BAB 3
PELAKSANAAN KERJA MAGANG

3.1 Kedudukan dan Koordinasi

Selama pelaksanaan kerja praktik di PT Cranium Royal Aditama, penulis
tergabung dalam divisi Product Development dan menjalankan peran sebagai
Full Stack Developer pada proyek pengembangan sistem Enterprise Resource
Planning (ERP) milik perusahaan. Dalam periode tersebut, aktivitas utama
penulis difokuskan pada keterlibatan dalam pengembangan modul searching yang
berfungsi sebagai salah satu fitur pendukung utama dalam sistem ERP yang
ditujukan bagi klien korporat Cranium.

Dalam menjalankan kegiatan kerja praktik sehari-hari, penulis memperoleh
arahan dan pendampingan dari mentor serta supervisor yang bertugas memberikan
bimbingan teknis, memantau progres pekerjaan, dan melakukan evaluasi terhadap
hasil tugas yang diselesaikan. Selain itu, penulis juga bekerja sama dengan anggota
tim pengembang ERP lainnya, di mana setiap anggota tim memiliki peran dan
tanggung jawab masing-masing dalam mendukung proses pengembangan sistem
secara keseluruhan.

Struktur kedudukan dalam proyek ERP Cranium dapat dijabarkan sebagai
berikut:

1. Supervisor
Dalam pelaksanaan kerja praktik ini, terdapat dua pihak yang berperan
sebagai pengawas proyek. Pihak pertama adalah Bapak Sugito yang
menjabat sebagai VP of Engineering sekaligus Tech Lead, serta pihak
kedua yaitu Bapak Angga Tama selaku Project Manager ERP. Keduanya
berperan dalam memberikan arahan teknis dan non-teknis kepada para
developer, memantau progres pekerjaan, serta memastikan hasil yang dicapai
telah memenuhi standar dan kebutuhan perusahaan. Selain itu, supervisor
juga memberikan pemahaman awal mengenai budaya kerja, alur prosedur
teknis, serta ekspektasi yang harus dipenuhi oleh mahasiswa magang selama

menjalani kerja praktik di Cranium.

2. Mentor

Dalam menjalankan aktivitas magang sebagai full stack developer,

11

Pengembangan Modul Searching..., Nathaniel Ezra Anasbi, Universitas Multimedia Nusantara

penulis memperoleh pendampingan dari dua mentor yang masing-
masing memiliki fokus pada pengembangan back-end dan front-end
sistem ERP. Bimbingan yang diberikan mencakup pengenalan lingkungan
pengembangan, pemahaman struktur dan alur kode program, serta penerapan
kerja kolaboratif menggunakan sistem pengelolaan versi seperti GitHub.
Para mentor juga melakukan peninjauan terhadap hasil pekerjaan untuk
memastikan kesesuaian dengan standar perusahaan sebelum dilakukan

evaluasi lebih lanjut oleh supervisor.

3. Mahasiswa Magang
Sebagai mahasiswa magang, penulis memiliki tanggung jawab untuk
melaksanakan setiap tugas yang diberikan sesuai dengan arahan supervisor
serta tenggat waktu yang telah ditentukan. Selama periode kerja praktik,
fokus utama penulis adalah terlibat dalam proses pengembangan modul
searching pada sistem ERP.

3.2 Alur dan Prosedur Kerja Proyek

Selama masa kerja magang, PT Cranium Royal Aditama menerapkan
berbagai peraturan dan prosedur untuk memastikan bahwa proses pengembangan
proyek ERP dapat berlangsung secara optimal dan terstruktur. Seluruh prosedur
tersebut disusun guna menjaga koordinasi yang efektif antar anggota tim serta
memastikan setiap fitur dikembangkan sesuai standar yang telah ditetapkan
perusahaan. Berikut merupakan alur kerja yang diterapkan dalam pelaksanaan

proyek ERP Cranium:

1. Distribusi Tugas

(a) Tugas baru diberikan setelah developer menyelesaikan seluruh
pekerjaan sebelumnya, termasuk proses penggabungan (merge) ke

dalam development branch pada repository.

(b) Pemberian tugas dilakukan secara langsung oleh supervisor kepada
developer dan dijelaskan melalui roadmap pengerjaan ERP. Penjelasan
teknis terkait suatu tugas akan di-brief oleh supervisor baik secara

pribadi maupun melalui meeting bersama seluruh tim ERP Cranium.

(c) Jenis tugas dapat mencakup pengembangan tampilan antarmuka (front-

end) maupun pengembangan logika sistem pada sisi (back-end).

