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Diagnosis kanker payudara yang presisi memerlukan studi literatur mendalam antara
pemahaman klinis mengenai sistem staging AJCC dan karakteristik molekuler data ekspresi gen
yang dinormalisasi menggunakan metode Transcripts Per Million (TPM). Mengingat kompleksitas
data berdimensi tinggi, fondasi teoretis penelitian ini difokuskan pada mekanisme seleksi fitur DFP
yang mengadopsi logika fuzzy untuk menangani ketidakpastian biologis, serta prinsip kerja SVM
dalam membentuk hyperplane optimal untuk klasifikasi data genomik.

2.1 Kanker Payudara

Kanker payudara merupakan salah satu jenis kanker dengan prevalensi tertinggi pada
perempuan di seluruh dunia, yang berasal dari pertumbuhan abnormal sel epitel pada jaringan
duktus atau lobulus payudara [12]. Pertumbuhan ini dapat bersifat invasif, di mana sel kanker
menembus membran basal dan menyebar ke jaringan sekitarnya, serta dapat mengalami metastasis
ke organ lain melalui sistem limfatik atau peredaran darah [13]. Sistem limfatik berperan penting
dalam proses metastasis karena memungkinkan sel kanker bermigrasi menuju kelenjar getah bening
regional sebelum menyebar ke organ jauh seperti paru-paru, hati, dan tulang [13]. Proses metastasis
ini menjadi penyebab utama meningkatnya angka mortalitas pada kanker payudara stadium lanjut.
Dalam konteks klinis, penentuan stadium menjadi faktor penting karena menentukan strategi
pengobatan serta prognosis pasien. Stadium awal umumnya memiliki tingkat kesembuhan lebih
tinggi, sedangkan stadium lanjut menunjukkan risiko metastasis yang lebih besar [14].

Sistem klasifikasi kanker payudara secara global mengikuti pedoman American Joint
Committee on Cancer (AJCC) yang menggunakan pendekatan TNM (Tumor, Node, Metastasis)
untuk menentukan stadium penyakit [15]. Sistem TNM menilai tiga komponen utama, yaitu ukuran
dan invasi tumor primer (T), keterlibatan kelenjar getah bening regional (N), serta keberadaan
metastasis jauh (M). Berdasarkan kombinasi ketiga faktor ini, kanker payudara diklasifikasikan
ke dalam beberapa stadium, mulai dari Stadium O hingga Stadium IV yang mengacu pada AJCC
Cancer Staging Manual, Edisi ke-8 [15]. Stadium O menunjukkan carcinoma in situ, yaitu sel
abnormal yang belum menyebar ke jaringan sekitar, sedangkan Stadium I menggambarkan kanker
yang masih terbatas pada jaringan payudara. Stadium II menandakan kanker yang mulai berkembang
ke jaringan sekitarnya, dan Stadium III menunjukkan keterlibatan kelenjar getah bening secara lebih
luas. Sementara itu, Stadium IV menandakan tahap metastasis, di mana sel kanker telah menyebar

ke organ tubuh lain [14].



Tabel 2.1. Pengelompokan stadium kanker payudara menurut AJCC edisi ke-8

Stage | Tumor (T) | Node (N) | Metastasis (M)
0 Tis NO MO
IA T1 NO MO
IB TO N1mi MO
T1 Nlmi MO
ITA TO N1 MO
T1 N1 MO
T2 NO MO
1B T2 N1 MO
T3 NO MO
1A TO N2 MO
T1 N2 MO
T2 N2 MO
T3 N1 MO
T3 N2 MO
I11B T4 NO MO
T4 N1 MO
T4 N2 MO
IIcC Any T N3 MO
v Any T Any N M1

sumber: [15]

2.2 Ekspresi Gen (TPM)

Ekspresi gen menggambarkan tingkat aktivitas gen dalam suatu sel atau jaringan yang
diukur berdasarkan jumlah transcript RNA yang dihasilkan dari proses transkripsi DNA. Analisis
ekspresi gen modern banyak menggunakan teknologi RNA-sequencing (RNA-seq) karena mampu
mengukur tingkat transkripsi secara kuantitatif dan mendeteksi variasi genetik secara global [16].
Namun, data mentah hasil RNA-seq berbentuk read counts perlu dinormalisasi untuk menghilangkan
bias yang disebabkan oleh panjang gen dan kedalaman sekuensing (sequencing depth).

