
BAB 3
PELAKSANAAN KERJA MAGANG

3.1 Kedudukan dan Koordinasi

Posisi yang dijalankan adalah sebagai Backend Developer Intern dalam tim developer dan
berada di bawah supervisi langsung Abdur Rozaq sebagai Frontend Developer serta Kaka Alfuna
sebagai Tech Lead. Dalam pelaksanaan tugas, dilakukan koordinasi secara langsung dengan pihak
terkait untuk menyampaikan perkembangan pekerjaan serta memperoleh bimbingan teknis. Selain
itu, arahan dan dukungan juga diberikan oleh anggota tim lainnya selama proses pelaksanaan tugas.

Sebagai perusahaan yang beroperasi dalam ekosistem startup, pola komunikasi di
lingkungan kerja bersifat langsung dan informal, didukung oleh kedekatan fisik antaranggota tim
yang bekerja dalam satu ruang. Meskipun proyek yang dikerjakan tidak termasuk dalam proyek
utama tim, partisipasi tetap dilakukan dalam rapat rutin tim developer guna memperluas pemahaman
terhadap keseluruhan proses pengembangan, menjaga sinkronisasi dengan standar teknis yang
diterapkan, serta mendukung integrasi kerja tim secara menyeluruh.

3.2 Tugas yang Dilakukan

Selama pelaksanaan kegiatan magang di Five Elements Marketing Agency, tanggung jawab
utama difokuskan pada pengembangan backend serta dukungan terhadap integrasi sistem digital
perusahaan. Tugas-tugas yang dilaksanakan meliputi:

• Pengembangan dan implementasi RESTful API untuk website Five Elements dan LGM
Agency menggunakan framework Next.js. API ini dirancang untuk memungkinkan
pengelolaan data secara dinamis melalui antarmuka admin internal.

• Perancangan dan pengelolaan database menggunakan MongoDB, termasuk pembuatan
skema data untuk berbagai entitas seperti artis, partner, dan informasi perusahaan.

• Implementasi sistem autentikasi dan otorisasi berbasis JWT (JSON Web Token) untuk akun
admin, guna memastikan keamanan akses data dalam sistem.

Seluruh tugas ini bertujuan untuk meningkatkan skalabilitas, efisiensi, dan fleksibilitas
dalam pengelolaan konten digital pada platform milik perusahaan. Selain itu, kegiatan ini
memberikan pengalaman langsung dalam penerapan praktik pengembangan perangkat lunak modern
di lingkungan industri.

3.3 Uraian Pelaksanaan Magang

Pelaksanaan kerja magang diuraikan seperti pada Tabel 3.1.

7
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

Tabel 3.1. Pekerjaan yang dilakukan tiap minggu selama pelaksanaan kerja magang

Minggu Ke- Pekerjaan yang dilakukan
1 Orientasi dengan membaca dokumentasi dan kode pada website P-Club

2 Memperbarui dan menyusun ulang dokumentasi pada website P-Club

3 Mengembangkan backend website Five Elements: API endpoint autentikasi
JWT

4 Mengembangkan backend website Five Elements: API endpoint admin

5 Mengembangkan backend website Five Elements: API endpoint About Us

6 Mengembangkan backend website Five Elements: API endpoint layanan

7 Mengembangkan backend website Five Elements: API endpoint Partner
dan Project

8 Mengembangkan backend website Five Elements: API endpoint Awards
dan Blog

9 Mengembangkan backend website Five Elements: API endpoint Clients,
Contact Us, dan Subscription

10 Merancang mockup dashboard untuk mengakses CRUD endpoint API pada
website Five Elements

11 Mengembangkan API endpoint autentikasi JWT dan admin pada website
LGM Agency

12 Mengembangkan API endpoint About Us dan artis pada website LGM
Agency

13 Mengembangkan API endpoint email staf, pengiriman email, dan
permintaan tiket pada website LGM Agency

14 Mengembangkan API endpoint integrasi Spotify API dan iTunes API

15 Riset dan penyusunan laporan tentang API media sosial dan aplikasi musik

16 Review ulang kode website Five Elements dan LGM Agency serta
penyusunan dokumentasi backend API

8
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

3.4 Proses dan Hasil

Gambar 3.1. Flowchart perancangan sistem backend.

9
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

Proses perancangan sistem backend diawali dengan pemahaman terhadap sistem backend
yang telah digunakan pada website dan aplikasi lain milik perusahaan. Tahap ini bertujuan untuk
menyesuaikan struktur dan pola pengembangan backend yang baru agar selaras dengan sistem
yang sudah ada, sehingga memudahkan proses pemeliharaan dan pemahaman oleh developer
internal. Selanjutnya, dilakukan analisis terhadap website yang akan dirancang sistem backend-nya
untuk menentukan fitur-fitur yang dibutuhkan. Berdasarkan hasil analisis tersebut, sistem backend
dirancang dan diimplementasikan melalui pembuatan database, middleware, serta API. Setelah
implementasi selesai, backend diuji secara mandiri menggunakan Postman untuk memastikan setiap
endpoint API, middleware, dan interaksi dengan database berjalan dengan baik. Hasil pengujian
kemudian diajukan untuk direview oleh supervisor dan mentor, sehingga diperoleh umpan balik
yang digunakan sebagai dasar perbaikan dan penyesuaian sistem backend. Tahap akhir dari proses
ini adalah penyusunan dokumentasi sistem backend agar mudah dipahami dan digunakan oleh
developer lain di masa mendatang.

3.4.1 Pengembangan RESTful API Pada website Five Elements dan LGM Agency

Website Five Elements dan LGM Agency dapat dikelola secara dinamis, memberikan akses
data kepada admin melalui dashboard internal pada frontend, serta mendukung pengembangan
website yang skalabel dengan menerapkan RESTful API. Melalui RESTful API, data pada website
dapat diakses dan dimanipulasi secara real time menggunakan berbagai endpoint seperti:

• GET, untuk mengambil data;

• POST, untuk menambahkan data;

• PUT, untuk memperbarui data; dan

• DELETE, untuk menghapus data.

Dengan pendekatan ini, pengelolaan data menjadi lebih fleksibel dan dapat dilakukan
langsung dari dashboard frontend. Admin juga dapat mengakses data backend secara aman
melalui frontend internal yang dilindungi dengan sistem autentikasi berbasis JWT (JSON Web
Token). Selain itu, RESTful API memungkinkan backend dan frontend dikembangkan secara
terpisah (decoupled), sehingga sistem lebih mudah untuk ditingkatkan atau disesuaikan dengan
kebutuhan saat ini maupun di masa mendatang. Pendekatan ini mendukung skalabilitas sistem digital
perusahaan secara efisien dan berkelanjutan.

Dalam pengembangan RESTful API untuk website Five Elements dan LGM Agency,
digunakan berbagai alat dan teknologi yang dikategorikan sebagai berikut:

• Framework

– Next.js – Framework berbasis React yang digunakan untuk membangun aplikasi full-
stack dengan kemampuan API routing dan server-side rendering.

• Language

– TypeScript – Bahasa pemrograman yang merupakan superset dari JavaScript,
menyediakan pengetikan statis untuk pengembangan yang lebih aman dan terstruktur.

10
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

• Database

– MongoDB – Database NoSQL yang digunakan untuk menyimpan dan mengelola data
dalam format dokumen JSON.

• Library

– next – Library internal dari Next.js yang mencakup modul seperti next/server dan
next/headers untuk pengembangan sisi server.

– mongoose – Library ODM (Object Data Modeling) untuk integrasi antara aplikasi
Node.js dan MongoDB.

– @aws-sdk/client-s3 – Modul dari AWS SDK untuk mengelola penyimpanan dan
pengunggahan file ke Amazon S3.

– bcryptjs – Library untuk hashing dan verifikasi password dengan aman.

– jose – Library untuk membuat dan memverifikasi JSON Web Token (JWT) untuk
sistem autentikasi dan otorisasi.

• Tools

– Postman – Digunakan untuk menguji dan memverifikasi endpoint RESTful API.

– Visual Studio Code (VS Code) – Editor kode sumber utama yang digunakan dalam
pengembangan proyek.

Langkah pertama dalam pengembangan RESTful API adalah melakukan analisis terhadap
struktur dan kebutuhan data pada website. Setiap halaman ditinjau untuk mengidentifikasi bagian-
bagian yang mengandung data dinamis atau informasi yang perlu diperbarui secara cepat oleh
admin. Untuk memastikan keakuratan dan kelengkapan kebutuhan, dilakukan konsultasi dengan
pembimbing guna memperoleh masukan terkait data yang perlu disediakan melalui API. Setelah
kebutuhan data ditentukan, proyek website yang sudah ada diakses dan pengembangan API
dilakukan dengan pendekatan modular. Struktur folder api dalam Next.js dimanfaatkan untuk
membuat masing-masing endpoint secara terpisah sesuai dengan entitas data, seperti artis, partner,
blog, dan informasi perusahaan. Setiap endpoint mendukung metode dasar seperti GET, POST, PUT,
dan DELETE.

Setelah pengembangan API selesai, dilakukan pengujian menggunakan Postman untuk
memastikan setiap endpoint merespons dengan benar sesuai dengan kebutuhan fungsionalitas dan
keamanan sistem. Pengujian meliputi validasi data, pengujian autentikasi JWT, serta simulasi
interaksi antara frontend dan backend. Selain itu, dibuat mockup sederhana untuk dashboard
frontend yang berfungsi sebagai referensi awal dalam pengembangan antarmuka untuk mengakses
API. Endpoint API kemudian dihubungkan dengan bagian frontend yang telah tersedia agar proses
integrasi dapat berjalan dengan lancar dan dapat langsung digunakan oleh pihak terkait.

Setelah tahap implementasi, dilakukan evaluasi oleh pembimbing dan supervisor terkait
struktur, keamanan, serta kelengkapan endpoint yang dikembangkan. Berdasarkan masukan
tersebut, perbaikan dan penyesuaian dilakukan apabila diperlukan. Sebagai tahap akhir, disusun
dokumentasi teknis yang mencakup daftar endpoint, metode HTTP yang digunakan, struktur request
dan response, serta mekanisme autentikasi. Dokumentasi ini disiapkan untuk memudahkan tim
frontend dan pengembang lainnya dalam memahami serta memanfaatkan API secara optimal.

11
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

A RESTful API Pada Website Five Elements

Tabel 3.2. Daftar API Endpoint pada Website Five Elements

No Endpoint Fungsi
1 /api/auth/login Melakukan autentikasi admin menggunakan

email dan kata sandi

2 /api/auth/logout Mengakhiri sesi autentikasi admin

3 /api/admin Mengelola data admin (menampilkan dan
menambahkan admin)

4 /api/admin/{id} Mengelola data admin berdasarkan ID
(detail, ubah, hapus)

5 /api/aboutUs/protected Mengelola data About Us oleh admin

6 /api/aboutUs/protected/{id} Mengelola detail data About Us berdasarkan
ID

7 /api/aboutUs/published Menampilkan data About Us yang telah
dipublikasikan

8 /api/aboutUs/published/{id} Menampilkan detail About Us yang telah
dipublikasikan

9 /api/awards/protected Mengelola data penghargaan oleh admin

10 /api/awards/published Menampilkan data penghargaan yang
dipublikasikan

11 /api/blog/protected Mengelola artikel blog oleh admin

12 /api/blog/published Menampilkan artikel blog yang
dipublikasikan

13 /api/client/protected Mengelola data klien oleh admin

14 /api/client/published Menampilkan data klien yang dipublikasikan

15 /api/package/protected Mengelola data paket layanan oleh admin

16 /api/package/published Menampilkan paket layanan yang
dipublikasikan

17 /api/partner/protected Mengelola data mitra oleh admin

18 /api/partner/published Menampilkan data mitra yang dipublikasikan

19 /api/project/protected Mengelola data proyek oleh admin

20 /api/project/published Menampilkan data proyek yang
dipublikasikan

21 /api/subscription Mengelola data langganan email pengguna

22 /api/contactUs Mengelola pesan dan pertanyaan dari
pengunjung website

12
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

A.1 Admin

api/admin

Endpoint ini digunakan untuk mengambil seluruh data admin serta menambahkan data admin baru
ke dalam sistem.

1 import { NextRequest , NextResponse } from "next/server";
2 import Admin from "@/common/schemas/dbSchema/admin";
3 import { connectToDatabase } from "@/lib/mongodb";
4 import bcryptjs from ’bcryptjs ’;
5 import { uploadFile } from "@/lib/upload";
6 import {parseJson} from ’@/lib/parseJson ’
7

8 export async function GET(req: NextRequest) {
9 try {

10 const query = req.nextUrl.searchParams;
11 const limit = parseInt(query.get("limit") as string) ||

10;
12 const page = parseInt(query.get("page") as string) || 1;
13 const search = query.get("search") as string || ’’;
14 const all = query.get("all") === ’true ’ ? true : false;
15 const skip = (page - 1) * limit;
16 let filter
17 let checkAdmins;
18 await connectToDatabase();
19 let totalData = await Admin.countDocuments();
20 if (search) {
21 filter = [
22 { fullName: { $regex: search , $options: ’i’ } },
23 { position: { $regex: search , $options: ’i’ } },
24 { description: { $regex: search , $options: ’i’ } },
25]
26 checkAdmins = await Admin.find({
27 $or: filter
28 }).select(’-password -token ’).sort({ createdAt: -1 }).

skip(skip).limit(limit);
29 totalData = checkAdmins.length;
30 } else if (all) {
31 checkAdmins = await Admin.find().select(’-password -

token ’).sort({ createdAt: -1 });
32 } else {
33 checkAdmins = await Admin.find().select(’-password -

token ’).sort({ createdAt: -1 }).skip(skip).limit(limit);
34 }
35 const result = {
36 admins: checkAdmins ,
37 pagination: {
38 page: page ,
39 limit: limit ,
40 totalPages: Math.ceil(totalData / limit),
41 totalData: totalData
42 }
43 }
44 return NextResponse.json({ status: 200, message: ’admin

get successfully ’, data: result }, { status: 200 });
45 } catch (error) {
46 return NextResponse.json({ status: 500, message: ’Internal

Server Error ’ }, { status: 500 });
47 }
48 }
49

50 export async function POST(req: NextRequest) {
51 try {
52 const formData = await req.formData();
53 const { username , password , fullName , position ,

13
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

description , image } = await parseJson(formData);
54 if (!username || !password || !fullName || !position || !

image || !description) return NextResponse.json({ status: 400,
message: ’Bad Request ’ }, { status: 400 });

55 const encryptPassword = await bcryptjs.hash(password as
string , 10);

56 await connectToDatabase();
57 const checkUser = await Admin.findOne({ username: username

});
58 if (checkUser) {
59 return NextResponse.json({ status: 409, message: ’User

already exists ’ }, { status: 409 });
60 }
61 console.log(encryptPassword);
62 const imageUrl = await uploadFile(formData , ’admin ’, ’

image ’);
63 const admin = await Admin.create({ username , password :

encryptPassword , fullName , position , description , image :
imageUrl });

64 return NextResponse.json({ status: 201, message: ’admin
creeated successfully ’, data: admin }, { status: 201 });

65 } catch (error) {
66 return NextResponse.json({ status: 500, message: ’Internal

Server Error ’ }, { status: 500 });
67 }
68 }

Kode 3.1: Kode untuk api/admin

Methods

• GET : Digunakan untuk mengambil data admin dengan dukungan fitur pencarian dan
pagination.

• POST : Digunakan untuk menambahkan data admin baru ke dalam database.

api/admin/[id]

Endpoint ini digunakan untuk mengelola satu data admin berdasarkan ID tertentu.

1 import { NextRequest , NextResponse } from "next/server";
2 import Admin from "@/common/schemas/dbSchema/admin";
3 import { connectToDatabase } from "@/lib/mongodb";
4 import bcryptjs from ’bcryptjs ’;
5 import {uploadFile , deleteFile } from "@/lib/upload";
6 import {parseJson} from ’@/lib/parseJson ’
7

8

9 export async function GET(
10 _req: NextRequest ,
11 {params} : {params : Promise <{ id : string}>}) {
12 try {
13

14 await connectToDatabase();
15 const {id} = await params
16 const checkAdmin = await Admin.findById(id).select(’-

password -token ’);
17 if (!checkAdmin) {
18 return NextResponse.json({ status: 404, message: ’

Admin Not Found ’ }, { status: 404 });
19 }
20 return NextResponse.json({ status: 200, message: ’admin

get successfully ’, data: checkAdmin }, { status: 200 });
21 } catch (error) {

14
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

22 return NextResponse.json({ status: 500, message: ’Internal
Server Error ’ }, { status: 500 });

23 }
24 }
25

26 export async function PUT(
27 req: NextRequest ,
28 {params} : {params : Promise <{ id : string}>}) {
29 try {
30 await connectToDatabase();
31 const formData = await req.formData();
32 const {id} = await params
33 const checkAdmin = await Admin.findById(id);
34 if (!checkAdmin) {
35 return NextResponse.json({ status: 404, message: ’

Admin Not Found ’ }, { status: 404 });
36 }
37 const { username , password , fullName , position ,

description , image } = await parseJson (formData);
38 const encryptPassword = await bcryptjs.hash(password as

string , 10);
39 if (image) {
40 await deleteFile(checkAdmin.image , ’admin ’);
41 const imageUrl = await uploadFile(formData , ’admin ’, ’

image ’);
42 const admin = await Admin.findByIdAndUpdate(id, {

username , password: encryptPassword , fullName , position ,
description , image : imageUrl }, { new: true });

43 return NextResponse.json({ status: 200, message: ’
admin updated successfully ’, data: admin }, { status: 200 });

44

45 }
46 const admin = await Admin.findByIdAndUpdate(id, { username

, password: encryptPassword , fullName , position , description },
{ new: true });

47 return NextResponse.json({ status: 200, message: ’admin
updated successfully ’, data: admin }, { status: 200 });

48 } catch (error) {
49 return NextResponse.json({ status: 500, message: ’Internal

Server Error ’ }, { status: 500 });
50 }
51 }
52

53 export async function DELETE(
54 _req: NextRequest ,
55 {params} : {params : Promise <{ id : string}>}) {
56 try {
57 await connectToDatabase();
58 const {id} = await params
59 const checkAdmin = await Admin.findById(id);
60 if (!checkAdmin) {
61 return NextResponse.json({ status: 404, message: ’

Admin Not Found ’ }, { status: 404 });
62 }
63 await deleteFile(checkAdmin.image , ’admin ’);
64 await Admin.findByIdAndDelete(id);
65 return NextResponse.json({ status: 200, message: ’admin

deleted successfully ’ }, { status: 200 });
66 } catch (error) {
67 return NextResponse.json({ status: 500, message: ’Internal

Server Error ’ }, { status: 500 });
68 }
69 }

Kode 3.2: Kode untuk api/admin/[id]

15
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

Methods

• GET : Mengambil data admin berdasarkan ID.