12

Pengembangan Modul Searching..., Nathaniel Ezra Anasbi, Universitas Multimedia Nusantara

(d) Setiap tugas dikerjakan pada branch yang berbeda di dalam repository.
Pengaturan ini bertujuan untuk mempermudah proses integrasi antar
hasil pekerjaan developer serta meminimalkan kemungkinan terjadinya

conflict.
2. Pengerjaan Tugas

(a) Tugas yang telah dijelaskan melalui briefing oleh supervisor akan segera
dikerjakan oleh para developer. Proses pengerjaan dilakukan dengan
mengikuti arahan yang diberikan supervisor serta mematuhi standar

kerja perusahaan dalam jangka waktu yang telah ditetapkan.

(b) Mahasiswa magang diharapkan dapat menyelesaikan tugas secara
mandiri dan optimal. Namun, apabila menemui hambatan selama proses
pengerjaan, kedua mentor akan membantu memberikan arahan serta

mencari solusi atas kendala yang muncul.

3. Pengujian Hasil Kerja

Setiap hasil kerja mahasiswa magang harus melalui proses pengujian dan
validasi sebelum diajukan dalam bentuk pull request serta digabungkan
(merge) ke dalam branch development proyek ERP Cranium. Tahap

pengujian ini dilakukan melalui dua metode utama:

(a) Unit Test dan Contract Test

Pengujian otomatis dilakukan menggunakan Spring Boot Testing
Framework pada sisi back-end serta Next.js pada sisi front-end.
Setiap test case disusun berdasarkan fungsi dan kebutuhan fitur yang

dikembangkan pada ERP Cranium.
(b) Pengujian Manual
Pengujian manual dilakukan melalui antarmuka pengguna untuk

memastikan fitur berjalan sesuai kebutuhan, serta tidak menimbulkan

bug maupun conflict pada sistem.

4. Konsultasi dan Revisi
Setelah tahap pengujian diselesaikan, hasil pekerjaan mahasiswa magang
diserahkan kepada mentor untuk dilakukan peninjauan melalui mekanisme
pull request. Proses peninjauan ini mencakup evaluasi terhadap struktur

dan kualitas kode, kesesuaian dengan standar pengembangan ERP Cranium,

13

Pengembangan Modul Searching..., Nathaniel Ezra Anasbi, Universitas Multimedia Nusantara

serta pemeriksaan potensi konflik dengan kode lain pada branch development.
Apabila ditemukan bagian yang perlu diperbaiki atau disempurnakan, mentor
akan memberikan catatan dan umpan balik secara langsung melalui comment
pada pull request. Mahasiswa magang kemudian melakukan perbaikan sesuai
masukan yang diberikan dalam rentang waktu yang telah disepakati. Jika
selama proses revisi muncul kendala, mahasiswa magang dapat melakukan
diskusi lanjutan dengan mentor untuk memperoleh solusi atau penyesuaian
yang diperlukan. Setelah perbaikan selesai dilakukan, hasil revisi akan

kembali ditinjau hingga dinyatakan sesuai.

5. Penggabungan Hasil Kerja
Setelah seluruh hasil pekerjaan dinyatakan memenuhi standar dan tidak
terdapat revisi lanjutan, mentor melanjutkan ke tahap pengintegrasian kode
ke dalam branch development ERP Cranium. Proses merge dilakukan setelah
memastikan bahwa fitur yang dikembangkan telah berjalan dengan stabil
serta tidak menimbulkan konflik dengan kode lain yang telah ada. Dengan
selesainya tahap ini, fitur atau pembaruan yang dikerjakan oleh mahasiswa
magang secara resmi menjadi bagian dari pengembangan sistem dan dapat

digunakan serta dikembangkan lebih lanjut oleh tim developer.

6. Finalisasi Hasil Kerja
Suatu pekerjaan dinyatakan selesai apabila seluruh perubahan telah berhasil
diintegrasikan ke dalam branch development ERP Cranium. Setelah proses
penggabungan dilakukan, branch yang digunakan selama pengembangan fitur
akan dihapus dari repository. Selanjutnya, developer menyiapkan branch

baru sebagai dasar untuk pengerjaan tugas atau pengembangan berikutnya.

Alur komunikasi serta koordinasi selama periode magang di PT Cranium
Royal Aditama disusun untuk memastikan setiap anggota tim dapat bekerja secara
terarah, sinkron, dan efisien. Uraian mengenai mekanisme komunikasi, koordinasi,
serta kolaborasi yang diterapkan dalam proyek ERP Cranium dijelaskan sebagai
berikut:

1. Komunikasi

(a) Komunikasi rutin dalam pengerjaan proyek ERP dilakukan
menggunakan aplikasi WhatsApp, yang menjadi saluran utama
untuk menyampaikan berbagai informasi penting, membahas tugas,

serta memberikan pengingat terkait batas waktu penyelesaian pekerjaan.

