
BAB 3
PELAKSANAAN KERJA MAGANG

3.1 Kedudukan dan Koordinasi

3.1.1 Kedudukan

Selama program magang di PT Pintarnya Solusi Teknologi, penempatan
dilakukan pada divisi Engineering sebagai Full Stack Engineer dengan tanggung
jawab utama mengimplementasikan observability tools pada sistem microservice

berbasis Golang. Dalam struktur organisasi, posisi magang berada di bawah
arahan Supervisor yang menjabat sebagai Senior Software Engineer di dalam divisi
Engineering perusahaan.

3.1.2 Koordinasi

Selama kegiatan magang, koordinasi dilakukan secara langsung dengan
Supervisor yang bertanggung jawab terhadap proyek yang diberikan. Koordinasi
ini bertujuan untuk memastikan setiap langkah implementasi observability tools

berjalan sesuai dengan kebutuhan perusahaan. Supervisor memberikan arahan
terkait rancangan arsitektur, pemilihan teknologi, serta praktik terbaik dalam
penerapan monitoring dan observability. Selain itu, komunikasi rutin dilakukan
untuk membahas progres pekerjaan, kendala teknis yang dihadapi, serta solusi yang
dapat diterapkan. Dengan pola koordinasi yang terfokus pada satu pihak, kegiatan
magang dapat berjalan lebih efektif dan menghasilkan bimbingan yang mendalam
mengenai penerapan observability tools sebagai proof-of-concept untuk mendukung
rencana perusahaan beralih ke arsitektur microservice berbasis Golang.

3.2 Tugas yang Dilakukan

Selama menjalani kegiatan magang di PT Pintarnya Solusi Teknologi, tugas
yang dikerjakan berkaitan dengan pengembangan dan peningkatan observability

pada sistem berbasis microservice, khususnya microservice berbasis Golang.
Adapun tugas-tugas yang dilakukan selama masa magang adalah sebagai berikut:

1. Mengimplementasikan observability tools seperti Prometheus, Loki, Jaeger,
dan Grafana untuk memantau performa sistem, melakukan tracing request

8
Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara



antar microservice, serta menyediakan visualisasi metrik yang membantu tim
dalam proses debugging dan analisis.

2. Menerapkan Inbox-Outbox pattern pada microservice berbasis Golang untuk
memastikan konsistensi data dan keandalan komunikasi antar layanan,
terutama dalam skenario transaksi yang melibatkan lebih dari satu sistem.

3. Melakukan konfigurasi dan integrasi observability tools dengan microservice

yang ada, termasuk setup dashboard di Grafana, konfigurasi alerting, serta
integrasi log management menggunakan Loki.

4. Melakukan pengujian (testing) terhadap sistem observability yang
dikembangkan, meliputi validasi metrik, tracing, serta identifikasi dan
perbaikan bug pada integrasi observability maupun penerapan Inbox-Outbox

pattern.

5. Berkoordinasi dengan tim pengembang untuk menyelaraskan pekerjaan,
melakukan integrasi modul observability ke dalam sistem secara keseluruhan,
serta memastikan pola Inbox-Outbox berjalan sesuai standar arsitektur yang
diterapkan perusahaan.

6. Mendokumentasikan pekerjaan yang dilakukan sebagai bagian dari pelaporan
dan pengembangan proyek berkelanjutan, termasuk dokumentasi konfigurasi
observability tools dan penerapan Inbox-Outbox pattern.

Pelaksanaan kerja magang dijelaskan melalui pembagian mingguan yang
disusun pada Tabel 3.1, yang memuat rincian pekerjaan yang dilakukan setiap
minggu selama masa kerja magang.

9
Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara



Tabel 3.1. Pekerjaan yang dilakukan tiap minggu selama pelaksanaan kerja magang

Minggu Ke - Pekerjaan yang dilakukan

1 Mengikuti proses onboarding, mengenal lingkungan kerja,
serta melakukan konfigurasi proyek lokal dan repository.

2 Mempelajari serta memahami alur kerja Git workflow.

3 Mendalami konsep arsitektur microservice dan prinsip
observability.

4 Mempelajari berbagai observability tools seperti Prometheus,
Grafana, Loki, dan Jaeger.

5 Menerapkan Prometheus untuk pengumpulan metrics.

6 Melakukan konfigurasi dan pembuatan dashboard pada
Grafana.

7 Melakukan integrasi antara Grafana dengan Prometheus.

8 Melakukan konfigurasi Loki untuk log aggregation.

9 Melanjutkan proses integrasi Loki dalam sistem log

aggregation.

