BAB II

LANDASAN TEORI

2.1 Penelitian Terdahulu

Pada bab ini membahas berbagai penelitian terdahulu yang berfokus pada
penerapan partitioning dan indexing dalam pengoptimalan kinerja database. Kajian
terhadap penelitian-penelitian sebelumnya bertujuan untuk memperkuat landasan
teoritis penelitian ini serta memberikan bukti pendukung mengenai efektivitas

kedua teknik tersebut dalam meningkatkan performa sistem database. Pada tabel

2.1 merupakan tabel perbandingan penelitian terdahulu.

Tabel 2. 1 Perbandingan Penelitian Terdahulu

No Judul Jurnal / Metode Hasil dan Temuan Utama
Penelitian, Publisher
Penulis, &
Tahun
1 Looking Proceedings Evaluasi Pemilihan index sesuai
Deeply into of the delapan query workload
the Magic VLDB algoritme menurunkan biaya
Mirror: An | Endowment index eksekusi hingga 50%;
Interactive (PVLDB) SELECT ion | kombinasi index perlu
Analysis of (AutoAdmin, | dioptimasi untuk
Database DB2 Advisor, | menghindari redundant
Index CoPhy, maintenance.
SELECT ion Dexter, dsb.)
Approaches
Penulis:
Halfpap
(2024) [11]

2 | The Effect of 29th Menggunaka | Kombinasi range
Partitioning FRUCT n Local partition dan index lokal
and Indexing | Conference | Partitioned | mempercepat waktu akses

on Data Index dengan | hingga 10x%; partisi

Access Time Range dan | berlebihan memperlambat
List INSERT.

Penulis: Partitioning
Salgova & di Oracle

Matiasko 18c.
(2022) [8]

7

Optimasi Kinerja Sistem..., Maureen Audilia, Universitas Multimedia Nusantara

No Judul Jurnal / Metode Hasil dan Temuan Utama
Penelitian, Publisher
Penulis, &
Tahun
3 Robust IEEE Metode yang | Partitioning
Partitioning ICESIT digunakan meningkatkan kinerja
Scheme for | Conference | Neo4j dengan | query hingga 50%,
Accelerating konfigurasi mengurangi scan cost,
SOL default dan dan mempercepat
Database Oracle 11g agregasi historis.
(EE) dengan
Penulis: range
Khan (2022) partitioning.
[12]
4 | PostgreSQL IJETCSIT | Implementasi | Range partitioning
Table Range, List, | menurunkan waktu
Partitioning dan Hash eksekusi 35-60%; hash
Strategies: Partitioning. | partitioning efektif untuk
Handling load balancing.
Billions of
Rows
Efficiently
Penulis:
Avula, S. B.
(2024) [13]
5 Comparing | WorldCIST B-Tree PostgreSQL meningkat
Oracle and Indexing dan | 91% setelah optimasi
PostgreSQL, tuning index; menunjukkan
Performance work_mem, | pentingnya cost-based
and shared_buffer | optimizer.
Optimization s.
Penulis:
Martins
(2021) [14]
6 | Tabel Partisi Jurnal Partisi Partisi tabel
Pada STARS: | Pengembang | vertical dan | meningkatkan kinerja
Konsep Dan an list partition. | SELECT
Evaluasi Informatika /UPDATE/DELETE,
(Studi Kasus dan sedangkan INSERT
STARS Teknologi memiliki kinerja yang
UKSW) (JPIT) buruk untuk tabel partsi.
8