14

Pengembangan Modul Searching..., Nathaniel Ezra Anasbi, Universitas Multimedia Nusantara

(b) Aplikasi Discord dimanfaatkan sebagai sarana komunikasi tambahan,
terutama saat aktivitas kerja dilakukan secara Work From Home (WFH).
Platform ini digunakan untuk diskusi langsung, konsultasi teknis,

maupun koordinasi dalam kelompok kecil.

(c) Pada hari kerja yang dilaksanakan secara WFO (Work From Office),
komunikasi berlangsung secara tatap muka melalui obrolan informal,

diskusi personal, atau rapat bersama di lingkungan kantor.
2. Koordinasi

(a) Pemantauan perkembangan pekerjaan dilakukan melalui tabel roadmap
di Google Sheets, yang memuat rincian daftar tugas, status pengerjaan,

serta estimasi maupun realisasi waktu penyelesaian tiap pekerjaan.

(b) Mahasiswa magang berpartisipasi secara langsung dalam memperbarui
informasi pada Google Sheets, sehingga progres seluruh tugas dapat

tercatat secara konsisten layaknya anggota tim lainnya.

(c) Dokumen kolaboratif berupa Google Sheets digunakan sebagai catatan
harian hasil pekerjaan, memungkinkan setiap anggota tim memonitor

perkembangan satu sama lain secara transparan.
3. Kolaborasi

(a) Kolaborasi teknis dalam pengembangan proyek ERP dilakukan melalui
platform GitHub, yang berfungsi sebagai pusat penyimpanan dan

pengelolaan seluruh kode sumber proyek.

(b) Setiap developer, termasuk peserta magang, bekerja pada branch yang
dibuat secara terpisah untuk setiap tugas, sehingga proses integrasi
menjadi lebih mudah serta membantu menjaga stabilitas keseluruhan

proyek.

3.3 Tugas yang Dilakukan

Selama masa magang di PT Cranium Royal Aditama, penulis berkontribusi
dalam proyek pengembangan sistem Enterprise Resource Planning (ERP) yang
dimiliki oleh perusahaan. Tugas utama yang diberikan meliputi pengembangan
berbagai fitur dalam sistem ERP, termasuk implementasi dan penyempurnaan

modul searching yang berperan penting dalam memproses permintaan pencarian

15

Pengembangan Modul Searching..., Nathaniel Ezra Anasbi, Universitas Multimedia Nusantara

data pada berbagai modul perusahaan. Seluruh pekerjaan disesuaikan dengan
kebutuhan internal perusahaan maupun permintaan dari klien, sehingga fitur yang
dikembangkan dapat mendukung operasional bisnis secara efisien dan tepat guna.

Pengembangan sistem ERP Cranium menggunakan pendekatan arsitektur
modular monolitik. Pada pendekatan ini, sistem dibagi ke dalam beberapa
modul fungsional yang saling terpisah, namun tetap berada dalam satu kesatuan
aplikasi. Setiap modul memiliki peran dan tanggung jawab yang jelas, sehingga
proses pengembangan, pengujian, serta pemeliharaan dapat dilakukan secara
lebih terstruktur. Pendekatan ini memberikan keseimbangan antara kemudahan
deployment Kkhas sistem monolitik dan fleksibilitas modularitas yang biasa
ditemukan pada arsitektur microservices.

Jenis tugas yang dihadapi selama periode magang memiliki cakupan yang
luas, mulai dari penanganan bugs, pengembangan fitur baru pada sisi front-end
maupun back-end, hingga melakukan penyesuaian terhadap fungsi yang telah
diterapkan sebelumnya. Setiap tanggung jawab diberikan berdasarkan pembagian
pekerjaan yang disusun oleh supervisor dan dikerjakan mengikuti standar teknis
serta kebutuhan aktual proyek. Melalui rangkaian tugas tersebut, penulis
memperoleh kesempatan untuk terlibat secara langsung dalam seluruh tahapan
pengembangan perangkat lunak, sekaligus memperkuat pemahaman mengenai
praktik profesional dalam pembangunan sistem serta menyesuaikan diri dengan
kebutuhan operasional perusahaan.

Dalam menjalankan berbagai tugas pengembangan tersebut, digunakan
beragam tools, software, dan framework yang berfungsi untuk meningkatkan
produktivitas, akurasi, serta efektivitas proses kerja. Seluruh perangkat yang
mendukung pengembangan ERP Cranium ini memiliki peran spesifik dalam alur
pembangunan sistem. Uraian mengenai tools, framework, dan software yang

dimanfaatkan selama pengerjaan proyek adalah sebagai berikut:

1. IntelliJ IDEA
Dimanfaatkan sebagai lingkungan pengembangan utama untuk membangun
komponen back-end berbasis Java Spring Boot. Integrasinya yang
optimal dengan bahasa Java membantu mempercepat proses penulisan kode,
penelusuran kesalahan (debugging), serta pembuatan unit test dan contract

test secara lebih terarah.