10 Mengembangkan shared library microservice untuk integrasi
dengan Jaeger.

11 Menerapkan Jaeger untuk distributed tracing.

12 Menerapkan pola Inbox-Outbox dalam sistem.

13 Melanjutkan penerapan pola Inbox-Outbox.

14 Melaksanakan pengujian sistem serta melakukan perbaikan
bug pada keseluruhan proyek.

15 Melanjutkan pengujian sistem dan perbaikan berdasarkan
masukan dari rekan kerja.

16 Menyusun dokumentasi serta melakukan review menyeluruh
terhadap proyek.

3.3 Uraian Pelaksanaan Magang

Dalam pelaksanaan magang, tugas utama berkaitan dengan rencana
perusahaan untuk beralih ke arsitektur microservice berbasis Golang. Mengingat
transisi tersebut masih dalam tahap perencanaan, diberikan tugas untuk menyusun
sebuah proof-of-concept (PoC) monitoring dan observability yang nantinya dapat
diimplementasikan ketika microservice telah dibangun. Proof-of-concept ini

10
Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara



mencakup perancangan sistem pemantauan kinerja layanan, pengumpulan log,
serta pelacakan distribusi request menggunakan berbagai observability tools seperti
Prometheus, Grafana, Loki, dan Jaeger. Dengan adanya PoC ini, perusahaan
diharapkan memiliki fondasi yang kuat untuk memastikan setiap microservice dapat
dipantau secara efektif, sehingga memudahkan proses identifikasi masalah, analisis
performa, dan peningkatan keandalan sistem di masa mendatang.

3.3.1 Metrics Collection dengan Prometheus dan Grafana

Dalam tahap ini, perancangan dan implementasi sistem metrics collection

dilakukan menggunakan Prometheus dan Grafana. Prometheus digunakan untuk
melakukan scraping terhadap metrics yang diekspos oleh aplikasi maupun exporter,
kemudian menyimpannya dalam bentuk time-series database [6]. Data tersebut
kemudian diolah dan divisualisasikan melalui Grafana dalam bentuk dashboard

interaktif [3]. Dengan adanya integrasi ini, perusahaan dapat memantau performa
sistem secara real-time, seperti penggunaan CPU, memori, jumlah request, maupun
tingkat error. Proof-of-concept ini menjadi dasar penting agar ketika arsitektur
microservice berbasis Golang mulai dibangun, sistem observability sudah siap
digunakan untuk mendukung monitoring yang komprehensif.

A Teknologi yang Dipakai

Berikut adalah teknologi yang dipakai, yaitu:

• Prometheus: Prometheus adalah open-source monitoring system yang
berfungsi untuk melakukan metrics scraping dari berbagai sumber. Data yang
dikumpulkan disimpan dalam bentuk time-series database sehingga dapat
dianalisis menggunakan bahasa query khusus, yaitu PromQL. Prometheus
mendukung integrasi dengan berbagai exporter (misalnya Node Exporter,
cAdvisor) untuk mengumpulkan data dari sistem operasi, container, maupun
aplikasi.[6]

• Grafana: Grafana adalah platform visualisasi data yang digunakan
untuk membuat dashboard interaktif. Grafana dapat terhubung dengan
Prometheus sebagai data source, sehingga metrics yang dikumpulkan
dapat divisualisasikan dalam bentuk grafik, tabel, maupun alerting system.
Keunggulan Grafana adalah fleksibilitas dalam membuat dashboard yang
mudah dipahami oleh tim operasional maupun developer.[3]

11
Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara



B Arsitektur Metrics Collection

Gambar 3.1. Arsitektur metrics collection menggunakan Prometheus dan Grafana

Gambar 3.1 menunjukkan arsitektur metrics collection yang terdiri dari
beberapa komponen utama:

• Service: Meng-expose endpoint metrics (biasanya /metrics) yang dapat di-
scrape oleh Prometheus.

• Exporter: Digunakan untuk mengumpulkan metrics dari sistem atau aplikasi.

• Prometheus Server: Bertugas melakukan scraping, menyimpan data dalam
time-series database, dan menyediakan API untuk query.

• Grafana: Terhubung ke Prometheus sebagai data source untuk menampilkan
metrics dalam bentuk dashboard.

12
Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara



C Alur Metrics Collection

Gambar 3.2. Flowchart metrics collection menggunakan Prometheus dan Grafana

Gambar 3.2 menunjukkan alur proses metrics collection yang dapat
dijelaskan dalam beberapa tahap:

1. Ekspos metrics: Aplikasi atau sistem menyediakan endpoint metrics

(misalnya /metrics) atau menggunakan exporter.

2. Scraping oleh Prometheus: Prometheus melakukan scraping secara periodik.

3. Penyimpanan Data Metrics: Metrics yang dikumpulkan disimpan dalam
database internal Prometheus.

13
Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara



4. Visualisasi Metrics: Grafana akan melakukan query terhadap Prometheus
menggunakan PromQL dan menampilkan metrics dalam bentuk grafik, tabel,
atau indikator lain sesuai kebutuhan.