Optimasi Kinerja Sistem..., Maureen Audilia, Universitas Multimedia Nusantara

No Judul Jurnal / Metode Hasil dan Temuan Utama
Penelitian, Publisher
Penulis, &
Tahun
Penulis:
Boymau
(2023) [15]
7 | Performance IJSAT Range Kombinasi range
Optimization Partitioning, | partition dan clustered
in SAP Hash index menurunkan latensi
HANA: A Partitioning, | hingga 45%; round-robin
Comprehensi dan Clustered | partition tidak efisien
ve Guide to Index pada | untuk data berurutan.
Database SAP HANA.
Tuning
Penulis:
Malli &
Jayaprakash
(2025) [16]
8 Optimizing CTT Index, Kombinasi index dan
Database partitioning, | partisi menurunkan query
Performance: query latency hingga 40% dan
Strategies for rewriting, | meningkatkan throughput
Efficient dan Data sistem.
Query Partitioning
Execution berbasis
and Resource waktu.
Utilization
Penulis:
Basavegowda
, V. (2023)
[17]
9 Unlocking | International | Pembahasan | Indexing dan sharding
Peak Journal of | teori Indexing | mempercepat performa
Performance: | Science and (B-Tree, sistem besar;
Advanced Research Bitmap) dan | direkomendasikan
Techniques Archive Sharding/ | penggunaan range
for (IJSRA) Partitioning. | partitioning untuk data
Optimizing analitik.
Database
Efficiency
Penulis:
Thallapally,
9

Optimasi Kinerja Sistem..., Maureen Audilia, Universitas Multimedia Nusantara

No Judul Jurnal / Metode Hasil dan Temuan Utama
Penelitian, Publisher
Penulis, &
Tahun
N. (2021)
[18]
10 Indexing Journal of | Eksperimen | Hash index unggul untuk
techniques | the Nigerian B-Tree vs | INSERT-heavy workload,
and Society of Hash sementara B-Tree lebih
structured Physical Indexing efisien untuk query
queries for Sciences pada SELECT /UPDATE.
relational PostgreSQL
databases 15.
management
systems
Penulis:
Saidu, I. C.
(2024) [19]
11 | Comparing | Examensarb | Eksperimen | Penggunaan indexing dan
database ete Inom perbandingan | query optimization
optimisation Teknik, teknik menurunkan waktu
techniques in | Grundniva, optimasi eksekusi query kompleks
PostgreSQL : 15 Hp PostgreSQL | hingga 70%; tuning
Indexes, termasuk parameter work_mem dan
query writing indexing, shared buffers
and the query query berpengaruh signifikan
optimiser rewriting, | terhadap performa sistem.
dan planner
Penulis: tuning.
Inersjo
(2021) [20]
12 Elastic Advances in | Implementasi | Elastic indexing
Indexes: Database Elastic B+- | memungkinkan efisiensi
Dynamic Technology Tree yang | ruang penyimpanan
Space vs. - EDBT dapat meningkat hingga 60%
Query menyesuaika | dengan penurunan
Efficiency n ukuran performa query kurang
Tuning for node secara | dari 25%, menjaga
In-Memory dinamis keseimbangan antara
Database berdasarkan | kecepatan dan efisiensi
Indexing tekanan memori.
memori.
Penulis:
Hershcovitch
(2022) [21]
10

Optimasi Kinerja Sistem..., Maureen Audilia, Universitas Multimedia Nusantara

No Judul Jurnal / Metode Hasil dan Temuan Utama
Penelitian, Publisher
Penulis, &
Tahun
13 | Performance | Techno.com, Studi Penelitian menunjukkan
Tuning 2023, Vol | eksperimental | peningkatan performa
Oracle 11g 22, Issue 2, | padasistem | sistem sebesar 55%
Database p400 Oracle 11g | setelah tuning parameter
Melalui menggunakan | dilakukan. Kombinasi
Inisial SQL Tuning | antara index optimization
Paramater, Advisor serta | dan cost-based optimizer
Structure pengaturan | terbukti mempercepat
Database dan parameter | proses query dan efisiensi
SQL Tuning. inisialisasi | penggunaan sumber daya.
Studi Pada (optimizer m
ERP ode,
SISFORBUN db_cache siz
Dana Pensiun e,
Perkebunan shared _pool
(DAPENBU size).
N)
Penulis:
Samidi &
Hariyanto
(2023)
14 Tailored Journal of Pendekatan | Model tailored
Partitioning Data two-layer | partitioning
for Analysis and | partitioning | meningkatkan efisiensi
Healthcare | Information dengan query 2,5% dan
Big Data: A | Processing algoritma | mendukung fault
Novel hash-based | tolerance lebih baik
Technique for anonymizatio | melalui distribusi data
Efficient n dan yang seimbang antar
Data segmented | partisi.
Management range
and Hash partitioning
Retrieval in pada
RDBMS PostgreSQL.
Relational
Architectures
Penulis:
Soltanmoham
madi (2025)
[22]
11