Metode TPM merupakan pendekatan normalisasi yang lebih umum digunakan karena
memberikan hasil yang dapat dibandingkan antar sampel dengan akurasi yang lebih baik [17].
Secara prinsip, TPM menormalkan jumlah reads yang dipetakan ke suatu gen terhadap panjang
gen tersebut dan total reads dalam satu sampel. Dengan demikian, nilai TPM menunjukkan proporsi
transkrip suatu gen relatif terhadap total transkrip dalam satu sampel [17]. Secara matematis, nilai
TPM untuk suatu gen i didefinisikan sebagai persamaan 2.1.
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dimana pada persamaan 2.1, g; adalah jumlah read yang dipetakan ke transkrip, /; adalah
panjang transkrip, dan Y;(g;/l;) merupakan total dari semua read yang dipetakan dan telah
dinormalisasi dengan panjang transkrip. Langkah normalisasi ini memastikan bahwa jumlah total
nilai TPM di setiap sampel adalah sama, yaitu satu juta, yang menjadikan TPM ideal untuk

membandingkan ekspresi gen antar sampel dengan ukuran pustaka sekuensing yang berbeda [17].

2.3 Fuzzy Logic

Logika fuzzy, yang diperkenalkan pertama kali oleh Lotfi A. Zadeh pada tahun 1965,
merupakan perluasan dari logika Boolean klasik. Jika logika klasik hanya mengenal dua nilai
kebenaran mutlak, yaitu 0 (salah) dan 1 (benar), logika fuzzy memungkinkan nilai keanggotaan yang
berada di antara rentang O hingga 1. Pendekatan ini dirancang untuk memodelkan ketidakpastian
dan ketidaktepatan yang sering ditemukan dalam bahasa alami dan persepsi manusia, memberikan
kerangka kerja matematis untuk menangani informasi yang bersifat ambigu [18].

Dalam penerapannya, logika fuzzy memetakan ruang input ke ruang output menggunakan
serangkaian aturan /F-THEN yang merepresentasikan pengetahuan pakar, sehingga memungkinkan
sistem untuk mengambil keputusan yang lebih halus dibandingkan sistem biner [18].

2.3.1 Konsep Himpunan Tegas vs. Himpunan Fuzzy

Dasar dari logika konvensional adalah himpunan tegas (crisp sef). Dalam himpunan ini,
sebuah elemen hanya memiliki dua kemungkinan: menjadi anggota himpunan sepenuhnya atau tidak
sama sekali. Hal ini sering direpresentasikan dengan logika biner O atau 1 [18]. Secara matematis,
fungsi karakteristik untuk himpunan tegas A pada semesta X didefinisikan dalam Persamaan 2.2.

1, jikaxecA
2a(x) = (2.2)
0, jikax¢A

Persamaan 2.2 menegaskan batasan yang kaku. Jika nilai x berada dalam kriteria A, maka
nilainya mutlak 1; jika meleset sedikit saja, nilainya langsung jatuh ke 0O, tanpa ada nilai tengah
atau toleransi. Berbeda dengan himpunan tegas, himpunan fuzzy memungkinkan adanya derajat

keanggotaan (membership degree).

2.3.2 Fungsi Keanggotaan (Membership Function)

Komponen vital dalam Fuzzy Logic adalah Fungsi Keanggotaan atau Membership Function
(MF) [18]. Fungsi ini adalah kurva yang memetakan titik-titik input data ke dalam nilai
keanggotaannya (sering dilambangkan dengan () yang memiliki interval antara O sampai 1. Salah



satu bentuk kurva yang paling sederhana dan sering digunakan adalah Kurva Segitiga, yang

visualisasinya dapat dilihat pada Gambar 2.1.
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Gambar 2.1. Representasi kurva keanggotaan segitiga
Sumber: [18]

Gambar 2.1 di atas memperlihatkan bentuk representasi kurva segitiga yang dibentuk oleh
tiga parameter utama, yaitu titik a (batas bawah), titik b (puncak/pusat), dan titik ¢ (batas atas). Nilai
keanggotaan tertinggi berada tepat di titik b. Untuk mendefinisikan kurva segitiga tersebut secara

presisi dalam model matematika, menggunakan persamaan 2.3.

. X—ad Cc—X
.usegiliga(X;avbvc) = max (1’1’111‘1 (b_a, C—b) ,0) 2.3)

Persamaan 2.3 memastikan bahwa nilai keanggotaan akan naik secara linear dari 0 di titik
a hingga mencapai 1 di titik b, kemudian turun kembali secara linear hingga 0 di titik c¢. Di luar
rentang tersebut, nilai keanggotaan kembali ke O [18].

