

Fitur dalam kategori ini memberikan nilai tambah yang signifikan bagi

15

Perancangan dan Implementasi Basis Data, Tresya Meisel Adieputri, Universitas Multimedia
Nusantara

efisiensi kerja pengguna, namun sistem masih dapat berjalan tanpanya

dalam jangka pendek menggunakan prosedur manual sementara [29].

3. Inessential (I) — Setara dengan Could Have / Won’t Have: Merupakan
kebutuhan tambahan yang bersifat pelengkap atau kosmetik. Kebutuhan ini
memiliki prioritas terendah dan hanya akan dikerjakan apabila terdapat sisa
waktu dan sumber daya setelah kebutuhan M dan D terpenuhi sepenuhnya
[35].

2.2.6 Analisis Komparatif Konsep Teoritis dan Implementasi Studi Kasus
Dalam pengembangan sistem perangkat lunak yang kompleks,
penentuan prioritas kebutuhan (requirements prioritization) merupakan
langkah krusial untuk memastikan bahwa fitur-fitur yang dikembangkan
memberikan nilai maksimal bagi pengguna dalam batasan waktu dan sumber
daya yang tersedia [32], [33]. Tanpa prioritas yang jelas, proses pengembangan
berisiko mengalami pembengkakan ruang lingkup dan kegagalan dalam

memenuhi fungsi inti bisnis [34].

Untuk memastikan relevansi antara landasan teori dengan
pengembangan sistem yang dilakukan, penelitian ini melakukan analisis
komparatif antara definisi umum yang terdapat pada literatur dengan
implementasi spesifik di PT GMF AeroAsia Tbk. Analisis ini mencakup dua
komponen utama, yaitu Project Management Information System (PMIS) dan

Business Case.
1. Project Management Information System (PMIS)

Secara umum, PMIS didefinisikan sebagai sistem berbasis perangkat
lunak yang digunakan untuk merencanakan, mengorganisir, dan
memantau jalannya proyek. Fokus utama PMIS dalam literatur seringkali
menitikberatkan pada penjadwalan (scheduling), alokasi sumber daya, dan
pelaporan status proyek untuk membantu manajer proyek dalam

pengambilan keputusan manajerial [1].

16

Perancangan dan Implementasi Basis Data, Tresya Meisel Adieputri, Universitas Multimedia
Nusantara

Dalam lingkungan GMF, sistem PRISMA tidak hanya berfungsi
sebagai alat penjadwalan, tetapi berevolusi menjadi ekosistem integrasi
data terpusat yang menghubungkan fase perencanaan (Bizreq) dan
eksekusi (Project Service). Karena GMF bergerak di industri
Maintenance, Repair, and Overhaul (MRO) yang padat regulasi, PMIS di
GMF memiliki kebutuhan spesifik pada integritas data dan sinkronisasi.
Berbeda dengan PMIS standar yang mungkin menoleransi input manual
terpisah, PRISMA menuntut mekanisme transaksi atomik di backend
untuk mencegah perbedaan data biaya dan risiko antara dokumen

perencanaan dan realisasi proyek [7].
2. Business Case (Bizcase)

Business Case secara teoritis adalah dokumen justifikasi yang
digunakan untuk menilai kelayakan investasi proyek. Dokumen ini
biasanya berisi analisis biaya-manfaat (cost-benefit analysis), risiko, dan
estimasi dampak bisnis sebelum proyek disetujui [16]. Pada umumnya,
Business Case diperlakukan sebagai dokumen statis (seperti PDF atau

proposal) yang dilampirkan pada awal proyek.

Pada studi kasus ini, Bizcase bukan sekadar dokumen statis,
melainkan ditransformasikan menjadi Modul Data Terstruktur yang
dinormalisasi hingga tingkat 3NF. Modul Bizcase Form di GMF berfungsi
sebagai data gatekeeper yang memecah komponen analisis (biaya,
aktivitas, infrastruktur) ke dalam entitas-entitas modular (bc activity,
bc cost, dll). Hal ini dilakukan untuk mengatasi masalah spesifik
perusahaan berupa duplikasi data dan kesulitan penelusuran riwayat
perubahan (audit trail) yang sering terjadi pada sistem pengajuan manual

sebelumnya.