Optimasi Kinerja Sistem..., Maureen Audilia, Universitas Multimedia Nusantara

https://openurl.ebsco.com/results?sid=ebsco:ocu:record&bquery=IS+1412-2693+AND+VI+22+AND+IP+2+AND+DT+2023&link_origin=none&searchDescription=Techno.com%2C%202023%2C%20Vol%2022%2C%20Issue%202
https://openurl.ebsco.com/results?sid=ebsco:ocu:record&bquery=IS+1412-2693+AND+VI+22+AND+IP+2+AND+DT+2023&link_origin=none&searchDescription=Techno.com%2C%202023%2C%20Vol%2022%2C%20Issue%202
https://openurl.ebsco.com/results?sid=ebsco:ocu:record&bquery=IS+1412-2693+AND+VI+22+AND+IP+2+AND+DT+2023&link_origin=none&searchDescription=Techno.com%2C%202023%2C%20Vol%2022%2C%20Issue%202
https://openurl.ebsco.com/results?sid=ebsco:ocu:record&bquery=IS+1412-2693+AND+VI+22+AND+IP+2+AND+DT+2023&link_origin=none&searchDescription=Techno.com%2C%202023%2C%20Vol%2022%2C%20Issue%202

No Judul Jurnal / Metode Hasil dan Temuan Utama
Penelitian, Publisher
Penulis, &
Tahun
15 | To Partition, | Proceedings | Penelitian ini | Hasil menunjukkan
or Not to of the ACM | menggunakan | bahwa tabel berpartisi
Partition, SIGMOD range mempercepat eksekusi
That is the | International | partitioning | query SELECT hingga
Join Question | Conference untuk 40% dibanding tabel
in a Real on database tanpa partisi, namun
System Management | Oracle dan | terdapat penurunan kecil
of Data PostgreSQL. | pada performa INSERT
Penulis: akibat overhead
Bandle M, pemeliharaan partisi.
Giceva J, Penelitian menegaskan
Neumann T bahwa partitioning efektif
(2021) [23] untuk read-heavy
workload.
16 | MySQL VS | Tarlac State | Melakukan | Untuk data kecil, hasilnya
PostgreSQL: | University eksperimen | bervariasi. Namun untuk
A dengan data yang lebih besar
Comparative melakukan | (100k), PostgreSQL
Analysis of operasi menunjukkan skalabilitas
RelationalDa INSERT, dan performa yang lebih
tabase UPDATE, | baik di semua operasi
Management DELETE (INSERT, UPDATE,
Systems dengan DELETE)
(RDBMS) scenario data
Technologies yang
ResponseTim digunakan
e in Web- adalah 10,000
based E- dan 100,000
commerce records
Penulis:
Jannette G,
2024 [24]
17 A MDPI Metode ini | PostgreSQL secara
Performance mengevaluasi | konsisten menunjukkan
Benchmark dan performa yang lebih
for the membanding | unggul dan stabil
PostgreSQOL kan dibandingkan MySQL,
and MySQL PostgreSQL | terutama dalam skenario
Databases dan MySQL | pembacaan data (SELECT
dalam) dan dalam lingkungan
Penulis: skenario dengan beban kerja yang
sistem kompleks.
12