Selain segitiga, terdapat kurva trapesium yang memiliki area datar di bagian puncaknya.
Bentuk ini sangat berguna untuk memodelkan kondisi di mana nilai optimal berada dalam sebuah

rentang interval, bukan satu titik tunggal, sebagaimana ditunjukkan pada Gambar 2.2.
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Gambar 2.2. Representasi kurva keanggotaan trapesium

Sumber: [18]

gambar 2.2 menunjukkan bentuk trapesium yang didefinisikan oleh empat parameter:
a,b,c, dan d. Area datar di bagian atas menunjukkan bahwa elemen di antara b dan ¢ memiliki

keanggotaan penuh (nilai 1). Rumus untuk fungsi trapesium ditunjukkan dalam Persamaan 2.4.

C(x—a  d—x
.utrapesium(X;avbucvd) = max (mln (b—a’ I, d—c> 70> 2.4)

Dari persamaan 2.4, terlihat bahwa jika x berada di antara b dan ¢, fungsi min akan memilih
angka 1. Fungsi ini turun secara linear menuju 0 saat x bergerak dari ¢ ke d.

Fungsi ketiga yang sering digunakan untuk representasi data yang lebih alami dan halus
adalah fungsi Gaussian [18]. Kurva ini berbentuk seperti lonceng simetris dan sangat populer dalam
aplikasi statistik maupun neural networks, seperti yang diperlihatkan pada Gambar 2.3.
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Gambar 2.3. Representasi kurva keanggotaan gaussian

Sumber: [18]

Seperti terlihat pada gambar 2.3, kurva ini tidak memiliki sudut tajam seperti segitiga atau
trapesium, melainkan transisi yang mulus (smooth). Kurva ini didefinisikan sepenuhnya oleh dua
parameter: pusat ¢ dan lebar kurva 6. Rumus untuk fungsi gaussian terdapat pada persamaan 2.5

,1(@)2
.ugaussian(XQC,O-)ze 2\ o 2.5

Dalam persamaan 2.5, parameter ¢ menentukan posisi tengah kurva di sumbu horizontal,

sedangkan o (standar deviasi) menentukan seberapa “gemuk” atau “kurus” kurva lonceng tersebut.

2.3.3 Operator Logika Fuzzy

Layaknya logika Boolean yang memiliki operator AND, OR, dan NOT, logika fuzzy juga
memiliki operasi serupa untuk menggabungkan himpunan. Namun, karena nilainya kontinu antara
0 dan 1, operator ini mengalami penyesuaian matematis [18].

Pertama adalah operator Intersection (Irisan), yang setara dengan logika AND. Dalam fuzzy,
jika kita memiliki dua himpunan A dan B, nilai keanggotaan hasil irisan biasanya diambil dari nilai

terendah di antara keduanya, seperti pada Persamaan 2.6.

Hans(x) = min(ia (x), ta(x)) (2.6)

Persamaan 2.6 menunjukkan bahwa “derajat kebenaran” dari pernyataan A DAN B”
dibatasi oleh elemen yang paling lemah atau paling rendah nilai keanggotaannya.

Kedua adalah operator Union (Gabungan), yang setara dengan logika OR. Operasi ini
mengambil nilai maksimum dari derajat keanggotaan himpunan-himpunan yang terlibat, sesuai
Persamaan 2.7.
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Haup(x) = max(pa (x), Hp(x)) @7

Dengan Persamaan 2.7, pernyataan A ATAU B akan memiliki nilai kebenaran setinggi
komponen yang paling kuat atau paling benar di antara keduanya.

Terakhir adalah operator Complement, yang setara dengan logika NOT. Operasi ini
membalik nilai keanggotaan. Jika sebuah elemen adalah anggota himpunan A dengan derajat 0.7,

maka ia adalah bukan anggota A” dengan derajat 0.3. Rumusnya dinyatakan dalam Persamaan 2.8.

tar(x) =1 — pa(x) (2.8)

Persamaan 2.8 ini sangat sederhana, yaitu mengurangi nilai 1 dengan derajat keanggotaan

saat ini, mencerminkan inversi total dalam domain fuzzy.