• PUT : Memperbarui data admin berdasarkan ID.

• DELETE : Menghapus data admin berdasarkan ID.

16
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

Gambar 3.2. Tampilan antarmuka dashboard untuk endpoint Admin

Sumber: Five Elements Agency

17
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

A.2 AboutUs

api/aboutUs

Endpoint ini digunakan untuk mengambil seluruh data About Us dengan dukungan fitur pencarian,
pagination, serta opsi pengambilan seluruh data (fetch-all).

1 import { NextRequest , NextResponse } from "next/server";
2 import Admin from "@/common/schemas/dbSchema/admin";
3 import { connectToDatabase } from "@/lib/mongodb";
4

5 export async function GET(req: NextRequest) {
6 try {
7 const query = req.nextUrl.searchParams;
8 const limit = parseInt(query.get("limit") as string) ||

10;
9 const page = parseInt(query.get("page") as string) || 1;

10 const search = query.get("search") as string || ’’;
11 const all = query.get("all") === ’true ’;
12 const skip = (page - 1) * limit;
13 let filter;
14 let checkAdmins;
15

16 await connectToDatabase();
17 let totalData = await Admin.countDocuments();
18

19 if (search) {
20 filter = [
21 { fullName: { $regex: search , $options: ’i’ } },
22 { position: { $regex: search , $options: ’i’ } },
23 { description: { $regex: search , $options: ’i’ }

},
24];
25 checkAdmins = await Admin.find({ $or: filter })
26 .select(’-username -password -token ’)
27 .sort({ createdAt: -1 })
28 .skip(skip)
29 .limit(limit);
30 totalData = checkAdmins.length;
31 } else if (all) {
32 checkAdmins = await Admin.find()
33 .select(’-username -password -token ’)
34 .sort({ createdAt: -1 });
35 } else {
36 checkAdmins = await Admin.find()
37 .select(’-username -password -token ’)
38 .sort({ createdAt: -1 })
39 .skip(skip)
40 .limit(limit);
41 }
42

43 const result = {
44 admins: checkAdmins ,
45 pagination: {
46 page ,
47 limit ,
48 totalPages: Math.ceil(totalData / limit),
49 totalData ,
50 },
51 };
52

53 return NextResponse.json({ status: 200, message: ’admin
get successfully ’, data: result }, { status: 200 });

54 } catch (error) {
55 return NextResponse.json({ status: 500, message: ’Internal

Server Error ’ }, { status: 500 });

18
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

56 }
57 }

Kode 3.3: Kode untuk api/aboutUs

Methods

• GET : Mengambil semua data AboutUs, dengan fitur pencarian, pagination, dan fetch-all.

api/aboutUs/[id]

Endpoint ini digunakan untuk mengambil data AboutUs berdasarkan ID tertentu.

1 import { NextRequest , NextResponse } from "next/server";
2 import Admin from "@/common/schemas/dbSchema/admin";
3 import { connectToDatabase } from "@/lib/mongodb";
4

5 export async function GET(
6 _req: NextRequest ,
7 { params }: { params: Promise <{ id: string }> }
8) {
9 try {

10 await connectToDatabase();
11 const { id } = await params;
12 const checkAdmin = await Admin.findById(id)
13 .select(’-username -password -token ’);
14 if (!checkAdmin) {
15 return NextResponse.json({ status: 404, message: ’

Admin Not Found ’ }, { status: 404 });
16 }
17 return NextResponse.json({ status: 200, message: ’admin

get successfully ’, data: checkAdmin }, { status: 200 });
18 } catch (error) {
19 return NextResponse.json({ status: 500, message: ’Internal

Server Error ’ }, { status: 500 });
20 }
21 }

Kode 3.4: Kode untuk api/aboutUs/[id]

Methods

• GET : Mengambil satu data AboutUs berdasarkan ID.

19
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

Gambar 3.3. Tampilan antarmuka dashboard untuk endpoint AboutUs Sumber: Five
Elements Agency

A.3 Awards

api/awards/protected

Endpoint ini digunakan untuk mengambil semua data Awards atau menambahkan entri Awards baru

20
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

ke dalam database. Endpoint ini mendukung pencarian, pagination, dan unggah file gambar melalui
form-data.

1 import { NextRequest , NextResponse } from "next/server";
2 import Award from "@/common/schemas/dbSchema/award";
3 import { connectToDatabase } from "@/lib/mongodb";
4 import { uploadFile } from "@/lib/upload";
5 import { parseJson } from ’@/lib/parseJson ’;
6 import Admin from "@/common/schemas/dbSchema/admin";
7

8 export async function GET(req: NextRequest) {
9 try {

10 await connectToDatabase();
11 const query = req.nextUrl.searchParams;
12 const limit = parseInt(query.get("limit") as string) ||

10;
13 const page = parseInt(query.get("page") as string) || 1;
14 const search = query.get("search") as string || ’’;
15 const all = query.get("all") === ’true ’;
16 const skip = (page - 1) * limit;
17

18 let filter;
19 let checkAward;
20 let totalData = await Award.countDocuments();
21

22 if (search) {
23 filter = [
24 { name: { $regex: search , $options: ’i’ } },
25 { addedBy: { $regex: search , $options: ’i’ } },
26 { description: { $regex: search , $options: ’i’ }

},
27];
28 checkAward = await Award.find({ $or: filter })
29 .sort({ createdAt: -1 })
30 .skip(skip)
31 .limit(limit);
32 totalData = checkAward.length;
33 } else if (all) {
34 checkAward = await Award.find().sort({ createdAt: -1

});
35 } else {
36 checkAward = await Award.find()
37 .sort({ createdAt: -1 })
38 .skip(skip)
39 .limit(limit);
40 }
41

42 const result = {
43 Awards: checkAward ,
44 pagination: {
45 page ,
46 limit ,
47 totalPages: Math.ceil(totalData / limit),
48 totalData ,
49 },
50 };
51

52 return NextResponse.json({ status: 200, message: ’Award
get successfully ’, data: result }, { status: 200 });

53 } catch (error) {
54 return NextResponse.json({ status: 500, message: ’Internal

Server Error ’ }, { status: 500 });
55 }
56 }
57

58 export async function POST(req: NextRequest) {

21
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

59 try {
60 await connectToDatabase();
61 const userData = req.headers.get("x-user -data");
62 const { id } = JSON.parse(userData as any);
63 const formData = await req.formData();
64 const { name , description , image , isHidden } = await

parseJson(formData);
65

66 if (!name || !description || !image) {
67 return NextResponse.json({ status: 400, message: ’Bad

Request ’ }, { status: 400 });
68 }
69

70 const checkAward = await Award.findOne({ name });
71 if (checkAward) {
72 return NextResponse.json({ status: 409, message: ’

Award already exists ’ }, { status: 409 });
73 }
74

75 const admin = await Admin.findById({ _id: id }).select(’
fullName ’);

76 const imageUrl = await uploadFile(formData , ’award ’, ’
image ’);

77

78 const award = await Award.create({
79 name ,
80 description ,
81 addedBy: admin.fullName ,
82 image: imageUrl ,
83 isHidden ,
84 });
85

86 return NextResponse.json({ status: 201, message: ’Award
added successfully ’, data: award }, { status: 201 });

87 } catch (error) {
88 return NextResponse.json({ status: 500, message: ’Internal

Server Error ’ }, { status: 500 });
89 }
90 }

Kode 3.5: Kode untuk api/awards/protected

Methods

• GET : Mengambil semua data Awards dengan dukungan pencarian, pagination, dan fetch-all.

• POST : Menambahkan entri Awards baru. Wajib mengirimkan data name, description, dan
image dalam bentuk multipart/form-data.

api/awards/protected/[id]

Endpoint ini digunakan untuk mengambil, memperbarui, atau menghapus satu entri Awards
berdasarkan ID.

1 import { NextRequest , NextResponse } from "next/server";
2 import Award from "@/common/schemas/dbSchema/award";
3 import { connectToDatabase } from "@/lib/mongodb";
4 import bcryptjs from ’bcryptjs ’;
5 import {uploadFile , deleteFile } from "@/lib/upload";
6 import {parseJson} from ’@/lib/parseJson ’
7

8

9 export async function GET(
10 _req: NextRequest ,

22
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

11 {params} : {params : Promise <{ id : string}>}) {
12 try {
13 await connectToDatabase();
14 const {id} = await params
15 const checkAward = await Award.findById(id);
16 if (!checkAward) {
17 return NextResponse.json({ status: 404, message: ’

Award Not Found ’ }, { status: 404 });
18 }
19 return NextResponse.json({ status: 200, message: ’Award

get successfully ’, data: checkAward }, { status: 200 });
20 } catch (error) {
21 return NextResponse.json({ status: 500, message: ’Internal

Server Error ’ }, { status: 500 });
22 }
23 }
24

25 export async function PUT(
26 req: NextRequest ,
27 {params} : {params : Promise <{ id : string}>}) {
28 try {
29 await connectToDatabase();
30 const formData = await req.formData();
31 const {id} = await params
32 const checkAward = await Award.findById(id);
33 if (!checkAward) {
34 return NextResponse.json({ status: 404, message: ’

Award Not Found ’ }, { status: 404 });
35 }
36 const { name , description , isHidden , image } = await

parseJson(formData);
37 if (image) {
38 await deleteFile(checkAward.image , ’award ’);
39 const imageUrl = await uploadFile(formData , ’award ’, ’

image ’);
40 const award = await Award.findByIdAndUpdate(id, {name ,

description , isHidden , image : imageUrl }, { new: true });
41 return NextResponse.json({ status: 200, message: ’

Award updated successfully ’, data: award }, { status: 200 });
42

43 }
44 const award = await Award.findByIdAndUpdate(id, { name ,

description , isHidden }, { new: true });
45 return NextResponse.json({ status: 200, message: ’Award

updated successfully ’, data: award }, { status: 200 });
46 } catch (error) {
47 return NextResponse.json({ status: 500, message: ’Internal

Server Error ’ }, { status: 500 });
48 }
49 }
50

51 export async function DELETE(
52 _req: NextRequest ,
53 {params} : {params : Promise <{ id : string}>}) {
54 try {
55 await connectToDatabase();
56 const {id} = await params
57 const checkAward = await Award.findById(id);
58 if (!checkAward) {
59 return NextResponse.json({ status: 404, message: ’

Award Not Found ’ }, { status: 404 });
60 }
61 await deleteFile(checkAward.image , ’award ’);
62 await Award.findByIdAndDelete(id);
63 return NextResponse.json({ status: 200, message: ’Award

deleted successfully ’ }, { status: 200 });
64 } catch (error) {

23
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

65 return NextResponse.json({ status: 500, message: ’Internal
Server Error ’ }, { status: 500 });

66 }
67 }

Kode 3.6: Kode untuk api/awards/protected/[id]

Methods

• GET : Mengambil semua data Blog dengan dukungan search, pagination, dan fetch-all.

• POST : Menambahkan entri Blog baru. Wajib mengirimkan data title, content, dan image

dalam bentuk multipart/form-data.

api/blog/protected/[id]

Endpoint ini digunakan untuk mengambil, memperbarui, atau menghapus satu entri Blog
berdasarkan ID.

1 import { NextRequest , NextResponse } from "next/server";
2 import Blog from "@/common/schemas/dbSchema/blog";
3 import { connectToDatabase } from "@/lib/mongodb";
4 import { uploadFile } from "@/lib/upload";
5 import {parseJson} from ’@/lib/parseJson ’
6 import Admin from "@/common/schemas/dbSchema/admin";
7

8 export async function GET(req: NextRequest) {
9 try {

10 await connectToDatabase();
11 const query = req.nextUrl.searchParams;
12 const limit = parseInt(query.get("limit") as string) ||

10;
13 const page = parseInt(query.get("page") as string) || 1;
14 const search = query.get("search") as string || ’’;
15 const all = query.get("all") === ’true ’ ? true : false;
16 const skip = (page - 1) * limit;
17 let filter
18 let checkBlog;
19 let totalData = await Blog.countDocuments();
20 if (search) {
21 filter = [
22 { title: { $regex: search , $options: ’i’ } },
23 { addedBy: { $regex: search , $options: ’i’ } },
24 { description: { $regex: search , $options: ’i’ } },
25]
26 checkBlog = await Blog.find({
27 $or: filter
28 }).sort({ createdAt: -1 }).skip(skip).limit(limit);
29 totalData = checkBlog.length;
30 } else if (all) {
31 checkBlog = await Blog.find().sort({ createdAt: -1 });
32 } else {
33 checkBlog = await Blog.find().sort({ createdAt: -1 }).

skip(skip).limit(limit);
34 }
35 const result = {
36 Blogs: checkBlog ,
37 pagination: {
38 page: page ,
39 limit: limit ,
40 totalPages: Math.ceil(totalData / limit),
41 totalData: totalData
42 }
43 }

24
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

44 return NextResponse.json({ status: 200, message: ’Blog get
successfully ’, data: result }, { status: 200 });

45 } catch (error) {
46 return NextResponse.json({ status: 500, message: ’Internal

Server Error ’ }, { status: 500 });
47 }
48 }
49

50 export async function POST(req: NextRequest) {
51 try {
52 await connectToDatabase();
53 const userData = req.headers.get("x-user -data");
54 const { id } = JSON.parse(userData as any);
55 const formData = await req.formData();
56 const { title , link , publishedDate , description , image ,

isHidden } = await parseJson(formData);
57 if (!title || !link || !publishedDate || !description || !

image) return NextResponse.json({ status: 400, message: ’Bad
Request ’ }, { status: 400 });

58 const checkBlog = await Blog.findOne({ title: title });
59 if (checkBlog) {
60 return NextResponse.json({ status: 409, message: ’Blog

already exists ’ }, { status: 409 });
61 }
62 const admin = await Admin.findById({ _id: id }).select(’

fullName ’);
63 const imageUrl = await uploadFile(formData , ’blog ’, ’image

’);
64 const blog = await Blog.create({ title , link ,

publishedDate , description , addedBy : admin.fullName , image :
imageUrl , isHidden });

65 return NextResponse.json({ status: 201, message: ’Blog
added successfully ’, data: blog }, { status: 201 });

66 } catch (error) {
67 return NextResponse.json({ status: 500, message: ’Internal

Server Error ’ }, { status: 500 });
68 }
69 }

Kode 3.7: Kode untuk api/blog/protected

Methods

• GET : Mengambil semua data Blog dengan dukungan pencarian, pagination, dan fetch-all.

• POST : Menambahkan entri Blog baru. Wajib mengirimkan data title, content, dan image

dalam bentuk multipart/form-data.

api/blog/protected/[id]

Endpoint ini digunakan untuk mengambil, memperbarui, atau menghapus satu entri Blog
berdasarkan ID.

1 import { NextRequest , NextResponse } from "next/server";
2 import Blog from "@/common/schemas/dbSchema/blog";
3 import { connectToDatabase } from "@/lib/mongodb";
4 import bcryptjs from ’bcryptjs ’;
5 import {uploadFile , deleteFile } from "@/lib/upload";
6 import {parseJson} from ’@/lib/parseJson ’
7

8

9 export async function GET(
10 _req: NextRequest ,
11 {params} : {params : Promise <{ id : string}>}) {

25
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

12 try {
13 await connectToDatabase();
14 const {id} = await params
15 const checkBlog = await Blog.findById(id);
16 if (!checkBlog) {
17 return NextResponse.json({ status: 404, message: ’Blog

Not Found ’ }, { status: 404 });
18 }
19 return NextResponse.json({ status: 200, message: ’Blog get

successfully ’, data: checkBlog }, { status: 200 });
20 } catch (error) {
21 return NextResponse.json({ status: 500, message: ’Internal

Server Error ’ }, { status: 500 });
22 }
23 }
24

25 export async function PUT(
26 req: NextRequest ,
27 {params} : {params : Promise <{ id : string}>}) {
28 try {
29 await connectToDatabase();
30 const formData = await req.formData();
31 const {id} = await params
32 const checkBlog = await Blog.findById(id);
33 if (!checkBlog) {
34 return NextResponse.json({ status: 404, message: ’Blog

Not Found ’ }, { status: 404 });
35 }
36 const { title , link , publishedDate , description , isHidden ,

image } = await parseJson(formData);
37 if (image) {
38 await deleteFile(checkBlog.image , ’blog ’);
39 const imageUrl = await uploadFile(formData , ’blog ’, ’

image ’);
40 const blog = await Blog.findByIdAndUpdate(id, {title ,

link , publishedDate , description , isHidden , image : imageUrl },
{ new: true });

41 return NextResponse.json({ status: 200, message: ’Blog
updated successfully ’, data: blog }, { status: 200 });

42

43 }
44 const blog = await Blog.findByIdAndUpdate(id, { title ,

link , publishedDate , description , isHidden }, { new: true });
45 return NextResponse.json({ status: 200, message: ’Blog

updated successfully ’, data: blog }, { status: 200 });
46 } catch (error) {
47 return NextResponse.json({ status: 500, message: ’Internal

Server Error ’ }, { status: 500 });
48 }
49 }
50

51 export async function DELETE(
52 _req: NextRequest ,
53 {params} : {params : Promise <{ id : string}>}) {
54 try {
55 await connectToDatabase();
56 const {id} = await params
57 const checkBlog = await Blog.findById(id);
58 if (!checkBlog) {
59 return NextResponse.json({ status: 404, message: ’Blog

Not Found ’ }, { status: 404 });
60 }
61 await deleteFile(checkBlog.image , ’blog ’);
62 await Blog.findByIdAndDelete(id);
63 return NextResponse.json({ status: 200, message: ’Blog

deleted successfully ’ }, { status: 200 });
64 } catch (error) {

26
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

65 return NextResponse.json({ status: 500, message: ’Internal
Server Error ’ }, { status: 500 });

66 }
67 }

Kode 3.8: Kode untuk api/blog/protected/[id]

Methods

• GET : Mengambil satu entri Blog berdasarkan ID.