D Hasil Implementasi

3.3.2 Dashboard Monitoring di Grafana

Gambar 3.3. Dashboard Grafana

Gambar 3.3 menunjukkan tampilan dashboard monitoring yang dibangun
menggunakan Grafana. Dashboard ini menampilkan berbagai metrik performa
sistem dalam rentang waktu 5 menit terakhir, dengan pembaruan data setiap 10
detik. Dashboard ini membantu tim pengembang dan operasional dalam memantau
kesehatan layanan secara real-time, mengidentifikasi anomali, serta melakukan
analisis performa berdasarkan metrik kuantitatif. Visualisasi yang interaktif dan
terstruktur ini menjadi bagian penting dalam sistem observability yang mendukung
arsitektur microservice.

14
Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara



A Black Box Testing Prometheus dan Grafana

Tabel 3.2. Black Box Testing Prometheus dan Grafana

No Langkah Uji Input Output yang
Diharapkan

Status

1 Ekspos endpoint
/metrics

Endpoint aktif Metrics ditampilkan
di Prometheus

Lulus

2 Buat panel baru di
Grafana

Query PromQL Grafik muncul
sesuai query

Lulus

3 Ubah interval
scraping

Interval 10s Data diperbarui
setiap 10 detik

Lulus

4 Filter metrics
dengan label

label job=”api” Data sesuai label
ditampilkan

Lulus

Tabel 3.2 menunjukkan hasil black box testing terhadap integrasi
Prometheus dan Grafana. Pelaksanaan pengujian dilakukan secara kolaboratif oleh
Supervisor yang menjabat sebagai Senior Software Engineer.

3.3.3 Log Aggregation dengan Loki

Dalam tahap ini, log aggregation diimplementasikan menggunakan Loki
yang terintegrasi dengan Promtail dan Grafana. Promtail bertugas mengumpulkan
log dari aplikasi atau sistem, menambahkan label metadata, lalu mengirimkannya
ke Loki untuk disimpan. Loki kemudian menyimpan log dalam bentuk chunks

dengan indexing metadata sehingga pencarian log menjadi lebih efisien. Hasil
log dapat di-query menggunakan LogQL dan divisualisasikan melalui Grafana.
Dengan adanya sistem ini, perusahaan dapat melakukan analisis log secara terpusat,
memudahkan proses debugging, serta mengidentifikasi pola error atau anomali
yang terjadi pada aplikasi.[4]

A Teknologi yang Dipakai

Berikut adalah teknologi yang dipakai, yaitu:

• Loki: Loki adalah sistem log aggregation open-source yang dikembangkan
oleh Grafana Labs. Loki dirancang untuk mengumpulkan, menyimpan, dan

15
Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara



melakukan query terhadap log dengan cara efisien. Berbeda dengan sistem
log tradisional, Loki hanya melakukan indexing pada metadata (seperti label,
nama aplikasi, atau namespace), sehingga lebih hemat sumber daya dan
cocok untuk skala besar.[4]

• Promtail: Promtail adalah agen log yang berjalan di server atau container.
Tugas utama Promtail adalah membaca log dari file, stdout/stderr,
atau sistem logging lain, kemudian menambahkan label metadata sebelum
mengirimkannya ke Loki. Dengan Promtail, proses pengumpulan log

menjadi otomatis dan terintegrasi dengan baik.[8]

• Grafana (Integrasi dengan Loki): Grafana digunakan sebagai antarmuka
visual untuk menampilkan log yang dikumpulkan oleh Loki. Dengan
integrasi ini, pengguna dapat melakukan pencarian log menggunakan bahasa
query LogQL dan menampilkan hasilnya dalam dashboard yang sama dengan
metrics dari Prometheus.[3]

B Arsitektur Log Aggregation

Gambar 3.4. Arsitektur log aggregation menggunakan Loki

Gambar 3.4 menunjukkan arsitektur log aggregation dengan Loki yang
terdiri dari beberapa komponen utama:

• Service: Menghasilkan log (stdout/stderr atau file log).

16
Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara



• Promtail: Agen yang mengumpulkan log dari aplikasi atau sistem,
menambahkan metadata label, lalu mengirimkannya ke Loki.

• Loki Server: Menyimpan log dalam bentuk chunks dan metadata label.

• Grafana: Menampilkan log melalui query LogQL dan menyediakan
dashboard terpadu.