2.3.4 Arsitektur Sistem Inferensi Fuzzy

Dalam penerapannya, Fuzzy Logic bekerja melalui sebuah sistem yang terstruktur. Proses
ini mengubah input tegas (crisp input) menjadi output tegas melalui beberapa tahapan pemrosesan
logika, mulai dari fuzzifikasi hingga defuzzifikasi [18]. Alur kerja lengkap dari sistem ini dapat
dilihat pada Gambar 2.4.
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Gambar 2.4. Diagram blok sistem inferensi fuzzy
Sumber: [18]

Gambar 2.4 menggambarkan alur kerja standar Sistem Inferensi Fuzzy. Terlihat jelas bahwa
Inference Engine bertindak sebagai otak yang mengambil keputusan berdasarkan aturan "IF-THEN”
sebelum hasilnya dikonversi kembali menjadi nilai tegas. Tahap terakhir dari proses ini adalah
defuzzifikasi menggunakan metode Centroid seperti pada Persamaan 2.9.

o JHelz) 2dz
© T Thelydz @9
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Persamaan 2.9 bekerja dengan cara membagi momen area (hasil perkalian nilai keanggotaan
dengan nilai variabel) dengan luas total area tersebut. Hasil z* inilah yang menjadi nilai output tegas

yang akan dieksekusi oleh sistem kendali.

2.4 Feature Selection

Feature selection merupakan proses penting dalam pembelajaran mesin dan analisis data
yang bertujuan untuk memilih subset fitur paling relevan dari sekumpulan fitur awal yang berukuran
besar. Tujuan utama dari feature selection adalah untuk meningkatkan kinerja model dengan
menghilangkan fitur yang bersifat redundan atau tidak informatif, sehingga kompleksitas model
dapat dikurangi tanpa kehilangan informasi penting [19]. Proses ini sangat penting terutama pada
data berdimensi tinggi seperti data genomik atau citra medis, di mana jumlah fitur sering kali jauh
melebihi jumlah sampel yang tersedia. Dengan memilih fitur yang paling berpengaruh, feature
selection tidak hanya meningkatkan akurasi klasifikasi, tetapi juga mempercepat waktu komputasi
serta membantu interpretasi hasil model secara lebih bermakna [19].

2.5 Discriminant Fuzzy Pattern

Metode DFP merupakan pendekatan feature selection berbasis logika fuzzy yang dirancang
untuk mengidentifikasi fitur paling relevan pada data berdimensi tinggi, seperti data microarray.
Pendekatan ini dikembangkan untuk mengatasi permasalahan curse of dimensionality yang muncul
ketika jumlah fitur (misalnya gen) jauh lebih besar dibandingkan jumlah sampel yang tersedia. DFP
bekerja dengan prinsip fuzzy linguistic labeling, di mana setiap nilai ekspresi fitur direpresentasikan
dalam bentuk label linguistik seperti Low, Medium, dan High. Representasi ini memungkinkan
analisis yang lebih fleksibel dan tahan terhadap variasi data, sekaligus memudahkan identifikasi fitur
yang paling diskriminatif antar kelas [11].

Tahapan awal dalam algoritma DFP adalah fuzzification, yaitu proses membangun fungsi
keanggotaan fuzzy untuk setiap fitur. Pada tahap ini, nilai numerik ekspresi fitur dikonversi menjadi
derajat keanggotaan terhadap tiga kategori linguistik (Low, Medium, dan High) menggunakan fungsi

keanggotaan Gaussian. Fungsi ini secara umum dinyatakan dalam persamaan 2.10.

- 2
1 1.11(x) = exp <—(xc““’)> (2.10)

2
20 yp

Dalam Persamaan 2.10, parameter ¢z p,i dan O p7,z masing-masing menunjukkan pusat
dan deviasi standar untuk setiap label linguistik. Hasil dari tahap ini adalah representasi fuzzy
microarray, di mana setiap nilai fitur dinyatakan berdasarkan tingkat keanggotaannya terhadap label
linguistik tertentu [11].

Langkah selanjutnya adalah discretization, yaitu proses mengonversi nilai derajat
keanggotaan menjadi satu label linguistik tunggal. Label ini dipilih berdasarkan kategori dengan
nilai keanggotaan tertinggi [11]. Misalnya, jika suatu gen memiliki nilai keanggotaan tertinggi pada
kategori High, maka nilai ekspresi gen tersebut diklasifikasikan sebagai H. Proses ini menghasilkan
matriks diskret yang berisi representasi linguistik seluruh fitur dalam setiap sampel.
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Tahap ketiga adalah pembentukan Fuzzy Pattern (FP) untuk setiap kelas. Fuzzy Pattern
merupakan representasi pola umum dari kelas tersebut, yang diperoleh dengan menghitung frekuensi
kemunculan label linguistik (L, M, atau H) pada setiap fitur di dalam kelas [11]. Label dengan
frekuensi tertinggi menjadi representasi linguistik utama dari fitur pada kelas tersebut, sebagaimana

dirumuskan dalam persamaan 2.11.