• PUT : Memperbarui entri Blog berdasarkan ID.

• DELETE : Menghapus entri Blog berdasarkan ID.

27
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

Gambar 3.4. Tampilan antarmuka dashboard untuk endpoint Blog Sumber: Five Elements
Agency

A.4 Client

api/client/protected

Endpoint ini digunakan untuk mengambil semua data Client atau menambahkan entri Client baru
ke dalam database. Endpoint ini mendukung pencarian, pagination, dan unggah file logo melalui

28
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

form-data.

1 import { NextRequest , NextResponse } from "next/server";
2 import Client from "@/common/schemas/dbSchema/client";
3 import { connectToDatabase } from "@/lib/mongodb";
4 import bcryptjs from ’bcryptjs ’;
5 import {uploadFile , deleteFile } from "@/lib/upload";
6 import {parseJson} from ’@/lib/parseJson ’
7

8

9 export async function GET(
10 _req: NextRequest ,
11 {params} : {params : Promise <{ id : string}>}) {
12 try {
13 await connectToDatabase();
14 const {id} = await params
15 const checkClient = await Client.findById(id);
16 if (!checkClient) {
17 return NextResponse.json({ status: 404, message: ’

Client Not Found ’ }, { status: 404 });
18 }
19 return NextResponse.json({ status: 200, message: ’Client

get successfully ’, data: checkClient }, { status: 200 });
20 } catch (error) {
21 return NextResponse.json({ status: 500, message: ’Internal

Server Error ’ }, { status: 500 });
22 }
23 }
24

25 export async function PUT(
26 req: NextRequest ,
27 {params} : {params : Promise <{ id : string}>}) {
28 try {
29 await connectToDatabase();
30 const formData = await req.formData();
31 const {id} = await params
32 const checkClient = await Client.findById(id);
33 if (!checkClient) {
34 return NextResponse.json({ status: 404, message: ’

Client Not Found ’ }, { status: 404 });
35 }
36 const { name , title , review , description , isHidden , image

} = await parseJson(formData);
37 if (image) {
38 await deleteFile(checkClient.image , ’client ’);
39 const imageUrl = await uploadFile(formData , ’client ’,

’image ’);
40 const client = await Client.findByIdAndUpdate(id, {

name , title , review , description , isHidden , image : imageUrl },
{ new: true });

41 return NextResponse.json({ status: 200, message: ’
Client updated successfully ’, data: client }, { status: 200 });

42

43 }
44 const client = await Client.findByIdAndUpdate(id, { name ,

title , review , description , isHidden }, { new: true });
45 return NextResponse.json({ status: 200, message: ’Client

updated successfully ’, data: client }, { status: 200 });
46 } catch (error) {
47 return NextResponse.json({ status: 500, message: ’Internal

Server Error ’ }, { status: 500 });
48 }
49 }
50

51 export async function DELETE(
52 _req: NextRequest ,
53 {params} : {params : Promise <{ id : string}>}) {

29
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

54 try {
55 await connectToDatabase();
56 const {id} = await params
57 const checkClient = await Client.findById(id);
58 if (!checkClient) {
59 return NextResponse.json({ status: 404, message: ’

Client Not Found ’ }, { status: 404 });
60 }
61 await deleteFile(checkClient.image , ’client ’);
62 await Client.findByIdAndDelete(id);
63 return NextResponse.json({ status: 200, message: ’Client

deleted successfully ’ }, { status: 200 });
64 } catch (error) {
65 return NextResponse.json({ status: 500, message: ’Internal

Server Error ’ }, { status: 500 });
66 }
67 }

Kode 3.9: Kode untuk api/client/protected

Methods

• GET : Mengambil semua data Client dengan dukungan pencarian, pagination, dan fetch-all.

• POST : Menambahkan entri Client baru. Wajib mengirimkan data name dan image dalam
bentuk multipart/form-data.

api/client/protected/[id]

Endpoint ini digunakan untuk mengambil, memperbarui, atau menghapus satu entri Client
berdasarkan ID.

1 import { NextRequest , NextResponse } from "next/server";
2 import Client from "@/common/schemas/dbSchema/client";
3 import { connectToDatabase } from "@/lib/mongodb";
4 import bcryptjs from ’bcryptjs ’;
5 import {uploadFile , deleteFile } from "@/lib/upload";
6 import {parseJson} from ’@/lib/parseJson ’
7

8

9 export async function GET(
10 _req: NextRequest ,
11 {params} : {params : Promise <{ id : string}>}) {
12 try {
13 await connectToDatabase();
14 const {id} = await params
15 const checkClient = await Client.findById(id);
16 if (!checkClient) {
17 return NextResponse.json({ status: 404, message: ’

Client Not Found ’ }, { status: 404 });
18 }
19 return NextResponse.json({ status: 200, message: ’Client

get successfully ’, data: checkClient }, { status: 200 });
20 } catch (error) {
21 return NextResponse.json({ status: 500, message: ’Internal

Server Error ’ }, { status: 500 });
22 }
23 }
24

25 export async function PUT(
26 req: NextRequest ,
27 {params} : {params : Promise <{ id : string}>}) {
28 try {
29 await connectToDatabase();

30
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

30 const formData = await req.formData();
31 const {id} = await params
32 const checkClient = await Client.findById(id);
33 if (!checkClient) {
34 return NextResponse.json({ status: 404, message: ’

Client Not Found ’ }, { status: 404 });
35 }
36 const { name , title , review , description , isHidden , image

} = await parseJson(formData);
37 if (image) {
38 await deleteFile(checkClient.image , ’client ’);
39 const imageUrl = await uploadFile(formData , ’client ’,

’image ’);
40 const client = await Client.findByIdAndUpdate(id, {

name , title , review , description , isHidden , image : imageUrl },
{ new: true });

41 return NextResponse.json({ status: 200, message: ’
Client updated successfully ’, data: client }, { status: 200 });

42

43 }
44 const client = await Client.findByIdAndUpdate(id, { name ,

title , review , description , isHidden }, { new: true });
45 return NextResponse.json({ status: 200, message: ’Client

updated successfully ’, data: client }, { status: 200 });
46 } catch (error) {
47 return NextResponse.json({ status: 500, message: ’Internal

Server Error ’ }, { status: 500 });
48 }
49 }
50

51 export async function DELETE(
52 _req: NextRequest ,
53 {params} : {params : Promise <{ id : string}>}) {
54 try {
55 await connectToDatabase();
56 const {id} = await params
57 const checkClient = await Client.findById(id);
58 if (!checkClient) {
59 return NextResponse.json({ status: 404, message: ’

Client Not Found ’ }, { status: 404 });
60 }
61 await deleteFile(checkClient.image , ’client ’);
62 await Client.findByIdAndDelete(id);
63 return NextResponse.json({ status: 200, message: ’Client

deleted successfully ’ }, { status: 200 });
64 } catch (error) {
65 return NextResponse.json({ status: 500, message: ’Internal

Server Error ’ }, { status: 500 });
66 }
67 }

Kode 3.10: Kode untuk api/client/protected/[id]

Methods

• GET : Mengambil satu entri Client berdasarkan ID.

• PUT : Memperbarui entri Client berdasarkan ID.

• DELETE : Menghapus entri Client berdasarkan ID.

31
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

Gambar 3.5. Tampilan antarmuka dashboard untuk endpoint Client Sumber: Five
Elements Agency

32
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

A.5 Package

api/packages/protected

Endpoint ini digunakan untuk mengambil semua data Package atau menambahkan entri Package
baru ke dalam database. Endpoint ini mendukung pencarian, pagination, dan unggah file melalui
form-data.

1 import { NextRequest , NextResponse } from "next/server";
2 import Package from "@/common/schemas/dbSchema/packages";
3 import { connectToDatabase } from "@/lib/mongodb";
4 import { uploadFile } from "@/lib/upload";
5 import {parseJson} from ’@/lib/parseJson ’
6 import Admin from "@/common/schemas/dbSchema/admin";
7

8 export async function GET(req: NextRequest) {
9 try {

10 await connectToDatabase();
11 const query = req.nextUrl.searchParams;
12 const limit = parseInt(query.get("limit") as string) ||

10;
13 const page = parseInt(query.get("page") as string) || 1;
14 const search = query.get("search") as string || ’’;
15 const all = query.get("all") === ’true ’ ? true : false;
16 const skip = (page - 1) * limit;
17 let filter
18 let checkPackage;
19 let totalData = await Package.countDocuments();
20 if (search) {
21 filter = [
22 { name: { $regex: search , $options: ’i’ } },
23 { addedBy: { $regex: search , $options: ’i’ } },
24 { description: { $regex: search , $options: ’i’ } },
25]
26 checkPackage = await Package.find({
27 $or: filter
28 }).sort({ createdAt: -1 }).skip(skip).limit(limit);
29 totalData = checkPackage.length;
30 } else if (all) {
31 checkPackage = await Package.find().sort({ createdAt:

-1 });
32 } else {
33 checkPackage = await Package.find().sort({ createdAt:

-1 }).skip(skip).limit(limit);
34 }
35 const result = {
36 Packages: checkPackage ,
37 pagination: {
38 page: page ,
39 limit: limit ,
40 totalPages: Math.ceil(totalData / limit),
41 totalData: totalData
42 }
43 }
44 return NextResponse.json({ status: 200, message: ’Package

get successfully ’, data: result }, { status: 200 });
45 } catch (error) {
46 return NextResponse.json({ status: 500, message: ’Internal

Server Error ’ }, { status: 500 });
47 }
48 }
49

50 export async function POST(req: NextRequest) {
51 try {
52 await connectToDatabase();

33
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

53 const userData = req.headers.get("x-user -data");
54 const { id } = JSON.parse(userData as any);
55 const formData = await req.formData();
56 const { name , description , summary , isHidden , banner ,

graphic } = await parseJson(formData);
57 if (!name || !description || !summary || !banner || !

graphic) return NextResponse.json({ status: 400, message: ’Bad
Request ’ }, { status: 400 });

58 const checkPackage = await Package.findOne({ name: name })
;

59 if (checkPackage) {
60 return NextResponse.json({ status: 409, message: ’

Package already exists ’ }, { status: 409 });
61 }
62 const admin = await Admin.findById({ _id: id }).select(’

fullName ’);
63 const graphicUrl = await uploadFile(formData , ’package ’, ’

graphic ’);
64 const bannerUrl = await uploadFile(formData , ’package ’, ’

banner ’);
65 const packages = await Package.create({ name , summary ,

description , addedBy : admin.fullName , banner : bannerUrl ,
graphic : graphicUrl , isHidden });

66 return NextResponse.json({ status: 201, message: ’Package
added successfully ’, data: packages }, { status: 201 });

67 } catch (error) {
68 return NextResponse.json({ status: 500, message: ’Internal

Server Error ’ }, { status: 500 });
69 }
70 }

Kode 3.11: Kode untuk api/packages/protected

Methods

• GET : Mengambil semua data Package dengan dukungan pencarian, pagination, dan fetch-all.

• POST : Menambahkan entri Package baru. Wajib mengirimkan data name, price, dan
features dalam bentuk multipart/form-data.

api/packages/protected/[id]

Endpoint ini digunakan untuk mengambil, memperbarui, atau menghapus satu entri Package
berdasarkan ID.

1 import { NextRequest , NextResponse } from "next/server";
2 import Package from "@/common/schemas/dbSchema/packages";
3 import { connectToDatabase } from "@/lib/mongodb";
4 import bcryptjs from ’bcryptjs ’;
5 import {uploadFile , deleteFile } from "@/lib/upload";
6 import {parseJson} from ’@/lib/parseJson ’
7

8

9 export async function GET(
10 _req: NextRequest ,
11 {params} : {params : Promise <{ id : string}>}) {
12 try {
13 await connectToDatabase();
14 const {id} = await params
15 const checkPackage = await Package.findById(id);
16 if (!checkPackage) {
17 return NextResponse.json({ status: 404, message: ’

Package Not Found ’ }, { status: 404 });
18 }

34
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

19 return NextResponse.json({ status: 200, message: ’Package
get successfully ’, data: checkPackage}, { status: 200 });

20 } catch (error) {
21 return NextResponse.json({ status: 500, message: ’Internal

Server Error ’ }, { status: 500 });
22 }
23 }
24

25 export async function PUT(
26 req: NextRequest ,
27 {params} : {params : Promise <{ id : string}>}) {
28 try {
29 await connectToDatabase();
30 const formData = await req.formData();
31 const {id} = await params
32 const checkPackage = await Package.findById(id);
33 if (!checkPackage) {
34 return NextResponse.json({ status: 404, message: ’

Package Not Found ’ }, { status: 404 });
35 }
36 const { name , summary , description , isHidden , banner ,

graphic } = await parseJson(formData);
37 let bannerUrl;
38 let graphicUrl;
39 if (banner){
40 await deleteFile(checkPackage.banner , ’package ’);
41 bannerUrl = await uploadFile(formData , ’package ’, ’

banner ’);
42 }
43 if (graphic){
44 await deleteFile(checkPackage.graphic , ’package ’);
45 graphicUrl = await uploadFile(formData , ’package ’, ’

graphic ’);
46 }
47 const packages = await Package.findByIdAndUpdate(id, {

name , summary , description , isHidden , banner : bannerUrl ,
graphic : graphicUrl }, { new: true });

48 return NextResponse.json({ status: 200, message: ’Package
updated successfully ’, data: packages }, { status: 200 });

49 } catch (error) {
50 return NextResponse.json({ status: 500, message: ’Internal

Server Error ’ }, { status: 500 });
51 }
52 }
53

54 export async function DELETE(
55 _req: NextRequest ,
56 {params} : {params : Promise <{ id : string}>}) {
57 try {
58 await connectToDatabase();
59 const {id} = await params
60 const checkPackage = await Package.findById(id);
61 if (!checkPackage) {
62 return NextResponse.json({ status: 404, message: ’

Package Not Found ’ }, { status: 404 });
63 }
64 await deleteFile(checkPackage.graphic , ’package ’);
65 await deleteFile(checkPackage.banner , ’package ’);
66 await Package.findByIdAndDelete(id);
67 return NextResponse.json({ status: 200, message: ’Package

deleted successfully ’ }, { status: 200 });
68 } catch (error) {
69 return NextResponse.json({ status: 500, message: ’Internal

Server Error ’ }, { status: 500 });
70 }
71 }

35
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

Kode 3.12: Kode untuk api/packages/protected/[id]

Methods

• GET : Mengambil satu entri Package berdasarkan ID.

• PUT : Memperbarui entri Package berdasarkan ID.

• DELETE : Menghapus entri Package berdasarkan ID.

36
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

Gambar 3.6. Tampilan antarmuka dashboard untuk endpoint Package Sumber: Five
Elements Agency

37
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

A.6 Partner

api/partners/protected

Endpoint ini digunakan untuk mengambil semua data Partner atau menambahkan entri Partner baru
ke dalam database. Endpoint ini mendukung pencarian, pagination, dan unggah file logo melalui
form-data.

1 import { NextRequest , NextResponse } from "next/server";
2 import Partner from "@/common/schemas/dbSchema/partner";
3 import { connectToDatabase } from "@/lib/mongodb";
4 import { uploadFile } from "@/lib/upload";
5 import {parseJson} from ’@/lib/parseJson ’
6 import Admin from "@/common/schemas/dbSchema/admin";
7

8 export async function GET(req: NextRequest) {
9 try {

10 await connectToDatabase();
11 const query = req.nextUrl.searchParams;
12 const limit = parseInt(query.get("limit") as string) ||

10;
13 const page = parseInt(query.get("page") as string) || 1;
14 const search = query.get("search") as string || ’’;
15 const all = query.get("all") === ’true ’ ? true : false;
16 const skip = (page - 1) * limit;
17 let filter
18 let checkPartner;
19 let totalData = await Partner.countDocuments();
20 if (search) {
21 filter = [
22 { name: { $regex: search , $options: ’i’ } },
23 { addedBy: { $regex: search , $options: ’i’ } },
24 { description: { $regex: search , $options: ’i’ } },
25]
26 checkPartner = await Partner.find({
27 $or: filter
28 }).sort({ createdAt: -1 }).skip(skip).limit(limit);
29 totalData = checkPartner.length;
30 } else if (all) {
31 checkPartner = await Partner.find().sort({ createdAt:

-1 });
32 } else {
33 checkPartner = await Partner.find().sort({ createdAt:

-1 }).skip(skip).limit(limit);
34 }
35 const result = {
36 Partners: checkPartner ,
37 pagination: {
38 page: page ,
39 limit: limit ,
40 totalPages: Math.ceil(totalData / limit),
41 totalData: totalData
42 }
43 }
44 return NextResponse.json({ status: 200, message: ’Partner

get successfully ’, data: result }, { status: 200 });
45 } catch (error) {
46 return NextResponse.json({ status: 500, message: ’Internal

Server Error ’ }, { status: 500 });
47 }
48 }
49

50 export async function POST(req: NextRequest) {
51 try {
52 await connectToDatabase();

38
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

53 const userData = req.headers.get("x-user -data");
54 const { id } = JSON.parse(userData as any);
55 const formData = await req.formData();
56 const { name , description , image , isHidden } = await

parseJson(formData);
57 if (!name || !description || !image) return NextResponse.

json({ status: 400, message: ’Bad Request ’ }, { status: 400 });
58 const checkPartner = await Partner.findOne({ name: name })

;
59 if (checkPartner) {
60 return NextResponse.json({ status: 409, message: ’

Partner already exists ’ }, { status: 409 });
61 }
62 const admin = await Admin.findById({ _id: id }).select(’

fullName ’);
63 const imageUrl = await uploadFile(formData , ’partner ’, ’

image ’);
64 const partner = await Partner.create({ name , description ,

addedBy : admin.fullName , image : imageUrl , isHidden });
65 return NextResponse.json({ status: 201, message: ’Partner

added successfully ’, data: partner }, { status: 201 });
66 } catch (error) {
67 return NextResponse.json({ status: 500, message: ’Internal

Server Error ’ }, { status: 500 });
68 }
69 }

Kode 3.13: Kode untuk api/partners/protected

Methods

• GET : Mengambil semua data Partner dengan dukungan pencarian, pagination, dan fetch-all.

• POST : Menambahkan entri Partner baru. Wajib mengirimkan data name dan image (logo)
dalam format multipart/form-data.

api/partners/protected/[id]

Endpoint ini digunakan untuk mengambil, memperbarui, atau menghapus satu entri Partner
berdasarkan ID.

