

DAFTAR PUSTAKA

- [1] Z. Zhang, L. Kmoth, X. Luo, Z. He, and W. Street, “User-Centered System Design for Communicating Clinical Laboratory Test Results : Design and Evaluation Study Corresponding Author :,” vol. 8, pp. 4–6, 2021, doi: 10.2196/26017.
- [2] H. Monkman, L. Macdonald, A. L. Joseph, and J. Blake, “Tabular , Annotated , Visual , or Trends + Contextual Information ? Preferences for Online Laboratory Results Displays,” vol. 0, 2024, doi: 10.3233/SHTI231123.
- [3] K. Walker, T. Dwyer, and H. A. Heaton, “Emergency medicine electronic health record *usability* : where to from here ?,” vol. 38, no. 6, pp. 408–409, 2021, doi: 10.1136/emermed-2021-211384.
- [4] World Health Organization, “Health information systems,” 2008.
- [5] M. H. Herawati, S. Idaiani, M. Veruswati, K. Hoekstra, and A. Asyary, “Health information system concept in health services in the national health insurance (JKN) era in Indonesia : An environment and one health approach,” 2022.
- [6] M. Sekhoacha, K. Riet, P. Motloung, L. Gumenku, and A. Adegoke, “Prostate Cancer Review: Genetics, Diagnosis, Treatment Options, and Alternative Approaches,” pp. 1–33, 2022.
- [7] T. Nguyen, C. Lightfoot, D. May, J. W. Greenberg, and L. S. Krane, “Patient Reported Outcomes and Treatment-Associated Complications as a Consideration in Selecting Localized Prostate Cancer Management,” no. April, pp. 195–210, 2025.
- [8] M. Bergman *et al.*, “MRI-Targeted or Standard Biopsy in Prostate Cancer Screening,” 2021, doi: 10.1056/NEJMoa2100852.
- [9] N. A. Abudiyab and A. T. Alanazi, “*Visualization* Techniques in Healthcare Applications : A Narrative Review,” vol. 14, no. 2021, 2022, doi: 10.7759/cureus.31355.
- [10] Z. Li *et al.*, “TrajVis : a visual clinical *decision support* system to translate artificial intelligence trajectory models in the precision management of chronic kidney disease,” vol. 31, no. June, pp. 2474–2485, 2024.
- [11] R. C. Free *et al.*, “A data-driven *framework* for clinical *decision support* applied to pneumonia management,” no. October, 2023, doi: 10.3389/fdgth.2023.1237146.
- [12] A. M. Albarak, “Determining a Trustworthy Application for Medical Data *Visualizations* through a Knowledge-Based Fuzzy Expert System,” 2023.
- [13] A. M. Albarak, “Improving the Trustworthiness of Interactive

Visualization Tools for Healthcare Data through a Medical Fuzzy Expert System,” 2023.

- [14] F. Dekate, “*User Interface , User Experience and Layouts*,” vol. 5, no. 6, pp. 2–7, 2023.
- [15] W. M. Ayada, M. Adel, and E. Eldin, “Design Quality Criteria for Smartphone Applications Interface and its Impact on *User Experience* and *Usability* Abstract : Keywords : 2 . Literature Overview,” pp. 339–354, 2019.
- [16] I. Conference and O. N. Engineering, “FROM THE DEFINITION OF *USER EXPERIENCE* TO A *FRAMEWORK* TO CLASSIFY ITS APPLICATIONS IN DESIGN,” no. AUGUST, pp. 16–20, 2021, doi: 10.1017/pds.2021.424.
- [17] A. Puspita *et al.*, “Pengembangan UI / UX aplikasi Kamus Palembang-Indonesia berbasis Mobile menggunakan Metode *Design thinking* UI / UX Development of Mobile-based Palembang-Indonesia Dictionary,” vol. 13, pp. 283–290, 2024.
- [18] Interaction Design Foundation, “User-Centered Design (UCD).” Accessed: Dec. 19, 2025. [Online]. Available: <https://www.interaction-design.org/literature/topics/user-centered-design>
- [19] I. Alam, N. S. Id, and I. Noreen, “Statistical analysis of software development models by six-pointed star *framework*,” pp. 1–17, 2022, doi: 10.1371/journal.pone.0264420.
- [20] T. Iot, S. A. Review, G. Guerrero-ulloa, and C. Rodr, “Agile Methodologies Applied to the Development of Internet of,” 2023.
- [21] J. Wei, A. Courbis, T. Lambolais, B. Xu, and P. L. Bernard, “Boosting GUI Prototyping with Diffusion Models”.
- [22] S. Ha, S. H. Ho, Y. Bae, M. Lee, J. H. Kim, and J. Han, “Digital Health Equity and Tailored Health Care Service for People With Disability : User-Centered Design and *Usability* Study Corresponding Author ;,” vol. 25, pp. 1–17, doi: 10.2196/50029.
- [23] T. Wang *et al.*, “VIEWER : an extensible *visual analytics* framework for enhancing mental healthcare,” pp. 1–15, 2025.
- [24] P. U. Augmented, “Nextmed: Automatic *Imaging* Segmentation, 3D Reconstruction, and 3D Model *Visualization* Platform Using Augmented and Virtual Reality,” 2020.
- [25] M. A. Kushendriawan, H. B. Santoso, and M. Schrepp, “Evaluating *User Experience* of a Mobile Health Application ‘ Halodoc ’ using *User Experience* Questionnaire and *Usability* Testing,” vol. 17, no. 1, pp. 58–71.
- [26] B. Maqbool and S. Herold, “The Journal of Systems & Software Potential

effectiveness and efficiency issues in *usability* evaluation within digital health : A systematic literature review ☆,” *J. Syst. Softw.*, vol. 208, no. November 2023, p. 111881, 2024, doi: 10.1016/j.jss.2023.111881.

- [27] K. Young, T. Xiong, R. Lee, A. T. Banerjee, W. Y. Ko, and Q. Pham, “User-Centered Design and *Usability* of a Culturally Adapted Virtual Survivorship Care App for Chinese Canadian Prostate Cancer Survivors : Qualitative Descriptive Study Corresponding Author ;,” vol. 11, pp. 1–10, 2024, doi: 10.2196/49353.
- [28] Z. Rivers *et al.*, “Translating an Economic Analysis into a Tool for Public Health Resource Allocation in Cancer Survivorship,” vol. 8, no. 1, pp. 1–11, 2023, doi: 10.1177/23814683231153378.
- [29] P. Michael, D. K. Sodickson, and Y. W. Lui, “fastMRI : A Publicly Available Raw k-Space and DICOM *Dataset* of Knee Images for Accelerated MR Image,” 2020.
- [30] J. Zbontar *et al.*, “fastMRI : An Open *Dataset* and Benchmarks for Accelerated MRI,” pp. 1–35.