FP(g;) = argmax freqck(l,gi) 2.11)
1€{LM H}

Fuzzy Pattern yang terbentuk berfungsi sebagai template yang menggambarkan
karakteristik khas setiap kelas berdasarkan kecenderungan label linguistik fitur-fiturnya.

Tahap terakhir adalah pembentukan DFP. Pada tahap ini, setiap pasangan Fuzzy Pattern
antar kelas dibandingkan untuk mengidentifikasi fitur yang memiliki nilai linguistik berbeda. Jika
sebuah fitur memiliki label linguistik yang berbeda antara dua kelas, maka fitur tersebut dianggap
sebagai fitur diskriminatif dan dimasukkan ke dalam DFP kelas terkait [11]. Secara matematis, fitur

diskriminatif untuk kelas C; didefinisikan dalam persamaan 2.12.

DFPFc, = {gi| FPc;(gi) # FPc;(8i), Vj # i} (2.12)

Hasil akhir dari proses ini adalah himpunan DFP untuk setiap kelas, yang berisi fitur-fitur

dengan kemampuan tertinggi dalam membedakan antar kelas.

2.6 Support Vector Machine (SVM)

SVM merupakan algoritma pembelajaran mesin yang dikembangkan pertama kali oleh
Vapnik dan koleganya pada awal 1990-an, yang dirancang untuk menyelesaikan masalah klasifikasi
dan regresi dengan membangun hyperplane optimal sebagai pemisah antar kelas dalam ruang fitur
berdimensi tinggi [20]. Hyperplane optimal berada di tengah margin yang memisahkan dua kelas
secara maksimal, terlihat pada Gambar 2.5. Prinsip dasar dari SVM adalah mencari decision
boundary yang memaksimalkan margin antara dua kelas data. Semakin besar margin antara
titik-titik terdekat dari masing-masing kelas (dikenal sebagai support vectors), maka model yang
dihasilkan akan memiliki generalisasi yang lebih baik terhadap data baru. SVM dapat digunakan
baik untuk data yang linearly separable maupun non-linearly separable, di mana pada kasus non-
linear, kernel function digunakan untuk memetakan data ke ruang fitur berdimensi lebih tinggi agar

dapat dipisahkan secara linear [20], [21].

14



D Maximum.
A /margin
o o

-
o Cal

X4

Gambar 2.5. Hyperplane optimal dengan margin maksimum
Sumber: [21]

SVM bekerja dengan cara mencari hyperplane yang memisahkan dua kelas data.
Hyperplane yang ideal adalah yang memberikan margin terlebar antara kelas positif dan negatif

[21], sebagaimana direpresentasikan secara matematis dalam Persamaan 2.13.

fx)=wlx+b=0 (2.13)

Dalam persamaan 2.13, nilai w merupakan vektor bobot yang menentukan orientasi bidang
pemisah, sedangkan b adalah bias yang mengatur posisi bidang tersebut terhadap titik asal koordinat
[20]. Model SVM bertujuan untuk meminimalkan fungsi objektif seperti yang ditunjukkan pada

persamaan 2.14.

. 1 2 n
— cY ¢ 2.14
Vg};gzl\WII + ;C (2.14)

Komponen pertama, |jw||?, digunakan untuk memaksimalkan margin antara dua kelas,

semakin kecil nilai ||w]|, semakin besar jarak antar kelas. Komponen kedua, CY.? | {;, merupakan

fungsi penalti yang mengontrol jumlah kesalahan klasifikasi. Parameter C berfungsi sebagai
regularization parameter yang menyeimbangkan antara lebar margin dan tingkat kesalahan; nilai
C besar akan meminimalkan kesalahan tetapi dapat mempersempit margin. Variabel §; disebut slack
variable, yang mengizinkan sejumlah data untuk salah klasifikasi (relevan untuk data yang tidak
terpisahkan secara sempurna). Optimisasi tersebut dilakukan dengan kendala yang tercantum dalam

persamaan 2.15.

yiW'xi+b)>1-&, §>0 (2.15)
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Dengan y; € {—1,+1} adalah label kelas dari sampel ke-i. (W x; + b) adalah fungsi linear
yang memprediksi kelas dari sampel x;. Jika y;(w” x; +-b) > 1, maka sampel diklasifikasikan dengan
benar dan berada di luar margin. Jika 0 < y;(w’x; +b) < 1, maka sampel berada dalam margin, dan
{; menjadi ukuran besar pelanggaran margin tersebut.