1 import { NextRequest , NextResponse } from "next/server";
2 import Partner from "@/common/schemas/dbSchema/partner";
3 import { connectToDatabase } from "@/lib/mongodb";
4 import bcryptjs from ’bcryptjs ’;
5 import {uploadFile , deleteFile } from "@/lib/upload";
6 import {parseJson} from ’@/lib/parseJson ’
7

8

9 export async function GET(
10 _req: NextRequest ,
11 {params} : {params : Promise <{ id : string}>}) {
12 try {
13 await connectToDatabase();
14 const {id} = await params
15 const checkPartner = await Partner.findById(id);
16 if (!checkPartner) {
17 return NextResponse.json({ status: 404, message: ’

Partner Not Found ’ }, { status: 404 });
18 }
19 return NextResponse.json({ status: 200, message: ’Partner

get successfully ’, data: checkPartner }, { status: 200 });
20 } catch (error) {

39
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

21 return NextResponse.json({ status: 500, message: ’Internal
Server Error ’ }, { status: 500 });

22 }
23 }
24

25 export async function PUT(
26 req: NextRequest ,
27 {params} : {params : Promise <{ id : string}>}) {
28 try {
29 await connectToDatabase();
30 const formData = await req.formData();
31 const {id} = await params
32 const checkPartner = await Partner.findById(id);
33 if (!checkPartner) {
34 return NextResponse.json({ status: 404, message: ’

Partner Not Found ’ }, { status: 404 });
35 }
36 const { name , description , isHidden , image } = await

parseJson(formData);
37 if (image) {
38 await deleteFile(checkPartner.image , ’partner ’);
39 const imageUrl = await uploadFile(formData , ’partner ’,

’image ’);
40 const partner = await Partner.findByIdAndUpdate(id, {

name , description , isHidden , image : imageUrl }, { new: true })
;

41 return NextResponse.json({ status: 200, message: ’
Partner updated successfully ’, data: partner }, { status: 200
});

42

43 }
44 const partner = await Partner.findByIdAndUpdate(id, { name

, description , isHidden }, { new: true });
45 return NextResponse.json({ status: 200, message: ’Partner

updated successfully ’, data: partner }, { status: 200 });
46 } catch (error) {
47 return NextResponse.json({ status: 500, message: ’Internal

Server Error ’ }, { status: 500 });
48 }
49 }
50

51 export async function DELETE(
52 _req: NextRequest ,
53 {params} : {params : Promise <{ id : string}>}) {
54 try {
55 await connectToDatabase();
56 const {id} = await params
57 const checkPartner = await Partner.findById(id);
58 if (!checkPartner) {
59 return NextResponse.json({ status: 404, message: ’

Partner Not Found ’ }, { status: 404 });
60 }
61 await deleteFile(checkPartner.image , ’partner ’);
62 await Partner.findByIdAndDelete(id);
63 return NextResponse.json({ status: 200, message: ’Partner

deleted successfully ’ }, { status: 200 });
64 } catch (error) {
65 return NextResponse.json({ status: 500, message: ’Internal

Server Error ’ }, { status: 500 });
66 }
67 }

Kode 3.14: Kode untuk api/partners/protected/[id]

Methods

40
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

• GET : Mengambil satu entri Partner berdasarkan ID.

• PUT : Memperbarui entri Partner berdasarkan ID.

• DELETE : Menghapus entri Partner berdasarkan ID.

41
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

Gambar 3.7. Tampilan antarmuka dashboard untuk endpoint Partner Sumber: Five
Elements Agency

42
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

A.7 Project

api/projects/protected

Endpoint ini digunakan untuk mengambil semua data Project atau menambahkan entri Project baru
ke dalam database. Endpoint ini mendukung pencarian, pagination, dan unggah file gambar melalui
form-data.

1 import { NextRequest , NextResponse } from "next/server";
2 import Project from "@/common/schemas/dbSchema/project.ts";
3 import { connectToDatabase } from "@/lib/mongodb";
4 import { uploadFile } from "@/lib/upload";
5 import {parseJson} from ’@/lib/parseJson ’
6 import Admin from "@/common/schemas/dbSchema/admin";
7

8 export async function GET(req: NextRequest) {
9 try {

10 await connectToDatabase();
11 const query = req.nextUrl.searchParams;
12 const limit = parseInt(query.get("limit") as string) ||

10;
13 const page = parseInt(query.get("page") as string) || 1;
14 const search = query.get("search") as string || ’’;
15 const all = query.get("all") === ’true ’ ? true : false;
16 const skip = (page - 1) * limit;
17 let filter
18 let checkProject;
19 let totalData = await Project.countDocuments();
20 if (search) {
21 filter = [
22 { name: { $regex: search , $options: ’i’ } },
23 { addedBy: { $regex: search , $options: ’i’ } },
24 { description: { $regex: search , $options: ’i’ } },
25]
26 checkProject = await Project.find({
27 $or: filter
28 }).sort({ createdAt: -1 }).skip(skip).limit(limit);
29 totalData = checkProject.length;
30 } else if (all) {
31 checkProject = await Project.find().sort({ createdAt:

-1 });
32 } else {
33 checkProject = await Project.find().sort({ createdAt:

-1 }).skip(skip).limit(limit);
34 }
35 const result = {
36 Projects: checkProject ,
37 pagination: {
38 page: page ,
39 limit: limit ,
40 totalPages: Math.ceil(totalData / limit),
41 totalData: totalData
42 }
43 }
44 return NextResponse.json({ status: 200, message: ’Project

get successfully ’, data: result }, { status: 200 });
45 } catch (error) {
46 return NextResponse.json({ status: 500, message: ’Internal

Server Error ’ }, { status: 500 });
47 }
48 }
49

50 export async function POST(req: NextRequest) {
51 try {
52 await connectToDatabase();

43
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

53 const userData = req.headers.get("x-user -data");
54 const { id } = JSON.parse(userData as any);
55 const formData = await req.formData();
56 const { name , description , image , isHidden } = await

parseJson(formData);
57 if (!name || !description || !image) return NextResponse.

json({ status: 400, message: ’Bad Request ’ }, { status: 400 });
58 const checkProject = await Project.findOne({ name: name })

;
59 if (checkProject) {
60 return NextResponse.json({ status: 409, message: ’

Project already exists ’ }, { status: 409 });
61 }
62 const admin = await Admin.findById({ _id: id }).select(’

fullName ’);
63 const imageUrl = await uploadFile(formData , ’projecct ’, ’

image ’);
64 const project = await Project.create({ name , description ,

addedBy : admin.fullName , image : imageUrl , isHidden });
65 return NextResponse.json({ status: 201, message: ’Project

added successfully ’, data: project }, { status: 201 });
66 } catch (error) {
67 return NextResponse.json({ status: 500, message: ’Internal

Server Error ’ }, { status: 500 });
68 }
69 }

Kode 3.15: Kode untuk api/projects/protected

Methods

• GET : Mengambil semua data Project dengan dukungan pencarian, pagination, dan fetch-all.

• POST : Menambahkan entri Project baru. Wajib mengirimkan data name, description, dan
image dalam format multipart/form-data.

api/projects/protected/[id]

Endpoint ini digunakan untuk mengambil, memperbarui, atau menghapus satu entri Project
berdasarkan ID.

1 import { NextRequest , NextResponse } from "next/server";
2 import Project from "@/common/schemas/dbSchema/project.ts";
3 import { connectToDatabase } from "@/lib/mongodb";
4 import bcryptjs from ’bcryptjs ’;
5 import {uploadFile , deleteFile } from "@/lib/upload";
6 import {parseJson} from ’@/lib/parseJson ’
7

8

9 export async function GET(
10 _req: NextRequest ,
11 {params} : {params : Promise <{ id : string}>}) {
12 try {
13 await connectToDatabase();
14 const {id} = await params
15 const checkProject = await Project.findById(id);
16 if (!checkProject) {
17 return NextResponse.json({ status: 404, message: ’

Project Not Found ’ }, { status: 404 });
18 }
19 return NextResponse.json({ status: 200, message: ’Project

get successfully ’, data: checkProject }, { status: 200 });
20 } catch (error) {

44
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

21 return NextResponse.json({ status: 500, message: ’Internal
Server Error ’ }, { status: 500 });

22 }
23 }
24

25 export async function PUT(
26 req: NextRequest ,
27 {params} : {params : Promise <{ id : string}>}) {
28 try {
29 await connectToDatabase();
30 const formData = await req.formData();
31 const {id} = await params
32 const checkProject = await Project.findById(id);
33 if (!checkProject) {
34 return NextResponse.json({ status: 404, message: ’

Project Not Found ’ }, { status: 404 });
35 }
36 const { name , description , isHidden , image } = await

parseJson(formData);
37 if (image) {
38 await deleteFile(checkProject.image , ’projecct ’);
39 const imageUrl = await uploadFile(formData , ’projecct

’, ’image ’);
40 const project = await Project.findByIdAndUpdate(id, {

name , description , isHidden , image : imageUrl }, { new: true })
;

41 return NextResponse.json({ status: 200, message: ’
Project updated successfully ’, data: project }, { status: 200
});

42

43 }
44 const project = await Project.findByIdAndUpdate(id, { name

, description , isHidden }, { new: true });
45 return NextResponse.json({ status: 200, message: ’project

updated successfully ’, data: project }, { status: 200 });
46 } catch (error) {
47 return NextResponse.json({ status: 500, message: ’Internal

Server Error ’ }, { status: 500 });
48 }
49 }
50

51 export async function DELETE(
52 _req: NextRequest ,
53 {params} : {params : Promise <{ id : string}>}) {
54 try {
55 await connectToDatabase();
56 const {id} = await params
57 const checkProject = await Project.findById(id);
58 if (!checkProject) {
59 return NextResponse.json({ status: 404, message: ’

Project Not Found ’ }, { status: 404 });
60 }
61 await deleteFile(checkProject.image , ’projecct ’);
62 await Project.findByIdAndDelete(id);
63 return NextResponse.json({ status: 200, message: ’project

deleted successfully ’ }, { status: 200 });
64 } catch (error) {
65 return NextResponse.json({ status: 500, message: ’Internal

Server Error ’ }, { status: 500 });
66 }
67 }

Kode 3.16: Kode untuk api/projects/protected/[id]

Methods

45
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

• GET : Mengambil satu entri Project berdasarkan ID.

• PUT : Memperbarui entri Project berdasarkan ID.

• DELETE : Menghapus entri Project berdasarkan ID.

46
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

Gambar 3.8. Tampilan antarmuka dashboard untuk endpoint Project Sumber: Five
Elements Agency

47
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

A.8 Contact Us

api/contactUs/create

Menerima form isian dari halaman Contact Us dan menyimpannya ke Inquiry. Jika disetujui, email
akan ditambahkan ke Subscriber.

1 import { NextRequest , NextResponse } from "next/server";
2 import Inquiry from "@/common/schemas/dbSchema/inquiry";
3 import { connectToDatabase } from "@/lib/mongodb";
4 import { uploadFile } from "@/lib/upload";
5 import { parseJson } from ’@/lib/parseJson ’;
6 import Subscriber from "@/common/schemas/dbSchema/subscribers";
7

8 export async function POST(req: NextRequest) {
9 try {

10 await connectToDatabase();
11 const formData = await req.formData();
12 const {
13 email , name , telephone ,
14 message , service , isOptInForSubscription
15 } = await parseJson(formData);
16

17 if (!email || !name || !telephone || !message || !service)
18 return NextResponse.json({ status: 400, message: ’Bad

Request ’ }, { status: 400 });
19

20 const checkSubscriber = await Subscriber.findOne({ email:
email });

21 if (checkSubscriber) {
22 if (isOptInForSubscription) {
23 await Subscriber.create({ email: email });
24 }
25 }
26

27 const inquiry = await Inquiry.create({ email , name ,
telephone , message , service });

28 return NextResponse.json({
29 status: 201,
30 message: ’Inquiry added successfully ’,
31 data: inquiry
32 }, { status: 201 });
33

34 } catch (error) {
35 return NextResponse.json({
36 status: 500,
37 message: ’Internal Server Error ’
38 }, { status: 500 });
39 }
40 }

Kode 3.17: Kode untuk api/contactUs/create

Methods

• POST : Kirim data inquiry. Bisa juga opt-in ke langganan email.

api/contactUs/protected

Ambil data inquiry dari database, bisa pakai pencarian, pagination, atau ambil semua.

1 import { NextRequest , NextResponse } from "next/server";
2 import Inquiry from "@/common/schemas/dbSchema/inquiry";
3 import { connectToDatabase } from "@/lib/mongodb";

48
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

4

5 export async function GET(req: NextRequest) {
6 try {
7 await connectToDatabase();
8 const query = req.nextUrl.searchParams;
9 const limit = parseInt(query.get("limit") as string) ||

10;
10 const page = parseInt(query.get("page") as string) || 1;
11 const search = query.get("search") as string || ’’;
12 const all = query.get("all") === ’true ’;
13

14 const skip = (page - 1) * limit;
15 let checkInquiry;
16 let totalData = await Inquiry.countDocuments();
17

18 if (search) {
19 const filter = [
20 { name: { $regex: search , $options: ’i’ } },
21 { message: { $regex: search , $options: ’i’ } },
22 { email: { $regex: search , $options: ’i’ } },
23 { service: { $regex: search , $options: ’i’ } },
24];
25 checkInquiry = await Inquiry.find({ $or: filter })
26 .sort({ createdAt: -1 }).skip(skip).limit(limit);
27 totalData = checkInquiry.length;
28 } else if (all) {
29 checkInquiry = await Inquiry.find().sort({ createdAt:

-1 });
30 } else {
31 checkInquiry = await Inquiry.find().sort({ createdAt:

-1 }).skip(skip).limit(limit);
32 }
33

34 const result = {
35 Inquirys: checkInquiry ,
36 pagination: {
37 page: page ,
38 limit: limit ,
39 totalPages: Math.ceil(totalData / limit),
40 totalData: totalData
41 }
42 };
43

44 return NextResponse.json({
45 status: 200,
46 message: ’Inquiry get successfully ’,
47 data: result
48 }, { status: 200 });
49

50 } catch (error) {
51 return NextResponse.json({
52 status: 500,
53 message: ’Internal Server Error ’
54 }, { status: 500 });
55 }
56 }

Kode 3.18: Kode untuk api/contactUs/protected

Methods

• GET : Ambil data inquiry, bisa pakai search, pagination, atau ambil semua.

api/contactUs/protected/[id]

49
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

Ambil, edit, atau hapus data inquiry berdasarkan ID.

1 import { NextRequest , NextResponse } from "next/server";
2 import Inquiry from "@/common/schemas/dbSchema/inquiry";
3 import { connectToDatabase } from "@/lib/mongodb";
4 import { parseJson } from ’@/lib/parseJson ’;
5

6 export async function GET(_req , {params}) {
7 await connectToDatabase();
8 const {id} = await params;
9 const checkInquiry = await Inquiry.findById(id);

10 if (!checkInquiry) {
11 return NextResponse.json({ status: 404, message: ’Inquiry

Not Found ’ }, { status: 404 });
12 }
13 return NextResponse.json({ status: 200, message: ’Inquiry get

successfully ’, data: checkInquiry }, { status: 200 });
14 }
15

16 export async function PUT(req, {params}) {
17 await connectToDatabase();
18 const formData = await req.formData();
19 const {id} = await params;
20 const checkInquiry = await Inquiry.findById(id);
21 if (!checkInquiry) {
22 return NextResponse.json({ status: 404, message: ’Inquiry

Not Found ’ }, { status: 404 });
23 }
24 const {email , name , telephone , message , service} = await

parseJson(formData);
25 const inquiry = await Inquiry.findByIdAndUpdate(id, {email ,

name , telephone , message , service}, { new: true });
26 return NextResponse.json({ status: 200, message: ’Inquiry

updated successfully ’, data: inquiry }, { status: 200 });
27 }
28

29 export async function DELETE(_req , {params}) {
30 await connectToDatabase();
31 const {id} = await params;
32 const checkInquiry = await Inquiry.findById(id);
33 if (!checkInquiry) {
34 return NextResponse.json({ status: 404, message: ’Inquiry

Not Found ’ }, { status: 404 });
35 }
36 await Inquiry.findByIdAndDelete(id);
37 return NextResponse.json({ status: 200, message: ’Inquiry

deleted successfully ’ }, { status: 200 });
38 }

Kode 3.19: Kode untuk api/contactUs/protected/[id]

Methods

• GET : Ambil inquiry berdasarkan ID.

• PUT : Update inquiry dari form.

• DELETE : Hapus inquiry dari database.

50
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

Gambar 3.9. Tampilan dashboard Contact Us Sumber: Five Elements Agency

A.9 Subscription

api/subscription/create

Endpoint ini digunakan untuk menambahkan subscriber baru ke dalam database berdasarkan alamat
email. Endpoint ini menerima data melalui multipart/form-data dan akan menolak permintaan
jika email sudah terdaftar sebelumnya.

1 export async function POST(req: NextRequest) {
2 await connectToDatabase();
3 const formData = await req.formData();
4 const { email } = await parseJson(formData);
5 if (!email) return error 400;
6 const check = await Subscriber.findOne({ email });
7 if (check) return error 409;
8 const subscriber = await Subscriber.create({ email });

51
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

9 return success 201 with subscriber;
10 }

Kode 3.20: Kode untuk api/subscription/create

Methods

• POST : Mendaftarkan email baru ke daftar subscriber.

api/subscription/protected

Endpoint ini digunakan untuk mengambil daftar subscriber dari database. Mendukung pagination,
pencarian berdasarkan email, dan opsi untuk mengambil semua data sekaligus.

1 export async function GET(req: NextRequest) {
2 await connectToDatabase();
3 const { limit , page , search , all } = parseParams(req);
4 const skip = (page - 1) * limit;
5 let result;
6 if (search) {
7 result = search by email regex;
8 } else if (all) {
9 result = find all subscribers;

10 } else {
11 result = paginated find;
12 }
13 return success 200 with result;
14 }

Kode 3.21: Kode untuk api/subscription/protected

Methods

• GET : Mengambil daftar subscriber dengan dukungan pencarian dan pagination.

api/subscription/protected/[id]

Endpoint ini menangani operasi untuk mendapatkan, memperbarui, atau menghapus subscriber
tertentu berdasarkan ID. Semua operasi akan menolak jika subscriber dengan ID tersebut tidak
ditemukan.