Optimasi Kinerja Sistem..., Maureen Audilia, Universitas Multimedia Nusantara

No Judul Jurnal / Metode Hasil dan Temuan Utama
Penelitian, Publisher
Penulis, &
Tahun
Sanket V, autentikasi
2024 [25] pengguna
berkelanjutan
(continuous
user
authenticatio
n).
18 | PERFORMA UMEA Penelitian in1 | PostgreSQL tanpa index
NCE University | membanding | memberikan insert
COMPARIS kan performa | tercepat namun lambat
ON PostgreSQL | untuk select, update, dan
BETWEEN dan MySQL | delete, sedangkan MySQL
WO dengan tanpa index paling efisien
RELATIONA melakukan | dalam penggunaan ruang
L eksperimen | tetapi paling lambat untuk
DATABASE untuk operasi query. Dengan
MANAGEME mengukur | index B-Tree, PostgreSQL
NT kecepatan | unggul pada operasi
SYSTEMS B- operasi select, update, dan delete
tree indexing CRUD untuk dataset kecil,
in (INSERT, sementara MySQL
PostgreSQOL SELECT, | dengan index lebih cepat
and MySQL UPDATE, | pada dataset besar namun
REMOVE) | memiliki performa insert
Penulis: dan alokasi | paling lambat. Studi
Simon L, memori menyimpulkan bahwa
2024 [26] (memory tidak ada DBMS yang
usage) sepenuhnya unggul;
pemilihan bergantung
pada kebutuhan spesifik
dan karakteristik
workload.

19 | Perbandingan | Universitas | Penelitian ini | Pilihan database terbaik
Performa Multimedia | menggunakan | antara Microsoft SQL
Optimasi Nusantara metodologi | Server dan PostgreSQL

Struktur Database sangat bergantung pada
Penulisan System beban kerja (jumlah
Query SQL Development | thread) dan upaya
Database Lifecycle optimasi query
MySQL, (DSDLC) 1. Performa Awal
PostgreSQL, dengan (Sebelum Optimasi):
dan pendekatan | Microsoft SQL Server
Microsoft bottom-up | adalah pilihan dengan
13

Optimasi Kinerja Sistem..., Maureen Audilia, Universitas Multimedia Nusantara

No Judul Jurnal / Metode Hasil dan Temuan Utama
Penelitian, Publisher
Penulis, &
Tahun
SQL Server dengan performa terbaik
Menggunaka mengukur | "langsung dari kotak"
n Apache response (out-of-the-box).
JMeter time, 2. Dampak Optimasi:
throughput, | PostgreSQL adalah
Penulis: dan error rate | database yang
Tanujaya G pada mendapatkan manfaat
[27] PostgreSQL, | paling signifikan dari
SQL Server | adanya optimasi query.
dan MySQL

2.1.1. Sintesis Literatur Penelitian Terdahulu

Berdasarkan sintesis terhadap sembilan belas penelitian terdahulu
yang dirangkum pada Tabel 2.1, dapat disimpulkan bahwa optimasi
performa database relasional merupakan aspek krusial yang dipengaruhi
oleh penerapan teknik indexing, partitioning, tuning parameter sistem,
optimasi query, serta pemilihan DBMS yang sesuai dengan karakteristik
workload. Sejumlah penelitian menegaskan bahwa indexing berperan
penting dalam meningkatkan efisiensi eksekusi query dengan
mengurangi sequential scan dan mempercepat proses pencarian data,
terutama pada operasi SELECT dan UPDATE. Studi oleh Halfpap [11],
Inersjo [20], Saidu [19], serta Thallapally [18] menunjukkan bahwa
pemilihan struktur index yang tepat, seperti B-Tree, Bitmap, dan Hash
Index, mampu menurunkan waktu eksekusi query secara signifikan,
meskipun efektivitasnya sangat bergantung pada pola akses data dan
jenis workload. Penelitian Hershcovitch [21] memperluas kajian
indexing melalui konsep elastic indexing yang menyeimbangkan
efisiensi ruang dan performa query pada database in-memory, sementara
Martins [14], Samidi & Hariyanto [22], serta Malli & Jayaprakash [16]
menegaskan bahwa optimasi index yang dikombinasikan dengan cost-
based optimizer dan tuning parameter sistem mampu meningkatkan
performa database hingga lebih dari 50%.

