BAB 3
METODOLOGI PENELITIAN

Penelitian ini dirancang untuk memverifikasi efikasi profil ekspresi gen dalam membedakan
antara kanker payudara stadium awal dan lanjut melalui kerangka kerja komputasional yang
presisi. Untuk mengatasi tantangan data High-Dimensional Low-Sample Size (HDLSS) dan
ketidakpastian batas kelas yang inheren pada dataset biologis, diterapkan pendekatan hibrida yang
mengintegrasikan DFP untuk seleksi fitur dan SVM untuk klasifikasi. Metode DFP diprioritaskan
karena kemampuannya memodelkan keanggotaan fitur fuzzy, yang memungkinkan pelestarian
informasi diskriminatif yang sering kali diabaikan oleh pendekatan statistik konvensional atau
metode reduksi berbasis varians (seperti PCA) yang cenderung melewatkan fitur bervarians rendah
namun signifikan secara biologis. Selain itu, SVM dipilih dibandingkan model Deep Learning yang
kompleks untuk memitigasi risiko overfitting yang tinggi, mengingat terbatasnya ukuran sampel
klinis yang tersedia. Alur kerja sistematis penelitian ini, mulai dari akuisisi data hingga interpretasi
biomarker, diringkas secara visual pada Gambar 3.1.
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Gambar 3.1. Research pipeline untuk data gen

3.1 Studi Literatur

Tahapan ini bertujuan untuk memperoleh landasan teori yang kuat mengenai topik
penelitian. Kajian dilakukan terhadap literatur ilmiah terkini yang membahas diagnosis kanker
payudara, analisis data multimodal, metode feature selection, serta algoritma klasifikasi berbasis
kecerdasan buatan. Studi literatur membantu mengidentifikasi kesenjangan penelitian (research
gap) yang menjadi dasar pengembangan model pada penelitian ini, khususnya terkait integrasi data

ekspresi gen serta penerapan metode DFP.

3.2 Pengumpulan Data

Tahap pengumpulan data pada penelitian ini dilakukan dengan memanfaatkan repositori

publik UCSC Xena Browser, yang menyediakan akses terbuka terhadap berbagai data genomik dan

21



klinis dari proyek The Cancer Genome Atlas (TCGA). Dataset yang digunakan secara khusus berasal
dari Cohort GDC TCGA Breast Cancer (BRCA), yang merupakan kumpulan data ekspresi gen dan
penotipe pasien kanker payudara. Deskripsi dataset didefinisikan pada tabel 3.1

Tabel 3.1. Deskripsi dataset yang digunakan

Informasi RNA-seq (STAR TPM) | Phenotype
Jumlah sampel | 1226 1255

Versi 05-20-2024 09-07-2024
Unit log2(tpm+1) —

Tipe data Ekspresi gen Data fenotipe
Jumlah kolom | 60.661 gen 85 atribut

Data ekspresi gen diperoleh dalam format RNA-Seq — STAR — TPM (Transcripts Per
Million) yang telah melalui proses penyelarasan (alignment) menggunakan Spliced Transcripts
Alignment to a Reference (STAR) dan normalisasi berbasis TPM, sehingga hasilnya dapat
dibandingkan antar sampel secara kuantitatif. Dataset ini mencakup 1.226 pasien kanker payudara,
dengan ribuan gen yang diekspresikan pada masing-masing sampel.

Selain data ekspresi gen, penelitian ini juga memanfaatkan data penotipe (phenotype data)
yang tersedia dalam repositori yang sama. Data penotipe berisi informasi klinis pasien, termasuk
stadium kanker yang diklasifikasikan berdasarkan sistem American Joint Committee on Cancer
(AJCC). Data penotipe ini berfungsi sebagai label kelas (ground truth) dalam proses klasifikasi
stadium kanker payudara.

3.3 Pra-Proses Data

Tahap pra-proses data dilakukan untuk memastikan data ekspresi gen dan fenotipe memiliki
format yang sesuai, bersih, dan konsisten sebelum masuk ke tahap pemodelan. Langkah awal
difokuskan pada penyesuaian struktur data ekspresi gen melalui proses transposisi. Data mentah
yang semula menempatkan gen sebagai baris dan sampel sebagai kolom diubah orientasinya,
sehingga setiap baris merepresentasikan satu sampel pasien dan setiap kolom merepresentasikan
fitur genetik. Hal ini dilakukan untuk memenuhi standar input algoritma machine learning.