1 export async function GET(_, { params }) {
2 await connectToDatabase();
3 const { id } = await params;
4 const subscriber = await Subscriber.findById(id);
5 if (!subscriber) return error 404;
6 return success 200 with subscriber;
7 }
8

9 export async function PUT(req, { params }) {
10 await connectToDatabase();
11 const formData = await req.formData();
12 const { id } = await params;
13 const subscriber = await Subscriber.findById(id);
14 if (!subscriber) return error 404;
15 const { email } = await parseJson(formData);
16 const updated = await Subscriber.findByIdAndUpdate(id, { email

}, { new: true });
17 return success 200 with updated;
18 }
19

20 export async function DELETE(_, { params }) {

52
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

21 await connectToDatabase();
22 const { id } = await params;
23 const subscriber = await Subscriber.findById(id);
24 if (!subscriber) return error 404;
25 await Subscriber.findByIdAndDelete(id);
26 return success 200;
27 }

Kode 3.22: Kode untuk api/subscription/protected/[id]

Methods

• GET : Mengambil data subscriber berdasarkan ID.

• PUT : Memperbarui email subscriber berdasarkan ID.

• DELETE : Menghapus subscriber dari database berdasarkan ID.

53
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

Gambar 3.10. Tampilan antarmuka dashboard untuk endpoint Subscription Sumber: Five
Elements Agency

B RESTful API pada LGM Agency

Tabel 3.3. Daftar API Endpoint pada Website LGM Agency

No Endpoint Fungsi
1 /api/auth/login Melakukan autentikasi admin menggunakan

email dan kata sandi

54
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

No Endpoint Fungsi
2 /api/auth/logout Mengakhiri sesi autentikasi admin

3 /api/admin Mengelola data admin (menampilkan dan
menambahkan admin)

4 /api/admin/{id} Mengelola data admin berdasarkan ID
(detail, ubah, dan hapus)

5 /api/aboutUs/protected Mengelola data About Us oleh admin

6 /api/aboutUs/protected/{id} Mengelola detail data About Us berdasarkan
ID

7 /api/aboutUs/published Menampilkan data About Us yang telah
dipublikasikan

8 /api/aboutUs/published/{id} Menampilkan detail About Us yang telah
dipublikasikan

9 /api/artist/protected Mengelola data artis oleh admin

10 /api/artist/protected/{id} Mengelola detail data artis berdasarkan ID

11 /api/artist/published Menampilkan data artis yang telah
dipublikasikan

12 /api/artist/published/{id} Menampilkan detail data artis yang telah
dipublikasikan

13 /api/requestTicket/protected Mengelola data permintaan tiket oleh admin

14 /api/requestTicket/create Menyimpan permintaan tiket dari pengguna

15 /api/requestTicket/protected/{id} Mengelola detail permintaan tiket
berdasarkan ID

16 /api/send Mengelola pengiriman pesan atau formulir
kontak dari pengguna

17 /api/staffMail Mengelola data email staf

18 /api/staffMail/{id} Mengelola detail data email staf berdasarkan
ID

B.1 Admin

api/admin

Endpoint ini digunakan untuk mengambil semua data admin dengan fitur pencarian dan pagination,
serta menambahkan data admin baru ke database.

1 import { NextRequest , NextResponse } from "next/server";
2 import Admin from "@/models/admin";
3 import bcryptjs from ’bcryptjs ’;
4 import { uploadFile } from "@/libs/upload";
5 import {parseJson} from ’@/libs/parseJson ’
6 import dbConnect from "@/libs/database";
7

8 export async function GET(req: NextRequest) {
9 try {

10 await dbConnect();
11 const query = req.nextUrl.searchParams;
12 const limit = parseInt(query.get("limit") as string) ||

10;

55
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

13 const page = parseInt(query.get("page") as string) || 1;
14 const search = query.get("search") as string || ’’;
15 const all = query.get("all") === ’true ’ ? true : false;
16 const skip = (page - 1) * limit;
17 let filter
18 let checkAdmins;
19 let totalData = await Admin.countDocuments();
20 if (search) {
21 filter = [
22 { fullName: { $regex: search , $options: ’i’ } },
23 { username: { $regex: search , $options: ’i’ } },
24]
25 checkAdmins = await Admin.find({
26 $or: filter
27 }).select(’-password -token ’).sort({ createdAt: -1 }).

skip(skip).limit(limit);
28 totalData = checkAdmins.length;
29 } else if (all) {
30 checkAdmins = await Admin.find().select(’-password -

token ’).sort({ createdAt: -1 });
31 } else {
32 checkAdmins = await Admin.find().select(’-password -

token ’).sort({ createdAt: -1 }).skip(skip).limit(limit);
33 }
34 const result = {
35 admins: checkAdmins ,
36 pagination: {
37 page: page ,
38 limit: limit ,
39 totalPages: Math.ceil(totalData / limit),
40 totalData: totalData
41 }
42 }
43 return NextResponse.json({ status: 200, message: ’admin

get successfully ’, data: result }, { status: 200 });
44 } catch (error) {
45 return NextResponse.json({ status: 500, message: ’Internal

Server Error ’ }, { status: 500 });
46 }
47 }
48

49 export async function POST(req: NextRequest) {
50 try {
51 await dbConnect();
52 const formData = await req.formData();
53 const { username , password , fullName , image } = await

parseJson(formData);
54 if (!username || !password || !fullName || !image) return

NextResponse.json({ status: 400, message: ’Bad Request ’ }, {
status: 400 });

55 const encryptPassword = await bcryptjs.hash(password as
string , 10);

56 const checkUser = await Admin.findOne({ username: username
});

57 if (checkUser) {
58 return NextResponse.json({ status: 409, message: ’User

already exists ’ }, { status: 409 });
59 }
60 const imageUrl = await uploadFile(formData , ’admin ’, ’

image ’);
61 const admin = await Admin.create({ username , password :

encryptPassword , fullName , image : imageUrl });
62 return NextResponse.json({ status: 201, message: ’admin

creeated successfully ’, data: admin }, { status: 201 });
63 } catch (error) {
64 return NextResponse.json({ status: 500, message: ’Internal

56
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

Server Error ’ }, { status: 500 });
65 }
66 }

Kode 3.23: Kode untuk api/admin

Methods

• GET : Mengambil data admin dengan pencarian, pagination, dan opsi fetch-all.

• POST : Menambahkan data admin baru dengan validasi, enkripsi password, dan upload
gambar.

api/admin/[id]

Endpoint ini digunakan untuk mengambil satu data admin berdasarkan ID, memperbaruinya, atau
menghapusnya dari database.

1 import { NextRequest , NextResponse } from "next/server";
2 import Admin from "@/models/admin";
3 import dbConnect from "@/libs/database";
4 import bcryptjs from ’bcryptjs ’;
5 import {uploadFile , deleteFile } from "@/libs/upload";
6 import {parseJson} from ’@/libs/parseJson ’
7

8 export async function GET(
9 _req: NextRequest ,

10 {params} : {params : Promise <{ id : string}>}) {
11 try {
12 await dbConnect();
13 const {id} = await params
14 const checkAdmin = await Admin.findById(id).select(’-

password -token ’);
15 if (!checkAdmin) {
16 return NextResponse.json({ status: 404, message: ’

Admin Not Found ’ }, { status: 404 });
17 }
18 return NextResponse.json({ status: 200, message: ’admin

get successfully ’, data: checkAdmin }, { status: 200 });
19 } catch (error) {
20 return NextResponse.json({ status: 500, message: ’Internal

Server Error ’ }, { status: 500 });
21 }
22 }
23

24 export async function PUT(
25 req: NextRequest ,
26 {params} : {params : Promise <{ id : string}>}) {
27 try {
28 await dbConnect();
29 const formData = await req.formData();
30 const {id} = await params
31 const checkAdmin = await Admin.findById(id);
32 if (!checkAdmin) {
33 return NextResponse.json({ status: 404, message: ’

Admin Not Found ’ }, { status: 404 });
34 }
35 const { username , password , fullName , image } = await

parseJson (formData);
36 const encryptPassword = await bcryptjs.hash(password as

string , 10);
37 if (image) {
38 await deleteFile(checkAdmin.image , ’admin ’);

57
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

39 const imageUrl = await uploadFile(formData , ’admin ’, ’
image ’);

40 const admin = await Admin.findByIdAndUpdate(id, {
username , password: encryptPassword , fullName , image : imageUrl
}, { new: true });

41 return NextResponse.json({ status: 200, message: ’
admin updated successfully ’, data: admin }, { status: 200 });

42 }
43 const admin = await Admin.findByIdAndUpdate(id, { username

, password: encryptPassword , fullName }, { new: true });
44 return NextResponse.json({ status: 200, message: ’admin

updated successfully ’, data: admin }, { status: 200 });
45 } catch (error) {
46 return NextResponse.json({ status: 500, message: ’Internal

Server Error ’ }, { status: 500 });
47 }
48 }
49

50 export async function DELETE(
51 _req: NextRequest ,
52 {params} : {params : Promise <{ id : string}>}) {
53 try {
54 await dbConnect();
55 const {id} = await params
56 const checkAdmin = await Admin.findById(id);
57 if (!checkAdmin) {
58 return NextResponse.json({ status: 404, message: ’

Admin Not Found ’ }, { status: 404 });
59 }
60 await deleteFile(checkAdmin.image , ’admin ’);
61 await Admin.findByIdAndDelete(id);
62 return NextResponse.json({ status: 200, message: ’admin

deleted successfully ’ }, { status: 200 });
63 } catch (error) {
64 return NextResponse.json({ status: 500, message: ’Internal

Server Error ’ }, { status: 500 });
65 }
66 }

Kode 3.24: Kode untuk api/admin/[id]

Methods

• GET : Mengambil satu data admin berdasarkan ID.

• PUT : Memperbarui data admin berdasarkan ID dengan validasi, upload gambar, dan enkripsi
password.

• DELETE : Menghapus data admin dari database dan menghapus gambar terkait dari
penyimpanan.

58
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

Gambar 3.11. Tampilan antarmuka dashboard untuk endpoint Admin Sumber: Five
Elements Agency

B.2 About Us

api/aboutUs/protected

Endpoint ini digunakan untuk mengambil semua data anggota tim (About Us) yang ditambahkan

59
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

oleh admin, serta menambahkan data baru ke dalam database. Endpoint ini berada di dalam folder
protected, sehingga hanya bisa diakses oleh pengguna yang telah terautentikasi.

1 import dbConnect from "@/libs/database";
2 import { NextRequest , NextResponse } from "next/server";
3 import { uploadFile } from "@/libs/upload";
4 import {parseJson} from ’@/libs/parseJson ’
5 import Admin from "@/models/admin";
6 import AboutUs from "@/models/aboutUs";
7

8 export async function GET(req: NextRequest) {
9 try {

10 await dbConnect();
11 const query = req.nextUrl.searchParams;
12 const limit = parseInt(query.get("limit") as string) || 10;
13 const page = parseInt(query.get("page") as string) || 1;
14 const search = query.get("search") as string || ’’;
15 const all = query.get("all") === ’true ’ ? true : false;
16 const skip = (page - 1) * limit;
17 let filter
18 let checkAboutUs;
19 let totalData = await AboutUs.countDocuments();
20 if (search) {
21 filter = [
22 { name: { $regex: search , $options: ’i’ } },
23 { addedBy: { $regex: search , $options: ’i’ } },
24 { description: { $regex: search , $options: ’i’ } },
25]
26 checkAboutUs = await AboutUs.find({
27 $or: filter
28 }).sort({ createdAt: -1 }).skip(skip).limit(limit);
29 totalData = checkAboutUs.length;
30 } else if (all) {
31 checkAboutUs = await AboutUs.find().sort({ createdAt: -1

});
32 } else {
33 checkAboutUs = await AboutUs.find().sort({ createdAt: -1

}).skip(skip).limit(limit);
34 }
35 const result = {
36 AboutUs: checkAboutUs ,
37 pagination: {
38 page: page ,
39 limit: limit ,
40 totalPages: Math.ceil(totalData / limit),
41 totalData: totalData
42 }
43 }
44 return NextResponse.json({ status: 200, message: ’AboutUs

get successfully ’, data: result }, { status: 200 });
45 } catch (error) {
46 return NextResponse.json({ status: 500, message: ’Internal

Server Error ’ }, { status: 500 });
47 }
48 }
49

50 export async function POST(req: NextRequest) {
51 try {
52 await dbConnect();
53 const userData = req.headers.get("x-user -data");
54 const { id } = JSON.parse(userData as any);
55 const formData = await req.formData();
56 const { name , position , description , image , isPublished} =

await parseJson(formData);
57 if (!name || !position || !description || !image) return

NextResponse.json({ status: 400, message: ’Bad Request ’ }, {

60
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

status: 400 });
58 const checkAboutUs = await AboutUs.findOne({ name: name });
59 if (checkAboutUs) {
60 return NextResponse.json({ status: 409, message: ’AboutUs

already exists ’ }, { status: 409 });
61 }
62 const admin = await Admin.findById({ _id: id }).select(’

fullName ’);
63 const imageUrl = await uploadFile(formData , ’AboutUs ’, ’

image ’);
64 const aboutUs = await AboutUs.create({ name , position ,

description , addedBy :admin.fullName , image : imageUrl ,
isPublished});

65 return NextResponse.json({ status: 201, message: ’AboutUs
added successfully ’, data: aboutUs }, { status: 201 });

66 } catch (error) {
67 return NextResponse.json({ status: 500, message: ’Internal

Server Error ’ }, { status: 500 });
68 }
69 }

Kode 3.25: Kode untuk api/aboutUs/protected

Methods

• GET : Mengambil data anggota About Us dengan fitur pencarian, pagination, dan fetch-all.

• POST : Menambahkan data baru ke About Us, termasuk upload gambar dan pencatatan admin
yang menambahkan.

api/aboutUs/protected/[id]

Endpoint ini digunakan untuk mengambil, memperbarui, atau menghapus satu data anggota About
Us berdasarkan ID. Endpoint ini juga berada di dalam folder protected sehingga hanya dapat
diakses oleh admin yang telah login.

1 import { NextRequest , NextResponse } from "next/server";
2 import AboutUs from "@/models/aboutUs";
3 import dbConnect from "@/libs/database";
4 import {uploadFile , deleteFile } from "@/libs/upload";
5 import {parseJson} from ’@/libs/parseJson ’
6

7 export async function GET(
8 _req: NextRequest ,
9 {params} : {params : Promise <{ id : string}>}) {

10 try {
11 await dbConnect();
12 const {id} = await params
13 const checkAboutUs = await AboutUs.findById(id);
14 if (!checkAboutUs) {
15 return NextResponse.json({ status: 404, message: ’

AboutUs Not Found ’ }, { status: 404 });
16 }
17 return NextResponse.json({ status: 200, message: ’AboutUs

get successfully ’, data: checkAboutUs }, { status: 200 });
18 } catch (error) {
19 return NextResponse.json({ status: 500, message: ’Internal

Server Error ’ }, { status: 500 });
20 }
21 }
22

23 export async function PUT(

61
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

24 req: NextRequest ,
25 {params} : {params : Promise <{ id : string}>}) {
26 try {
27 await dbConnect();
28 const formData = await req.formData();
29 const {id} = await params
30 const checkAboutUs = await AboutUs.findById(id);
31 if (!checkAboutUs) {
32 return NextResponse.json({ status: 404, message: ’

AboutUs Not Found ’ }, { status: 404 });
33 }
34 const { name , position , description , image , isPublished} =

await parseJson(formData);
35 if (image) {
36 await deleteFile(checkAboutUs.image , ’AboutUs ’);
37 const imageUrl = await uploadFile(formData , ’AboutUs ’,

’image ’);
38 const aboutUs = await AboutUs.findByIdAndUpdate(id, {

name , position , description , image : imageUrl , isPublished }, {
new: true });

39 return NextResponse.json({ status: 200, message: ’
AboutUs updated successfully ’, data: aboutUs }, { status: 200
});

40 }
41 const aboutUs = await AboutUs.findByIdAndUpdate(id, {name ,

position , description , isPublished }, { new: true });
42 return NextResponse.json({ status: 200, message: ’AboutUs

updated successfully ’, data: aboutUs }, { status: 200 });
43 } catch (error) {
44 return NextResponse.json({ status: 500, message: ’Internal

Server Error ’ }, { status: 500 });
45 }
46 }
47

48 export async function DELETE(
49 _req: NextRequest ,
50 {params} : {params : Promise <{ id : string}>}) {
51 try {
52 await dbConnect();
53 const {id} = await params
54 const checkAboutUs = await AboutUs.findById(id);
55 if (!checkAboutUs) {
56 return NextResponse.json({ status: 404, message: ’

AboutUs Not Found ’ }, { status: 404 });
57 }
58 await deleteFile(checkAboutUs.image , ’AboutUs ’);
59 await AboutUs.findByIdAndDelete(id);
60 return NextResponse.json({ status: 200, message: ’AboutUs

deleted successfully ’ }, { status: 200 });
61 } catch (error) {
62 return NextResponse.json({ status: 500, message: ’Internal

Server Error ’ }, { status: 500 });
63 }
64 }

Kode 3.26: Kode untuk api/aboutUs/protected/[id]

Methods

• GET : Mengambil satu data About Us berdasarkan ID.

• PUT : Memperbarui data About Us berdasarkan ID, termasuk opsi untuk mengganti gambar.

• DELETE : Menghapus data About Us berdasarkan ID dan juga menghapus file gambar dari
storage.

62
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

Gambar 3.12. Tampilan antarmuka dashboard untuk endpoint About Us Sumber: Five
Elements Agency

63
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

B.3 Artist

api/artist/protected

Endpoint ini digunakan untuk mengambil seluruh data artist (GET) maupun menambahkan data
artist baru (POST). Endpoint ini berada di folder protected, yang berarti hanya admin yang sudah
login dapat mengaksesnya.