17
Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara



C Alur Log Aggregation

Gambar 3.5. Flowchart log aggregation menggunakan Loki

Gambar 3.5 menunjukkan alur proses log aggregation yang dapat dijelaskan
dalam beberapa tahap:

1. Log Generation: Aplikasi atau sistem menghasilkan log (misalnya request,
error, atau aktivitas sistem).

18
Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara



2. Log Collection oleh Promtail: Promtail membaca log dari file atau output
aplikasi, menambahkan label metadata (misalnya nama aplikasi, namespace).

3. Pengiriman ke Loki: Promtail mengirimkan log ke Loki untuk disimpan.

4. Penyimpanan di Loki: Loki menyimpan log dalam bentuk chunks dan
melakukan indexing metadata.

5. Visualisasi di Grafana: Grafana akan melakukan query terhadap Loki
menggunakan LogQL dan menampilkan log dari service yang terintegrasi.

D Hasil Implementasi

Gambar 3.6. Query log menggunakan Loki

Gambar 3.6 memperlihatkan proses pencarian log menggunakan Loki
melalui antarmuka Grafana Explore. Query yang digunakan adalah ”test”, yang
bertujuan untuk menampilkan log dari Order Service yang mengandung kata ”test”.
Hasil pencarian ditampilkan dalam bentuk grafik volume log serta daftar log

mentah yang sesuai dengan kriteria. Tampilan ini membantu tim pengembang
dalam melakukan analisis log secara cepat dan terarah, terutama untuk keperluan
debugging dan validasi aktivitas sistem.

19
Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara



E Black Box Testing Loki

Tabel 3.3. Black Box Testing Loki

No Langkah Uji Input Output yang
Diharapkan

Status

1 Kirim log dari
aplikasi

Log INFO Log tampil di
Grafana

Lulus

2 Query log
berdasarkan label

Label
service=”order”

Log relevan
ditampilkan

Lulus

3 Query log
berdasarkan
keyword log

”test” Log relevan
ditampilkan

Lulus

4 Kirim log ERROR Log dengan
level ERROR

Log ditandai sebagai
error

Lulus

5 Kirim log dengan
timestamp

Log dengan
waktu tertentu

Log muncul sesuai
waktu

Lulus

Tabel 3.3 menunjukkan hasil black box testing terhadap integrasi log

aggregation menggunakan Loki. Pelaksanaan pengujian dilakukan secara
kolaboratif oleh Supervisor yang menjabat sebagai Senior Software Engineer.

3.3.4 Distributed Tracing dengan Jaeger

Dalam tahap ini, distributed tracing diimplementasikan menggunakan
Jaeger. Distributed tracing bekerja dengan merekam jejak eksekusi sebuah request
dalam bentuk trace, yaitu rangkaian aktivitas yang menggambarkan perjalanan
request dari satu layanan ke layanan lain. Setiap aktivitas di dalam trace

direpresentasikan sebagai span, yang berisi informasi detail seperti nama operasi,
waktu mulai, durasi, serta metadata tambahan. Tracing ini memungkinkan
perusahaan untuk melacak alur request yang melewati berbagai layanan dalam
arsitektur microservice.[2]

A Teknologi yang Dipakai

Berikut adalah teknologi yang dipakai, yaitu

20
Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara



• Jaeger: Jaeger adalah open-source distributed tracing system yang
dikembangkan oleh Uber Technologies. Jaeger digunakan untuk memantau
dan memecahkan masalah pada sistem mikroservis dengan cara melacak
alur permintaan (request) yang melewati berbagai layanan. Dengan Jaeger,
developer dapat mengetahui latency, bottleneck, dan dependensi antar
layanan.[2]

B Arsitektur Distributed Tracing

Gambar 3.7. Arsitektur distributed tracing menggunakan Jaeger

Gambar 3.7 menunjukkan arsitektur distributed tracing dengan Jaeger yang
terdiri dari beberapa komponen utama:

• Service: Layanan microservice yang di-instrumentasi menggunakan
OpenTelemetry SDK. SDK ini bertugas menghasilkan data tracing berupa
span dan context propagation dari setiap request yang melewati layanan..

• Jaeger Collector: Jaeger Collector menerima data tracing (span) dari
aplikasi atau agen, memprosesnya, lalu menyimpannya ke storage backend

untuk dapat di-query dan divisualisasikan.

• Jaeger UI: Antarmuka visual untuk melakukan pencarian trace dan
menampilkan alur permintaan secara end-to-end yang memungkinkan untuk
melihat latency, dependensi antar layanan, serta bottleneck dalam sistem.

21
Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara



C Alur Distributed Tracing

Gambar 3.8. Flowchart distributed tracing menggunakan Jaeger

Gambar 3.8 menunjukkan alur proses distributed tracing yang dapat
dijelaskan dalam beberapa tahap:

1. Pengiriman Span: Aplikasi microservice di-instrumentasi menggunakan
OpenTelemetry SDK untuk menghasilkan data tracing berupa span yang akan
dikirim ke Jaeger Collector.