Untuk mempermudah pemahaman mengenai perbedaan mendasar antara
konsep teoritis dan implementasi lapangan, ringkasan komparasi disajikan

pada Tabel 2.2 berikut:

17

Perancangan dan Implementasi Basis Data, Tresya Meisel Adieputri, Universitas Multimedia
Nusantara

Tabel 2.2 Konsep Umum vs Implementasi GMF

Aspek Komparasi | Konsep Umum (Literatur) | Implementasi Studi Kasus (GMF)

Fokus Utama | Penjadwalan & Pelaporan | Integritas Data & Sinkronisasi
PMIS (Scheduling & Reporting) [1] | Backend (Data Consistency) [7]
Dokumen Statis | Modul Data Relasional (Tabel
Bentuk Bizcase
(Proposal/PDF) [16] Terstruktur & API)

Input manual atau terpisah | Integrasi otomatis antara fase
Penanganan Data)
antar fase Planning & Execution (Atomic)

Efisiensi manajemen waktu | Mencegah conflict update dan
Tujuan Spesifik

proyek redundansi data finansial

2.3 Framework DBSDLC
2.3.1 Gambaran Umum Framework DBSDLC
Pengembangan basis data pada sistem berskala enterprise membutuhkan
pendekatan metodologis yang terstruktur agar setiap tahap dapat dikendalikan
secara konsisten. Salah satu framework yang paling sesuai untuk kebutuhan

tersebut adalah Database System Development Life Cycle (DBSDLC).

Setiyadi menjelaskan bahwa DBSDLC merupakan kerangka kerja
sistematis yang berfokus pada siklus hidup pengembangan basis data,
mencakup tahapan mulai dari perencanaan, analisis kebutuhan, desain,
implementasi, hingga pemeliharaan[2]. Berbeda dari System Development Life
Cycle (SDLC) yang bersifat lebih umum untuk seluruh sistem perangkat lunak,
DBSDLC menitikberatkan pada aspek integritas, efisiensi struktur data, dan

hubungan antar entitas.

Aminu dan Ogwueleka menambahkan bahwa DBSDLC lebih tepat
digunakan untuk pengembangan sistem yang membutuhkan integrasi lintas
modul dan konsistensi data yang tinggi, karena kerangka ini menekankan
validasi kebutuhan data serta desain konseptual yang matang sebelum
implementasi[1]. Dengan karakteristik tersebut, DBSDLC menjadi framework

yang sesuai untuk penelitian ini yang berfokus pada perancangan dan

18

Perancangan dan Implementasi Basis Data, Tresya Meisel Adieputri, Universitas Multimedia
Nusantara

implementasi basis data modul Bizcase dalam sistem PRISMA di PT GMF
AeroAsia Tbk.

2.3.2 Tahapan Umum dalam DBSDLC

Secara umum, DBSDLC terdiri dari beberapa tahapan yang saling
terhubung. Setiyadi mendeskripsikan urutan proses DBSDLC sebagai
berikut[2]:

1. Database Planning

Penentuan ruang lingkup pengembangan basis data, kebutuhan

sistem, serta tujuan bisnis dari rancangan database yang akan dibangun.
2. System Definition

Identifikasi batasan sistem, modul yang terlibat, serta relasi antar

komponen yang akan diintegrasikan.
3. Requirements Collection and Analysis

Pengumpulan kebutuhan data dari pengguna, proses bisnis, serta
aturan integritas yang diperlukan. Tahap ini meliputi identifikasi entitas,

atribut, business rules, dan kebutuhan integrasi lintas modul.
4. Database Design

Perancangan model konseptual, logikal, dan fisik. Pada tahap ini
dilakukan normalisasi, penentuan kunci, serta perancangan struktur

tabel agar bebas dari redudansi dan konsisten secara referensial.
5. Implementation and Loading

Penerapan model data ke dalam DBMS yang dipilih dalam
penelitian ini PostgreSQL termasuk schema migration, pembuatan

indeks, serta data seeding jika diperlukan.