Selanjutnya, dilakukan pembersihan pada data fenotipe klinis. Mengingat variasi keterisian
data antar atribut, dilakukan eliminasi terhadap fitur (kolom) yang memiliki nilai kosong (null)
melebihi 50% dari total populasi sampel. Langkah ini bertujuan untuk membuang atribut yang
informasinya terlalu sedikit (sparse) dan mempertahankan fitur yang representatif.

Setelah data dibersihkan, dilakukan proses kategorisasi dan pelabelan ulang (re-
labeling) pada kolom stadium kanker (pathologic stage). Kategori stadium awal yang beragam
disederhanakan menjadi skenario klasifikasi biner. Sampel dengan label Stage I dan Stage II
dikelompokkan menjadi kelas Early Stage (diberi label 0), sedangkan sampel dengan label Stage
IIT dikelompokkan menjadi kelas Late Stage (diberi label 1).
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Tahap berikutnya adalah penggabungan data (data merging) antara data ekspresi gen dan
label fenotipe yang telah dikategorikan. Integrasi dilakukan menggunakan metode irisan (inner
join) berdasarkan ID Sampel pasien. Hanya pasien yang memiliki data lengkap pada kedua
dataset (ekspresi gen dan fenotipe) yang dipertahankan, sedangkan sampel yang tidak berpasangan
dieksklusi untuk menjaga integritas analisis.

Langkah terakhir dalam pra-proses adalah normalisasi data ekspresi gen menggunakan
teknik standardisasi (Z-Score Normalization). Setiap nilai fitur genetik ditransformasi sehingga
memiliki rata-rata (mean) 0 dan simpangan baku (standard deviation) 1. Proses ini krusial untuk
menyamakan skala antar fitur gen yang memiliki rentang nilai ekspresi berbeda, sehingga mencegah

bias pada perhitungan jarak dalam algoritma SVM.

3.4 Seleksi Fitur

Data ekspresi gen memiliki jumlah fitur yang sangat besar (ribuan gen) dengan jumlah
sampel relatif sedikit, yang dikenal sebagai permasalahan high-dimensional low-sample size
(HDLSS). Untuk mengatasi hal ini, dilakukan seleksi fitur menggunakan metode DFP. DFP
merupakan pendekatan berbasis fuzzy logic yang mengukur kemampuan diskriminatif setiap fitur
berdasarkan derajat keanggotaan (fuzzy membership function) terhadap kelas tertentu. Melalui
konsep ini, setiap gen dievaluasi berdasarkan seberapa besar kontribusinya dalam membedakan
antar kelas kanker. Fitur dengan nilai diskriminatif tertinggi dipertahankan, sedangkan fitur dengan
kontribusi rendah dieliminasi. Pendekatan ini tidak hanya mengurangi dimensi data, tetapi juga
mempertahankan informasi biologis penting yang berpotensi relevan terhadap perkembangan kanker
payudara.

Mengingat kinerja metode DFP sangat dipengaruhi oleh penentuan nilai ambang batas
(threshold) dalam pembentukan pola fuzzy, penggunaan parameter default tidak selalu menjamin
hasil yang optimal pada setiap karakteristik dataset. Oleh karena itu, penelitian ini menerapkan
mekanisme hyperparameter tuning menggunakan metode Grid Search untuk mengeksplorasi ruang
parameter yang paling efektif dalam memisahkan kelas kanker. Hyperparameter tuning dilakukan
dengan menguji berbagai kombinasi nilai pada tiga parameter utama DFP, yaitu Skip Factor, Pi
Value, dan Zeta. Rincian konfigurasi parameter yang diujikan dalam penelitian ini dirangkum pada
Tabel 3.2.

Tabel 3.2. Hyperparameter tuning DFP

Model Parameter | Nilai

Skip Factor | 1,1.5,2,2.5,3
Discriminant Fuzzy Pattern | Pi Value 0.5, 0.6, 0.65,0.7,0.75
Zeta (£) 0.1,0.2,0.3,0.4, 0.5

Variasi nilai pada ketiga parameter di atas berperan krusial dalam mengendalikan
sensitivitas dan selektivitas algoritma terhadap fitur-fitur yang dianggap relevan. Parameter Pi
Value dan Zeta ({) berfungsi sebagai pengatur batas toleransi ketidakpastian (fuzziness) dan derajat
keanggotaan, yang secara langsung menentukan seberapa ketat kriteria seleksi gen dilakukan.
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Sementara itu, Skip Factor digunakan untuk menyesuaikan granularitas dalam pencarian pola
data. Dengan mengevaluasi kombinasi nilai-nilai tersebut, tujuan utamanya adalah mendapatkan
konfigurasi optimal yang mampu mereduksi dimensi secara signifikan namun tetap mempertahankan

akurasi klasifikasi tertinggi.

