BAB 3
PELAKSANAAN KERJA MAGANG

3.1 Kedudukan dan Koordinasi
3.1.1 Kedudukan

Selama program magang di PT Pintarnya Solusi Teknologi, penempatan
dilakukan pada divisi Engineering sebagai Full Stack Engineer dengan tanggung
jawab utama mengimplementasikan observability tools pada sistem microservice
berbasis Golang. Dalam struktur organisasi, posisi magang berada di bawah
arahan Supervisor yang menjabat sebagai Senior Software Engineer di dalam divisi

Engineering perusahaan.

3.1.2 Koordinasi

Selama kegiatan magang, koordinasi dilakukan secara langsung dengan
Supervisor yang bertanggung jawab terhadap proyek yang diberikan. Koordinasi
ini bertujuan untuk memastikan setiap langkah implementasi observability tools
berjalan sesuai dengan kebutuhan perusahaan. Supervisor memberikan arahan
terkait rancangan arsitektur, pemilihan teknologi, serta praktik terbaik dalam
penerapan monitoring dan observability. Selain itu, komunikasi rutin dilakukan
untuk membahas progres pekerjaan, kendala teknis yang dihadapi, serta solusi yang
dapat diterapkan. Dengan pola koordinasi yang terfokus pada satu pihak, kegiatan
magang dapat berjalan lebih efektif dan menghasilkan bimbingan yang mendalam
mengenai penerapan observability tools sebagai proof-of-concept untuk mendukung

rencana perusahaan beralih ke arsitektur microservice berbasis Golang.

3.2 Tugas yang Dilakukan

Selama menjalani kegiatan magang di PT Pintarnya Solusi Teknologi, tugas
yang dikerjakan berkaitan dengan pengembangan dan peningkatan observability
pada sistem berbasis microservice, khususnya microservice berbasis Golang.

Adapun tugas-tugas yang dilakukan selama masa magang adalah sebagai berikut:

1. Mengimplementasikan observability tools seperti Prometheus, Loki, Jaeger,

dan Grafana untuk memantau performa sistem, melakukan tracing request

8

Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara

antar microservice, serta menyediakan visualisasi metrik yang membantu tim

dalam proses debugging dan analisis.

2. Menerapkan Inbox-Outbox pattern pada microservice berbasis Golang untuk
memastikan konsistensi data dan keandalan komunikasi antar layanan,

terutama dalam skenario transaksi yang melibatkan lebih dari satu sistem.

3. Melakukan konfigurasi dan integrasi observability tools dengan microservice
yang ada, termasuk setup dashboard di Grafana, konfigurasi alerting, serta

integrasi log management menggunakan Loki.

4. Melakukan pengujian (festing) terhadap sistem observability yang
dikembangkan, meliputi validasi metrik, tracing, serta identifikasi dan
perbaikan bug pada integrasi observability maupun penerapan Inbox-Outbox

pattern.

5. Berkoordinasi dengan tim pengembang untuk menyelaraskan pekerjaan,
melakukan integrasi modul observability ke dalam sistem secara keseluruhan,
serta memastikan pola Inbox-Outbox berjalan sesuai standar arsitektur yang

diterapkan perusahaan.

6. Mendokumentasikan pekerjaan yang dilakukan sebagai bagian dari pelaporan
dan pengembangan proyek berkelanjutan, termasuk dokumentasi konfigurasi

observability tools dan penerapan Inbox-Outbox pattern.

Pelaksanaan kerja magang dijelaskan melalui pembagian mingguan yang
disusun pada Tabel 3.1, yang memuat rincian pekerjaan yang dilakukan setiap

minggu selama masa kerja magang.

9

Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara

Tabel 3.1. Pekerjaan yang dilakukan tiap minggu selama pelaksanaan kerja magang

Minggu Ke -

Pekerjaan yang dilakukan

1

Mengikuti proses onboarding, mengenal lingkungan kerja,

serta melakukan konfigurasi proyek lokal dan repository.

Mempelajari serta memahami alur kerja Git workflow.

Mendalami konsep arsitektur microservice dan prinsip

observability.

Mempelajari berbagai observability tools seperti Prometheus,

Grafana, Loki, dan Jaeger.

Menerapkan Prometheus untuk pengumpulan metrics.

Melakukan konfigurasi dan pembuatan dashboard pada
Grafana.

Melakukan integrasi antara Grafana dengan Prometheus.

Melakukan konfigurasi Loki untuk log aggregation.

Melanjutkan proses integrasi Loki dalam sistem log

aggregation.

10

Mengembangkan shared library microservice untuk integrasi

dengan Jaeger.

11

Menerapkan Jaeger untuk distributed tracing.

12

Menerapkan pola Inbox-Outbox dalam sistem.

13

Melanjutkan penerapan pola Inbox-Outbox.

14

Melaksanakan pengujian sistem serta melakukan perbaikan

bug pada keseluruhan proyek.

15

Melanjutkan pengujian sistem dan perbaikan berdasarkan

masukan dari rekan kerja.

16

Menyusun dokumentasi serta melakukan review menyeluruh

terhadap proyek.