14

Optimasi Kinerja Sistem..., Maureen Audilia, Universitas Multimedia Nusantara

Selain indexing, berbagai penelitian menekankan pentingnya
teknik partitioning dalam mengelola data berskala besar. Penelitian oleh
Salgova & Matiasko [8], Khan [12], Avula [13], Boymau [15], serta
Bandle dkk. [23] menunjukkan bahwa penerapan range partitioning
secara konsisten meningkatkan performa query SELECT melalui
mekanisme partition pruning, dengan peningkatan performa yang
dilaporkan berkisar antara 35% hingga 60%. Penelitian
Soltanmohammadi [22] bahkan menunjukkan bahwa pendekatan tailored
partitioning berbasis dua lapis mampu meningkatkan efisiensi query
hingga 2,5 kali lipat dan mendukung distribusi data yang lebih seimbang.
Namun demikian, beberapa penelitian juga menyoroti adanya trade-off,
di mana operasi INSERT cenderung mengalami penurunan performa
akibat overhead pemeliharaan partisi dan index, sebagaimana dilaporkan

oleh Salgova & Matiasko [8], Boymau [15], serta Bandle dkk. [23].

Lebih lanjut, sejumlah penelitian mengkaji kombinasi berbagai
teknik optimasi database. Studi oleh Basavegowda [17], Malli &
Jayaprakash [16], Khan [12], serta Tanujaya [27] menunjukkan bahwa
integrasi indexing, partitioning, optimasi query, dan tuning parameter
sistem menghasilkan peningkatan performa yang lebih signifikan
dibandingkan penerapan teknik secara terpisah. Di sisi lain, beberapa
penelitian melakukan perbandingan performa antar DBMS, seperti
PostgreSQL, MySQL, dan Microsoft SQL Server. Penelitian oleh
Jannette [24], Sanket [25], Simon [26], serta Tanujaya [27] menunjukkan
bahwa PostgreSQL secara umum memiliki skalabilitas dan stabilitas
performa yang lebih baik pada dataset besar dan workload kompleks,
khususnya untuk operasi SELECT setelah dilakukan optimasi, meskipun
tidak ada satu DBMS yang sepenuhnya unggul untuk semua skenario.
Secara keseluruhan, meskipun efektivitas masing-masing teknik
optimasi telah banyak dibuktikan, sebagian besar penelitian masih
dilakukan dalam lingkungan eksperimen atau simulasi dengan data
sintetis dan belum secara spesifik mengevaluasi dampak penerapan

15

Optimasi Kinerja Sistem..., Maureen Audilia, Universitas Multimedia Nusantara

2.1.2.

indexing dan partitioning secara terintegrasi terhadap performa query
SELECT pada PostgreSQL dalam konteks sistem operasional nyata,

sehingga membuka peluang penelitian lebih lanjut pada bidang tersebut.

Research Gap dan Posisi Kontribusi Penelitian

Berdasarkan sintesis literatur yang telah dilakukan, dapat
diidentifikasi beberapa celah penelitian (research gap) yang masih
terbuka. Pertama, sebagian besar penelitian terdahulu masih menguji
teknik indexing dan partitioning secara terpisah, sehingga interaksi dan
dampak kombinasi kedua teknik tersebut terhadap performa database
belum banyak dikaji secara mendalam. Penelitian yang
mengombinasikan indexing dan partitioning secara simultan dalam satu
skenario pengujian yang terintegrasi pada PostgreSQL masih relatif

terbatas.