3.5 Pembangunan Model

Setelah himpunan fitur genetik yang paling diskriminatif diperoleh melalui seleksi fitur
DFP, tahapan selanjutnya berfokus pada pembangunan model klasifikasi prediktif menggunakan
algoritma SVM. Langkah awal dalam fase ini adalah partisi data (data splitting) untuk memisahkan
dataset menjadi data latih (training set) dan data uji (testing set) dengan rasio 80:20 dan 90:10.
Proses pembagian ini dilakukan menggunakan teknik stratified sampling, yang bertujuan untuk
menjaga proporsi kelas stadium awal dan lanjut agar tetap konsisten di kedua subset, serta mencegah
terjadinya kebocoran informasi (data leakage) yang dapat membiaskan evaluasi model.

Mengingat tantangan ketidakseimbangan distribusi kelas (class imbalance) yang ditemukan
pada data ekspresi gen, penelitian ini menerapkan strategi penyeimbangan data pada data latih
menggunakan metode Random Under Sampling (RUS). Berbeda dengan teknik oversampling yang
membangkitkan data sintetis, RUS bekerja dengan mengurangi jumlah sampel pada kelas mayoritas
(Early Stage) secara acak hingga proporsinya setara dengan kelas minoritas (Late Stage). Langkah
pra-pemrosesan ini dilakukan untuk mencegah bias model terhadap kelas mayoritas, sehingga
objektivitas klasifikasi dapat terjaga tanpa mengubah integritas data uji asli.

Untuk menjamin performa model yang optimal, dilakukan optimasi hiperparameter
(hyperparameter tuning) menggunakan metode Grid Search Cross-Validation (GridSearchCV).
Metode ini secara sistematis mengevaluasi kombinasi parameter SVM—yaitu parameter regularisasi
(C), jenis kernel (Linear dan RBF), serta koefisien kernel (y)—untuk menemukan konfigurasi yang
menghasilkan skor validasi terbaik. Daftar parameter yang dioptimasi disajikan pada Tabel 3.3.

Tabel 3.3. Parameter model SVM

Model Parameter | Nilai
. C 0.1, 1, 10, 100
Support Vector Machine -
kernel linear, rbf
Y 1,0.1, 0.01, 0.001

Sebagai langkah penyempurnaan akhir, penelitian ini tidak menggunakan ambang batas
(threshold) probabilitas standar 0.5 untuk klasifikasi. Sebaliknya, dilakukan Optimasi Decision
Threshold berbasis kurva Precision-Recall. Nilai ambang batas digeser secara dinamis untuk
mengidentifikasi titik potong (cutoff point) yang memaksimalkan nilai F1-Score. Pendekatan ini
memastikan bahwa model akhir memiliki keseimbangan terbaik antara presisi dan recall dalam
mendeteksi stadium kanker, sehingga prediksi yang dihasilkan lebih akurat dan dapat diandalkan

secara klinis.
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3.6 Evaluasi Model

Kinerja model dievaluasi menggunakan berbagai metrik yang diperoleh dari Confusion
Matrix, antara lain Accuracy, Precision, Recall (Sensitivity), Specificity, F1-Score, serta Area Under
the Curve (AUC) dari kurva ROC. Masing-masing metrik memberikan perspektif berbeda terhadap
performa model, seperti ketepatan prediksi keseluruhan, kemampuan mendeteksi kasus positif,
serta keseimbangan antara sensitivitas dan presisi. ROC Curve digunakan untuk menggambarkan
hubungan antara True Positive Rate (TPR) dan False Positive Rate (FPR) pada berbagai ambang
batas, sementara AUC digunakan untuk mengukur kemampuan diskriminatif model secara

keseluruhan.

3.7 Interpretasi Biomarker

Tahap akhir penelitian ini adalah interpretasi biomarker, yaitu analisis terhadap gen-gen
yang terpilih melalui metode DFP untuk mengidentifikasi potensi biomarker yang berperan penting
dalam perkembangan kanker payudara. Gen dengan bobot kontribusi tinggi dievaluasi berdasarkan
literatur biologis dan basis data molekuler untuk memahami fungsinya dalam proses biologis seperti
proliferasi sel, apoptosis, angiogenesis, atau metastasis. Tahap ini memberikan konteks biologis
terhadap hasil klasifikasi dan membantu mengaitkan temuan komputasional dengan mekanisme
nyata dalam patologi kanker payudara, schingga meningkatkan validitas dan potensi aplikasi klinis

dari hasil penelitian ini.
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