1 import dbConnect from "@/libs/database";
2 import { NextRequest , NextResponse } from "next/server";
3 import { uploadFile } from "@/libs/upload";
4 import { parseJson } from "@/libs/parseJson";
5 import Admin from "@/models/admin";
6 import Artist from "@/models/artist";
7 import extractUrl from "@/libs/extractFromUrl";
8

9 export async function GET(req: NextRequest) {
10 try {
11 await dbConnect();
12 const query = req.nextUrl.searchParams;
13 const limit = parseInt(query.get("limit") as string) || 10;
14 const page = parseInt(query.get("page") as string) || 1;
15 const search = query.get("search") as string || ’’;
16 const all = query.get("all") === ’true ’;
17 const skip = (page - 1) * limit;
18

19 let checkArtist;
20 let totalData = await Artist.countDocuments();
21

22 if (search) {
23 const filter = [
24 { name: { $regex: search , $options: ’i’ } },
25 { addedBy: { $regex: search , $options: ’i’ } },
26 { description: { $regex: search , $options: ’i’ } },
27];
28 checkArtist = await Artist.find({ $or: filter }).sort({

createdAt: -1 }).skip(skip).limit(limit);
29 totalData = checkArtist.length;
30 } else if (all) {
31 checkArtist = await Artist.find().sort({ createdAt: -1 });
32 } else {
33 checkArtist = await Artist.find().sort({ createdAt: -1 }).

skip(skip).limit(limit);
34 }
35

36 const result = {
37 artists: checkArtist ,
38 pagination: {
39 page ,
40 limit ,
41 totalPages: Math.ceil(totalData / limit),
42 totalData ,
43 },
44 };
45

46 return NextResponse.json({ status: 200, message: ’Artists
fetched successfully ’, data: result }, { status: 200 });

47 } catch (error) {
48 return NextResponse.json({ status: 500, message: ’Internal

Server Error ’ }, { status: 500 });
49 }
50 }
51

52 export async function POST(req: NextRequest) {
53 try {

64
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

54 await dbConnect();
55

56 const userData = req.headers.get("x-user -data");
57 const { id } = JSON.parse(userData as any);
58

59 const formData = await req.formData();
60 const {
61 name ,
62 description ,
63 image ,
64 imageDetail ,
65 category ,
66 link_cta ,
67 pixelId ,
68 instagram ,
69 facebook ,
70 spotify ,
71 appleMusic ,
72 soundcloud ,
73 isPublished ,
74 } = await parseJson(formData);
75

76 if (!name || !description || !category || !link_cta || !image
|| !imageDetail) {

77 return NextResponse.json({ status: 400, message: ’Missing
required fields ’ }, { status: 400 });

78 }
79

80 const checkArtist = await Artist.findOne({ name });
81 if (checkArtist) {
82 return NextResponse.json({ status: 409, message: ’Artist

already exists ’ }, { status: 409 });
83 }
84

85 const admin = await Admin.findById({ _id: id }).select(’
fullName ’);

86 const imageUrl = await uploadFile(formData , ’artist ’, ’image ’)
;

87 const imageDetailUrl = await uploadFile(formData , ’artist ’, ’
imageDetail ’);

88 const spotifyId = await extractUrl(spotify , "spotify");
89 const appleMusicId = await extractUrl(appleMusic , "appleMusic

");
90

91 const artist = await Artist.create({
92 name ,
93 description ,
94 category ,
95 link_cta ,
96 pixelId ,
97 image: imageUrl ,
98 imageDetail: imageDetailUrl ,
99 addedBy: admin.fullName ,

100 socials: {
101 instagram ,
102 facebook ,
103 spotify :{
104 url : spotify ,
105 id : spotifyId ,
106 },
107 appleMusic :{
108 url : appleMusic ,
109 id : appleMusicId ,
110 },
111 soundcloud ,
112 },

65
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

113 isPublished ,
114 });
115

116 return NextResponse.json({ status: 201, message: ’Artist added
successfully ’, data: artist }, { status: 201 });

117 } catch (error) {
118 return NextResponse.json({ status: 500, message: ’Internal

Server Error ’ }, { status: 500 });
119 }
120 }

Kode 3.27: Kode untuk api/artist/protected

Methods

• GET : Mengambil data artist dengan fitur pencarian, pagination, dan opsi untuk fetch semua
data.

• POST : Menambahkan data artist baru ke database dengan berbagai informasi termasuk
gambar dan akun sosial media.

api/artist/protected/[id]

Endpoint ini digunakan untuk mengambil, memperbarui, atau menghapus satu data artist
berdasarkan ID-nya. Endpoint ini termasuk dalam route protected, sehingga hanya admin yang
memiliki akses.

1 import { NextRequest , NextResponse } from "next/server";
2 import Artist from "@/models/artist";
3 import dbConnect from "@/libs/database";
4 import { uploadFile , deleteFile } from "@/libs/upload";
5 import { parseJson } from "@/libs/parseJson";
6 import extractUrl from "@/libs/extractFromUrl";
7

8 export async function GET(
9 _req: NextRequest ,

10 { params }: { params: Promise <{ id: string }> }
11) {
12 try {
13 await dbConnect();
14 const { id } = await params;
15 const checkArtist = await Artist.findById(id);
16 if (!checkArtist) {
17 return NextResponse.json({ status: 404, message: "Artist Not

Found" }, { status: 404 });
18 }
19 return NextResponse.json({ status: 200, message: "Artist

fetched successfully", data: checkArtist }, { status: 200 });
20 } catch (error) {
21 return NextResponse.json({ status: 500, message: "Internal

Server Error" }, { status: 500 });
22 }
23 }
24

25 export async function PUT(
26 req: NextRequest ,
27 { params }: { params: Promise <{ id: string }> }
28) {
29 try {
30 await dbConnect();
31 const { id } = await params;
32 const checkArtist = await Artist.findById(id);

66
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

33 if (!checkArtist) {
34 return NextResponse.json({ status: 404, message: "Artist Not

Found" }, { status: 404 });
35 }
36

37 const formData = await req.formData();
38 const {
39 name ,
40 description ,
41 category ,
42 link_cta ,
43 pixelId ,
44 instagram ,
45 facebook ,
46 spotify ,
47 appleMusic ,
48 soundcloud ,
49 isPublished ,
50 } = await parseJson(formData);
51

52 let imageUrl = checkArtist.image;
53 let imageDetailUrl = checkArtist.imageDetail;
54

55 if (formData.get("image")) {
56 await deleteFile(checkArtist.image , "artist");
57 imageUrl = await uploadFile(formData , "artist", "image");
58 }
59

60 if (formData.get("imageDetail")) {
61 await deleteFile(checkArtist.imageDetail , "artist");
62 imageDetailUrl = await uploadFile(formData , "artist", "

imageDetail");
63 }
64

65 const spotifyId = await extractUrl(spotify , ’spotify ’);
66 const appleMusicId = await extractUrl(appleMusic , ’appleMusic

’);
67 const updatedArtist = await Artist.findByIdAndUpdate(
68 id,
69 {
70 name ,
71 description ,
72 category ,
73 link_cta ,
74 pixelId ,
75 image: imageUrl ,
76 imageDetail: imageDetailUrl ,
77 socials: {
78 instagram ,
79 facebook ,
80 spotify : {
81 url : spotify ,
82 id : spotifyId ,
83 },
84 appleMusic : {
85 url : appleMusic ,
86 id : appleMusicId ,
87 },
88 soundcloud ,
89 },
90 isPublished ,
91 },
92 { new: true }
93);
94

95 return NextResponse.json({ status: 200, message: "Artist
updated successfully", data: updatedArtist }, { status: 200 });

67
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

96 } catch (error) {
97 return NextResponse.json({ status: 500, message: "Internal

Server Error" }, { status: 500 });
98 }
99 }

100

101 export async function DELETE(
102 _req: NextRequest ,
103 { params }: { params: Promise <{ id: string }> }
104) {
105 try {
106 await dbConnect();
107 const { id } = await params;
108 const checkArtist = await Artist.findById(id);
109 if (!checkArtist) {
110 return NextResponse.json({ status: 404, message: "Artist Not

Found" }, { status: 404 });
111 }
112

113 await deleteFile(checkArtist.image , "artist");
114 await deleteFile(checkArtist.imageDetail , "artist");
115 await Artist.findByIdAndDelete(id);
116

117 return NextResponse.json({ status: 200, message: "Artist
deleted successfully" }, { status: 200 });

118 } catch (error) {
119 return NextResponse.json({ status: 500, message: "Internal

Server Error" }, { status: 500 });
120 }
121 }

Kode 3.28: Kode untuk api/artist/protected/[id]

Methods

• GET : Mengambil data artist berdasarkan ID.

• PUT : Memperbarui data artist berdasarkan ID, termasuk update gambar dan tautan sosial
media.

• DELETE : Menghapus data artist berdasarkan ID beserta gambar yang terkait.

68
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

Gambar 3.13. Tampilan antarmuka dashboard untuk endpoint Artist Sumber: Five
Elements Agency69

Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan
Fernandez Namlay, Universitas Multimedia Nusantara

B.4 Request Ticket

api/requestTicket/protected

Endpoint ini digunakan untuk mengambil data permintaan (request ticket) dari pengguna. Data dapat
difilter berdasarkan email, serta mendukung pagination dan mode fetch all. Endpoint ini hanya
dapat diakses oleh admin.

1 import { NextRequest , NextResponse } from "next/server";
2 import RequestTicket from "@/models/requestTicket";
3 import dbConnect from "@/libs/database";
4

5 export async function GET(req: NextRequest) {
6 try {
7 await dbConnect();
8 const query = req.nextUrl.searchParams;
9 const limit = parseInt(query.get("limit") as string) ||

10;
10 const page = parseInt(query.get("page") as string) || 1;
11 const search = query.get("search") as string || ’’;
12 const all = query.get("all") === ’true ’ ? true : false;
13 const skip = (page - 1) * limit;
14 let filter;
15 let checkRequestTicket;
16 let totalData = await RequestTicket.countDocuments();
17

18 if (search) {
19 filter = [
20 { email: { $regex: search , $options: ’i’ } },
21];
22 checkRequestTicket = await RequestTicket.find({
23 $or: filter
24 }).sort({ createdAt: -1 }).skip(skip).limit(limit);
25 totalData = checkRequestTicket.length;
26 } else if (all) {
27 checkRequestTicket = await RequestTicket.find().sort({

createdAt: -1 });
28 } else {
29 checkRequestTicket = await RequestTicket.find().sort({

createdAt: -1 }).skip(skip).limit(limit);
30 }
31

32 const result = {
33 RequestTickets: checkRequestTicket ,
34 pagination: {
35 page: page ,
36 limit: limit ,
37 totalPages: Math.ceil(totalData / limit),
38 totalData: totalData
39 }
40 };
41

42 return NextResponse.json({ status: 200, message: ’
RequestTicket get successfully ’, data: result }, { status: 200
});

43 } catch (error) {
44 return NextResponse.json({ status: 500, message: ’Internal

Server Error ’ }, { status: 500 });
45 }
46 }

Kode 3.29: Kode untuk api/requestTicket/protected

Methods

70
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

• GET : Mengambil data permintaan (request ticket) dengan dukungan filter email, pagination,
dan fetch semua data.

api/requestTicket/protected/[id]

Endpoint ini digunakan untuk mengambil, memperbarui, atau menghapus satu data permintaan
(request ticket) berdasarkan ID. Endpoint ini hanya dapat diakses oleh admin.

1 import { NextRequest , NextResponse } from "next/server";
2 import RequestTicket from "@/models/requestTicket";
3 import dbConnect from "@/libs/database";
4 import {parseJson} from ’@/libs/parseJson ’
5

6 export async function GET(
7 _req: NextRequest ,
8 {params} : {params : Promise <{ id : string}>}) {
9 try {

10 await dbConnect();
11 const {id} = await params
12 const checkRequestTicket = await RequestTicket.findById(

id);
13 if (!checkRequestTicket) {
14 return NextResponse.json({ status: 404, message: ’

RequestTicket Not Found ’ }, { status: 404 });
15 }
16 return NextResponse.json({ status: 200, message: ’

RequestTicket get successfully ’, data: checkRequestTicket }, {
status: 200 });

17 } catch (error) {
18 return NextResponse.json({ status: 500, message: ’Internal

Server Error ’ }, { status: 500 });
19 }
20 }
21

22 export async function PUT(
23 req: NextRequest ,
24 {params} : {params : Promise <{ id : string}>}) {
25 try {
26 await dbConnect();
27 const formData = await req.formData();
28 const {id} = await params
29 const checkRequestTicket = await RequestTicket.findById(

id);
30 if (!checkRequestTicket) {
31 return NextResponse.json({ status: 404, message: ’

RequestTicket Not Found ’ }, { status: 404 });
32 }
33 const {email , name , requestedArtist} = await parseJson(

formData);
34 const requestTicket = await RequestTicket.

findByIdAndUpdate(id, {email , name , requestedArtist}, { new:
true });

35 return NextResponse.json({ status: 200, message: ’
RequestTicket updated successfully ’, data: requestTicket }, {
status: 200 });

36 } catch (error) {
37 return NextResponse.json({ status: 500, message: ’Internal

Server Error ’ }, { status: 500 });
38 }
39 }
40

41 export async function DELETE(
42 _req: NextRequest ,
43 {params} : {params : Promise <{ id : string}>}) {

71
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

44 try {
45 await dbConnect();
46 const {id} = await params
47 const checkRequestTicket = await RequestTicket.findById(

id);
48 if (!checkRequestTicket) {
49 return NextResponse.json({ status: 404, message: ’

RequestTicket Not Found ’ }, { status: 404 });
50 }
51 await RequestTicket.findByIdAndDelete(id);
52 return NextResponse.json({ status: 200, message: ’

RequestTicket deleted successfully ’ }, { status: 200 });
53 } catch (error) {
54 return NextResponse.json({ status: 500, message: ’Internal

Server Error ’ }, { status: 500 });
55 }
56 }

Kode 3.30: Kode untuk api/requestTicket/protected/[id]

Methods

• GET : Mengambil detail data request ticket berdasarkan ID.

• PUT : Memperbarui data request ticket berdasarkan ID.

• DELETE : Menghapus data request ticket berdasarkan ID.

api/requestTicket/create

Endpoint ini digunakan oleh pengguna (client) untuk mengirim permintaan penambahan artis.
Permintaan ini akan tersimpan di database dan dikirim ke email staf aktif, serta dikirimkan email
konfirmasi ke pengguna.

1 import { NextRequest , NextResponse } from "next/server";
2 import RequestTicket from "@/models/requestTicket";
3 import dbConnect from "@/libs/database";
4 import {parseJson} from "@/libs/parseJson"
5 import { MailerSend } from "mailersend";
6 import { render } from ’@react -email/render ’;
7 import RequestEmail from "@/components/layout/RequestEmail";
8 import sendEmail from "@/libs/sendEmail";
9 import ConfirmationEmail from "@/components/layout/

ConfirmationEmail";
10 import StaffMail from "@/models/staffMail";
11

12 const mailerSend = new MailerSend({
13 apiKey: process.env.NEXT_PUBLIC_MAILERSEND_API_KEY!,
14 });
15

16 export async function POST(req: NextRequest) {
17 try {
18 await dbConnect();
19 const formData = await req.formData();
20 const { email , name , requestedArtist } = await parseJson(

formData);
21 if (!email || !name || !requestedArtist) return

NextResponse.json({ status: 400, message: ’Bad Request ’ }, {
status: 400 });

22

23 const uniqueId = Date.now();
24 const activeStaff = await StaffMail.find({ isActive: true

});

72
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

25 const recipientList = activeStaff.map((staff) => staff.
email);

26

27 const staffOptions = {
28 to: recipientList ,
29 subject: ‘Pesan Request Artist Baru dari Website LGM #

${uniqueId}‘,
30 message: await render(RequestEmail({ name , email ,

requestedArtist })),
31 uniqueId
32 };
33 await sendEmail(staffOptions , "html");
34

35 const clientOptions = {
36 to: [email],
37 subject: ‘Thank you for contacting us. We have

received your request.‘,
38 message: await render(ConfirmationEmail({ name ,

subject : ‘Requesting : ${requestedArtist}‘ })),
39 uniqueId
40 };
41 await sendEmail(clientOptions , "html");
42

43 const requestTicket = await RequestTicket.create({ email ,
name , requestedArtist });

44 return NextResponse.json({ status: 201, message: ’
RequestTicket added successfully ’, data: requestTicket }, {
status: 201 });

45 } catch (error) {
46 return NextResponse.json({ status: 500, message: ’Internal

Server Error ’ }, { status: 500 });
47 }
48 }

Kode 3.31: Kode untuk api/requestTicket/create

Methods

• POST : Menyimpan data request artist ke database, mengirim email notifikasi ke staf, dan
mengirim email konfirmasi ke client.

73
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

Gambar 3.14. Tampilan antarmuka dashboard untuk permintaan Request Ticket Sumber:
Five Elements Agency

B.5 Staff Mail

api/staffMail/protected

Endpoint ini digunakan oleh admin untuk melihat dan menambahkan daftar email staf aktif yang

74
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

digunakan untuk menerima permintaan dari client.