Untuk menyelesaikan permasalahan optimisasi tersebut secara efisien, digunakan
pendekatan Lagrange Dual Problem, yang didefinisikan dalam Persamaan 2.16.

NI'—‘

n n n
mgxz o — Z Zaloc]y,yj x X;) (2.16)

i=1 i=1j=1

Persamaan di atas harus diselesaikan dengan memenuhi syarat batas tertentu agar solusi

yang dihasilkan valid. Syarat-syarat tersebut dirinci dalam Persamaan 2.17.

M:

ayi=0, dan O0< <C 2.17)
1

o; merupakan Lagrange multipliers yang menentukan kontribusi setiap sampel terhadap
posisi hyperplane. Hanya sampel dengan o; > 0 yang menjadi support vectors, yaitu titik yang
terletak tepat di margin dan berpengaruh langsung terhadap pembentukan batas keputusan. Setelah
parameter ¢; dan b diperoleh, fungsi klasifikasi SVM dirumuskan dalam persamaan 2.18.

f(x) =sign (Z o;yiK (x;,X) + b) (2.18)
=1

K(x;,x) adalah kernel function yang menggantikan hasil perkalian titik x!x untuk
menangani data non-linear. Fungsi kernel memetakan data dari ruang asli ke ruang fitur berdimensi
lebih tinggi sehingga dapat dipisahkan secara linear. Beberapa kernel yang umum digunakan antara
lain sebagai berikut.

Linear kernel adalah bentuk kernel paling sederhana dan digunakan ketika data dapat

dipisahkan secara linear yang dinyatakan dalam persamaan 2.19.
K(xi,X;) = X! X; (2.19)

Nilai K(x;,x;) menunjukkan tingkat kemiripan antara dua vektor fitur x; dan x;.
Polynomial kernel memperkenalkan non-linearitas ke dalam model dengan menaikkan
derajat hubungan antara fitur yang dinyatakan dalam persamaan 2.20.

K(x;,x;) = (x'xj+¢)? (2.20)

c adalah konstanta yang mengontrol bias dari model, d adalah derajat polinomial yang menentukan
kompleksitas batas keputusan. Nilai d yang lebih tinggi memungkinkan model menangkap interaksi
fitur yang lebih kompleks, tetapi berisiko menyebabkan overfitting.

RBF kernel (juga dikenal sebagai Gaussian kernel) merupakan salah satu kernel paling

populer karena kemampuannya memetakan data ke ruang fitur berdimensi tak hingga, sebagaimana
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dirumuskan dalam persamaan 2.21.

w2
K(xi,X;) = exp (—”"—"’) 221)

Parameter 6 mengontrol lebar fungsi Gaussian. Nilai ¢ kecil maka fungsi lebih tajam, model
sensitif terhadap perubahan lokal, sedangkan nilai o besar akan memiliki fungsi lebih lebar, model

menjadi lebih halus.

2.7 Confusion Matrix

Confusion Matrix merupakan alat evaluasi yang digunakan untuk menilai performa model
klasifikasi dengan membandingkan nilai prediksi model terhadap label sebenarnya. Dalam kasus
klasifikasi biner, hasil prediksi dapat dikategorikan menjadi empat kelompok, yaitu True Positive
(TP), True Negative (TN), False Positive (FP), dan False Negative (FN) [22].

Tabel 2.2. Confusion Matrix

Prediksi/Aktual Positif Negatif
Positif True Positive(TP) | False Negative(FN)
Negatif False Positive(FP) | True Negative(TP)

sumber: [22]

Penjelesan masing-masing hasil confusion matrix pada Table 2.2 sebagai berikut.
1. True Positive (TP): Sampel dengan label aktual positif yang diprediksi positif oleh model.
2. True Negative (TN): Sampel dengan label aktual negatif yang diprediksi negatif oleh model.
3. False Positive (FP): Sampel dengan label aktual negatif tetapi diprediksi positif oleh model.
4. False Negative (FN): Sampel dengan label aktual positif tetapi diprediksi negatif oleh model.