2. Penyimpanan Span: Collector bertugas menerima dan memproses data
tracing yang kemudian akan disimpan ke dalam database.

3. Visualisasi di Jaeger UI: Data tracing yang tersimpan dapat di-query melalui
Jaeger Query dan divisualisasikan di Jaeger UI. Developer dapat melihat alur
lengkap perjalanan request, detail latency di setiap span, serta hubungan antar
layanan.

22
Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara



D Hasil Implementasi

Gambar 3.9. Daftar traces pada Jaeger UI

Gambar 3.9 menunjukkan tampilan utama dari antarmuka pengguna Jaeger,
sebuah observability tool yang digunakan untuk melakukan distributed tracing

pada sistem berbasis microservice. Pada halaman ini, pengguna dapat melakukan
pencarian trace berdasarkan parameter seperti nama service, jenis operasi, tags,
durasi minimum dan maksimum, serta periode waktu pencarian (lookback).
Tampilan ini menjadi titik awal dalam proses analisis alur permintaan antar layanan,
yang sangat penting untuk debugging dan pemantauan performa sistem secara
menyeluruh.

Gambar 3.10. Detail trace pada Jaeger UI

Gambar 3.10 menampilkan hasil pencarian trace untuk suatu operasi pada
Order Service. Trace tersebut memiliki beberapa span yang mencakup interaksi

23
Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara



antara dua layanan, yaitu Order Service dan Item Service. Visualisasi ini
menunjukkan struktur hierarki dan durasi masing-masing span. Informasi seperti
waktu mulai, durasi total, kedalaman trace, serta jumlah span ditampilkan secara
rinci, sehingga memudahkan proses identifikasi bottleneck dan analisis performa
antar layanan.

E Black Box Testing Jaeger

Tabel 3.4. Black Box Testing Jaeger

No Langkah Uji Input Output yang
Diharapkan

Status

1 Kirim request antar
layanan

Request HTTP
antar service

Trace muncul di UI
dengan span lengkap

Lulus

2 Kirim request
dengan delay

Request lambat Span menunjukkan
durasi tinggi

Lulus

3 Kirim request
berantai

Request antar 2
service

Semua span
memiliki trace
ID yang sama

Lulus

4 Cari trace dengan
nama service
tertentu

Nama service
valid

Trace ditemukan
sesuai filter

Lulus

Tabel 3.4 menunjukkan hasil black box testing terhadap integrasi distributed

tracing menggunakan Jaeger. Pelaksanaan pengujian dilakukan secara kolaboratif
oleh Supervisor yang menjabat sebagai Senior Software Engineer.

3.3.5 Inbox-Outbox Pattern

Inbox-Outbox Pattern adalah sebuah pola arsitektur yang digunakan untuk
menjamin konsistensi data dan keandalan komunikasi antar layanan dalam sistem
terdistribusi. Pola ini biasanya diterapkan ketika sebuah aplikasi perlu melakukan
operasi database sekaligus mengirimkan pesan ke sistem lain. Dengan adanya
outbox, setiap perubahan data yang terjadi di database akan dicatat terlebih dahulu,
kemudian pesan dikirim secara asinkron melalui message broker. Hal ini mencegah
terjadinya inkonsistensi akibat kegagalan pengiriman pesan atau transaksi yang

24
Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara



tidak selesai. Sementara inbox digunakan untuk memastikan bahwa pesan yang
diterima dari sistem lain hanya diproses sekali (idempotent processing), sehingga
menghindari duplikasi.[5]

A Teknologi yang Dipakai

Berikut adalah teknologi yang dipakai, yaitu

• PostgreSQL: Postgres digunakan sebagai database utama untuk menyimpan
data aplikasi sekaligus mencatat transaksi dalam tabel outbox. Dengan
memanfaatkan fitur transactional consistency dari Postgres, setiap perubahan
data dan pencatatan pesan ke outbox dapat dilakukan dalam satu transaksi
atomik. Hal ini memastikan bahwa data tidak akan hilang atau terduplikasi
ketika terjadi kegagalan sistem.[9]

• RabbitMQ: RabbitMQ berperan sebagai message broker yang menerima
pesan dari outbox dan mendistribusikannya ke layanan lain. RabbitMQ
mendukung komunikasi asinkron antar microservice, sehingga pesan dapat
dikirim dengan aman dan di-retry jika terjadi kegagalan. Dalam implementasi
inbox-outbox pattern, RabbitMQ memastikan bahwa pesan yang sudah
dicatat di database dapat dikirim ke sistem tujuan tanpa kehilangan.
developer dapat mengetahui latency, bottleneck, dan dependensi antar
layanan.[10]