1 import dbConnect from "@/libs/database";
2 import { NextRequest , NextResponse } from "next/server";
3 import { parseJson } from ’@/libs/parseJson ’;
4 import Admin from "@/models/admin";
5 import StaffEmail from "@/models/staffMail"
6

7 export async function GET(req: NextRequest) {
8 try {
9 await dbConnect();

10 const query = req.nextUrl.searchParams;
11 const limit = parseInt(query.get("limit") as string) || 10;
12 const page = parseInt(query.get("page") as string) || 1;
13 const search = query.get("search") as string || ’’;
14 const all = query.get("all") === ’true ’;
15 const skip = (page - 1) * limit;
16 let filter;
17 let staffEmails;
18 let totalData = await StaffEmail.countDocuments();
19

20 if (search) {
21 filter = [
22 { name: { $regex: search , $options: ’i’ } },
23 { email: { $regex: search , $options: ’i’ } },
24 { description: { $regex: search , $options: ’i’ } },
25 { addedBy: { $regex: search , $options: ’i’ } },
26];
27 staffEmails = await StaffEmail.find({ $or: filter })
28 .sort({ createdAt: -1 })
29 .skip(skip)
30 .limit(limit);
31 totalData = staffEmails.length;
32 } else if (all) {
33 staffEmails = await StaffEmail.find().sort({ createdAt: -1

});
34 } else {
35 staffEmails = await StaffEmail.find()
36 .sort({ createdAt: -1 })
37 .skip(skip)
38 .limit(limit);
39 }
40

41 const result = {
42 staffMails: staffEmails ,
43 pagination: {
44 page: page ,
45 limit: limit ,
46 totalPages: Math.ceil(totalData / limit),
47 totalData: totalData ,
48 },
49 };
50

51 return NextResponse.json({ status: 200, message: ’Staff emails
fetched successfully ’, data: result }, { status: 200 });

52 } catch (error) {
53 return NextResponse.json({ status: 500, message: ’Internal

Server Error ’ }, { status: 500 });
54 }
55 }
56

57 export async function POST(req: NextRequest) {
58 try {
59 await dbConnect();
60 const userData = req.headers.get("x-user -data");
61 const { id } = JSON.parse(userData as any);
62

75
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

63 const formData = await req.formData();
64 const { name , email , description , isActive } = await parseJson

(formData);
65

66 if (!name || !email || !description || isActive === undefined)
{

67 return NextResponse.json({ status: 400, message: ’Bad
Request ’ }, { status: 400 });

68 }
69

70 const existingStaff = await StaffEmail.findOne({ email: email
});

71 if (existingStaff) {
72 return NextResponse.json({ status: 409, message: ’Staff

email already exists ’ }, { status: 409 });
73 }
74

75 const admin = await Admin.findById({ _id: id }).select(’
fullName ’);

76

77 const newStaffEmail = await StaffEmail.create({
78 name ,
79 email ,
80 description ,
81 isActive ,
82 addedBy: admin?.fullName || "Unknown",
83 });
84

85 return NextResponse.json({ status: 201, message: ’Staff email
added successfully ’, data: newStaffEmail }, { status: 201 });

86 } catch (error) {
87 return NextResponse.json({ status: 500, message: ’Internal

Server Error ’ }, { status: 500 });
88 }
89 }

Kode 3.32: Kode untuk api/staffMail/protected

Methods

• GET : Mengambil daftar email staf berdasarkan filter pencarian, pagination, atau ambil semua
data.

• POST : Menambahkan email staf baru ke database dan mencatat siapa admin yang
menambahkannya.

api/staffMail/protected/[id]

Endpoint ini digunakan untuk mengambil, memperbarui, atau menghapus satu data email staf
berdasarkan ID.

1 import { NextRequest , NextResponse } from "next/server";
2 import StaffEmail from "@/models/staffMail";
3 import dbConnect from "@/libs/database";
4 import { parseJson } from ’@/libs/parseJson ’;
5

6 export async function GET(
7 _req: NextRequest ,
8 { params }: { params: Promise <{ id: string }> }
9) {

10 try {
11 await dbConnect();

76
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

12 const { id } = await params;
13 const staff = await StaffEmail.findById(id);
14

15 if (!staff) {
16 return NextResponse.json({ status: 404, message: ’Staff

email not found ’ }, { status: 404 });
17 }
18

19 return NextResponse.json({ status: 200, message: ’Staff email
fetched successfully ’, data: staff }, { status: 200 });

20 } catch (error) {
21 return NextResponse.json({ status: 500, message: ’Internal

Server Error ’ }, { status: 500 });
22 }
23 }
24

25 export async function PUT(
26 req: NextRequest ,
27 { params }: { params: Promise <{ id: string }> }
28) {
29 try {
30 await dbConnect();
31 const { id } = await params;
32 const staff = await StaffEmail.findById(id);
33

34 if (!staff) {
35 return NextResponse.json({ status: 404, message: ’Staff

email not found ’ }, { status: 404 });
36 }
37

38 const formData = await req.formData();
39 const { name , email , description , isActive } = await parseJson

(formData);
40

41 const updatedStaff = await StaffEmail.findByIdAndUpdate(
42 id,
43 { name , email , description , isActive },
44 { new: true }
45);
46

47 return NextResponse.json({ status: 200, message: ’Staff email
updated successfully ’, data: updatedStaff }, { status: 200 });

48 } catch (error) {
49 return NextResponse.json({ status: 500, message: ’Internal

Server Error ’ }, { status: 500 });
50 }
51 }
52

53 export async function DELETE(
54 _req: NextRequest ,
55 { params }: { params: Promise <{ id: string }> }
56) {
57 try {
58 await dbConnect();
59 const { id } = await params;
60 const staff = await StaffEmail.findById(id);
61

62 if (!staff) {
63 return NextResponse.json({ status: 404, message: ’Staff

email not found ’ }, { status: 404 });
64 }
65

66 await StaffEmail.findByIdAndDelete(id);
67 return NextResponse.json({ status: 200, message: ’Staff email

deleted successfully ’ }, { status: 200 });
68 } catch (error) {
69 return NextResponse.json({ status: 500, message: ’Internal

77
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

Server Error ’ }, { status: 500 });
70 }
71 }

Kode 3.33: Kode untuk api/staffMail/protected/[id]

Methods

• GET : Mengambil detail data email staf berdasarkan ID.

• PUT : Memperbarui data email staf berdasarkan ID dengan data baru dari form.

• DELETE : Menghapus data email staf dari database berdasarkan ID.

Gambar 3.15. Tampilan tabel manajemen email staf di dashboard admin Sumber: Five
Elements Agency

78
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

3.4.2 Merancang dan Mengelola Database Menggunakan MongoDB

Database yang digunakan adalah MongoDB, Database yang digunakan adalah MongoDB,
dihosting melalui MongoDB Atlas, yang memungkinkan akses cloud dan manajemen data
secara real-time. Dengan pendekatan NoSQL, MongoDB menawarkan fleksibilitas tinggi dalam
pengelolaan skema data yang dinamis. Proses perancangan dan pengelolaan database dimulai
dengan pembuatan database baru melalui layanan cloud MongoDB Atlas. Database ini kemudian
dihubungkan ke proyek melalui URI koneksi yang diamankan menggunakan variabel lingkungan
(environment variable).

1 i m p o r t mongoose from ” mongoose ” ;
2

3 l e t cached = (g l o b a l a s any) . mongoose | | { conn : n u l l , p romise :
n u l l } ;

4

5 e x p o r t a sync f u n c t i o n c o n n e c t T o D a t a b a s e () {
6 t r y {
7 i f (cached . conn) {
8 c o n s o l e . l o g (” Using e x i s t i n g d a t a b a s e c o n n e c t i o n ”) ;
9 r e t u r n cached . conn ;

10 }
11 i f (! cached . p romise) {
12 c o n s o l e . l o g (” C r e a t i n g new d a t a b a s e c o n n e c t i o n . . . ”) ;
13 cached . p romise = mongoose . c o n n e c t (
14 p r o c e s s . env . NEXT PUBLIC MONGODB URI as s t r i n g
15) . t h e n ((mongoose) => mongoose) ;
16 }
17 cached . conn = a w a i t cached . p romise ;
18 r e t u r n cached . conn ;
19 } c a t c h (e r r) {
20 c o n s o l e . l o g (e r r) ;
21 }
22 }

Kode 3.34: Kode koneksi ke MongoDB menggunakan Mongoose

Setelah koneksi berhasil, langkah selanjutnya adalah membuat skema data (schema)
menggunakan library mongoose. Setiap entitas yang dibutuhkan oleh sistem—seperti artis, admin,
informasi perusahaan, dan entitas lainnya—memiliki satu skema tersendiri yang mendefinisikan
struktur dan tipe data yang dapat disimpan dalam koleksi terkait. Setiap skema kemudian digunakan
dalam pembuatan endpoint RESTful API, yang memungkinkan data disimpan, diubah, diambil, dan
dihapus melalui antarmuka frontend. Struktur skema dirancang agar fleksibel dan mudah diperluas
jika terjadi perubahan kebutuhan data di masa depan.

Selama proses pengembangan, pengujian dilakukan dengan bantuan Postman untuk
memastikan bahwa integrasi antara skema database dan API berjalan dengan benar. Selain itu,

79
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

dokumentasi entitas juga disusun sebagai bagian dari dokumentasi proyek secara keseluruhan, untuk
mempermudah pemeliharaan dan pengembangan di masa mendatang.

Setelah proses perancangan dan implementasi database selesai dilakukan, diperoleh
sejumlah skema data (schema) yang merepresentasikan entitas-entitas utama dalam sistem. Setiap
skema disusun menggunakan mongoose untuk memastikan struktur data yang konsisten dan dapat
digunakan secara langsung oleh RESTful API. Berikut adalah beberapa cuplikan kode dari skema
yang telah dibuat beserta penjelasannya.

A Skema Database Five Elements

A.1 Admin

Entitas Admin merepresentasikan akun pengguna internal yang memiliki akses administratif
terhadap sistem. Skema ini mencakup informasi seperti nama lengkap, jabatan, dan deskripsi, serta
kredensial autentikasi seperti username dan password.

A.2 Award

Entitas Award merepresentasikan penghargaan yang ditampilkan pada situs web. Skema
ini mencakup properti name sebagai nama penghargaan, description untuk penjelasan singkat,
image untuk URL gambar penghargaan, dan isHidden yang menentukan apakah data penghargaan
ditampilkan secara publik atau tidak. Properti addedBy digunakan untuk mencatat siapa yang
menambahkan data tersebut ke sistem.

1 import mongoose from "mongoose";
2

3 const awardSchema = new mongoose.Schema({
4 name: {
5 type: String ,
6 required: true ,
7 },
8 description: {
9 type: String ,

10 required: true ,
11 },
12 image: {
13 type: String ,
14 required: true ,
15 },
16 isHidden: {
17 type: Boolean ,
18 required: true ,
19 },
20 addedBy: {
21 type: String ,
22 required: true ,
23 }
24 }, { timestamps: true });
25

26 const Award = mongoose.models.award || mongoose.model(’award ’,
awardSchema);

27

28 export default Award;

80
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

Kode 3.35: Potongan kode skema Award

A.3 Blog

Entitas Blog digunakan untuk merepresentasikan konten artikel atau berita yang
dipublikasikan di situs web. Skema ini terdiri dari title sebagai judul artikel, description

sebagai isi ringkasan artikel, image sebagai URL gambar pendukung, dan link untuk tautan menuju
artikel lengkap. Properti publishedDate menunjukkan tanggal publikasi, sedangkan isHidden

menentukan apakah artikel ditampilkan ke publik atau disembunyikan. addedBy mencatat identitas
pengguna yang menambahkan data.

1 import mongoose from "mongoose";
2

3 const blogSchema = new mongoose.Schema({
4 title: {
5 type: String ,
6 required: true ,
7 },
8 description: {
9 type: String ,

10 required: true ,
11 },
12 image: {
13 type: String ,
14 required: true ,
15 },
16 isHidden: {
17 type: Boolean ,
18 required: true ,
19 },
20 link: {
21 type: String ,
22 required: true ,
23 },
24 publishedDate: {
25 type: String ,
26 required: true ,
27 },
28 addedBy: {
29 type: String ,
30 required: true ,
31 }
32 }, { timestamps: true });
33

34 const Blog = mongoose.models.blog || mongoose.model(’blog ’,
blogSchema);

35

36 export default Blog;

Kode 3.36: Potongan kode skema Blog

A.4 Client

Entitas Client digunakan untuk menyimpan data klien yang pernah bekerja sama dengan
perusahaan. Skema ini mencakup name sebagai nama klien, title sebagai judul atau posisi

81
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

representatif, serta description sebagai penjelasan tentang hubungan atau kerja sama dengan klien
tersebut. Properti review bersifat opsional dan digunakan untuk menampilkan ulasan atau testimoni
dari klien. image menyimpan URL gambar, sedangkan isHidden menentukan visibilitas data klien
di antarmuka publik. addedBy mencatat identitas pengguna internal yang menambahkan data ini.

1 import mongoose from "mongoose";
2

3 const clientSchema = new mongoose.Schema({
4 name: {
5 type: String ,
6 required: true ,
7 },
8 title: {
9 type: String ,

10 required: true ,
11 },
12 description: {
13 type: String ,
14 required: true ,
15 },
16 review: {
17 type: String ,
18 required: false ,
19 },
20 image: {
21 type: String ,
22 required: true ,
23 },
24 isHidden: {
25 type: Boolean ,
26 required: true ,
27 },
28 addedBy: {
29 type: String ,
30 required: true ,
31 }
32 }, { timestamps: true });
33

34 const Client = mongoose.models.client || mongoose.model(’client ’,
clientSchema);

35

36 export default Client;

Kode 3.37: Potongan kode skema Client

A.5 Inquiry

Entitas Inquiry digunakan untuk menangani pesan atau permintaan yang dikirim melalui
halaman Contact Us. Skema ini mencakup name dan email sebagai identitas pengirim, telephone
yang bersifat opsional, serta message sebagai isi pesan. Selain itu, service digunakan untuk
mencatat jenis layanan yang diminati oleh pengirim. Seluruh data disimpan secara otomatis dengan
timestamp untuk mencatat waktu pengiriman.

1 import mongoose from "mongoose";
2

3 const inquirySchema = new mongoose.Schema({
4 name: {
5 type: String ,
6 required: true ,
7 },

82
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

8 email: {
9 type: String ,

10 required: true ,
11 },
12 telephone: {
13 type: String ,
14 required: false ,
15 },
16 message: {
17 type: String ,
18 required: true ,
19 },
20 service: {
21 type: String ,
22 required: true ,
23 },
24 }, { timestamps: true });
25

26 const Inquiry = mongoose.models.inquiry || mongoose.model(’inquiry
’, inquirySchema);

27

28 export default Inquiry;

Kode 3.38: Potongan kode skema Inquiry

A.6 Package

Entitas Package merepresentasikan paket layanan yang ditawarkan oleh perusahaan. Setiap
paket mencakup name sebagai nama paket, description sebagai uraian lengkap, serta summary

sebagai ringkasan singkat. Skema ini juga menyimpan dua elemen visual, yaitu banner dan
graphic, yang digunakan untuk keperluan tampilan pada antarmuka pengguna. Properti isHidden
menentukan apakah paket tersebut ditampilkan kepada pengguna umum, sementara addedBy

mencatat siapa yang menambahkan entri tersebut. Timestamps disertakan untuk pencatatan waktu
otomatis.

1 import mongoose from "mongoose";
2

3 const packageSchema = new mongoose.Schema({
4 name: {
5 type: String ,
6 required: true ,
7 },
8 description: {
9 type: String ,

10 required: true ,
11 },
12 summary: {
13 type: String ,
14 required: true ,
15 },
16 banner: {
17 type: String ,
18 required: true ,
19 },
20 graphic: {
21 type: String ,
22 required: true ,
23 },
24 isHidden: {
25 type: Boolean ,

83
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

26 required: true ,
27 },
28 addedBy: {
29 type: String ,
30 required: true ,
31 }
32 }, { timestamps: true });
33

34 const Package = mongoose.models.Package || mongoose.model(’Package
’, packageSchema);

35

36 export default Package;

Kode 3.39: Potongan kode skema Package

A.7 Partner

Entitas Partner merepresentasikan mitra perusahaan, baik dalam bentuk organisasi
maupun perusahaan lain yang bekerja sama. Skema ini mencakup properti name untuk nama
mitra, description untuk deskripsi singkat, dan image sebagai representasi visual. Properti
isHidden mengatur apakah informasi mitra ditampilkan secara publik, dan addedBy mencatat siapa
yang menambahkan data tersebut. Timestamps digunakan untuk mencatat waktu pembuatan dan
pembaruan entri secara otomatis.

1 import mongoose from "mongoose";
2

3 const partnerSchema = new mongoose.Schema({
4 name: {
5 type: String ,
6 required: true ,
7 },
8 description: {
9 type: String ,

10 required: true ,
11 },
12 image: {
13 type: String ,
14 required: true ,
15 },
16 isHidden: {
17 type: Boolean ,
18 required: true ,
19 },
20 addedBy: {
21 type: String ,
22 required: true ,
23 }
24 }, { timestamps: true });
25

26 const Partner = mongoose.models.partner || mongoose.model(’partner
’, partnerSchema);

27

28 export default Partner;

Kode 3.40: Potongan kode skema Partner

84
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

A.8 Project

Entitas Project digunakan untuk merepresentasikan proyek-proyek yang pernah atau
sedang dikerjakan oleh perusahaan. Setiap entri proyek memiliki name sebagai nama proyek,
description sebagai penjelasan singkat, dan image sebagai ilustrasi visual. Properti isHidden
menunjukkan apakah proyek ditampilkan secara publik, sementara addedBy mencatat identitas
pihak yang menambahkan data. Sistem juga secara otomatis mencatat waktu pembuatan dan
pembaruan entri menggunakan timestamps.

1 import mongoose from "mongoose";
2

3 const projectSchema = new mongoose.Schema({
4 name: {
5 type: String ,
6 required: true ,
7 },
8 description: {
9 type: String ,

10 required: true ,
11 },
12 image: {
13 type: String ,
14 required: true ,
15 },
16 isHidden: {
17 type: Boolean ,
18 required: true ,
19 },
20 addedBy: {
21 type: String ,
22 required: true ,
23 }
24 }, { timestamps: true });
25

26 const Project = mongoose.models.Project || mongoose.model(’Project
’, projectSchema);

27

28 export default Project;

Kode 3.41: Potongan kode skema Project

A.9 Subscribeer

Entitas Subscribeer digunakan untuk mencatat alamat email pengguna yang berlangganan
informasi atau pembaruan dari sistem. Skema ini sangat sederhana, hanya terdiri dari satu properti
utama, yaitu email, serta timestamps untuk mencatat waktu pendaftaran.

1 import mongoose from "mongoose";
2 import bcryptjs from ’bcryptjs ’;
3

4 const subscribeerSchema = new mongoose.Schema({
5 email: {
6 type: String ,
7 required: true ,
8 },
9 }, { timestamps: true });

10

11 const Subscribeer = mongoose.models.subscribeer || mongoose.model
(’subscribeer ’, subscribeerSchema);

85
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

12

13 export default Subscribeer;

Kode 3.42: Potongan kode skema Subscribeer

B Skema Database LGM Agency

B.1 AboutUs

Entitas AboutUs merepresentasikan anggota tim atau staf yang berada di balik agensi LGM.
Skema ini mencakup informasi seperti nama, posisi, deskripsi personal, dan gambar profil. Properti
isPublished digunakan untuk menentukan apakah informasi anggota tim tersebut ditampilkan
secara publik. Selain itu, properti addedBy mencatat siapa yang menambahkan entri tersebut ke
dalam sistem.