Berdasarkan nilai-nilai tersebut, beberapa metrik evaluasi dapat dihitung untuk mengukur kinerja

model, sebagai berikut.

1. Accuracy merupakan metrik yang paling umum digunakan untuk mengukur kinerja model
klasifikasi. Metrik ini menunjukkan proporsi jumlah prediksi yang benar (baik positif
maupun negatif) terhadap keseluruhan jumlah data uji, sebagaimana dirumuskan dalam
persamaan 2.22.

Accuracy = P+ Ik (2.22)
TP+TN+FP+FN

Nilai akurasi yang tinggi menunjukkan bahwa model mampu memberikan prediksi

yang tepat secara keseluruhan. Namun, pada dataset yang tidak seimbang (imbalanced
dataset), akurasi dapat menyesatkan karena model cenderung lebih sering memprediksi kelas

mayoritas dengan benar, sementara gagal pada kelas minoritas.

2. Sensitivity, atau disebut juga Recall atau True Positive Rate (TPR), mengukur sejauh mana

model mampu mengenali kelas positif dengan benar. Perhitungan metrik ini dinyatakan
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dalam persamaan 2.23
TP

Sensitivity = ———— (2.23)

TP+FN
Nilai Sensitivity yang tinggi menunjukkan bahwa model memiliki kemampuan yang baik
dalam mendeteksi kasus positif. Metrik ini sangat penting dalam konteks diagnosis medis, di

mana kesalahan mendeteksi kasus positif (False Negative) dapat berakibat fatal.

. Specificity mengukur kemampuan model dalam mengidentifikasi kelas negatif secara benar.
Formula untuk menghitung nilai ini ditunjukkan pada persamaan 2.24.

TN

Spe01ﬁc1ty = m

(2.24)

Semakin tinggi nilai Specificity, semakin baik model dalam menghindari kesalahan
klasifikasi terhadap kelas negatif. Metrik ini penting dalam aplikasi di mana kesalahan
deteksi positif palsu (False Positive) dapat menyebabkan konsekuensi yang tidak diinginkan,

seperti tindakan medis yang tidak perlu.

. Precision menunjukkan proporsi prediksi positif yang benar-benar positif. Definisi matematis
dari metrik ini dapat dilihat pada persamaan 2.25.

Precision = L (2.25)

TP+FP
Metrik ini menggambarkan tingkat keakuratan model ketika menyatakan bahwa suatu
sampel termasuk dalam kelas positif. Nilai Precision yang tinggi menandakan bahwa model
jarang memberikan prediksi positif yang salah, sehingga mengurangi kemungkinan false

alarm.

. F1-Score merupakan metrik gabungan yang menyeimbangkan antara Precision dan Recall,
khususnya berguna pada data yang tidak seimbang. Hubungan harmonik antara kedua metrik

tersebut dirumuskan dalam persamaan 2.26.

Precision x Recall
F1-S =) 2.26
B & Precision + Recall ( )

F1-Score bernilai tinggi ketika model mampu mencapai keseimbangan antara kemampuan
mendeteksi kasus positif (Recall tinggi) dan ketepatan prediksi positif (Precision tinggi).

Nilai F1-Score berada antara O dan 1, dengan 1 menunjukkan performa sempurna.

. ROC Curve (Receiver Operating Characteristic Curve) merupakan salah satu metode evaluasi
yang digunakan untuk mengukur performa model klasifikasi berdasarkan variasi ambang
batas (threshold) probabilitas. Kurva ROC menggambarkan hubungan antara True Positive
Rate (TPR) dan False Positive Rate (FPR) pada berbagai nilai ambang klasifikasi [22], yang
definisinya terdapat pada persamaan 2.27.

FP

TPR e —
FP+TN

FPR (2.27)

“TP+FN’
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7. Area Under Curve (AUC) adalah luas area di bawah kurva ROC dan digunakan sebagai
ukuran numerik untuk menilai performa keseluruhan model. Nilai AUC berada dalam
rentang O hingga 1 [23], dengan interpretasi pada Table 2.3.