• Golang: Golang digunakan sebagai bahasa pemrograman untuk
mengimplementasikan logika aplikasi, termasuk mekanisme pembacaan
outbox, pengiriman pesan ke RabbitMQ, serta pemrosesan pesan di inbox.
Dalam implementasi ini, worker pool pattern digunakan untuk membaca
data dari outbox dan inbox secara paralel. Worker pool memungkinkan
beberapa worker goroutines berjalan bersamaan untuk memproses pesan,
sehingga meningkatkan throughput dan efisiensi sistem. Dengan pendekatan
ini, aplikasi dapat menangani beban pesan yang tinggi secara lebih stabil dan
terukur, sekaligus memastikan setiap pesan diproses secara konsisten dan
idempoten.[11]

25
Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara



B Tabel Inbox

Tabel ini digunakan untuk menyimpan pesan yang diterima dari sistem lain
melalui message broker. Tujuannya adalah memastikan setiap pesan yang masuk
diproses sekali saja (idempotent processing) dan dicatat untuk keperluan audit
maupun retry jika terjadi kegagalan.

1. id (SERIAL, PK): Identitas unik untuk setiap record pesan yang diterima.

2. sender id (VARCHAR, NOT NULL): Identitas pengirim pesan, misalnya
nama layanan atau sistem sumber.

3. message id (UUID, UNIQUE, NOT NULL): Identitas unik pesan untuk
mencegah pemrosesan ganda.

4. event type (VARCHAR): Jenis event yang diterima, misalnya
InventoryUpdated.

5. payload (JSONB): Isi data pesan dalam format JSON.

6. status (message status, DEFAULT ’PENDING’): Status pemrosesan pesan,
misalnya PENDING, PROCESSED, atau FAILED.

7. retry count (INT, DEFAULT 0): Jumlah percobaan pemrosesan ulang jika
terjadi kegagalan.

8. exchange (VARCHAR, DEFAULT ’orders’): Nama exchange di RabbitMQ
tempat pesan berasal.

9. routing key (VARCHAR): Routing key yang digunakan untuk mengarahkan
pesan ke layanan penerima.

10. error (TEXT): Informasi error jika pemrosesan pesan gagal.

11. locked at (TIMESTAMP): Waktu ketika pesan sedang diproses oleh worker.

12. locked by (VARCHAR): Identitas worker yang sedang memproses pesan.

13. created at (TIMESTAMP, DEFAULT CURRENT TIMESTAMP):
Waktu pesan pertama kali diterima.

14. updated at (TIMESTAMP, DEFAULT CURRENT TIMESTAMP):
Waktu terakhir pesan diperbarui.

26
Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara



C Alur Inbox

Gambar 3.11. Flowchart inbox pattern

Gambar 3.11 menampilkan alur pemrosesan pesan menggunakan Inbox

Pattern. Alur Inbox dimulai ketika sebuah pesan diterima dari RabbitMQ dan

27
Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara



dicatat ke dalam tabel inbox dengan status awal PENDING. Sebelum diproses, sistem
melakukan pengecekan idempotensi berdasarkan message id untuk memastikan
bahwa pesan yang sama tidak diproses lebih dari sekali. Jika pesan sudah pernah
diproses sebelumnya, maka pesan tersebut akan diabaikan. Jika belum, worker

akan membaca pesan dari inbox dan mencoba memprosesnya. Jika pemrosesan
berhasil, status pesan akan diperbarui menjadi PROCESSED. Namun, jika pemrosesan
gagal, sistem akan menambahkan nilai retry count dan mencoba memproses
ulang pesan hingga maksimal tiga kali. Apabila setelah tiga kali percobaan pesan
tetap gagal diproses, maka status pesan akan diubah menjadi FAILED. Dengan
mekanisme ini, inbox menjamin bahwa setiap pesan yang diterima dari sistem
lain diproses secara konsisten, aman dari duplikasi, dan memiliki keandalan tinggi
dalam menghadapi kegagalan.

D Hasil Implementasi Inbox

Gambar 3.12. Inisialisasi inbox worker

Gambar 3.12 menunjukkan proses inisialisasi inbox worker. Log mencatat
bahwa sistem memulai beberapa worker untuk memproses pesan masuk secara
paralel. Inisialisasi ini merupakan bagian dari implementasi Inbox-Outbox pattern

yang bertujuan untuk memastikan setiap pesan yang diterima dapat diproses
secara konsisten dan tidak hilang, sehingga mendukung integritas komunikasi antar
layanan.