3.3 Uraian Pelaksanaan Magang

Dalam pelaksanaan magang, tugas utama berkaitan dengan rencana
perusahaan untuk beralih ke arsitektur microservice berbasis Golang. Mengingat
transisi tersebut masih dalam tahap perencanaan, diberikan tugas untuk menyusun
sebuah proof-of-concept (PoC) monitoring dan observability yang nantinya dapat

diimplementasikan ketika microservice telah dibangun.

10

Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara

Proof-of-concept ini

mencakup perancangan sistem pemantauan kinerja layanan, pengumpulan log,
serta pelacakan distribusi request menggunakan berbagai observability tools seperti
Prometheus, Grafana, Loki, dan Jaeger. Dengan adanya PoC ini, perusahaan
diharapkan memiliki fondasi yang kuat untuk memastikan setiap microservice dapat
dipantau secara efektif, sehingga memudahkan proses identifikasi masalah, analisis

performa, dan peningkatan keandalan sistem di masa mendatang.

3.3.1 Metrics Collection dengan Prometheus dan Grafana

Dalam tahap ini, perancangan dan implementasi sistem metrics collection
dilakukan menggunakan Prometheus dan Grafana. Prometheus digunakan untuk
melakukan scraping terhadap metrics yang diekspos oleh aplikasi maupun exporter,
kemudian menyimpannya dalam bentuk time-series database [6]. Data tersebut
kemudian diolah dan divisualisasikan melalui Grafana dalam bentuk dashboard
interaktif [3]. Dengan adanya integrasi ini, perusahaan dapat memantau performa
sistem secara real-time, seperti penggunaan CPU, memori, jumlah request, maupun
tingkat error. Proof-of-concept ini menjadi dasar penting agar ketika arsitektur
microservice berbasis Golang mulai dibangun, sistem observability sudah siap

digunakan untuk mendukung monitoring yang komprehensif.

A Teknologi yang Dipakai

Berikut adalah teknologi yang dipakai, yaitu:

* Prometheus: Prometheus adalah open-source monitoring system yang
berfungsi untuk melakukan metrics scraping dari berbagai sumber. Data yang
dikumpulkan disimpan dalam bentuk time-series database sehingga dapat
dianalisis menggunakan bahasa query khusus, yaitu PromQL. Prometheus
mendukung integrasi dengan berbagai exporter (misalnya Node Exporter,
cAdvisor) untuk mengumpulkan data dari sistem operasi, container, maupun
aplikasi.[6]

e Grafana: Grafana adalah platform visualisasi data yang digunakan
untuk membuat dashboard interaktif. Grafana dapat terhubung dengan
Prometheus sebagai data source, sehingga metrics yang dikumpulkan
dapat divisualisasikan dalam bentuk grafik, tabel, maupun alerting system.
Keunggulan Grafana adalah fleksibilitas dalam membuat dashboard yang

mudah dipahami oleh tim operasional maupun developer.[3]

11

Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara

B Arsitektur Metrics Collection

Service A

Full
Metrics

Exporter ‘

Query

Metri ' \
7 -

Grafana Developer

Service B

Pul Frometheus
Metrics l

Exporter -

Simpan
metrics.

=)

Gambar 3.1. Arsitektur metrics collection menggunakan Prometheus dan Grafana

Gambar 3.1 menunjukkan arsitektur metrics collection yang terdiri dari

beberapa komponen utama:

* Service: Meng-expose endpoint metrics (biasanya /metrics) yang dapat di-

scrape oleh Prometheus.
* Exporter: Digunakan untuk mengumpulkan metrics dari sistem atau aplikasi.

* Prometheus Server: Bertugas melakukan scraping, menyimpan data dalam

time-series database, dan menyediakan API untuk query.

* Grafana: Terhubung ke Prometheus sebagai data source untuk menampilkan

metrics dalam bentuk dashboard.

12

Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara

C Alur Metrics Collection

/_.- -

Start ":}

Expos metrics

l

‘ Scraping oleh Prometheus

l

‘ Penyimpanan data metrics

l

Visualisasi metrics di

&

Grafana

I

(End)

Gambar 3.2. Flowchart metrics collection menggunakan Prometheus dan Grafana

Gambar 3.2 menunjukkan alur proses metrics collection yang dapat

dijelaskan dalam beberapa tahap:

1. Ekspos metrics: Aplikasi atau sistem menyediakan endpoint metrics

(misalnya /metrics) atau menggunakan exporter.
2. Scraping oleh Prometheus: Prometheus melakukan scraping secara periodik.

3. Penyimpanan Data Metrics: Metrics yang dikumpulkan disimpan dalam

database internal Prometheus.

13

Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara

4. Visualisasi Metrics: Grafana akan melakukan query terhadap Prometheus
menggunakan PromQL dan menampilkan metrics dalam bentuk grafik, tabel,

atau indikator lain sesuai kebutuhan.