Tabel 2.3. Interpretasi AUC

Nilai AUC Interpretasi

0.9 < AUC < 1.0 | Sangat baik

0.8 < AUC < 0.9 | Cukup baik

0.7 <AUC < 0.8 Cukup

0.6 < AUC < 0.7 Kurang

0.5 <AUC< 0.6 Gagal
sumber: [23]

2.8 Research Gap

Dalam rangka mempertegas kontribusi penelitian ini dalam ranah deteksi kanker
payudara berbasis ekspresi gen, dilakukan tinjauan sistematis terhadap studi-studi terdahulu yang
dipublikasikan dalam periode 2020 hingga 2025. Tinjauan ini difokuskan untuk mengidentifikasi
keterbatasan metode seleksi fitur, khususnya dalam menangani dimensi tinggi dan ketidakpastian
data. Pemetaan komprehensif mengenai metode, algoritma, serta research gap yang menjadi dasar

urgensi penerapan pendekatan Discriminant Fuzzy Pattern (DFP) dirangkum dalam tabel 2.4.

Tabel 2.4. Research gap perbandingan metode seleksi fitur deteksi kanker

No | Judul paper Seleksi fitur Algoritma Thn | Dataset Hasil Ref
1 Feature Selection in Breast | KAO + AOA | SVM 2025 | Gene Acc: 98.9% [24]
Cancer Gene Expression | (Optimization) Expression
Data Using KAO and AOA
with SVM Classification
2 An Improved Deep | MRMR (Filter) BiLSTM 2025 | TCGA- Acc: 96.0% [25]
Learning Algorithm for + CNN BRCA

Breast Cancer Survival
Prediction Based on
Multi-Omics Data

3 Identification of Gene | NCA + MRMR ML 2024 | TCGA- Acc: 98.3% [26]
Expression in Different (Ensemble) BRCA
Stages of Breast Cancer (miRNA)
with Machine Learning

4 Feature  Selection in | SHAP (XAI- | Random 2024 | TCGA Acc: 99.8% [27]
Cancer Classification: | based) Forest, RNA-seq
Utilizing Explainable Al XGBoost

to Uncover Influential

Genes

19



No | Judul paper Seleksi fitur Algoritma Thn | Dataset Hasil Ref
5 Comprehensive Bioinformatics Random 2024 | TCGA- Acc: 97.19% | [28]
bioinformatics and | (Diff. Exp + PPI) | Forest BRCA (Staging)
machine learning analyses
for breast cancer staging
6 Breast Cancer | MIM-IMFO HH- 2023 | Mendeley Acc: 97.97% [29]
Classification by Gene | (Optimization) AUSVM (Gene Exp)
Expression Analysis using
Hybrid FS
7 A Comparative Analysis | ReliefF, Chi- | SVM 2023 | 10 Chi-Square + | [30]
of  Feature Selection | Square, ANOVA Microarray SVM best
Algorithms for Cancer Datasets
Classification
8 An automatic detection of | Ensemble Ensemble 2022 | Breast Acc: 98% [3]
breast cancer diagnosis | Feature Selection | Classifiers Cancer
and prognosis based on Datasets
machine learning
9 Feature Selection | FC, FDR, Mutual | Gradient 2021 TCGA High [31]
for Breast Cancer | Information Boosting (Mutation + | Performance
Classification by Exp)
Integrating Somatic
Mutation
10 | Feature selection and | PCA (Reduction) LR, RF | 2021 | Microarray LR > PCA [32]
classification approaches DT
in gene expression of
breast cancer

Analisis komparatif yang tersaji pada tabel 2.4 menggarisbawahi urgensi penerapan metode
DFP sebagai pendekatan yang lebih adaptif dalam menangani karakteristik data ekspresi gen.
Dominasi metode seleksi fitur deterministik (crisp) pada literatur terkini cenderung memiliki
keterbatasan dalam mengakomodasi inherensi ketidakpastian biologis, khususnya pada area
tumpang tindih (overlap) antar stadium kanker yang tidak selalu bersifat biner. Sementara itu,
penggunaan algoritma kompleks berbasis Deep Learning maupun optimasi meta-heuristik sering
kali terkendala oleh risiko overfitting dan inefisiensi komputasi ketika diterapkan pada dataset
berdimensi tinggi dengan jumlah sampel terbatas (HDLSS). Sebagai solusi, DFP menawarkan
kerangka kerja yang lebih robust dalam mereduksi dimensi sekaligus mempertahankan informasi
diskriminatif esensial. Lebih jauh lagi, DFP menghasilkan luaran berbasis pola linguistik (Low,
Medium, High) yang menjamin transparansi, sehingga memfasilitasi validasi biologis dan penemuan

biomarker yang lebih dapat dijelaskan secara medis.
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