1 i m p o r t mongoose from ” mongoose ” ;
2

3 c o n s t aboutUsSchema = new mongoose . Schema ({
4 name : {
5 t y p e : S t r i n g ,
6 r e q u i r e d : t r u e ,
7 } ,
8 p o s i t i o n : {
9 t y p e : S t r i n g ,

10 r e q u i r e d : t r u e ,
11 } ,
12 d e s c r i p t i o n : {
13 t y p e : S t r i n g ,
14 r e q u i r e d : t r u e ,
15 } ,
16 image : {
17 t y p e : S t r i n g ,
18 r e q u i r e d : t r u e ,
19 } ,
20 i s P u b l i s h e d : {
21 t y p e : Boolean ,
22 r e q u i r e d : t r u e ,
23 } ,
24 addedBy : {
25 t y p e : S t r i n g ,
26 r e q u i r e d : t r u e ,
27 }
28 } , { t i m e s t a m p s : t r u e }) ;
29

86
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

30 c o n s t AboutUs = mongoose . models . aboutUs | | mongoose . model (’ aboutUs
’ , aboutUsSchema) ;

31

32 e x p o r t d e f a u l t AboutUs ;

Kode 3.43: Skema entitas AboutUs

B.2 Admin

Entitas Admin merepresentasikan akun pengguna internal yang memiliki akses administratif
terhadap sistem manajemen LGM Agency. Informasi yang disimpan mencakup kredensial
autentikasi (username, password), token sesi (opsional), serta identitas personal seperti fullName
dan image.

1 import mongoose from "mongoose";
2

3 const adminSchema = new mongoose.Schema({
4 username: {
5 type: String ,
6 required: true ,
7 },
8 password: {
9 type: String ,

10 required: true ,
11 },
12 token: {
13 type: String ,
14 required: false ,
15 },
16 fullName: {
17 type: String ,
18 required: true ,
19 },
20 image: {
21 type: String ,
22 required: true ,
23 },
24 }, { timestamps: true });
25

26 const Admin = mongoose.models.Admin || mongoose.model(’Admin ’,
adminSchema);

27

28 export default Admin;

Kode 3.44: Skema entitas Admin untuk LGM Agency

B.3 Artist

Entitas Artist merepresentasikan data artis yang berada di bawah naungan LGM Agency,
terutama DJ. Informasi yang dicatat mencakup data visual utama (image, imageDetail), deskripsi
singkat, kategori jenis artis, serta berbagai media sosial seperti Instagram, Facebook, Spotify, Apple
Music, dan SoundCloud. Properti link cta menyimpan tautan promosi utama, sedangkan pixelId

digunakan untuk keperluan pelacakan analitik. Atribut isPublished menentukan apakah profil artis
ditampilkan secara publik.

87
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

1 import mongoose from "mongoose";
2

3 const artistSchema = new mongoose.Schema({
4 name: { type: String , required: true },
5 image: { type: String , required: true },
6 imageDetail: { type: String , required: true },
7 description: { type: String , required: true },
8 category: { type: String , required: true },
9 socials: {

10 instagram: { type: String , required: false },
11 facebook: { type: String , required: false },
12 spotify: {
13 url: { type: String , required: false },
14 id: { type: String , required: false },
15 },
16 appleMusic: {
17 url: { type: String , required: false },
18 id: { type: String , required: false },
19 },
20 soundcloud: { type: String , required: false },
21 },
22 link_cta: { type: String , required: true },
23 pixelId: { type: String , required: false },
24 isPublished: { type: String , required: true },
25 addedBy: { type: String , required: true }
26 }, { timestamps: true });
27

28 const Artist = mongoose.models.artist || mongoose.model("artist",
artistSchema);

29

30 export default Artist;

Kode 3.45: Skema entitas Artist

B.4 Message

Entitas Message merepresentasikan pesan masuk dari pengguna melalui formulir Contact
Us. Setiap pesan menyimpan nama pengirim, alamat surel, dan isi pesan yang dikirimkan. Data ini
penting untuk keperluan tindak lanjut oleh tim administrasi atau customer support.

1 import mongoose from "mongoose";
2

3 const messageSchema = new mongoose.Schema(
4 {
5 name: { type: String , required: true },
6 email: { type: String , required: true },
7 message: { type: String , required: true },
8 },
9 { timestamps: true }

10);
11

12 const Message =
13 mongoose.models.Message || mongoose.model("Message",

messageSchema);
14

15 export default Message;

Kode 3.46: Skema entitas Message

88
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

B.5 RequestTicket

Entitas RequestTicket digunakan untuk merekam permintaan pengguna yang ingin
menyewa artis tertentu. Data yang disimpan mencakup nama pemohon, alamat email, dan nama
artis yang diminta. Entitas ini menjadi bagian dari sistem pencatatan permintaan layanan artis dan
dapat digunakan sebagai dasar untuk tindak lanjut oleh pihak agensi.

1 import mongoose from "mongoose";
2

3 const requestTicketSchema = new mongoose.Schema({
4 name: { type: String , required: true },
5 email: { type: String , required: true },
6 requestedArtist: { type: String , required: true },
7 }, { timestamps: true });
8

9 const RequestTicket = mongoose.models.requestTicket || mongoose.
model(’requestTicket ’, requestTicketSchema);

10

11 export default RequestTicket;

Kode 3.47: Skema entitas RequestTicket

B.6 StaffEmail

Entitas StaffEmail digunakan untuk menyimpan informasi staf yang menjadi penerima
otomatis dari pesan yang dikirim pengguna melalui sistem kontak. Setiap entri mencakup nama,
alamat email, deskripsi tugas atau peran, status aktif, serta informasi admin yang menambahkan
data tersebut. Sistem akan menggunakan email aktif dari entitas ini untuk mendistribusikan pesan
masuk secara internal.

1 import mongoose from "mongoose";
2

3 const staffEmailSchema = new mongoose.Schema({
4 name: { type: String , required: true },
5 email: { type: String , required: true },
6 description: { type: String , required: true },
7 isActive: { type: Boolean , required: true },
8 addedBy: { type: String , required: true }
9 }, { timestamps: true });

10

11 const StaffEmail = mongoose.models.staffEmail || mongoose.model(’
staffEmail ’, staffEmailSchema);

12

13 export default StaffEmail;

Kode 3.48: Skema entitas StaffEmail

3.4.3 Mengimplementasikan Sistem Autentikasi dan Otorisasi Berbasis JWT

Dalam sistem backend yang dikembangkan, diperlukan mekanisme untuk memastikan
bahwa hanya admin yang memiliki izin dapat mengakses dan memanipulasi data penting. Untuk
memenuhi kebutuhan tersebut, diterapkan sistem autentikasi dan otorisasi menggunakan JSON Web
Token (JWT). Dengan pendekatan ini, hanya endpoint yang berada dalam jalur protected yang

89
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

mewajibkan permintaan disertai token valid, sehingga keamanan akses lebih terjaga dan pengelolaan
melalui dashboard internal menjadi lebih aman serta terkendali.

Langkah pertama dalam mengamankan sistem backend adalah dengan menentukan
endpoint mana saja yang perlu dibatasi aksesnya. Endpoint yang berkaitan dengan data internal
seperti admin, clients, projects, dan entitas penting lainnya ditempatkan di dalam subfolder
protected, yang menandakan bahwa hanya admin tertentu yang dapat mengaksesnya.

Untuk mengatur pembatasan akses tersebut, dibuat sebuah middleware yang secara otomatis
dijalankan setiap kali ada permintaan menuju endpoint backend. Middleware ini bertugas memeriksa
apakah permintaan tersebut mengarah ke endpoint yang dilindungi, dan jika ya, maka middleware
akan mencari token autentikasi dari cookie atau Authorization header. Jika token tidak ditemukan,
permintaan akan ditolak dengan respons 401 Unauthorized.

Selain itu, setelah token ditemukan, proses selanjutnya adalah memverifikasi validitas token
tersebut menggunakan fungsi jwtVerify dari library jose. Token diverifikasi menggunakan secret
key yang disimpan dalam environment variable (JWT SECRET). Jika token valid, maka payload
di dalamnya akan dibaca dan dapat digunakan dalam proses backend selanjutnya:

1 if (isProtectedRoute(pathname)) {
2 if (!token) {
3 return NextResponse.json({ status: 401, message: ’Unauthorized

’ }, { status: 401 });
4 }
5 const decoded = await verifyAndDecodeToken(token);
6 if (!decoded) return NextResponse.redirect(new URL("/login", req

.url));
7 const adminData = { id: decoded.payload.AdminId as string };
8 }

Kode 3.49: Middleware: Verifikasi JWT

Sementara itu, endpoint login bertugas melakukan autentikasi awal. Admin yang ingin
masuk ke sistem akan mengirimkan username dan password, lalu sistem akan mencocokkan
kredensial tersebut menggunakan bcryptjs. Jika valid, sistem akan menghasilkan token JWT:

1 const isPasswordCorrect = await bcrypt.compare(password ,
existingAdmin.password);

2 if (!isPasswordCorrect) {
3 return NextResponse.json({ status: 401, message: ’Invalid

credentials ’ }, { status: 401 });
4 }
5

6 const token = await new SignJWT({ AdminId: existingAdmin._id.
toString() })

7 .setProtectedHeader({ alg: ’HS256 ’ })
8 .setIssuedAt()
9 .setExpirationTime(’2h’)

10 .sign(new TextEncoder().encode(process.env.JWT_SECRET));

Kode 3.50: Endpoint: Pembuatan JWT setelah login

Token ini kemudian digunakan untuk mengautentikasi dan mengotorisasi permintaan
berikutnya ke endpoint yang bersifat sensitif. Dengan demikian, hanya admin yang telah melalui
proses login dan memiliki token yang valid dapat mengakses data penting, sehingga sistem menjadi
lebih aman dan terkontrol.

Setelah sistem autentikasi dan otorisasi berhasil diterapkan, pengujian dilakukan untuk

90
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

memastikan bahwa hanya admin yang memiliki token valid yang dapat mengakses endpoint-
endpoint penting.

Gambar berikut menunjukkan proses login yang berhasil dilakukan oleh seorang admin.
Pada saat berhasil login, server mengembalikan respons sukses beserta token JWT yang dibutuhkan
untuk mengakses data internal:

Gambar 3.16. Login berhasil dan token JWT diterimaDokumentasi pribadi

Setelah token diperoleh, pengujian dilakukan untuk mengakses salah satu endpoint
yang dilindungi, yaitu /api/artist/protected. Gambar di bawah menunjukkan bagaimana
token dimasukkan dalam header permintaan (pada field Authorization: Bearer) menggunakan
Postman. Hasilnya, server memberikan respons data karena token valid:

91
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

Gambar 3.17. Akses endpoint /api/artist/protected menggunakan token JWT di
Postman Dokumentasi pribadi

Dari hasil ini dapat disimpulkan bahwa sistem otorisasi berhasil membatasi akses terhadap
endpoint penting dan hanya mengizinkan admin yang telah login serta memiliki token yang valid.

3.4.4 Integrasi Data Dari Spotify dan Apple Music API

Untuk meningkatkan keterhubungan antara artis dari agensi LGM Agency dan platform
musik digital, integrasi dilakukan dengan dua layanan utama: Spotify dan Apple Music. Melalui
proses ini, daftar album dan informasi relevan lainnya dari masing-masing artis dapat ditampilkan
secara otomatis di website, sehingga meminimalkan input manual dan memastikan informasi yang
tersedia selalu terbaru dan relevan.

Pada integrasi dengan Spotify, digunakan pendekatan Client Credentials Flow untuk
mendapatkan access token yang digunakan dalam permintaan ke endpoint publik Spotify. Sebuah
endpoint api/spotify/webToken.ts dibuat untuk mengambil token tersebut dan menyimpannya
sementara dalam cache agar tidak perlu diminta ulang setiap kali ada permintaan baru. Token
yang diperoleh kemudian digunakan untuk mengakses berbagai endpoint Spotify seperti /albums,
/tracks, /top-tracks, dan /artist, yang masing-masing menyediakan data seperti daftar album
yang dirilis, lagu individual, lagu paling populer, serta detail umum tentang artis. Endpoint
api/spotify/albums/[id].ts, misalnya, digunakan untuk mengambil daftar album dari seorang
artis berdasarkan ID-nya. Data yang dikembalikan mencakup nama album, tanggal rilis, URL ke
Spotify, dan gambar sampul album, yang kemudian dapat ditampilkan di antarmuka pengguna.

1 import { NextRequest , NextResponse } from ’next/server ’;
2

3 let cachedToken = (global as any).spotifyTokenCache ??= {
4 token: null as string | null ,
5 expiresAt: 0,

92
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

6 };
7

8 // ...
9 export async function POST(...) {

10 // logika mengambil token dari Spotify
11 }

Kode 3.51: Endpoint untuk mengambil token akses dari Spotify

1 import { NextRequest , NextResponse } from ’next/server ’;
2

3 export async function GET(...) {
4 // logika mengambil album berdasarkan ID artis
5 }

Kode 3.52: Endpoint untuk mengambil daftar album dari Spotify

Sementara itu, untuk Apple Music, digunakan iTunes Search API sebagai alternatif dari
Apple Music API karena keterbatasan akses—Apple Music API memerlukan akun developer
berbayar. Melalui iTunes Search API, pencarian data album berdasarkan nama artis dilakukan
secara publik tanpa perlu autentikasi khusus. Endpoint api/iTunes/albums/[id].ts dibuat untuk
mengirim permintaan ke https://itunes.apple.com/lookup dengan parameter entity=album.
Hasil yang dikembalikan kemudian difilter agar hanya mencakup entri yang bertipe Album, dan
informasi yang diekstrak meliputi nama album, nama artis, tanggal rilis, URL Apple Music, serta
gambar sampul dalam dua ukuran berbeda. Selain itu, tersedia pula endpoint api/iTunes/tracks
yang dirancang untuk mengambil daftar lagu berdasarkan ID koleksi album tertentu.

1 import { NextRequest , NextResponse } from ’next/server ’;
2

3 export async function GET(
4 _req: NextRequest ,
5 { params }: { params: { id: string } }
6) {
7 try {
8 const { id } = params;
9

10 const queryParams: Record <string , string > = {
11 id,
12 entity: "album",
13 };
14

15 const iTunesQuery = new URLSearchParams(queryParams).toString
();

16 const res = await fetch(‘https://itunes.apple.com/lookup?${
iTunesQuery}‘);

17

18 if (!res.ok) {
19 throw new Error(‘Failed to fetch: ${res.status} ${res.

statusText}‘);
20 }
21

22 const data = await res.json();
23 const albums = data.results.filter((item: any) => item.

collectionType === "Album");
24

25 const albumData = albums.map((album: any) => ({
26 id: album.collectionId ,
27 name: album.collectionCensoredName ,
28 artistName: album.artistName ,
29 releaseDate: album.releaseDate ,
30 appleMusicUrl: album.collectionViewUrl ,

93
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

31 coverImage: album.artworkUrl60 ?? null ,
32 coverImage2: album.artworkUrl100 ?? null ,
33 }));
34

35 return NextResponse.json(
36 { status: 200, message: ’Albums fetched successfully ’, data:

albumData },
37 { status: 200 }
38);
39 } catch (error) {
40 console.error(error);
41 return NextResponse.json(
42 { status: 500, message: ’Internal Server Error ’ },
43 { status: 500 }
44);
45 }
46 }

Kode 3.53: Endpoint untuk mengambil album dari iTunes Search API

3.5 Kendala dan Solusi

Selama pelaksanaan magang di Five Elements Agency, khususnya dalam pengembangan
fitur untuk subdomain admin dan public, terdapat beberapa kendala teknis maupun administratif
yang memengaruhi proses pengembangan. Kendala-kendala ini diatasi dengan pendekatan teknis
yang adaptif serta diskusi bersama tim developer. Salah satu kendala utama adalah keterbatasan
akses terhadap API dari pihak ketiga seperti Apple Music API. API tersebut mengharuskan
penggunaan akun Apple Developer berbayar yang tidak tersedia dalam konteks proyek ini. Sebagai
solusi, digunakan iTunes Search API yang dapat diakses secara publik tanpa perlu autentikasi atau
akun khusus, meskipun dengan fitur yang lebih terbatas dibandingkan Apple Music API. Selain
itu, dalam tahap pengujian autentikasi pengguna dan akses endpoint yang dilindungi, ditemukan
tantangan dalam menyinkronkan middleware autentikasi dengan endpoint dinamis pada Next.js.
Untuk mengatasi hal ini, dilakukan refactoring logika middleware serta pemisahan antara endpoint
publik dan privat, sehingga hanya pengguna dengan token valid yang dapat mengakses data sensitif
seperti daftar artis atau permintaan klien.

Kendala lain yang dihadapi adalah pengelolaan token autentikasi pada Spotify API. Token
yang diperoleh melalui mekanisme OAuth memiliki masa berlaku terbatas, sehingga perlu adanya
sistem caching untuk menyimpan token secara sementara dan memperbaruinya secara otomatis.
Solusi ini diimplementasikan dalam endpoint api/spotify/webToken, yang menggunakan cache
global pada server untuk menyimpan token beserta waktu kedaluwarsa. Di sisi lain, dalam
pengambilan data dari API eksternal, terkadang terjadi keterlambatan respons atau error timeout.
Untuk mengurangi dampaknya, penanganan error dan fallback ditambahkan agar aplikasi tidak gagal
sepenuhnya ketika salah satu layanan eksternal sedang tidak stabil. Secara umum, setiap kendala
yang muncul dijadikan sebagai bagian dari proses pembelajaran langsung, dan solusi-solusi yang
diterapkan berfokus pada efisiensi, keamanan, dan skalabilitas sistem.

94
Implementasi Arsitektur Backend di Five Elements Marketing Agency..., Leonardo Jonathan

Fernandez Namlay, Universitas Multimedia Nusantara

	BAB 3 Pelaksanaan Kerja Magang
	3.1 Kedudukan dan Koordinasi
	3.2 Tugas yang Dilakukan
	3.3 Uraian Pelaksanaan Magang
	3.4 Proses dan Hasil
	3.4.1 Pengembangan RESTful API Pada website Five Elements dan LGM Agency
	3.4.2 Merancang dan Mengelola Database Menggunakan MongoDB
	3.4.3 Mengimplementasikan Sistem Autentikasi dan Otorisasi Berbasis JWT
	3.4.4 Integrasi Data Dari Spotify dan Apple Music API

	3.5 Kendala dan Solusi