D Hasil Implementasi

3.3.2 Dashboard Monitoring di Grafana

88 observability-microservice-poc -

Request rate, 5m avg, stacked

193830 193300 193930 194000 194030 194100 194130 194200 5730 193800 193830 193900 193930 194000 194030 194100 194130 194200

Request duration, 5m average Request duration quantiles, 5m avg

Gambar 3.3. Dashboard Grafana

Gambar 3.3 menunjukkan tampilan dashboard monitoring yang dibangun
menggunakan Grafana. Dashboard ini menampilkan berbagai metrik performa
sistem dalam rentang waktu 5 menit terakhir, dengan pembaruan data setiap 10
detik. Dashboard ini membantu tim pengembang dan operasional dalam memantau
kesehatan layanan secara real-time, mengidentifikasi anomali, serta melakukan
analisis performa berdasarkan metrik kuantitatif. Visualisasi yang interaktif dan
terstruktur ini menjadi bagian penting dalam sistem observability yang mendukung

arsitektur microservice.

14

Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara

A Black Box Testing Prometheus dan Grafana

Tabel 3.2. Black Box Testing Prometheus dan Grafana

No | Langkah Uji Input Output yang | Status
Diharapkan
1 | Ekspos endpoint | Endpoint aktif Metrics ditampilkan | Lulus
/metrics di Prometheus
2 | Buat panel baru di | Query PromQL | Grafik muncul | Lulus
Grafana sesuai query
3 | Ubah interval | Interval 10s Data diperbarui | Lulus
scraping setiap 10 detik
4 | Filter metrics | label job="api” | Data sesuai label | Lulus
dengan label ditampilkan

Tabel 3.2 menunjukkan hasil black box testing terhadap integrasi
Prometheus dan Grafana. Pelaksanaan pengujian dilakukan secara kolaboratif oleh
Supervisor yang menjabat sebagai Senior Software Engineer.

3.3.3 Log Aggregation dengan Loki

Dalam tahap ini, log aggregation diimplementasikan menggunakan Loki
yang terintegrasi dengan Promtail dan Grafana. Promtail bertugas mengumpulkan
log dari aplikasi atau sistem, menambahkan label metadata, lalu mengirimkannya
ke Loki untuk disimpan. Loki kemudian menyimpan log dalam bentuk chunks
dengan indexing metadata sehingga pencarian log menjadi lebih efisien. Hasil
log dapat di-query menggunakan LogQL dan divisualisasikan melalui Grafana.
Dengan adanya sistem ini, perusahaan dapat melakukan analisis log secara terpusat,
memudahkan proses debugging, serta mengidentifikasi pola error atau anomali
yang terjadi pada aplikasi.[4]

A Teknologi yang Dipakai
Berikut adalah teknologi yang dipakai, yaitu:

» Loki: Loki adalah sistem log aggregation open-source yang dikembangkan

oleh Grafana Labs. Loki dirancang untuk mengumpulkan, menyimpan, dan

15

Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara

melakukan query terhadap log dengan cara efisien. Berbeda dengan sistem
log tradisional, Loki hanya melakukan indexing pada metadata (seperti label,
nama aplikasi, atau namespace), sehingga lebih hemat sumber daya dan

cocok untuk skala besar.[4]

* Promtail: Promtail adalah agen log yang berjalan di server atau container.
Tugas utama Promtail adalah membaca log dari file, stdout/stderr,
atau sistem logging lain, kemudian menambahkan label metadata sebelum
mengirimkannya ke Loki. Dengan Promtail, proses pengumpulan log

menjadi otomatis dan terintegrasi dengan baik.[8]

e Grafana (Integrasi dengan Loki): Grafana digunakan sebagai antarmuka
visual untuk menampilkan log yang dikumpulkan oleh Loki. Dengan
integrasi ini, pengguna dapat melakukan pencarian log menggunakan bahasa
query LogQL dan menampilkan hasilnya dalam dashboard yang sama dengan

metrics dari Prometheus.[3]

B Arsitektur Log Aggregation

Lok:

Gambar 3.4. Arsitektur log aggregation menggunakan Loki

Gambar 3.4 menunjukkan arsitektur log aggregation dengan Loki yang

terdiri dari beberapa komponen utama:

* Service: Menghasilkan log (stdout/stderr atau file log).

16

Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara

* Promtail: Agen yang mengumpulkan /og dari aplikasi atau sistem,

menambahkan metadata label, lalu mengirimkannya ke Loki.
* Loki Server: Menyimpan log dalam bentuk chunks dan metadata label.

e Grafana: Menampilkan log melalui query LogQL dan menyediakan
dashboard terpadu.

17

Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara

C Alur Log Aggregation

| Start

v

Application/Service
menghasilkan log

¥

Promtail mengumpulkan
log & menambahkan label
metadata

¥

Pengiriman log ke Loki

¥

Penyimpanan log di Loki

’

" Visualisasi log di Grafana

v
[End |

Gambar 3.5. Flowchart log aggregation menggunakan Loki
Gambar 3.5 menunjukkan alur proses log aggregation yang dapat dijelaskan
dalam beberapa tahap:

1. Log Generation: Aplikasi atau sistem menghasilkan log (misalnya request,

error, atau aktivitas sistem).