6. Testing and Evaluation

19

Perancangan dan Implementasi Basis Data, Tresya Meisel Adieputri, Universitas Multimedia
Nusantara

Pengujian terhadap struktur data, aturan integritas, serta
fungsionalitas API menggunakan Black Box Testing, Postman, dan alat

lainnya.
7. Operation and Maintenance

Pemeliharaan sistem secara berkelanjutan, termasuk
penyempurnaan struktur data, optimasi kinerja, dan penyesuaian

terhadap kebutuhan bisnis baru.

Damera menegaskan bahwa siklus pengembangan basis data bersifat
iteratif dan harus mampu beradaptasi terhadap perubahan kebutuhan
operasional, sehingga DBSDLC lebih fleksibel dibanding pendekatan linear
seperti SDLC Waterfall[5].

2.3.3 Perbandingan DBSDLC dengan Framework Lain

Pemilihan DBSDLC dalam penelitian ini didasarkan pada analisis
perbandingan terhadap framework lain yang umum digunakan dalam
pengembangan sistem, seperti SDLC tradisional, Agile, dan Rapid Application
Development (RAD). Aminu dan Ogwueleka menyatakan bahwa SDLC
memiliki pendekatan linear yang stabil namun kurang responsif terhadap
perubahan data yang kompleks[1]. Agile dan RAD lebih cepat pada sisi
pengembangan antarmuka, namun kurang cocok untuk sistem dengan struktur
database yang rumit karena minimnya penekanan terhadap tahap desain

konseptual dan integritas data [10], [12].

Tabel 2.2 berikut merangkum perbandingan antara framework umum

dengan DBSDLC berdasarkan literatur terkini.

20

Perancangan dan Implementasi Basis Data, Tresya Meisel Adieputri, Universitas Multimedia
Nusantara

Tabel 2.3 Perbandingan Framework Pengembangan Sistem

Aspek DBSDLC (Khusus
SDLC (Umum) Agile / RAD
Perbandingan Database)
Fokus Utama | Pengembangan Iterasi cepat dan | Perancangan dan
perangkat lunak | kolaboratif [5], | pengelolaan basis data
secara menyeluruh | [12] secara spesifik [2]
[1]
Pendekatan Linear dan | Iteratif dan adaptif | Tahapan spesifik berbasis
Pengembangan | sekuensial [12] data (planning — design
(Waterfall) [1] — implementation) [2]
Peran Terlibat pada awal | Terlibat aktif pada | Terlibat terutama pada
Pengguna dan akhir fase [1] setiap sprint [12] tahap analisis kebutuhan
data [2]

Kontrol Umum dan tidak | Fokus pada | Validasi integritas
Kualitas Data | fokus pada integritas | fungsionalitas struktural dan referensial
data [1] aplikasi, bukan | [23], [24]

struktur data [12]
Kelebihan Stabil, dokumentasi | Cepat beradaptasi, | Integritas data tinggi,
lengkap, mudah | fleksibel, time-to- | modular, efisien untuk
diprediksi [1] market cepat [5], | desain skema [2], [23]
[12]
Keterbatasan | Kurang adaptif | Risiko Membutuhkan
terhadap perubahan | inkonsistensi perencanaan data yang
kebutuhan [1] struktur data [5] lebih mendalam [2]

2.3.4 Relevansi DBSDLC terhadap Penelitian

Pemilihan DBSDLC sebagai framework utama penelitian ini didasarkan

pada karakteristiknya yang secara langsung mendukung kebutuhan teknis dan

fungsional PRISMA. Setiyadi menyebutkan bahwa DBSDLC sangat ideal

untuk sistem yang memiliki interdependensi antar modul serta tuntutan

konsistensi data tingkat tinggi [2].

Dalam penelitian ini, DBSDLC diterapkan untuk:

a. melakukan analisis kebutuhan data pada modul Bizcase,

21

Perancangan dan Implementasi Basis Data, Tresya Meisel Adieputri, Universitas Multimedia
Nusantara

b. merancang model konseptual (ERD) yang terintegrasi dengan Bizreq

dan Risk Management,
c. menyusun desain logikal dan fisik melalui struktur tabel PostgreSQL,
d. mengimplementasikan skema menggunakan Prisma ORM,

e. serta melakukan pengujian API untuk memastikan integritas dan

konsistensi data.

Damera menegaskan bahwa integrasi DBSDLC dengan arsitektur
modular seperti NestJS dan Prisma ORM dapat meningkatkan efisiensi
implementasi karena tiap tahapan berjalan sistematis dan tidak saling
mengganggu [5]. Secara keseluruhan, penggunaan DBSDLC diproyeksikan
mampu menghasilkan basis data yang stabil, terukur, dan mudah dikembangkan

untuk mendukung proses digitalisasi GMF AeroAsia melalui sistem PRISMA.

2.4 Tools/software yang digunakan

Pengembangan backend modul Bizcase pada sistem Project Information
System Management (PRISMA) di PT GMF AeroAsia Tbk memerlukan perangkat
lunak yang mendukung integrasi data, modularitas arsitektur, serta konsistensi basis
data sesuai pendekatan Database System Development Life Cycle (DBSDLC).
Setiap tools yang digunakan dipilih berdasarkan kebutuhan spesifik modul Bizcase,
hasil evaluasi literatur, serta standar enginering backend yang diterapkan oleh tim

PRISMA.

Dengan demikian, bagian ini menguraikan perangkat lunak yang digunakan

beserta alasan pemilihannya dan perbandingan dengan alternatif teknologi lain.

2.4.1 PostgreSQL

PostgreSQL dipilih sebagai Relational Database Management System
(RDBMS) utama karena mendukung complex transactions, adaptive indexing,
query optimization, serta kemampuan menjaga konsistensi data pada sistem
enterprise. Penelitian Damera menunjukkan bahwa PostgreSQL memiliki

stabilitas tinggi pada lingkungan berskala besar dan optimal dalam memproses

22

Perancangan dan Implementasi Basis Data, Tresya Meisel Adieputri, Universitas Multimedia
Nusantara

permintaan paralel [5]. Keinsinyuran et al. menegaskan bahwa PostgreSQL
efektif digunakan dalam sistem master data management karena memiliki

kemampuan integrasi lintas modul bisnis yang kuat[3].

Dalam PRISMA, PostgreSQL menyimpan entitas seperti Bizreq,
Bizcase, dan Risk Management, sehingga memastikan bahwa hubungan
referensial antar modul tetap konsisten selama implementasi DBSDLC,

khususnya pada tahap Database Design dan Implementation.

2.4.2 NestJs

NestJS merupakan framework backend berbasis Nodejs yang
mengusung arsitektur modular dan dependency injection. Framework ini dipilih
karena mendukung struktur backend yang terorganisir, terukur, dan mudah
dikelola pada sistem berskala enterprise. Guntakandla menunjukkan bahwa
modular architecture meningkatkan skalabilitas dan resiliensi sistem dalam

lingkungan backend yang kompleks[12].

Zima dan Barszcz menegaskan bahwa NestJS memiliki memiliki
performa lebih baik dibanding framework Node.js lain seperti Express.js karena
dukungan native terhadap TypeScript serta pola pengembangan yang lebih

sistematis[8].
Pada PRISMA, NestJS digunakan untuk:
a. mengelola logika bisnis Bizcase,
b. menghubungkan backend dengan database melalui Prisma ORM,
c. mengimplementasikan API yang stabil dan konsisten.

2.4.3 Prisma ORM

Prisma ORM digunakan untuk menjembatani komunikasi antara aplikasi
backend NestJS dan database PostgreSQL. Prisma mengadopsi pendekatan
type-safe query, sehingga risiko kesalahan akses data dapat dikurangi secara

signifikan.