Kedua, banyak penelitian terdahulu dilakukan pada lingkungan
simulasi atau menggunakan data sintetis, seperti pada penelitian Simon
(2024), sehingga belum sepenuhnya merepresentasikan karakteristik
beban kerja database operasional yang nyata [26]. Padahal, performa
database sangat dipengaruhi oleh pola akses data, volume transaksi, serta
kompleksitas relasi antar tabel yang umumnya lebih tinggi pada sistem

produksi perusahaan.

Ketiga, meskipun beberapa penelitian telah membahas
peningkatan performa database secara umum, belum banyak penelitian
yang secara spesifik memfokuskan analisis pada query SELECT dengan
karakteristik SELECT-heavy workload, terutama pada PostgreSQL.
Padahal, pada banyak sistem informasi perusahaan, operasi SELECT
merupakan operasi yang paling dominan dan memiliki dampak langsung

terhadap waktu respon aplikasi.

Keempat, hingga saat ini belum ditemukan penelitian yang
mengimplementasikan dan mengevaluasi kombinasi teknik indexing dan

partitioning pada lingkungan database PostgreSQL milik PT ABC, yang

16

Optimasi Kinerja Sistem..., Maureen Audilia, Universitas Multimedia Nusantara

memiliki karakteristik data dan permasalahan bottleneck performa yang

berbeda dibandingkan studi terdahulu.

Berdasarkan celah penelitian tersebut, penelitian ini
memposisikan diri untuk mengisi gap dengan mengimplementasikan dan
mengevaluasi kombinasi teknik indexing dan partitioning secara
terintegrasi pada PostgreSQL dalam konteks studi kasus operasional
nyata PT ABC, dengan fokus pada peningkatan performa query
SELECT. Kontribusi utama penelitian ini adalah memberikan bukti
empiris mengenai dampak penerapan kombinasi kedua teknik tersebut
terhadap performa database sebelum dan sesudah optimasi, sehingga
diharapkan dapat menjadi referensi praktis bagi implementasi optimasi
database PostgreSQL pada lingkungan perusahaan dengan karakteristik

beban kerja serupa.

2.2 Teori yang berkaitan
2.2.1 Database Performance Tuning

Database performance tuning merupakan proses sistematis yang
bertujuan untuk mengoptimalkan berbagai komponen dalam sistem
database, seperti query, index, partisi, serta parameter konfigurasi, agar
sistem dapat mencapai tingkat efisiensi maksimum [14]. Proses ini
dilakukan melalui beberapa tahapan penting yang saling berkaitan.
Tahap pertama adalah analisis query execution plan menggunakan
perintah EXPLAIN ANALYZE untuk mengetahui jalur eksekusi query
serta mendeteksi bagian yang menjadi bottleneck. Selanjutnya, dilakukan
perancangan index yang sesuai dengan pola kueri, di mana kolom dengan
tingkat akses tinggi atau sering digunakan dalam klausa WHERE menjadi
prioritas utama untuk diindex. Tahap berikutnya adalah pembagian tabel
besar menjadi beberapa bagian kecil menggunakan teknik partitioning,
yang bertujuan untuk mempermudah pemrosesan data dan mempercepat
waktu eksekusi query. Dengan demikian, kombinasi antara optimasi

query, desain index yang tepat, penerapan partisi, dan konfigurasi sistem

17

Optimasi Kinerja Sistem..., Maureen Audilia, Universitas Multimedia Nusantara

2.2.2

yang efisien menjadi kunci utama dalam meningkatkan performa

keseluruhan database relasional.