18

Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara

2. Log Collection oleh Promtail: Promtail membaca log dari file atau output

aplikasi, menambahkan label metadata (misalnya nama aplikasi, namespace).
3. Pengiriman ke Loki: Promtail mengirimkan log ke Loki untuk disimpan.

4. Penyimpanan di Loki: Loki menyimpan log dalam bentuk chunks dan

melakukan indexing metadata.

5. Visualisasi di Grafana: Grafana akan melakukan query terhadap Loki

menggunakan LogQL dan menampilkan log dari service yang terintegrasi.

D Hasil Implementasi

Gambar 3.6. Query log menggunakan Loki

Gambar 3.6 memperlihatkan proses pencarian log menggunakan Loki
melalui antarmuka Grafana Explore. Query yang digunakan adalah “test”, yang
bertujuan untuk menampilkan /log dari Order Service yang mengandung kata “test”.
Hasil pencarian ditampilkan dalam bentuk grafik volume log serta daftar log
mentah yang sesuai dengan kriteria. Tampilan ini membantu tim pengembang
dalam melakukan analisis log secara cepat dan terarah, terutama untuk keperluan

debugging dan validasi aktivitas sistem.

19

Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara

E Black Box Testing Loki

Tabel 3.3. Black Box Testing Loki

No | Langkah Uji Input Output yang | Status
Diharapkan

1 | Kirim log dari | Log INFO Log tampil di | Lulus
aplikasi Grafana

2 | Query log | Label Log relevan | Lulus
berdasarkan label service="order” | ditampilkan

3 | Query log | test” Log relevan | Lulus
berdasarkan ditampilkan
keyword log

4 | Kirim log ERROR Log dengan | Log ditandai sebagai | Lulus

level ERROR error

5 | Kirim log dengan | Log dengan | Log muncul sesuai | Lulus

timestamp waktu tertentu waktu

Tabel 3.3 menunjukkan hasil black box testing terhadap integrasi log
aggregation menggunakan Loki. Pelaksanaan pengujian dilakukan secara

kolaboratif oleh Supervisor yang menjabat sebagai Senior Software Engineer.

3.3.4 Distributed Tracing dengan Jaeger

Dalam tahap ini, distributed tracing diimplementasikan menggunakan
Jaeger. Distributed tracing bekerja dengan merekam jejak eksekusi sebuah request
dalam bentuk trace, yaitu rangkaian aktivitas yang menggambarkan perjalanan
request dari satu layanan ke layanan lain. Setiap aktivitas di dalam trace
direpresentasikan sebagai span, yang berisi informasi detail seperti nama operasi,
waktu mulai, durasi, serta metadata tambahan. Tracing ini memungkinkan
perusahaan untuk melacak alur request yang melewati berbagai layanan dalam

arsitektur microservice.[2]

A Teknologi yang Dipakai

Berikut adalah teknologi yang dipakai, yaitu

20

Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara

» Jaeger: Jaeger adalah open-source distributed tracing system yang
dikembangkan oleh Uber Technologies. Jaeger digunakan untuk memantau
dan memecahkan masalah pada sistem mikroservis dengan cara melacak
alur permintaan (request) yang melewati berbagai layanan. Dengan Jaeger,
developer dapat mengetahui latency, bottleneck, dan dependensi antar

layanan.[2]

B Arsitektur Distributed Tracing

Node A

Sarvice A

Qe
Kirim

Ty
VA
r Jasger Ul
N A -
-

L

Developar
Node B
Jaeger
Callector

Simpan

] Span
Service B

Gambar 3.7. Arsitektur distributed tracing menggunakan Jaeger

Gambar 3.7 menunjukkan arsitektur distributed tracing dengan Jaeger yang

terdiri dari beberapa komponen utama:

» Service: Layanan microservice yang di-instrumentasi menggunakan
OpenTelemetry SDK. SDK ini bertugas menghasilkan data tracing berupa

span dan context propagation dari setiap request yang melewati layanan..

» Jaeger Collector: Jaeger Collector menerima data tracing (span) dari
aplikasi atau agen, memprosesnya, lalu menyimpannya ke storage backend

untuk dapat di-query dan divisualisasikan.

e Jaeger UIl: Antarmuka visual untuk melakukan pencarian frace dan
menampilkan alur permintaan secara end-to-end yang memungkinkan untuk

melihat latency, dependensi antar layanan, serta bottleneck dalam sistem.

21

Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara

C Alur Distributed Tracing

Start

Servis mengirim span ke
Jaeger Collector melalui
OTel SDK

l

Collector menyimpan trace

ke Storage Backend

h

Visualisasi trace di Jaeger
Ul

|

(End)

Gambar 3.8. Flowchart distributed tracing menggunakan Jaeger

Gambar 3.8 menunjukkan alur proses distributed tracing yang dapat

dijelaskan dalam beberapa tahap:

1. Pengiriman Span: Aplikasi microservice di-instrumentasi menggunakan
OpenTelemetry SDK untuk menghasilkan data tracing berupa span yang akan

dikirim ke Jaeger Collector.

2. Penyimpanan Span: Collector bertugas menerima dan memproses data

tracing yang kemudian akan disimpan ke dalam database.