Gambar 3.13. Log pemrosesan pesan oleh inbox worker

28
Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara



Gambar 3.13 menampilkan log aktivitas dari inbox worker yang berhasil
menerima dan memproses pesan masuk. Setiap pesan memiliki atribut seperti
message id, event type, dan worker id, yang menunjukkan bahwa event yang
diterima telah diproses sesuai dengan alur bisnis. Proses ini memastikan bahwa
pesan yang masuk dari queue atau exchange dapat ditangani dengan baik oleh
sistem.

Gambar 3.14. Hasil message di tabel outbox setelah diproses

Gambar 3.14 memperlihatkan isi dari inbox table setelah pesan berhasil
diproses. Setiap baris merepresentasikan satu event dengan informasi lengkap
seperti message id, event type, payload, status, dan retry count. Seluruh
pesan dalam tabel memiliki status PROCESSED dan nilai retry count sebesar 0,
yang menandakan bahwa pesan telah diterima dan diproses tanpa kesalahan.

E Tabel Outbox

Tabel ini digunakan untuk menyimpan pesan yang akan dikirim ke sistem
lain melalui message broker (RabbitMQ). Tujuannya adalah memastikan setiap
perubahan data yang terjadi di aplikasi tercatat terlebih dahulu sebelum dikirim,
sehingga mendukung konsistensi dan keandalan sistem.

1. id (SERIAL, PK): Identitas unik untuk setiap record pesan.

2. message id (UUID, UNIQUE, NOT NULL): Identitas unik pesan agar tidak
terjadi duplikasi.

3. event type (VARCHAR): Jenis event yang terjadi, misalnya OrderCreated.

4. payload (JSONB): Isi data pesan dalam format JSON.

5. status (message status, DEFAULT ’PENDING’): Status pesan, misalnya
PENDING, SENT, atau FAILED.

29
Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara



6. retry count (INT, DEFAULT 0): Jumlah percobaan pengiriman ulang jika
terjadi kegagalan.

7. exchange (VARCHAR, DEFAULT ’orders’): Nama exchange di RabbitMQ
tempat pesan akan dikirim.

8. routing key (VARCHAR): Routing key untuk menentukan tujuan pesan.

9. error (TEXT): Informasi error jika pengiriman pesan gagal.

10. locked at (TIMESTAMP): Waktu ketika pesan sedang diproses oleh worker.

11. locked by (VARCHAR): Identitas worker yang sedang memproses pesan.

12. created at (TIMESTAMP, DEFAULT CURRENT TIMESTAMP):
Waktu pesan pertama kali dibuat.

13. updated at (TIMESTAMP, DEFAULT CURRENT TIMESTAMP):
Waktu terakhir pesan diperbarui.

30
Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara



F Alur Outbox

Gambar 3.15. Flowchart outbox pattern

31
Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara



Gambar 3.15 menampilkan alur pemrosesan pesan menggunakan Outbox

Pattern. Alur Outbox dimulai ketika aplikasi mencatat sebuah pesan baru ke
dalam tabel outbox dengan status awal PENDING. Worker kemudian membaca pesan
tersebut dan mencoba mengirimkannya ke RabbitMQ. Jika pengiriman berhasil,
status pesan akan diperbarui menjadi SENT sebagai tanda bahwa pesan telah terkirim
dengan baik. Namun, jika pengiriman gagal, sistem akan menambahkan nilai
retry count dan mencoba mengirim ulang pesan. Proses retry ini dilakukan hingga
maksimal tiga kali. Apabila setelah tiga kali percobaan pesan tetap gagal dikirim,
maka status pesan akan diubah menjadi FAILED. Dengan mekanisme ini, Outbox

memastikan bahwa setiap perubahan data yang terjadi di aplikasi tidak hilang begitu
saja, melainkan selalu dicatat dan diusahakan untuk dikirim ke sistem tujuan secara
konsisten.

G Hasil Implementasi Outbox

Gambar 3.16. Inisialisasi outbox worker

Gambar 3.16 menunjukkan proses inisialisasi outbox worker pada layanan
dalam lingkungan pengembangan. Log mencatat bahwa sistem memulai tiga
worker secara paralel, masing-masing ditandai dengan nomor urut dan informasi
lingkungan. Inisialisasi ini merupakan bagian dari implementasi Inbox-Outbox

pattern yang bertujuan untuk memproses pesan secara asinkron dari outbox table,
sehingga menjamin keandalan pengiriman event antar layanan tanpa mengganggu
transaksi utama.

Gambar 3.17. Log pemrosesan pesan oleh outbox worker

Gambar 3.17 menampilkan log aktivitas dari outbox worker yang berhasil
memproses dan menerbitkan pesan dari outbox table. Setiap pesan memiliki atribut

32
Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara



seperti message id, event type, dan worker id, yang menunjukkan bahwa event
order.created telah berhasil dikirim oleh masing-masing worker. Proses ini
menunjukkan bahwa pesan dikirim secara terjamin dan dapat ditelusuri melalui log.