23

Perancangan dan Implementasi Basis Data, Tresya Meisel Adieputri, Universitas Multimedia
Nusantara

Majerik dan Borkovcova menjelaskan bahwa ORM mampu
menyederhanakan proses pengembangan backend dengan mengurangi
kebutuhan penulisan SQL manual[9]. Selain itu, Riyanto dan Rochimah
menemukan bahwa integrasi ORM dengan query profiling dan timestamp

optimization mampu meningkatkan performa sistem hingga 30% [11].
Dalam konteks PRISMA, Prisma ORM digunakan untuk:
a. auto migration selama perubahan skema,
b. menjaga sinkronisasi struktur database,

c. memfasilitasi integrasi antar modul melalui relasi yang didefinisikan

pada skema Prisma.

2.4.4 Postman
Postman digunakan sebagai alat utama untuk melakukan pengujian
fungsional (functional testing) terhadap endpoint API modul Bizcase. Pengujian

difokuskan pada operasi CRUD dan validasi integrasi data antar modul.

Kore et al. menyatakan bahwa Postman mendukung proses pengujian
API secara manual maupun otomatis, sehingga efektif digunakan pada tahap
Testing and Evaluation dalam DBSDLC [20], [22]. Thooriqoh et al.
menambahkan bahwa fitur automated testing mampu mempercepat validasi

endpoint hingga 80%][22]

Dengan demikian, Postman memastikan bahwa API berjalan konsisten

dengan kebutuhan pengguna dan struktur data yang ditetapkan.

2.4.5 SwaggerUIl

SwaggerUIl merupakan framework berbasis antarmuka grafis yang
digunakan untuk menampilkan dokumentasi dan melakukan pengujian terhadap
APl (Application Programming Interface) secara interaktif. SwaggerUI
terintegrasi secara langsung dengan NestJS melalui pustaka @nestjs/swagger,
yang secara otomatis menghasilkan dokumentasi API dari decorator dan

metadata yang digunakan pada kode backend.
24

Perancangan dan Implementasi Basis Data, Tresya Meisel Adieputri, Universitas Multimedia
Nusantara

Penggunaan SwaggerUI mempermudah proses validasi dan pengujian
endpoint karena pengembang dapat melihat struktur parameter, tipe data, serta
format response yang dikembalikan oleh sistem tanpa perlu menggunakan
aplikasi pihak ketiga. Selain itu, SwaggerUl juga berfungsi sebagai
dokumentasi teknis API yang membantu komunikasi antar pengembang dalam

proses integrasi modul.

@ swagger Ul

@ localhost:3080/api#/ a®w e mavD Y

Master Testing Module v
Master Period Module v
Master Activity Module v
Master Infra Needs Module v

Bizcase ~

v
Bc Activity Module v
Bc Infra Needs Module G
Bc Risk Module v
Bc Testing Scope Module v
Bc Service Category Module M
Bc Data Migration Module v
Bc Cost Efficiency Module v
Bc Cost Manage Service Module v
Bc Cost Implementation Module ¥
Bc Upgrade Patching Module v

Gambar 2.1 tampilan SwaggerUI

2.4.6 Bitbucket

Bitbucket merupakan platform version control system berbasis Git yang
digunakan untuk mengelola dan menyimpan kode sumber proyek secara
terpusat. Dalam pengembangan sistem PRISMA, Bitbucket berfungsi sebagai
repositori utama yang digunakan oleh tim pengembang untuk melakukan

commit, push, pull, dan merge branch selama proses kolaborasi.

Penggunaan Bithucket memungkinkan penerapan manajemen versi kode
yang lebih terstruktur sehingga setiap perubahan dapat dilacak secara historis.
Selain itu, Bithucket juga mendukung integrasi dengan berbagai alat
pengembangan seperti Visual Studio Code dan pipeline otomatis untuk

continuous integration/continuous deployment (CI/CD) jika dibutuhkan.

25

Perancangan dan Implementasi Basis Data, Tresya Meisel Adieputri, Universitas Multimedia
Nusantara

Dengan adanya Bitbucket, proses pengembangan sistem menjadi lebih
efisien karena setiap anggota tim dapat bekerja pada bagian kode yang berbeda
tanpa mengganggu versi utama aplikasi. Hal ini juga membantu dalam proses
dokumentasi perubahan (changelog) dan pengelolaan issue tracking secara
kolaboratif. Gambar 2.2 menampilkan tampilan repositori proyek PRISMA
pada Bitbucket.

#i O Bitbucket projecs Repositories v

2920000020220 020020020

Gambar 2.2 Hasil commit message PRISMA pada Bitbucket

2.4.7 Visual Studio Code

Visual Studio Code (VS Code) merupakan Integrated Development
Environment (IDE) yang digunakan dalam proses pengembangan sistem
backend. Damera menjelaskan bahwa penggunaan IDE dengan fitur intelligent
suggestion seperti VS Code mempercepat penulisan kode dan mengurangi
kesalahan sintaks [5]. Selain itu, integrasi terminal internal dan ekstensi Git
memudahkan pengujian langsung dari lingkungan pengembangan tanpa
berpindah aplikasi. Dengan demikian, VS Code mendukung kolaborasi
pengembang dan menjaga konsistensi hasil implementasi dalam proyek

PRISMA.

2.4.8 Draw.io
Draw.io digunakan untuk membuat diagram konseptual seperti Entity

Relationship Diagram (ERD) dan flowchart sistem. Setiyadi menyatakan bahwa
26

Perancangan dan Implementasi Basis Data, Tresya Meisel Adieputri, Universitas Multimedia
Nusantara

visualisasi diagram mempermudah pemahaman hubungan antar entitas dan
mencegah kesalahan desain basis data [2]. Dalam penelitian ini, Draw.io
digunakan untuk menggambarkan struktur relasional antar entitas seperti
Bizcase, Bizreq, dan Risk Management sebagai bagian dari tahap Database

Design dalam DBSDLC.

2.4.9 Perbandingan Tools dan Alternatif Teknologi

Pemilihan perangkat lunak dalam pengembangan modul Bizcase pada
PRISMA dilakukan secara terstruktur berdasarkan kebutuhan basis data,
arsitektur backend, serta integrasi antar modul (Bizreq — Bizcase — Risk
Management). Sejalan dengan rekomendasi reviewer, perbandingan tools tidak
hanya mengacu pada hasil benchmarking, tetapi dijelaskan berdasarkan
relevansi terhadap kebutuhan modul Bizcase, kesesuaian dengan stack

PRISMA, dan kelayakan implementasi di lingkungan GMF.

Oleh karena itu, setiap kelompok tools dibandingkan dengan kandidat
yang secara realistis dapat digunakan dalam konteks PRISMA, bukan seluruh

tools yang tersedia secara umum.

A.Database Management System: PostgreSQL vs MySQL vs SQL
Server

Pemilihan Database Management System (DBMS) dalam penelitian

ini didasarkan pada analisis kebutuhan spesifik modul Bizcase Form

serta standar teknologi yang diterapkan di lingkungan PT GMF

AeroAsia Tbk. Berikut adalah justifikasi pemilihan PostgreSQL

dibandingkan dengan alternatif lain:

1. Dukungan Tipe Data JSONB (Flexible Schema): Modul Bizcase
memiliki karakteristik data yang dinamis, di mana atribut pada
formulir pengajuan sering mengalami perubahan (custom fields)
sesuai kebutuhan bisnis. PostgreSQL memiliki fitur unggulan tipe
data JSONB yang memungkinkan penyimpanan data
semiterstruktur dengan performa indexing yang tinggi. Fitur ini

tidak dimiliki secara optimal oleh SQL Server atau MySQL versi
27

Perancangan dan Implementasi Basis Data, Tresya Meisel Adieputri, Universitas Multimedia
Nusantara

lama, sehingga PostgreSQL menjadi pilihan terbaik untuk
mengakomodasi fleksibilitas formulir Bizcase tanpa harus terus-

menerus mengubah skema tabel (schema migration).

Integritas Transaksi dan Transactional DDL: Prioritas utama
adalah
DDL

sistem ini integritas data.

(Data

PostgreSQL mendukung

Transactional Definition Language), yang
memungkinkan perubahan struktur database (seperti migrasi tabel)
dilakukan dalam satu transaksi yang aman (atomic). Jika terjadi
kegagalan saat migrasi, sistem dapat melakukan rollback secara
total. Fitur ini sangat krusial dalam lingkungan enterprise seperti
data saat

GMF untuk mencegah kerusakan skema basis

pengembangan fitur baru.

Kepatuhan Standar Enterprise dan Efisiensi Biaya: Sebagai
perusahaan MRO berskala besar, GMF menuntut perangkat lunak
yang compliant dengan standar keamanan enterprise namun tetap
efisien secara biaya. PostgreSQL merupakan solusi open-source
dengan fitur setara DBMS berbayar (seperti Oracle atau SQL Server
Enterprise), mencakup dukungan konkurensi tinggi (MVCC) dan
keamanan berbasis peran (Role-Based Access Control). Hal ini
sejalan dengan kebijakan efisiensi

IT perusahaan tanpa

mengorbankan performa dan keamanan data.

Tabel 2.4 berikut merangkum perbandingan teknis antara ketiga

kandidat DBMS tersebut:

Tabel 2.4 PostgreSOL vs MySQL vs SQLServer

Kriteria PostgreSQL MySQL SQL Server
Optimasi Query Sangat Baik Baik Sangat Baik
Dukungan Open

Ya Ya Tidak
Source
Integrasi ORM Optimal Terbatas Terbatas
28

Perancangan dan Implementasi Basis Data, Tresya Meisel Adieputri, Universitas Multimedia

Nusantara

Kriteria PostgreSQL MySQL SQL Server
Skalabilitas Tinggi Menengah Tinggi
Dukungan Relasi))

Sangat Baik Menengah Baik
Kompleks

Hasil perbandingan pada tabel 2.3 menunjukkan bahwa PostgreSQL
menjadi pilihan paling relevan karena mendukung sistem modular, stabil,
serta efisien dalam menangani beban transaksi tinggi yang diperlukan

oleh GMF.

B. Framework Backend: NestJS vs Express.js vs Django

NestJS memiliki arsitektur modular dan dukungan penuh terhadap
TypeScript, menjadikannya unggul dalam pengembangan sistem
enterprise. Express.js lebih ringan namun kurang terstruktur, sedangkan
Django unggul dalam rapid prototyping tetapi tidak kompatibel dengan

ORM berbasis TypeScript.
Framework yang dibandingkan pada Tabel 2.4 dipilih karena:

a. Nest]S dan Express.js adalah framework paling umum dalam

ekosistem Node.js, sesuai stack PRISMA.

b. Django dipilih sebagai pembanding lintas bahasa (Python) yang

sering digunakan dalam enterprise-scale backend.

Framework lain seperti Laravel (PHP), Spring Boot (Java), Ruby on
Rails, dan FastAPI tidak dibandingkan karena tidak kompatibel dengan
TypeScript, atau tidak digunakan oleh tim PRISMA, sehingga tidak

realistis sebagai alternatif.

Tabel 2.5 NestJS vs Express.js vs Django

Kriteria NestJS Express.js Django
Arsitektur Modular | Ya Tidak Ya
Dukungan

. Native Parsial Tidak Ada
TypeScript
Skalabilitas Tinggi Menengah Menengah

29
Perancangan dan Implementasi Basis Data, Tresya Meisel Adieputri, Universitas Multimedia
Nusantara

C.ORM Tools: Prisma ORM vs Sequelize vs TypeORM
Majerik dan Borkovcova menunjukkan bahwa Prisma unggul dalam
efisiensi schema synchronization, sedangkan Sequelize memerlukan
konfigurasi manual [9]. Riyanto dan Rochimah menambahkan bahwa
Prisma mendukung query profiling dan timestamp optimization yang

mempercepat waktu eksekusi [11].

Ketiga ORM pada Tabel 2.5 dipilih karena merupakan ORM paling
stabil dan paling umum digunakan pada ekosistem Node.js, serta
semuanya kompatibel dengan PostgreSQL. ORM lain seperti
MikroORM atau Objection.js tidak dijadikan pembanding karena

dokumentasi lebih terbatas dan penggunaannya belum umum di

enterprise.
Tabel 2.6 Prisma ORM vs Sequelize vs TypeORM

Kriteria Prisma ORM Sequelize TypeORM
Type Safety Tinggi Rendah Tinggi
Auto

Ya Tidak Ya
Migration
Optimasi)

Tinggi Menengah Tinggi
Query

D. API Testing Tools: Postman vs Swagger vs Newman
Kore et al. menyatakan bahwa Postman unggul dalam kemudahan
penggunaan dan visualisasi respons, sedangkan Swagger lebih
difokuskan pada dokumentasi API[20]. Thooriqoh et al. menambahkan
bahwa Newman lebih cocok untuk continuous integration pipelines,

bukan untuk pengujian manual[22].

Ketiga tools pada Tabel 2.6 dipilih karena merupakan tools testing

REST API paling relevan dan semuanya mendukung workflow

30

Perancangan dan Implementasi Basis Data, Tresya Meisel Adieputri, Universitas Multimedia
Nusantara

pengembangan di PRISMA. Tools lain seperti JMeter atau K6 berfokus

pada performance testing, bukan fungsional API.

Tabel 2.7 Postman vs Swagger vs Newman

Kriteria Postman Swagger Newman

Kemudahan o

Tinggi Menengah Rendah
Penggunaan
Automation

Ya Tidak Ya
Support
Visualisasi]

Lengkap Terbatas Tidak Ada
Respons

Berdasarkan hasil perbandingan yang disajikan pada tabel-tabel
sebelumnya, kombinasi PostgreSQL, NestJS, Prisma ORM, dan Postman
merupakan konfigurasi yang paling tepat untuk mendukung
pengembangan sistem backend berbasis DBSDLC di GMF AeroAsia.
Damera menegaskan bahwa penggunaan kombinasi ini terbukti
meningkatkan efisiensi pengembangan, menjaga integritas data, serta

mempermudah proses integrasi antar modul [5].

Dengan demikian, seluruh perangkat lunak yang digunakan pada
penelitian ini telah dipilih secara strategis berdasarkan keunggulan teknis
dan kesesuaian terhadap kebutuhan sistem PRISMA, serta siap
mendukung tahap implementasi yang akan dibahas pada Bab III.

31

Perancangan dan Implementasi Basis Data, Tresya Meisel Adieputri, Universitas Multimedia
Nusantara

	BAB II LANDASAN TEORI
	2.1 Penelitian Terdahulu
	2.2 Teori yang berkaitan
	2.2.1 Data Integrity
	2.2.2 Referential Integrity
	2.2.3 Schema Integration
	2.2.4 Normalization Theory
	2.2.5 Teknik Elicitation Requirements (M-D-I)
	2.2.6 Analisis Komparatif Konsep Teoritis dan Implementasi Studi Kasus

	2.3 Framework DBSDLC
	2.3.1 Gambaran Umum Framework DBSDLC
	2.3.2 Tahapan Umum dalam DBSDLC
	2.3.3 Perbandingan DBSDLC dengan Framework Lain
	2.3.4 Relevansi DBSDLC terhadap Penelitian

	2.4 Tools/software yang digunakan
	2.4.1 PostgreSQL
	2.4.2 NestJs
	2.4.3 Prisma ORM
	2.4.4 Postman
	2.4.5 SwaggerUI
	2.4.6 Bitbucket
	2.4.7 Visual Studio Code
	2.4.8 Draw.io
	2.4.9 Perbandingan Tools dan Alternatif Teknologi
	A. Database Management System: PostgreSQL vs MySQL vs SQL Server
	B. Framework Backend: NestJS vs Express.js vs Django
	C. ORM Tools: Prisma ORM vs Sequelize vs TypeORM
	D. API Testing Tools: Postman vs Swagger vs Newman