3. Visualisasi di Jaeger Ul: Data tracing yang tersimpan dapat di-query melalui
Jaeger Query dan divisualisasikan di Jaeger UI. Developer dapat melihat alur
lengkap perjalanan request, detail latency di setiap span, serta hubungan antar

layanan.

22

Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara

D Hasil Implementasi

1 Trace

Sort: Most Recent

Lookback Compare traces by selecting result items

order: request 1.77ms
Min Duration

Gambar 3.9. Daftar traces pada Jaeger Ul

Gambar 3.9 menunjukkan tampilan utama dari antarmuka pengguna Jaeger,
sebuah observability tool yang digunakan untuk melakukan distributed tracing
pada sistem berbasis microservice. Pada halaman ini, pengguna dapat melakukan
pencarian trace berdasarkan parameter seperti nama service, jenis operasi, tags,
durasi minimum dan maksimum, serta periode waktu pencarian (lookback).
Tampilan ini menjadi titik awal dalam proses analisis alur permintaan antar layanan,

yang sangat penting untuk debugging dan pemantauan performa sistem secara
menyeluruh.

v order: request

December 30, 2025 5:04 PM 1.77ms 2 6 8

Service & Operation v>¥» oms 0.44ms 0.88ms 1.33ms 1.77ms
 order

| order createorer
v | order gett

| item reqes

o] tem ceten

| item redisce

| item Respon

order Resp

Gambar 3.10. Detail trace pada Jaeger Ul

Gambar 3.10 menampilkan hasil pencarian trace untuk suatu operasi pada

Order Service. Trace tersebut memiliki beberapa span yang mencakup interaksi

23

Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara

antara dua layanan, yaitu Order Service dan Item Service. Visualisasi ini
menunjukkan struktur hierarki dan durasi masing-masing span. Informasi seperti
waktu mulai, durasi total, kedalaman frace, serta jumlah span ditampilkan secara
rinci, sehingga memudahkan proses identifikasi bottleneck dan analisis performa

antar layanan.

E Black Box Testing Jaeger

Tabel 3.4. Black Box Testing Jaeger

No | Langkah Uji Input Output yang | Status
Diharapkan
1 | Kirim request antar | Request HTTP | Trace muncul di UI | Lulus
layanan antar service dengan span lengkap
2 | Kirim request | Request lambat | Span menunjukkan | Lulus
dengan delay durasi tinggi
3 | Kirim request | Request antar 2 | Semua span | Lulus
berantai service memiliki trace

ID yang sama

4 | Cari trace dengan | Nama service | Trace ditemukan | Lulus
nama service | valid sesuai filter

tertentu

Tabel 3.4 menunjukkan hasil black box testing terhadap integrasi distributed
tracing menggunakan Jaeger. Pelaksanaan pengujian dilakukan secara kolaboratif

oleh Supervisor yang menjabat sebagai Senior Software Engineer.

3.3.5 Inbox-Outbox Pattern

Inbox-Outbox Pattern adalah sebuah pola arsitektur yang digunakan untuk
menjamin Konsistensi data dan keandalan komunikasi antar layanan dalam sistem
terdistribusi. Pola ini biasanya diterapkan ketika sebuah aplikasi perlu melakukan
operasi database sekaligus mengirimkan pesan ke sistem lain. Dengan adanya
outbox, setiap perubahan data yang terjadi di database akan dicatat terlebih dahulu,
kemudian pesan dikirim secara asinkron melalui message broker. Hal ini mencegah

terjadinya inkonsistensi akibat kegagalan pengiriman pesan atau transaksi yang

24

Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara

tidak selesai. Sementara inbox digunakan untuk memastikan bahwa pesan yang
diterima dari sistem lain hanya diproses sekali (idempotent processing), sehingga

menghindari duplikasi.[5]

A Teknologi yang Dipakai
Berikut adalah teknologi yang dipakai, yaitu

* PostgreSQL: Postgres digunakan sebagai database utama untuk menyimpan
data aplikasi sekaligus mencatat transaksi dalam tabel outbox. Dengan
memanfaatkan fitur transactional consistency dari Postgres, setiap perubahan
data dan pencatatan pesan ke outbox dapat dilakukan dalam satu transaksi
atomik. Hal ini memastikan bahwa data tidak akan hilang atau terduplikasi

ketika terjadi kegagalan sistem.[9]

* RabbitMQ: RabbitMQ berperan sebagai message broker yang menerima
pesan dari outbox dan mendistribusikannya ke layanan lain. RabbitMQ
mendukung komunikasi asinkron antar microservice, sehingga pesan dapat
dikirim dengan aman dan di-retry jika terjadi kegagalan. Dalam implementasi
inbox-outbox pattern, RabbitMQ memastikan bahwa pesan yang sudah
dicatat di database dapat dikirim ke sistem tujuan tanpa kehilangan.
developer dapat mengetahui latency, bottleneck, dan dependensi antar

layanan.[10]

* Golang: Golang digunakan sebagai bahasa pemrograman untuk
mengimplementasikan logika aplikasi, termasuk mekanisme pembacaan
outbox, pengiriman pesan ke RabbitMQ, serta pemrosesan pesan di inbox.
Dalam implementasi ini, worker pool pattern digunakan untuk membaca
data dari outbox dan inbox secara paralel. Worker pool memungkinkan
beberapa worker goroutines berjalan bersamaan untuk memproses pesan,
sehingga meningkatkan throughput dan efisiensi sistem. Dengan pendekatan
ini, aplikasi dapat menangani beban pesan yang tinggi secara lebih stabil dan
terukur, sekaligus memastikan setiap pesan diproses secara konsisten dan

idempoten.[11]

25

Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara

B Tabel Inbox

Tabel ini digunakan untuk menyimpan pesan yang diterima dari sistem lain

melalui message broker. Tujuannya adalah memastikan setiap pesan yang masuk

diproses sekali saja (idempotent processing) dan dicatat untuk keperluan audit

maupun retry jika terjadi kegagalan.

1.

2.

10.

11.

12.

13.

14.

id (SERIAL, PK): Identitas unik untuk setiap record pesan yang diterima.

sender_id (VARCHAR, NOT NULL): Identitas pengirim pesan, misalnya

nama layanan atau sistem sumber.

. message id (UUID, UNIQUE, NOT NULL): Identitas unik pesan untuk

mencegah pemrosesan ganda.

event_type (VARCHAR): Jenis event yang diterima, misalnya
InventoryUpdated.

. payload (JSONB): Isi data pesan dalam format JSON.

status (message_status, DEFAULT ’PENDING”’): Status pemrosesan pesan,
misalnya PENDING, PROCESSED, atau FAILED.

retry_count (INT, DEFAULT 0): Jumlah percobaan pemrosesan ulang jika
terjadi kegagalan.

exchange (VARCHAR, DEFAULT ’orders’): Nama exchange di RabbitMQ

tempat pesan berasal.

routing_key (VARCHAR): Routing key yang digunakan untuk mengarahkan

pesan ke layanan penerima.

error (TEXT): Informasi error jika pemrosesan pesan gagal.

locked_at (TIMESTAMP): Waktu ketika pesan sedang diproses oleh worker.
locked_by (VARCHAR): Identitas worker yang sedang memproses pesan.

created_ at (TIMESTAMP, DEFAULT CURRENT.TIMESTAMP):

Waktu pesan pertama kali diterima.

updated at (TIMESTAMP, DEFAULT CURRENT _TIMESTAMP):
Waktu terakhir pesan diperbarui.

26

Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara

C Alur Inbox

Pesan diterima dari
RabbitMQ

|

Catat pesan ke tabel inbox
dengan status PENDING

|

Apakah message_id sudah
pernah diproses?

Tidak

Worker membaca pesan
dari inbox

e T

Apakah pemrosesan

berhasil?

Increment retry_count

Apakah retry_count > 32

! | Tidak\‘ / l

Pesan diabaikan Ubah status menjadi Status tetap PENDING,
(idempotent check) PROCESSED pesan akan di-retry

\

Gambar 3.11. Flowchart inbox pattern

Ubah status menjadi FAILED

Gambar 3.11 menampilkan alur pemrosesan pesan menggunakan Inbox
Pattern. Alur Inbox dimulai ketika sebuah pesan diterima dari RabbitMQ dan

27

Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara

dicatat ke dalam tabel inbox dengan status awal PENDING. Sebelum diproses, sistem
melakukan pengecekan idempotensi berdasarkan message_id untuk memastikan
bahwa pesan yang sama tidak diproses lebih dari sekali. Jika pesan sudah pernah
diproses sebelumnya, maka pesan tersebut akan diabaikan. Jika belum, worker
akan membaca pesan dari inbox dan mencoba memprosesnya. Jika pemrosesan
berhasil, status pesan akan diperbarui menjadi PROCESSED. Namun, jika pemrosesan
gagal, sistem akan menambahkan nilai retry count dan mencoba memproses
ulang pesan hingga maksimal tiga kali. Apabila setelah tiga kali percobaan pesan
tetap gagal diproses, maka status pesan akan diubah menjadi FAILED. Dengan
mekanisme ini, inbox menjamin bahwa setiap pesan yang diterima dari sistem
lain diproses secara konsisten, aman dari duplikasi, dan memiliki keandalan tinggi

dalam menghadapi kegagalan.

D Hasil Implementasi Inbox

16700 info Starting inbox workers

Inbox worker started

rting inbox

rting inbox worker

Gambar 3.12. Inisialisasi inbox worker

Gambar 3.12 menunjukkan proses inisialisasi inbox worker. Log mencatat
bahwa sistem memulai beberapa worker untuk memproses pesan masuk secara
paralel. Inisialisasi ini merupakan bagian dari implementasi /nbox-Outbox pattern
yang bertujuan untuk memastikan setiap pesan yang diterima dapat diproses
secara konsisten dan tidak hilang, sehingga mendukung integritas komunikasi antar

layanan.

"message_id

development

“message_id

ironment”: “development

velopment™ "message_id

“; "development”, "id": 46, "message id

Gambar 3.13. Log pemrosesan pesan oleh inbox worker

28

Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara

Gambar 3.13 menampilkan /og aktivitas dari inbox worker yang berhasil
menerima dan memproses pesan masuk. Setiap pesan memiliki atribut seperti
message_id, event_type, dan worker_id, yang menunjukkan bahwa event yang
diterima telah diproses sesuai dengan alur bisnis. Proses ini memastikan bahwa
pesan yang masuk dari queue atau exchange dapat ditangani dengan baik oleh

sistem.

Gambar 3.14. Hasil message di tabel outbox setelah diproses

Gambar 3.14 memperlihatkan isi dari inbox table setelah pesan berhasil
diproses. Setiap baris merepresentasikan satu event dengan informasi lengkap
seperti message_id, event_type, payload, status, dan retry_count. Seluruh
pesan dalam tabel memiliki status PROCESSED dan nilai retry_count sebesar 0,

yang menandakan bahwa pesan telah diterima dan diproses tanpa kesalahan.

E Tabel Outbox

Tabel ini digunakan untuk menyimpan pesan yang akan dikirim ke sistem
lain melalui message broker (RabbitMQ). Tujuannya adalah memastikan setiap
perubahan data yang terjadi di aplikasi tercatat terlebih dahulu sebelum dikirim,
sehingga mendukung konsistensi dan keandalan sistem.

[y

. id (SERIAL, PK): Identitas unik untuk setiap record pesan.

2. message_id (UUID, UNIQUE, NOT NULL): Identitas unik pesan agar tidak
terjadi duplikasi.

3. event_type (VARCHAR): Jenis event yang terjadi, misalnya OrderCreated.
4. payload (JSONB): Isi data pesan dalam format JSON.

5. status (message _status, DEFAULT ’PENDING’): Status pesan, misalnya
PENDING, SENT, atau FAILED.

29

Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara

10.

11.

12.

13.

retry_count (INT, DEFAULT 0): Jumlah percobaan pengiriman ulang jika
terjadi kegagalan.

exchange (VARCHAR, DEFAULT ’orders’): Nama exchange di RabbitMQ

tempat pesan akan dikirim.

routing key (VARCHAR): Routing key untuk menentukan tujuan pesan.
error (TEXT): Informasi error jika pengiriman pesan gagal.

locked_at (TIMESTAMP): Waktu ketika pesan sedang diproses oleh worker.
locked_by (VARCHAR): Identitas worker yang sedang memproses pesan.

created_ at (TIMESTAMP, DEFAULT CURRENT TIMESTAMP):
Waktu pesan pertama kali dibuat.

updated_at (TIMESTAMP, DEFAULT CURRENT_TIMESTAMP):
Waktu terakhir pesan diperbarui.

30

Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara

F Alur Outbox

Pesan baru diinsert ke
tabel outbox dengan status
PENDING

|

Worker membaca dan
memproses pesan dari
tabel outhox

7 T

Apakah pesan berhasil
dikirim ke RabhitmMQ?

Tidak

v

Increment retry_count

Apakah retry_count > 3?

! Tidak\ / la

Ubah status menjadi Status tetap PENDING,
PROCESSED pesan akan di-retry

Ubah status menjadi FAILED

Gambar 3.15. Flowchart outbox pattern

31

Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara

Gambar 3.15 menampilkan alur pemrosesan pesan menggunakan Outbox
Pattern. Alur Outbox dimulai ketika aplikasi mencatat sebuah pesan baru ke
dalam tabel outbox dengan status awal PENDING. Worker kemudian membaca pesan
tersebut dan mencoba mengirimkannya ke RabbitMQ. Jika pengiriman berhasil,
status pesan akan diperbarui menjadi SENT sebagai tanda bahwa pesan telah terkirim
dengan baik. Namun, jika pengiriman gagal, sistem akan menambahkan nilai
retry_count dan mencoba mengirim ulang pesan. Proses retry ini dilakukan hingga
maksimal tiga kali. Apabila setelah tiga kali percobaan pesan tetap gagal dikirim,
maka status pesan akan diubah menjadi FAILED. Dengan mekanisme ini, Outbox
memastikan bahwa setiap perubahan data yang terjadi di aplikasi tidak hilang begitu
saja, melainkan selalu dicatat dan diusahakan untuk dikirim ke sistem tujuan secara

konsisten.

G Hasil Implementasi Outbox

vice”,
info
nter

Gambar 3.16. Inisialisasi outbox worker

Gambar 3.16 menunjukkan proses inisialisasi outbox worker pada layanan
dalam lingkungan pengembangan. Log mencatat bahwa sistem memulai tiga
worker secara paralel, masing-masing ditandai dengan nomor urut dan informasi
lingkungan. Inisialisasi ini merupakan bagian dari implementasi /nbox-Outbox
pattern yang bertujuan untuk memproses pesan secara asinkron dari outbox table,
sehingga menjamin keandalan pengiriman event antar layanan tanpa mengganggu

transaksi utama.

18, "message

: 6, "message i

Gambar 3.17. Log pemrosesan pesan oleh outbox worker

Gambar 3.17 menampilkan /log aktivitas dari outbox worker yang berhasil

memproses dan menerbitkan pesan dari outbox table. Setiap pesan memiliki atribut

32

Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara

seperti message_id, event_type, dan worker_id, yang menunjukkan bahwa event
order.created telah berhasil dikirim oleh masing-masing worker. Proses ini

menunjukkan bahwa pesan dikirim secara terjamin dan dapat ditelusuri melalui log.

retry_count

Gambar 3.18. Hasil message di tabel outbox setelah diproses

Gambar 3.18 memperlihatkan isi dari outbox table setelah pesan berhasil
diproses. Setiap baris merepresentasikan satu event dengan informasi lengkap
seperti message_id, event_type, payload, status, dan retry_count. Seluruh
pesan dalam tabel memiliki status PROCESSED dan nilai retry _count sebesar
0, yang menandakan bahwa pesan telah dikirim tanpa kesalahan dan tidak

memerlukan pengulangan.

33

Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara

H Black Box Testing Inbox-Outbox

Tabel 3.5. Black Box Testing Inbox-Outbox

No | Langkah Uji Input Output yang | Status
Diharapkan
1 | Simpan data dan | Payload JSON Record muncul di | Lulus
kirim event tabel outbox
2 | Jalankan worker | Status Pesan terkirim, | Lulus
outbox PENDING status jadi
PROCESSED
3 | Jalankan worker | Status Pesan terproses, | Lulus
inbox PENDING status jadi
PROCESSED
4 | Simulasikan error | Status retry_count Lulus
RabbitMQ PENDING bertambah
5 | Simulasikan error | Status retry_count Lulus
PostgreSQL PENDING bertambah
6 | Simulasikan error | retry_count =4 | Status berubah jadi | Lulus
berulang FAILED
7 | Terima pesan dari | Payload JSON Record muncul di | Lulus
RabbitMQ tabel inbox
8 | Kirim pesan dengan | Duplikat Pesan kedua | Lulus
message_id sama message_id diabaikan
(idempotent check)

outbox pattern menggunakan Golang. Pelaksanaan pengujian dilakukan secara

Tabel 3.5 menunjukkan hasil black box testing terhadap implementasi inbox-

kolaboratif oleh Supervisor yang menjabat sebagai Senior Software Engineer.

3.4 Kendala dan Solusi yang Ditemukan

3.4.1 Kendala yang Ditemukan

Selama pelaksanaan kerja magang, terdapat sejumlah kendala dan tantangan

yang dihadapi, antara lain sebagai berikut:

34

Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara

1. Keterbatasan pemahaman terhadap teknologi baru: Pada awal
pelaksanaan magang, belum sepenuhnya familiar dengan teknologi yang
digunakan, seperti Golang, RabbitMQ, serta observability tools (Prometheus,
Grafana, Loki, dan Jaeger). Hal ini menyebabkan adanya keterlambatan
dalam memahami konsep dasar dan praktik terbaik yang diperlukan untuk

implementasi.

2. Pengerjaan paralel dengan proyek lain: Selain mengerjakan proyek
observability, terdapat pula keterlibatan dalam pengerjaan proyek lain yang
sedang berjalan di perusahaan. Kondisi ini menimbulkan tantangan dalam
manajemen waktu dan fokus, karena harus membagi perhatian antara

beberapa pekerjaan sekaligus.

3. Bug pada tahap implementasi: Dalam proses implementasi, beberapa
bug ditemukan, baik berupa kesalahan logika, konfigurasi yang tidak
sesuai, maupun error saat integrasi antar komponen. Bug ini menghambat
jalannya pengembangan dan memerlukan waktu tambahan untuk melakukan

debugging serta perbaikan.

3.4.2 Solusi yang Diterapkan

Untuk mengatasi kendala dan tantangan yang dihadapi selama pelaksanaan

kerja magang, berikut ini adalah solusi yang diterapkan:

1. Melakukan pembelajaran mandiri dan mentoring: Pembelajaran mandiri
dilakukan melalui dokumentasi resmi, tutorial, serta diskusi dengan Senior
Software Engineer. Dengan adanya mentoring, pemahaman terhadap
teknologi yang digunakan dapat diperoleh lebih cepat dan diterapkan dalam
proyek.

2. Menerapkan manajemen waktu dan prioritas: Untuk mengatasi pekerjaan
yang dibarengi dengan proyek lain, dibuat jadwal kerja harian dan ditetapkan
prioritas tugas. Dengan cara ini, pekerjaan dapat diselesaikan sesuai target

tanpa mengorbankan kualitas hasil.

3. Bug pada tahap implementasi: Setiap bug yang ditemukan ditangani
dengan proses debugging yang terstruktur, seperti melakukan logging,

tracing, serta pengujian ulang dengan berbagai skenario. 7esting dilakukan

35

Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara

secara berulang untuk memastikan bahwa perbaikan yang diterapkan benar-

benar menyelesaikan masalah dan tidak menimbulkan bug baru.

UMN

UNIVERSITAS
MULTIMEDIA
NUSANTARA

36

Perancangan Dan Implementasi..., Andi Usman Balo, Universitas Multimedia Nusantara