Gambar 3.18. Hasil message di tabel outbox setelah diproses

Gambar 3.18 memperlihatkan isi dari outbox table setelah pesan berhasil
diproses. Setiap baris merepresentasikan satu event dengan informasi lengkap
seperti message id, event type, payload, status, dan retry count. Seluruh
pesan dalam tabel memiliki status PROCESSED dan nilai retry count sebesar
0, yang menandakan bahwa pesan telah dikirim tanpa kesalahan dan tidak
memerlukan pengulangan.

33
Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara



H Black Box Testing Inbox-Outbox

Tabel 3.5. Black Box Testing Inbox-Outbox

No Langkah Uji Input Output yang
Diharapkan

Status

1 Simpan data dan
kirim event

Payload JSON Record muncul di
tabel outbox

Lulus

2 Jalankan worker
outbox

Status
PENDING

Pesan terkirim,
status jadi
PROCESSED

Lulus

3 Jalankan worker
inbox

Status
PENDING

Pesan terproses,
status jadi
PROCESSED

Lulus

4 Simulasikan error
RabbitMQ

Status
PENDING

retry count
bertambah

Lulus

5 Simulasikan error
PostgreSQL

Status
PENDING

retry count
bertambah

Lulus

6 Simulasikan error
berulang

retry count = 4 Status berubah jadi
FAILED

Lulus

7 Terima pesan dari
RabbitMQ

Payload JSON Record muncul di
tabel inbox

Lulus

8 Kirim pesan dengan
message id sama

Duplikat
message id

Pesan kedua
diabaikan
(idempotent check)

Lulus

Tabel 3.5 menunjukkan hasil black box testing terhadap implementasi inbox-

outbox pattern menggunakan Golang. Pelaksanaan pengujian dilakukan secara
kolaboratif oleh Supervisor yang menjabat sebagai Senior Software Engineer.

3.4 Kendala dan Solusi yang Ditemukan

3.4.1 Kendala yang Ditemukan

Selama pelaksanaan kerja magang, terdapat sejumlah kendala dan tantangan
yang dihadapi, antara lain sebagai berikut:

34
Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara



1. Keterbatasan pemahaman terhadap teknologi baru: Pada awal
pelaksanaan magang, belum sepenuhnya familiar dengan teknologi yang
digunakan, seperti Golang, RabbitMQ, serta observability tools (Prometheus,
Grafana, Loki, dan Jaeger). Hal ini menyebabkan adanya keterlambatan
dalam memahami konsep dasar dan praktik terbaik yang diperlukan untuk
implementasi.

2. Pengerjaan paralel dengan proyek lain: Selain mengerjakan proyek
observability, terdapat pula keterlibatan dalam pengerjaan proyek lain yang
sedang berjalan di perusahaan. Kondisi ini menimbulkan tantangan dalam
manajemen waktu dan fokus, karena harus membagi perhatian antara
beberapa pekerjaan sekaligus.

3. Bug pada tahap implementasi: Dalam proses implementasi, beberapa
bug ditemukan, baik berupa kesalahan logika, konfigurasi yang tidak
sesuai, maupun error saat integrasi antar komponen. Bug ini menghambat
jalannya pengembangan dan memerlukan waktu tambahan untuk melakukan
debugging serta perbaikan.

3.4.2 Solusi yang Diterapkan

Untuk mengatasi kendala dan tantangan yang dihadapi selama pelaksanaan
kerja magang, berikut ini adalah solusi yang diterapkan:

1. Melakukan pembelajaran mandiri dan mentoring: Pembelajaran mandiri
dilakukan melalui dokumentasi resmi, tutorial, serta diskusi dengan Senior
Software Engineer. Dengan adanya mentoring, pemahaman terhadap
teknologi yang digunakan dapat diperoleh lebih cepat dan diterapkan dalam
proyek.

2. Menerapkan manajemen waktu dan prioritas: Untuk mengatasi pekerjaan
yang dibarengi dengan proyek lain, dibuat jadwal kerja harian dan ditetapkan
prioritas tugas. Dengan cara ini, pekerjaan dapat diselesaikan sesuai target
tanpa mengorbankan kualitas hasil.

3. Bug pada tahap implementasi: Setiap bug yang ditemukan ditangani
dengan proses debugging yang terstruktur, seperti melakukan logging,
tracing, serta pengujian ulang dengan berbagai skenario. Testing dilakukan

35
Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara



secara berulang untuk memastikan bahwa perbaikan yang diterapkan benar-
benar menyelesaikan masalah dan tidak menimbulkan bug baru.

36
Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara


