

8
Perancangan dan Implementasi Basis Data, Tresya Meisel Adieputri, Universitas Multimedia

Nusantara

BAB II

LANDASAN TEORI

 Penelitian Terdahulu

Penelitian terdahulu menjadi landasan penting dalam memahami konsep,

metode, serta pendekatan teknis yang relevan dengan perancangan basis data dan

integrasi modul dalam Project Management Information System (PMIS). Kajian

dilakukan untuk memetakan kontribusi ilmiah pada bidang integritas data,

normalisasi relasional, integrasi skema, dan metodologi Database System

Development Life Cycle (DBSDLC), serta memahami konteks digitalisasi sistem

pada industri Maintenance, Repair, and Overhaul (MRO). Tabel 2.1 merangkum

penelitian yang relevan dengan fokus penelitian ini.

Tabel 2.1 Ringkasan Penelitian Terdahulu yang Relevan

No.
Peneliti &

Tahun
Fokus Penelitian Metode / Teori Temuan Utama & Relevansi

1
Yesin et al.,

2021 [23]

Integritas data

relasional
Data Integrity

Menjelaskan prinsip entity,

referential, dan domain integrity.

Relevan sebagai dasar

memastikan schema Bizcase

bebas inkonsistensi.

2
Olivier,

2023 [24]

Pelanggaran aturan

integritas

Integrity

Constraint

Analysis

Menunjukkan dampak kegagalan

FK/PK terhadap anomali data.

Penting untuk analisis akar

masalah redudansi Bizcase.

3

Hammad et

al., 2021

[25]

Integrasi skema
Schema

Matching

Menguraikan teknik linguistic

dan constraint-based matching.

Relevan untuk integrasi Bizreq–

Bizcase–Risk.

4
Yousfi et al.,

2020 [26]

Integrasi multi-

skema

Holistic

Schema

Matching

Menawarkan pendekatan

integrasi multi-modul.

Mendukung kebutuhan

konsolidasi skema PRISMA.

9
Perancangan dan Implementasi Basis Data, Tresya Meisel Adieputri, Universitas Multimedia

Nusantara

No.
Peneliti &

Tahun
Fokus Penelitian Metode / Teori Temuan Utama & Relevansi

5
Sug, 2020

[27]

Normalisasi 1NF–

3NF

Relational

Normalization

Menjelaskan eliminasi partial

dan transitive dependency.

Penting untuk perbaikan struktur

bc_*.

6
Li et al.,

2024 [28]

DB design berbasis

FD

Functional

Dependency

Menunjukkan pentingnya FD

sebagai dasar normalisasi

relasional. Mendukung

rekonstruksi tabel Bizcase.

7
Setiyadi,

2021 [2]

Implementasi

DBSDLC
DBSDLC

Memvalidasi DBSDLC sebagai

pendekatan terstruktur untuk

pengembangan database.

Menjadi metodologi utama

penelitian.

8

Aminu &

Ogwueleka,

2020 [1]

SDLC vs

DBSDLC

Comparative

Study

DBSDLC dinilai lebih tepat

untuk sistem berbasis data

dibanding SDLC umum.

Menguatkan pemilihan metode.

9
Żyluk et al.,

2025 [7]
Digitalisasi MRO Case Study

Menunjukkan pentingnya

integrasi data real-time dalam

industri aviasi. Mendukung

konteks PRISMA di GMF.

10

Majerik &

Borkovcova,

2023 [9]

Akses data

menggunakan

ORM

ORM

Architecture

ORM seperti Prisma mengurangi

kompleksitas query dan

meningkatkan efisiensi backend.

Relevan untuk implementasi

penelitian.

11 Vijayakumar

et al., 2024

[29]

Prioritas

Kebutuhan

MoSCoW

Prioritization

Menunjukkan efektivitas teknik

prioritas dalam pengembangan

sistem. Relevan sebagai dasar

adaptasi teknik M-D-I.

Penelitian yang dilakukan oleh Yesin et al. dan Olivier memberikan dasar

teoretis yang kuat terkait integritas data, khususnya entity integrity dan referential

integrity, yang berperan penting dalam menjaga konsistensi dan keakuratan data

pada database relasional. Temuan tersebut relevan dengan permasalahan awal pada

10
Perancangan dan Implementasi Basis Data, Tresya Meisel Adieputri, Universitas Multimedia

Nusantara

modul Bizcase yang menunjukkan potensi duplikasi dan ketidaksesuaian relasi

antar-entitas[23], [24].

Penelitian Hammad et al. dan Yousfi et al. berfokus pada integrasi skema,

termasuk schema matching dan holistic schema integration, yang relevan dalam

konteks integrasi antar modul PRISMA seperti Bizreq, Bizcase, dan Risk

Management[25], [26]. Sementara itu, Sug dan Li et al. menegaskan bahwa

normalisasi hingga 3NF dan analisis functional dependency merupakan langkah

penting untuk mengurangi anomali struktur dan redudansi data[27], [28]. Hal ini

mendukung perancangan ulang struktur tabel bc_* dalam penelitian ini.

Dari sisi metodologis, Setiyadi dan Aminu & Ogwueleka menunjukkan bahwa

DBSDLC memberikan tahapan analitis dan desain yang lebih terstruktur dibanding

SDLC umum, sehingga lebih sesuai untuk pengembangan sistem berbasis data[1],

[2]. Penelitian Żyluk et al. memberikan konteks industri terkait digitalisasi dan

kebutuhan integrasi data pada sektor MRO[7]. Selain itu, Majerik & Borkovcova

menguatkan pentingnya penggunaan ORM untuk mempermudah pengelolaan data

pada sistem backend berbasis enterprise seperti PRISMA[9].

Selain aspek teknis basis data, kajian literatur juga menyoroti pentingnya

manajemen kebutuhan data yang efektif. Penelitian Vijayakumar et al. menegaskan

bahwa dalam pengembangan sistem yang kompleks, penerapan teknik prioritas

kebutuhan (requirements prioritization) seperti metode MoSCoW sangat krusial

untuk mencegah pembengkakan ruang lingkup dan memastikan fitur-fitur kritis

dapat diselesaikan tepat waktu [29]. Temuan ini menjadi landasan bagi penelitian

ini untuk mengadopsi pendekatan prioritas M-D-I (Mandatory-Desirable-

Inessential) dalam proses seleksi atribut modul Bizcase.

Melengkapi tinjauan metodologis tersebut, kajian ini juga meninjau konsep

dasar dari sistem yang dikembangkan. Secara umum, Project Management

Information System (PMIS) didefinisikan sebagai sistem berbasis perangkat lunak

yang dirancang untuk membantu manajer proyek dalam merencanakan,

melaksanakan, dan memantau perkembangan proyek. Fungsi utama PMIS secara

universal adalah menyediakan informasi yang akurat guna mendukung

11
Perancangan dan Implementasi Basis Data, Tresya Meisel Adieputri, Universitas Multimedia

Nusantara

pengambilan keputusan manajerial, pengelolaan sumber daya, serta penjadwalan

waktu (scheduling) yang efisien [1].

Di dalam kerangka manajemen proyek, dokumen Business Case memegang

peranan vital sebagai instrumen justifikasi investasi. Secara teoritis, Business Case

adalah dokumen yang menyajikan alasan logis di balik inisiatif proyek, mencakup

analisis biaya-manfaat (cost-benefit analysis), estimasi risiko, dan proyeksi dampak

bisnis yang diharapkan. Dokumen ini menjadi dasar validasi apakah suatu proyek

layak untuk disetujui atau ditolak oleh manajemen [16].

Namun, penerapan konsep umum tersebut memiliki tantangan tersendiri dalam

industri yang sangat tergulasi seperti Maintenance, Repair, and Overhaul (MRO)

penerbangan. Penelitian Żyluk et al. dan Alharasees et al. menunjukkan bahwa

dalam konteks aviasi, PMIS tidak hanya berfungsi sebagai alat administratif,

melainkan sebagai infrastruktur kritis untuk menjamin integritas data operasional

dan keselamatan[7], [16]. Oleh karena itu, penelitian ini menggunakan definisi

umum tersebut sebagai landasan untuk kemudian menganalisis bagaimana konsep

PMIS dan Business Case perlu diadaptasi secara teknis melalui pendekatan

DBSDLC dan normalisasi basis data untuk memenuhi kebutuhan integrasi data

yang kompleks di PT GMF AeroAsia Tbk.

Berdasarkan kajian literatur tersebut, penelitian sebelumnya telah membahas

integritas data, integrasi skema, normalisasi relasional, serta penerapan DBSDLC

pada berbagai konteks. Namun, belum terdapat penelitian yang secara spesifik

menerapkan pendekatan tersebut pada modul Bizcase dalam lingkungan PMIS

industri aviasi. Selain itu, belum ditemukan kajian yang secara terstruktur

mengevaluasi integrasi data antara modul Bizreq, Bizcase, dan Risk Management

melalui rekonstruksi skema basis data, normalisasi, serta penerapan integritas

relasional. Oleh sebab itu, penelitian ini difokuskan untuk merancang ulang struktur

basis data modul Bizcase menggunakan DBSDLC guna meningkatkan konsistensi,

mengurangi redudansi, dan memperkuat integrasi data pada sistem PRISMA di

GMF AeroAsia.

12
Perancangan dan Implementasi Basis Data, Tresya Meisel Adieputri, Universitas Multimedia

Nusantara

 Teori yang berkaitan

Perancangan basis data yang terstruktur dan terintegrasi memerlukan

pemahaman mendalam terhadap konsep dasar data relasional. Konsep ini meliputi

integritas data, mekanisme pengendalian hubungan antar entitas, teknik integrasi

skema, normalisasi untuk menghilangkan anomali, serta metodologi

pengembangan basis data yang sistematis. Teori-teori berikut digunakan sebagai

dasar akademik bagi proses analisis, perancangan, dan implementasi basis data

pada modul Bizcase di PRISMA.

2.2.1 Data Integrity

Data integrity merupakan konsep inti yang menjamin bahwa data di

dalam database selalu konsisten, akurat, dan valid meskipun terjadi operasi

pembaruan atau penghapusan. Menurut Yesin et al., integritas data terdiri dari

beberapa komponen[23]:

1. Entity Integrity

Menjamin setiap entitas memiliki identitas unik melalui primary key

yang tidak boleh bernilai null maupun duplikat. Aturan ini memastikan

bahwa setiap baris data dapat direferensikan dengan benar.

2. Referential Integrity

Menjaga konsistensi referensi antar tabel melalui penggunaan foreign

key. Setiap nilai FK harus merujuk pada nilai PK yang valid pada tabel

induk. Pelanggaran aturan ini umumnya menyebabkan data orphan.

3. Domain Integrity

Mengontrol nilai yang dapat dimasukkan ke dalam kolom melalui tipe

data, panjang karakter, rentang nilai, dan constraints lainnya.

4. User-Defined Integrity

Aturan tambahan yang didefinisikan berdasarkan kebutuhan khusus

aplikasi, seperti kombinasi nilai tertentu yang wajib unik.

13
Perancangan dan Implementasi Basis Data, Tresya Meisel Adieputri, Universitas Multimedia

Nusantara

Olivier menekankan bahwa pelanggaran integritas sering menjadi

akar munculnya anomali, duplikasi, dan konflik pembaruan (update

conflict). Oleh karena itu, teori integritas data memberikan landasan bagi

rekonstruksi schema Bizcase untuk meminimalkan inkonsistensi[24].

2.2.2 Referential Integrity

Referential integrity menjadi aspek penting dalam menjaga konsistensi

relasi master–detail pada sistem PRISMA. Referential integrity mengatur

bagaimana perubahan pada tabel induk berdampak pada tabel anak melalui

aturan foreign key actions, seperti:

1. CASCADE: perubahan pada entitas induk diteruskan ke entitas anak.

2. SET NULL / SET DEFAULT: nilai pada tabel anak dirubah menjadi

null atau nilai default.

3. RESTRICT / NO ACTION: perubahan tidak diperbolehkan jika masih

ada referensi.

Kim memperingatkan bahwa desain relasi yang tidak tepat misalnya

referensi siklikal dapat menimbulkan deadlock ketika FK menggunakan

CASCADE[30]. Sementara He et al. menyatakan bahwa enforcement

referential integrity dapat dilakukan secara deklaratif (melalui DDL) atau

prosedural (melalui trigger)[31].

Bagi PRISMA, mekanisme ini penting karena modul Bizcase memiliki

banyak tabel detail seperti bc_activity_detail, bc_cost_item, dan

bc_efficiency_detail sehingga setiap perubahan harus konsisten antar-entitas.

2.2.3 Schema Integration

Integrasi skema diperlukan ketika sistem memiliki modul berbeda yang

harus saling berkomunikasi. Integrasi skema melibatkan penyatuan entitas,

atribut, tipe data, dan relasi dari beberapa skema menjadi struktur terpadu.

Hammad et al. menguraikan tiga pendekatan utama schema

matching[25]:

14
Perancangan dan Implementasi Basis Data, Tresya Meisel Adieputri, Universitas Multimedia

Nusantara

1. Linguistic-Based Matching

Cocok berdasarkan kemiripan nama atribut, misalnya activity_name

dan name_activity.

2. Constraint-Based Matching

Memanfaatkan metadata seperti tipe data, batasan nilai, dan definisi

kunci.

3. Instance-Based Matching

Berdasarkan kesamaan nilai pada data aktual.

Yousfi et al. mengusulkan holistic schema matching untuk kasus multi-

modul, di mana lebih dari dua skema harus diintegrasikan sekaligus[26].

Teknik ini relevan untuk integrasi modul Bizreq, Bizcase, dan Risk

Management pada PRISMA yang masing-masing memiliki struktur dan entitas

berbeda.

2.2.4 Normalization Theory

Normalisasi merupakan proses mengorganisasi atribut dalam struktur

relasional untuk menghilangkan redudansi dan memastikan konsistensi data.

Sug dan Li et al. menjelaskan beberapa bentuk normalisasi[27], [28]:

1. First Normal Form (1NF)

Atribut harus atomik dan tidak boleh mengandung nilai berulang.

2. Second Normal Form (2NF)

Tidak boleh ada partial dependency, yaitu atribut non-kunci tidak

boleh hanya bergantung pada sebagian composite primary key.

3. Third Normal Form (3NF)

Tidak boleh ada transitive dependency, yaitu atribut non-kunci tidak

boleh bergantung pada atribut non-kunci lainnya.

Normalisasi memastikan tidak terjadi anomali seperti:

15
Perancangan dan Implementasi Basis Data, Tresya Meisel Adieputri, Universitas Multimedia

Nusantara

a. update anomaly

b. delete anomaly

c. insert anomaly

Bagi sistem PRISMA, normalisasi diperlukan untuk menata ulang tabel

bc_* agar setiap komponen Bizcase (cost, activity, efficiency, dll.) dapat

diakses dengan konsisten tanpa redudansi.

2.2.5 Teknik Elicitation Requirements (M-D-I)

Dalam pengembangan sistem perangkat lunak yang kompleks,

penentuan prioritas kebutuhan (requirements prioritization) merupakan

langkah krusial untuk memastikan bahwa fitur-fitur yang dikembangkan

memberikan nilai maksimal bagi pengguna dalam batasan waktu dan sumber

daya yang tersedia [32], [33]. Tanpa prioritas yang jelas, proses pengembangan

berisiko mengalami pembengkakan ruang lingkup dan kegagalan dalam

memenuhi fungsi inti bisnis [34].

Penelitian ini mengadaptasi teknik MoSCoW, yang merupakan salah satu

metode prioritas paling efektif dalam pengembangan perangkat lunak modern

[29]. Untuk kebutuhan spesifik sistem PRISMA, kategori MoSCoW dipetakan

menjadi model M-D-I (Mandatory, Desirable, Inessential) dengan definisi

sebagai berikut:

1. Mandatory (M) – Setara dengan Must Have: Merupakan kebutuhan kritis

yang wajib dipenuhi agar sistem dapat beroperasi. Jika kebutuhan ini

diabaikan, sistem dianggap gagal memberikan fungsionalitas utamanya.

Dalam konteks basis data, ini mencakup integritas data dasar dan alur proses

utama bisnis [29], [35].

2. Desirable (D) – Setara dengan Should Have: Merupakan kebutuhan

penting yang memiliki prioritas tinggi namun tidak bersifat kritis (critical).

Fitur dalam kategori ini memberikan nilai tambah yang signifikan bagi

16
Perancangan dan Implementasi Basis Data, Tresya Meisel Adieputri, Universitas Multimedia

Nusantara

efisiensi kerja pengguna, namun sistem masih dapat berjalan tanpanya

dalam jangka pendek menggunakan prosedur manual sementara [29].

3. Inessential (I) – Setara dengan Could Have / Won’t Have: Merupakan

kebutuhan tambahan yang bersifat pelengkap atau kosmetik. Kebutuhan ini

memiliki prioritas terendah dan hanya akan dikerjakan apabila terdapat sisa

waktu dan sumber daya setelah kebutuhan M dan D terpenuhi sepenuhnya

[35].

2.2.6 Analisis Komparatif Konsep Teoritis dan Implementasi Studi Kasus

Dalam pengembangan sistem perangkat lunak yang kompleks,

penentuan prioritas kebutuhan (requirements prioritization) merupakan

langkah krusial untuk memastikan bahwa fitur-fitur yang dikembangkan

memberikan nilai maksimal bagi pengguna dalam batasan waktu dan sumber

daya yang tersedia [32], [33]. Tanpa prioritas yang jelas, proses pengembangan

berisiko mengalami pembengkakan ruang lingkup dan kegagalan dalam

memenuhi fungsi inti bisnis [34].

Untuk memastikan relevansi antara landasan teori dengan

pengembangan sistem yang dilakukan, penelitian ini melakukan analisis

komparatif antara definisi umum yang terdapat pada literatur dengan

implementasi spesifik di PT GMF AeroAsia Tbk. Analisis ini mencakup dua

komponen utama, yaitu Project Management Information System (PMIS) dan

Business Case.

1. Project Management Information System (PMIS)

Secara umum, PMIS didefinisikan sebagai sistem berbasis perangkat

lunak yang digunakan untuk merencanakan, mengorganisir, dan

memantau jalannya proyek. Fokus utama PMIS dalam literatur seringkali

menitikberatkan pada penjadwalan (scheduling), alokasi sumber daya, dan

pelaporan status proyek untuk membantu manajer proyek dalam

pengambilan keputusan manajerial [1].

17
Perancangan dan Implementasi Basis Data, Tresya Meisel Adieputri, Universitas Multimedia

Nusantara

Dalam lingkungan GMF, sistem PRISMA tidak hanya berfungsi

sebagai alat penjadwalan, tetapi berevolusi menjadi ekosistem integrasi

data terpusat yang menghubungkan fase perencanaan (Bizreq) dan

eksekusi (Project Service). Karena GMF bergerak di industri

Maintenance, Repair, and Overhaul (MRO) yang padat regulasi, PMIS di

GMF memiliki kebutuhan spesifik pada integritas data dan sinkronisasi.

Berbeda dengan PMIS standar yang mungkin menoleransi input manual

terpisah, PRISMA menuntut mekanisme transaksi atomik di backend

untuk mencegah perbedaan data biaya dan risiko antara dokumen

perencanaan dan realisasi proyek [7].

2. Business Case (Bizcase)

Business Case secara teoritis adalah dokumen justifikasi yang

digunakan untuk menilai kelayakan investasi proyek. Dokumen ini

biasanya berisi analisis biaya-manfaat (cost-benefit analysis), risiko, dan

estimasi dampak bisnis sebelum proyek disetujui [16]. Pada umumnya,

Business Case diperlakukan sebagai dokumen statis (seperti PDF atau

proposal) yang dilampirkan pada awal proyek.

Pada studi kasus ini, Bizcase bukan sekadar dokumen statis,

melainkan ditransformasikan menjadi Modul Data Terstruktur yang

dinormalisasi hingga tingkat 3NF. Modul Bizcase Form di GMF berfungsi

sebagai data gatekeeper yang memecah komponen analisis (biaya,

aktivitas, infrastruktur) ke dalam entitas-entitas modular (bc_activity,

bc_cost, dll). Hal ini dilakukan untuk mengatasi masalah spesifik

perusahaan berupa duplikasi data dan kesulitan penelusuran riwayat

perubahan (audit trail) yang sering terjadi pada sistem pengajuan manual

sebelumnya.

Untuk mempermudah pemahaman mengenai perbedaan mendasar antara

konsep teoritis dan implementasi lapangan, ringkasan komparasi disajikan

pada Tabel 2.2 berikut:

18
Perancangan dan Implementasi Basis Data, Tresya Meisel Adieputri, Universitas Multimedia

Nusantara

Tabel 2.2 Konsep Umum vs Implementasi GMF

Aspek Komparasi Konsep Umum (Literatur) Implementasi Studi Kasus (GMF)

Fokus Utama

PMIS

Penjadwalan & Pelaporan

(Scheduling & Reporting) [1]

Integritas Data & Sinkronisasi

Backend (Data Consistency) [7]

Bentuk Bizcase
Dokumen Statis

(Proposal/PDF) [16]

Modul Data Relasional (Tabel

Terstruktur & API)

Penanganan Data
Input manual atau terpisah

antar fase

Integrasi otomatis antara fase

Planning & Execution (Atomic)

Tujuan Spesifik
Efisiensi manajemen waktu

proyek

Mencegah conflict update dan

redundansi data finansial

 Framework DBSDLC

2.3.1 Gambaran Umum Framework DBSDLC

Pengembangan basis data pada sistem berskala enterprise membutuhkan

pendekatan metodologis yang terstruktur agar setiap tahap dapat dikendalikan

secara konsisten. Salah satu framework yang paling sesuai untuk kebutuhan

tersebut adalah Database System Development Life Cycle (DBSDLC).

Setiyadi menjelaskan bahwa DBSDLC merupakan kerangka kerja

sistematis yang berfokus pada siklus hidup pengembangan basis data,

mencakup tahapan mulai dari perencanaan, analisis kebutuhan, desain,

implementasi, hingga pemeliharaan[2]. Berbeda dari System Development Life

Cycle (SDLC) yang bersifat lebih umum untuk seluruh sistem perangkat lunak,

DBSDLC menitikberatkan pada aspek integritas, efisiensi struktur data, dan

hubungan antar entitas.

Aminu dan Ogwueleka menambahkan bahwa DBSDLC lebih tepat

digunakan untuk pengembangan sistem yang membutuhkan integrasi lintas

modul dan konsistensi data yang tinggi, karena kerangka ini menekankan

validasi kebutuhan data serta desain konseptual yang matang sebelum

implementasi[1]. Dengan karakteristik tersebut, DBSDLC menjadi framework

yang sesuai untuk penelitian ini yang berfokus pada perancangan dan

19
Perancangan dan Implementasi Basis Data, Tresya Meisel Adieputri, Universitas Multimedia

Nusantara

implementasi basis data modul Bizcase dalam sistem PRISMA di PT GMF

AeroAsia Tbk.

2.3.2 Tahapan Umum dalam DBSDLC

Secara umum, DBSDLC terdiri dari beberapa tahapan yang saling

terhubung. Setiyadi mendeskripsikan urutan proses DBSDLC sebagai

berikut[2]:

1. Database Planning

Penentuan ruang lingkup pengembangan basis data, kebutuhan

sistem, serta tujuan bisnis dari rancangan database yang akan dibangun.

2. System Definition

Identifikasi batasan sistem, modul yang terlibat, serta relasi antar

komponen yang akan diintegrasikan.

3. Requirements Collection and Analysis

Pengumpulan kebutuhan data dari pengguna, proses bisnis, serta

aturan integritas yang diperlukan. Tahap ini meliputi identifikasi entitas,

atribut, business rules, dan kebutuhan integrasi lintas modul.

4. Database Design

Perancangan model konseptual, logikal, dan fisik. Pada tahap ini

dilakukan normalisasi, penentuan kunci, serta perancangan struktur

tabel agar bebas dari redudansi dan konsisten secara referensial.

5. Implementation and Loading

Penerapan model data ke dalam DBMS yang dipilih dalam

penelitian ini PostgreSQL termasuk schema migration, pembuatan

indeks, serta data seeding jika diperlukan.

6. Testing and Evaluation

20
Perancangan dan Implementasi Basis Data, Tresya Meisel Adieputri, Universitas Multimedia

Nusantara

Pengujian terhadap struktur data, aturan integritas, serta

fungsionalitas API menggunakan Black Box Testing, Postman, dan alat

lainnya.

7. Operation and Maintenance

Pemeliharaan sistem secara berkelanjutan, termasuk

penyempurnaan struktur data, optimasi kinerja, dan penyesuaian

terhadap kebutuhan bisnis baru.

Damera menegaskan bahwa siklus pengembangan basis data bersifat

iteratif dan harus mampu beradaptasi terhadap perubahan kebutuhan

operasional, sehingga DBSDLC lebih fleksibel dibanding pendekatan linear

seperti SDLC Waterfall[5].

2.3.3 Perbandingan DBSDLC dengan Framework Lain

Pemilihan DBSDLC dalam penelitian ini didasarkan pada analisis

perbandingan terhadap framework lain yang umum digunakan dalam

pengembangan sistem, seperti SDLC tradisional, Agile, dan Rapid Application

Development (RAD). Aminu dan Ogwueleka menyatakan bahwa SDLC

memiliki pendekatan linear yang stabil namun kurang responsif terhadap

perubahan data yang kompleks[1]. Agile dan RAD lebih cepat pada sisi

pengembangan antarmuka, namun kurang cocok untuk sistem dengan struktur

database yang rumit karena minimnya penekanan terhadap tahap desain

konseptual dan integritas data [10], [12].

Tabel 2.2 berikut merangkum perbandingan antara framework umum

dengan DBSDLC berdasarkan literatur terkini.

21
Perancangan dan Implementasi Basis Data, Tresya Meisel Adieputri, Universitas Multimedia

Nusantara

Tabel 2.3 Perbandingan Framework Pengembangan Sistem

Aspek

Perbandingan
SDLC (Umum) Agile / RAD

DBSDLC (Khusus

Database)

Fokus Utama Pengembangan

perangkat lunak

secara menyeluruh

[1]

Iterasi cepat dan

kolaboratif [5],

[12]

Perancangan dan

pengelolaan basis data

secara spesifik [2]

Pendekatan

Pengembangan

Linear dan

sekuensial

(Waterfall) [1]

Iteratif dan adaptif

[12]

Tahapan spesifik berbasis

data (planning → design

→ implementation) [2]

Peran

Pengguna

Terlibat pada awal

dan akhir fase [1]

Terlibat aktif pada

setiap sprint [12]

Terlibat terutama pada

tahap analisis kebutuhan

data [2]

Kontrol

Kualitas Data

Umum dan tidak

fokus pada integritas

data [1]

Fokus pada

fungsionalitas

aplikasi, bukan

struktur data [12]

Validasi integritas

struktural dan referensial

[23], [24]

Kelebihan Stabil, dokumentasi

lengkap, mudah

diprediksi [1]

Cepat beradaptasi,

fleksibel, time-to-

market cepat [5],

[12]

Integritas data tinggi,

modular, efisien untuk

desain skema [2], [23]

Keterbatasan Kurang adaptif

terhadap perubahan

kebutuhan [1]

Risiko

inkonsistensi

struktur data [5]

Membutuhkan

perencanaan data yang

lebih mendalam [2]

2.3.4 Relevansi DBSDLC terhadap Penelitian

Pemilihan DBSDLC sebagai framework utama penelitian ini didasarkan

pada karakteristiknya yang secara langsung mendukung kebutuhan teknis dan

fungsional PRISMA. Setiyadi menyebutkan bahwa DBSDLC sangat ideal

untuk sistem yang memiliki interdependensi antar modul serta tuntutan

konsistensi data tingkat tinggi [2].

Dalam penelitian ini, DBSDLC diterapkan untuk:

a. melakukan analisis kebutuhan data pada modul Bizcase,

22
Perancangan dan Implementasi Basis Data, Tresya Meisel Adieputri, Universitas Multimedia

Nusantara

b. merancang model konseptual (ERD) yang terintegrasi dengan Bizreq

dan Risk Management,

c. menyusun desain logikal dan fisik melalui struktur tabel PostgreSQL,

d. mengimplementasikan skema menggunakan Prisma ORM,

e. serta melakukan pengujian API untuk memastikan integritas dan

konsistensi data.

Damera menegaskan bahwa integrasi DBSDLC dengan arsitektur

modular seperti NestJS dan Prisma ORM dapat meningkatkan efisiensi

implementasi karena tiap tahapan berjalan sistematis dan tidak saling

mengganggu [5]. Secara keseluruhan, penggunaan DBSDLC diproyeksikan

mampu menghasilkan basis data yang stabil, terukur, dan mudah dikembangkan

untuk mendukung proses digitalisasi GMF AeroAsia melalui sistem PRISMA.

 Tools/software yang digunakan

Pengembangan backend modul Bizcase pada sistem Project Information

System Management (PRISMA) di PT GMF AeroAsia Tbk memerlukan perangkat

lunak yang mendukung integrasi data, modularitas arsitektur, serta konsistensi basis

data sesuai pendekatan Database System Development Life Cycle (DBSDLC).

Setiap tools yang digunakan dipilih berdasarkan kebutuhan spesifik modul Bizcase,

hasil evaluasi literatur, serta standar enginering backend yang diterapkan oleh tim

PRISMA.

Dengan demikian, bagian ini menguraikan perangkat lunak yang digunakan

beserta alasan pemilihannya dan perbandingan dengan alternatif teknologi lain.

2.4.1 PostgreSQL

PostgreSQL dipilih sebagai Relational Database Management System

(RDBMS) utama karena mendukung complex transactions, adaptive indexing,

query optimization, serta kemampuan menjaga konsistensi data pada sistem

enterprise. Penelitian Damera menunjukkan bahwa PostgreSQL memiliki

stabilitas tinggi pada lingkungan berskala besar dan optimal dalam memproses

23
Perancangan dan Implementasi Basis Data, Tresya Meisel Adieputri, Universitas Multimedia

Nusantara

permintaan paralel [5]. Keinsinyuran et al. menegaskan bahwa PostgreSQL

efektif digunakan dalam sistem master data management karena memiliki

kemampuan integrasi lintas modul bisnis yang kuat[3].

Dalam PRISMA, PostgreSQL menyimpan entitas seperti Bizreq,

Bizcase, dan Risk Management, sehingga memastikan bahwa hubungan

referensial antar modul tetap konsisten selama implementasi DBSDLC,

khususnya pada tahap Database Design dan Implementation.

2.4.2 NestJs

NestJS merupakan framework backend berbasis Node.js yang

mengusung arsitektur modular dan dependency injection. Framework ini dipilih

karena mendukung struktur backend yang terorganisir, terukur, dan mudah

dikelola pada sistem berskala enterprise. Guntakandla menunjukkan bahwa

modular architecture meningkatkan skalabilitas dan resiliensi sistem dalam

lingkungan backend yang kompleks[12].

Zima dan Barszcz menegaskan bahwa NestJS memiliki memiliki

performa lebih baik dibanding framework Node.js lain seperti Express.js karena

dukungan native terhadap TypeScript serta pola pengembangan yang lebih

sistematis[8].

Pada PRISMA, NestJS digunakan untuk:

a. mengelola logika bisnis Bizcase,

b. menghubungkan backend dengan database melalui Prisma ORM,

c. mengimplementasikan API yang stabil dan konsisten.

2.4.3 Prisma ORM

Prisma ORM digunakan untuk menjembatani komunikasi antara aplikasi

backend NestJS dan database PostgreSQL. Prisma mengadopsi pendekatan

type-safe query, sehingga risiko kesalahan akses data dapat dikurangi secara

signifikan.

24
Perancangan dan Implementasi Basis Data, Tresya Meisel Adieputri, Universitas Multimedia

Nusantara

Majerik dan Borkovcova menjelaskan bahwa ORM mampu

menyederhanakan proses pengembangan backend dengan mengurangi

kebutuhan penulisan SQL manual[9]. Selain itu, Riyanto dan Rochimah

menemukan bahwa integrasi ORM dengan query profiling dan timestamp

optimization mampu meningkatkan performa sistem hingga 30% [11].

Dalam konteks PRISMA, Prisma ORM digunakan untuk:

a. auto migration selama perubahan skema,

b. menjaga sinkronisasi struktur database,

c. memfasilitasi integrasi antar modul melalui relasi yang didefinisikan

pada skema Prisma.

2.4.4 Postman

Postman digunakan sebagai alat utama untuk melakukan pengujian

fungsional (functional testing) terhadap endpoint API modul Bizcase. Pengujian

difokuskan pada operasi CRUD dan validasi integrasi data antar modul.

Kore et al. menyatakan bahwa Postman mendukung proses pengujian

API secara manual maupun otomatis, sehingga efektif digunakan pada tahap

Testing and Evaluation dalam DBSDLC [20], [22]. Thooriqoh et al.

menambahkan bahwa fitur automated testing mampu mempercepat validasi

endpoint hingga 80%[22]

Dengan demikian, Postman memastikan bahwa API berjalan konsisten

dengan kebutuhan pengguna dan struktur data yang ditetapkan.

2.4.5 SwaggerUI

SwaggerUI merupakan framework berbasis antarmuka grafis yang

digunakan untuk menampilkan dokumentasi dan melakukan pengujian terhadap

API (Application Programming Interface) secara interaktif. SwaggerUI

terintegrasi secara langsung dengan NestJS melalui pustaka @nestjs/swagger,

yang secara otomatis menghasilkan dokumentasi API dari decorator dan

metadata yang digunakan pada kode backend.

25
Perancangan dan Implementasi Basis Data, Tresya Meisel Adieputri, Universitas Multimedia

Nusantara

Penggunaan SwaggerUI mempermudah proses validasi dan pengujian

endpoint karena pengembang dapat melihat struktur parameter, tipe data, serta

format response yang dikembalikan oleh sistem tanpa perlu menggunakan

aplikasi pihak ketiga. Selain itu, SwaggerUI juga berfungsi sebagai

dokumentasi teknis API yang membantu komunikasi antar pengembang dalam

proses integrasi modul.

Gambar 2.1 tampilan SwaggerUI

2.4.6 Bitbucket

Bitbucket merupakan platform version control system berbasis Git yang

digunakan untuk mengelola dan menyimpan kode sumber proyek secara

terpusat. Dalam pengembangan sistem PRISMA, Bitbucket berfungsi sebagai

repositori utama yang digunakan oleh tim pengembang untuk melakukan

commit, push, pull, dan merge branch selama proses kolaborasi.

Penggunaan Bitbucket memungkinkan penerapan manajemen versi kode

yang lebih terstruktur sehingga setiap perubahan dapat dilacak secara historis.

Selain itu, Bitbucket juga mendukung integrasi dengan berbagai alat

pengembangan seperti Visual Studio Code dan pipeline otomatis untuk

continuous integration/continuous deployment (CI/CD) jika dibutuhkan.

26
Perancangan dan Implementasi Basis Data, Tresya Meisel Adieputri, Universitas Multimedia

Nusantara

Dengan adanya Bitbucket, proses pengembangan sistem menjadi lebih

efisien karena setiap anggota tim dapat bekerja pada bagian kode yang berbeda

tanpa mengganggu versi utama aplikasi. Hal ini juga membantu dalam proses

dokumentasi perubahan (changelog) dan pengelolaan issue tracking secara

kolaboratif. Gambar 2.2 menampilkan tampilan repositori proyek PRISMA

pada Bitbucket.

Gambar 2.2 Hasil commit message PRISMA pada Bitbucket

2.4.7 Visual Studio Code

Visual Studio Code (VS Code) merupakan Integrated Development

Environment (IDE) yang digunakan dalam proses pengembangan sistem

backend. Damera menjelaskan bahwa penggunaan IDE dengan fitur intelligent

suggestion seperti VS Code mempercepat penulisan kode dan mengurangi

kesalahan sintaks [5]. Selain itu, integrasi terminal internal dan ekstensi Git

memudahkan pengujian langsung dari lingkungan pengembangan tanpa

berpindah aplikasi. Dengan demikian, VS Code mendukung kolaborasi

pengembang dan menjaga konsistensi hasil implementasi dalam proyek

PRISMA.

2.4.8 Draw.io

Draw.io digunakan untuk membuat diagram konseptual seperti Entity

Relationship Diagram (ERD) dan flowchart sistem. Setiyadi menyatakan bahwa

27
Perancangan dan Implementasi Basis Data, Tresya Meisel Adieputri, Universitas Multimedia

Nusantara

visualisasi diagram mempermudah pemahaman hubungan antar entitas dan

mencegah kesalahan desain basis data [2]. Dalam penelitian ini, Draw.io

digunakan untuk menggambarkan struktur relasional antar entitas seperti

Bizcase, Bizreq, dan Risk Management sebagai bagian dari tahap Database

Design dalam DBSDLC.

2.4.9 Perbandingan Tools dan Alternatif Teknologi

Pemilihan perangkat lunak dalam pengembangan modul Bizcase pada

PRISMA dilakukan secara terstruktur berdasarkan kebutuhan basis data,

arsitektur backend, serta integrasi antar modul (Bizreq – Bizcase – Risk

Management). Sejalan dengan rekomendasi reviewer, perbandingan tools tidak

hanya mengacu pada hasil benchmarking, tetapi dijelaskan berdasarkan

relevansi terhadap kebutuhan modul Bizcase, kesesuaian dengan stack

PRISMA, dan kelayakan implementasi di lingkungan GMF.

Oleh karena itu, setiap kelompok tools dibandingkan dengan kandidat

yang secara realistis dapat digunakan dalam konteks PRISMA, bukan seluruh

tools yang tersedia secara umum.

A. Database Management System: PostgreSQL vs MySQL vs SQL

Server

Pemilihan Database Management System (DBMS) dalam penelitian

ini didasarkan pada analisis kebutuhan spesifik modul Bizcase Form

serta standar teknologi yang diterapkan di lingkungan PT GMF

AeroAsia Tbk. Berikut adalah justifikasi pemilihan PostgreSQL

dibandingkan dengan alternatif lain:

1. Dukungan Tipe Data JSONB (Flexible Schema): Modul Bizcase

memiliki karakteristik data yang dinamis, di mana atribut pada

formulir pengajuan sering mengalami perubahan (custom fields)

sesuai kebutuhan bisnis. PostgreSQL memiliki fitur unggulan tipe

data JSONB yang memungkinkan penyimpanan data

semiterstruktur dengan performa indexing yang tinggi. Fitur ini

tidak dimiliki secara optimal oleh SQL Server atau MySQL versi

28
Perancangan dan Implementasi Basis Data, Tresya Meisel Adieputri, Universitas Multimedia

Nusantara

lama, sehingga PostgreSQL menjadi pilihan terbaik untuk

mengakomodasi fleksibilitas formulir Bizcase tanpa harus terus-

menerus mengubah skema tabel (schema migration).

2. Integritas Transaksi dan Transactional DDL: Prioritas utama

sistem ini adalah integritas data. PostgreSQL mendukung

Transactional DDL (Data Definition Language), yang

memungkinkan perubahan struktur database (seperti migrasi tabel)

dilakukan dalam satu transaksi yang aman (atomic). Jika terjadi

kegagalan saat migrasi, sistem dapat melakukan rollback secara

total. Fitur ini sangat krusial dalam lingkungan enterprise seperti

GMF untuk mencegah kerusakan skema basis data saat

pengembangan fitur baru.

3. Kepatuhan Standar Enterprise dan Efisiensi Biaya: Sebagai

perusahaan MRO berskala besar, GMF menuntut perangkat lunak

yang compliant dengan standar keamanan enterprise namun tetap

efisien secara biaya. PostgreSQL merupakan solusi open-source

dengan fitur setara DBMS berbayar (seperti Oracle atau SQL Server

Enterprise), mencakup dukungan konkurensi tinggi (MVCC) dan

keamanan berbasis peran (Role-Based Access Control). Hal ini

sejalan dengan kebijakan efisiensi IT perusahaan tanpa

mengorbankan performa dan keamanan data.

Tabel 2.4 berikut merangkum perbandingan teknis antara ketiga

kandidat DBMS tersebut:

Tabel 2.4 PostgreSQL vs MySQL vs SQLServer

Kriteria PostgreSQL MySQL SQL Server

Optimasi Query Sangat Baik Baik Sangat Baik

Dukungan Open

Source
Ya Ya Tidak

Integrasi ORM Optimal Terbatas Terbatas

29
Perancangan dan Implementasi Basis Data, Tresya Meisel Adieputri, Universitas Multimedia

Nusantara

Kriteria PostgreSQL MySQL SQL Server

Skalabilitas Tinggi Menengah Tinggi

Dukungan Relasi

Kompleks
Sangat Baik Menengah Baik

Hasil perbandingan pada tabel 2.3 menunjukkan bahwa PostgreSQL

menjadi pilihan paling relevan karena mendukung sistem modular, stabil,

serta efisien dalam menangani beban transaksi tinggi yang diperlukan

oleh GMF.

B. Framework Backend: NestJS vs Express.js vs Django

NestJS memiliki arsitektur modular dan dukungan penuh terhadap

TypeScript, menjadikannya unggul dalam pengembangan sistem

enterprise. Express.js lebih ringan namun kurang terstruktur, sedangkan

Django unggul dalam rapid prototyping tetapi tidak kompatibel dengan

ORM berbasis TypeScript.

Framework yang dibandingkan pada Tabel 2.4 dipilih karena:

a. NestJS dan Express.js adalah framework paling umum dalam

ekosistem Node.js, sesuai stack PRISMA.

b. Django dipilih sebagai pembanding lintas bahasa (Python) yang

sering digunakan dalam enterprise-scale backend.

Framework lain seperti Laravel (PHP), Spring Boot (Java), Ruby on

Rails, dan FastAPI tidak dibandingkan karena tidak kompatibel dengan

TypeScript, atau tidak digunakan oleh tim PRISMA, sehingga tidak

realistis sebagai alternatif.

Tabel 2.5 NestJS vs Express.js vs Django

Kriteria NestJS Express.js Django

Arsitektur Modular Ya Tidak Ya

Dukungan

TypeScript
Native Parsial Tidak Ada

Skalabilitas Tinggi Menengah Menengah

30
Perancangan dan Implementasi Basis Data, Tresya Meisel Adieputri, Universitas Multimedia

Nusantara

C. ORM Tools: Prisma ORM vs Sequelize vs TypeORM

Majerik dan Borkovcova menunjukkan bahwa Prisma unggul dalam

efisiensi schema synchronization, sedangkan Sequelize memerlukan

konfigurasi manual [9]. Riyanto dan Rochimah menambahkan bahwa

Prisma mendukung query profiling dan timestamp optimization yang

mempercepat waktu eksekusi [11].

Ketiga ORM pada Tabel 2.5 dipilih karena merupakan ORM paling

stabil dan paling umum digunakan pada ekosistem Node.js, serta

semuanya kompatibel dengan PostgreSQL. ORM lain seperti

MikroORM atau Objection.js tidak dijadikan pembanding karena

dokumentasi lebih terbatas dan penggunaannya belum umum di

enterprise.

Tabel 2.6 Prisma ORM vs Sequelize vs TypeORM

Kriteria Prisma ORM Sequelize TypeORM

Type Safety Tinggi Rendah Tinggi

Auto

Migration
Ya Tidak Ya

Optimasi

Query
Tinggi Menengah Tinggi

D. API Testing Tools: Postman vs Swagger vs Newman

Kore et al. menyatakan bahwa Postman unggul dalam kemudahan

penggunaan dan visualisasi respons, sedangkan Swagger lebih

difokuskan pada dokumentasi API[20]. Thooriqoh et al. menambahkan

bahwa Newman lebih cocok untuk continuous integration pipelines,

bukan untuk pengujian manual[22].

Ketiga tools pada Tabel 2.6 dipilih karena merupakan tools testing

REST API paling relevan dan semuanya mendukung workflow

31
Perancangan dan Implementasi Basis Data, Tresya Meisel Adieputri, Universitas Multimedia

Nusantara

pengembangan di PRISMA. Tools lain seperti JMeter atau K6 berfokus

pada performance testing, bukan fungsional API.

Tabel 2.7 Postman vs Swagger vs Newman

Kriteria Postman Swagger Newman

Kemudahan

Penggunaan
Tinggi Menengah Rendah

Automation

Support
Ya Tidak Ya

Visualisasi

Respons
Lengkap Terbatas Tidak Ada

Berdasarkan hasil perbandingan yang disajikan pada tabel-tabel

sebelumnya, kombinasi PostgreSQL, NestJS, Prisma ORM, dan Postman

merupakan konfigurasi yang paling tepat untuk mendukung

pengembangan sistem backend berbasis DBSDLC di GMF AeroAsia.

Damera menegaskan bahwa penggunaan kombinasi ini terbukti

meningkatkan efisiensi pengembangan, menjaga integritas data, serta

mempermudah proses integrasi antar modul [5].

Dengan demikian, seluruh perangkat lunak yang digunakan pada

penelitian ini telah dipilih secara strategis berdasarkan keunggulan teknis

dan kesesuaian terhadap kebutuhan sistem PRISMA, serta siap

mendukung tahap implementasi yang akan dibahas pada Bab III.

	BAB II LANDASAN TEORI
	2.1 Penelitian Terdahulu
	2.2 Teori yang berkaitan
	2.2.1 Data Integrity
	2.2.2 Referential Integrity
	2.2.3 Schema Integration
	2.2.4 Normalization Theory
	2.2.5 Teknik Elicitation Requirements (M-D-I)
	2.2.6 Analisis Komparatif Konsep Teoritis dan Implementasi Studi Kasus

	2.3 Framework DBSDLC
	2.3.1 Gambaran Umum Framework DBSDLC
	2.3.2 Tahapan Umum dalam DBSDLC
	2.3.3 Perbandingan DBSDLC dengan Framework Lain
	2.3.4 Relevansi DBSDLC terhadap Penelitian

	2.4 Tools/software yang digunakan
	2.4.1 PostgreSQL
	2.4.2 NestJs
	2.4.3 Prisma ORM
	2.4.4 Postman
	2.4.5 SwaggerUI
	2.4.6 Bitbucket
	2.4.7 Visual Studio Code
	2.4.8 Draw.io
	2.4.9 Perbandingan Tools dan Alternatif Teknologi
	A. Database Management System: PostgreSQL vs MySQL vs SQL Server
	B. Framework Backend: NestJS vs Express.js vs Django
	C. ORM Tools: Prisma ORM vs Sequelize vs TypeORM
	D. API Testing Tools: Postman vs Swagger vs Newman