Indexing

Dalam konteks PostgreSQL, index memegang peranan penting
dalam mempercepat proses pencarian dan pengambilan data. Halfpap
(2024) menegaskan bahwa pemilihan jenis index yang tepat sangat
memengaruhi kinerja query karena index berfungsi sebagai struktur data
yang memperpendek waktu akses terhadap baris tertentu dalam tabel
[11]. PostgreSQL mendukung berbagai jenis index, antara lain B-Tree,
GIN (Generalized Inverted Index), dan BRIN (Block Range Index). Index
B-Tree merupakan tipe index default yang paling umum digunakan
karena efisien untuk operasi pencarian berbasis kesetaraan (equality)
maupun rentang nilai (range query). GIN biasanya diterapkan untuk tipe
data teks atau JSONB karena mendukung pencarian kata secara penuh
(full-text search), sedangkan BRIN digunakan untuk tabel dengan ukuran
sangat besar dan data yang memiliki urutan alami seperti data temporal
(timestamp). Isah (2024) menemukan bahwa B-Tree memberikan
performa paling stabil pada sebagian besar beban kerja, sedangkan
Bitmap Index lebih cocok untuk kolom dengan jumlah nilai unik yang
rendah (low cardinality), dan Hash Index unggul pada beban kerja
dengan banyak operasi INSERT [19]. Namun, seperti dijelaskan oleh
Basavegowda (2023), penambahan index yang terlalu banyak dapat
meningkatkan maintenance overhead, terutama pada operasi tulis seperti
INSERT, UPDATE, dan DELETE, sehingga jumlah dan jenis index perlu

disesuaikan dengan kebutuhan aktual sistem [17].

2.2.3 Partitioning

Partitioning merupakan salah satu teknik utama dalam upaya
peningkatan performa database, dengan proses membagi satu tabel besar
menjadi beberapa bagian kecil (partisi) berdasarkan nilai tertentu pada
kolom kunci [22]. PostgreSQL menyediakan tiga jenis utama

partitioning, yaitu range partitioning, list partitioning, dan hash

18

Optimasi Kinerja Sistem..., Maureen Audilia, Universitas Multimedia Nusantara

partitioning. Range partitioning digunakan untuk membagi data
berdasarkan interval nilai, seperti tanggal transaksi; List partitioning
digunakan untuk mengelompokkan data berdasarkan nilai diskrit
tertentu, seperti status, kategori, atau wilayah. Teknik ini efektif apabila
nilai pada kolom partisi bersifat terbatas dan jarang berubah. Namun,
apabila terjadi penambahan nilai baru pada kolom partisi, maka
administrator database perlu menambahkan partisi baru secara manual.
Kondisi ini dapat menambah kompleksitas pengelolaan partisi dan
berpotensi mempengaruhi skalabilitas sistem apabila tidak dirancang
dengan baik. Oleh karena itu, penggunaan list partitioning lebih sesuai
untuk data dengan domain nilai yang relatif stabil dan terkontrol;
sedangkan hash partitioning digunakan untuk mendistribusikan data
secara merata berdasarkan hasil fungsi hash. Keuntungan utama dari
penggunaan partisi adalah terjadinya pengurangan full table scan karena
query hanya akan menelusuri partisi yang relevan melalui mekanisme
partition pruning. Menurut penelitian Khan (2022) menunjukkan bahwa
dengan menerapkan range partitioning pada kolom waktu transaksi,
kinerja query dapat meningkat hingga 50 persen karena sistem hanya
membaca sebagian kecil data yang relevan [12]. Namun, jumlah partisi
yang berlebihan dapat memperlambat operasi tulis akibat meningkatnya

jumlah metadata dan index yang harus diperbarui [15].

2.3 Algoritma yang digunakan

2.3.1. B-Tree
B-Tree merupakan salah satu algoritma struktur data yang paling

umum digunakan untuk sistem pengindexan pada database relasional,
termasuk PostgreSQL [28]. Algoritma ini dirancang untuk menyimpan data
dalam bentuk pohon yang seimbang (balanced tree), di mana setiap simpul
(node) dapat memiliki lebih dari dua anak [29]. Karakteristik tersebut
memungkinkan B-Tree untuk menjaga kedalaman pohon tetap rendah,

sehingga proses pencarian (search), penyisipan (insertion), dan

19

Optimasi Kinerja Sistem..., Maureen Audilia, Universitas Multimedia Nusantara

penghapusan (deletion) data dapat dilakukan secara efisien. Berikut formula

b-tree:

0(log(n))

Dalam konteks PostgreSQL, B-Tree berfungsi sebagai mekanisme
utama dalam pengindexan data untuk mempercepat proses eksekusi query
[30]. Ketika pengguna menjalankan query yang melibatkan operasi
pencarian atau penyortiran berdasarkan nilai kolom tertentu, PostgreSQL
dapat memanfaatkan index B-Tree untuk menemukan data yang relevan
tanpa harus melakukan pemindaian penuh terhadap seluruh tabel
(sequential scan). Dengan demikian, waktu respon sistem dapat dikurangi
secara signifikan, terutama pada tabel dengan jumlah baris yang sangat

besar.

Menurut penelitian yang dilakukan oleh Martins (2021), penerapan
index berbasis kolom seperti B-Tree mampu meningkatkan efisiensi kinerja
PostgreSQL hingga mencapai 91% dalam eksekusi query yang bersifat
kompleks. Peningkatan tersebut terjadi karena struktur B-Tree
memungkinkan sistem untuk mengakses data secara langsung ke lokasi
penyimpanan yang relevan, sehingga mengurangi jumlah operasi baca (I/O

operations) yang dibutuhkan [14].

2.4 Tools/software yang digunakan

2.4.1 PGAdmin4
PgAdmin4 merupakan Graphical User Interface (GUI) resmi untuk

PostgreSQL yang digunakan untuk mempermudah proses pengelolaan
database, pembuatan tabel, serta penerapan strategi indexing dan
partitioning. Melalui pgAdmin, dapat menjalankan perintah SQL,
memantau query execution plan menggunakan fitur EXPLAIN ANALYZE,
serta menganalisis performa database setelah penerapan optimasi. Selain
itu, pgAdmin menyediakan tampilan grafis yang memudahkan pengamatan
hasil funing, seperti perubahan waktu eksekusi, penggunaan index, dan
proses partition pruning pada tabel yang besar [13]. Dengan antarmuka

20

Optimasi Kinerja Sistem..., Maureen Audilia, Universitas Multimedia Nusantara

yang interaktif, pgAdmin juga mendukung fungsi pemantauan terhadap
query performance statistics, sehingga pengguna dapat mengidentifikasi
kueri yang paling sering dieksekusi atau kueri dengan waktu respon

tertinggi untuk kemudian dilakukan optimasi lebih lanjut.

2.4.2 PostgreSQL
PostgreSQL merupakan Relational Database Management System

(RDBMS) utama yang digunakan dalam penelitian ini. Sistem ini dipilih
karena bersifat open source, memiliki stabilitas tinggi, serta mendukung
berbagai teknik optimasi modern seperti declarative partitioning, index-
only scan, dan beragam jenis index (B-Tree, GIN, dan BRIN) [13].
PostgreSQL juga memiliki cost-based optimizer yang canggih dan mampu
memilih rencana eksekusi dengan biaya terendah berdasarkan statistik
internal sistem [11]. Selain itu, PostgreSQL mendukung fitur EXPLAIN
ANALYZE yang sangat berguna untuk menganalisis query execution plan
dan mengidentifikasi potensi bottleneck pada query tertentu. Dengan
kemampuan tersebut, PostgreSQL menjadi platform ideal untuk menguji
dampak penerapan indexing dan partitioning terhadap peningkatan

performa query dalam penelitian ini.

21

Optimasi Kinerja Sistem..., Maureen Audilia, Universitas Multimedia Nusantara