2. Java Spring Boot

Berfungsi sebagai framework inti dalam konstruksi back-end ERP. Teknologi

16

Pengembangan Modul Searching..., Nathaniel Ezra Anasbi, Universitas Multimedia Nusantara

ini menyediakan pola pengembangan aplikasi Java yang terorganisir, bersifat
modular, serta mendukung pembangunan layanan secara cepat dan berstandar

tinggi.

3. Visual Studio Code (VSCode)
Digunakan sebagai sarana utama untuk mengembangkan bagian front-end
ERP yang dibangun menggunakan Next.js dan TypeScript. Selain untuk
penulisan kode antarmuka, VSCode juga dimanfaatkan dalam penyusunan

dan pengujian unit test pada sisi front-end.

4. Next.js dengan TypeScript
Dimanfaatkan sebagai framework front-end utama dalam merancang dan
membangun tampilan serta interaksi pengguna ERP, yang dijalankan

sepenuhnya melalui web application.

5. PostgreSQL
Berperan sebagai sistem manajemen basis data relasional yang digunakan
untuk menampung, mengatur, dan menjaga konsistensi seluruh informasi

yang dipakai dalam pengembangan ERP Cranium.

6. DBeaver
Digunakan sebagai GUI database client untuk mempermudah proses
pengelolaan, pemantauan, serta penelusuran struktur maupun isi database

PostgreSQL selama tahap pembangunan sistem.

7. Postman
Dimanfaatkan sebagai ool untuk melakukan pengujian, pengecekan respons,
serta validasi fungsionalitas API yang dikembangkan pada sisi back-end

sebelum diintegrasikan dengan komponen front-end.

8. Git
Berfungsi sebagai version control system guna mencatat setiap perubahan
kode, memfasilitasi kolaborasi antar anggota tim, serta menjaga riwayat

pengembangan proyek agar tetap terstruktur.

9. GitHub
Digunakan sebagai platform repositori dan kolaborasi yang memungkinkan
penyimpanan kode, pengelolaan kontribusi, serta pelaksanaan code review

secara terdistribusi untuk seluruh komponen ERP.

17

Pengembangan Modul Searching..., Nathaniel Ezra Anasbi, Universitas Multimedia Nusantara

10. Apache JMeter

Digunakan sebagai fool pendukung untuk melakukan evaluasi performa

implementasi modul searching dalam membandingkan waktu respons dan

konsistensi pencarian antara metode berbasis SQL dan Elasticsearch.

3.4 Uraian Pelaksanaan Magang

3.4.1 Pelaksanaan Kerja Magang

Selama mengikuti program magang selama 20 minggu, penulis terlibat
dalam berbagai tugas yang mencakup banyak aspek pengembangan ERP Cranium.
Seluruh kegiatan tersebut dijalankan secara bertahap dan berkesinambungan,
sekaligus menunjukkan kontribusi nyata penulis dalam proses pembangunan sistem

ERP Cranium. Uraian ringkas mengenai pekerjaan yang berhasil diselesaikan

sepanjang periode magang disajikan pada Tabel 3.1.

Tabel 3.1. Pekerjaan yang dilakukan tiap minggu selama pelaksanaan kerja magang

Minggu Ke -

Pekerjaan yang dilakukan

1

Training dan persiapan teknis yang difokuskan pada
pemahaman modul searching dalam sistem ERP. Kegiatan
meliputi peninjauan alur kerja fitur pencarian, arsitektur modul
searching, serta mekanisme integrasi dengan modul lain

sebagai bekal awal sebelum memasuki tahap pengembangan.

Inisialisast modul searching sebagai tahap awal
pengembangan serta menyiapkan struktur dasar agar
dapat terintegrasi dengan modul ERP lainnya. Serta
mengembangkan komponen pendukung seperti DTO, event,

mapper, dan controller.

Melanjutkan pengembangan dan penyempurnaan controller
pada modul searching serta membuat entity yang disesuaikan
dengan struktur data yang dibutuhkan. @Mengembangkan,

menyesuaikan, serta melakukan pengujian event listener.

Lanjut di halaman berikutnya

18

Pengembangan Modul Searching..., Nathaniel Ezra Anasbi, Universitas Multimedia Nusantara

Tabel 3.1 — lanjutan dari halaman sebelumnya

Minggu Ke - | Pekerjaan yang dilakukan

4 Pengembangan repository pada modul searching sebagai
lapisan akses data serta penyesuaian query dan struktur data
agar proses pengambilan dan penyimpanan data berjalan
optimal. Selain itu, dibuat annotation untuk mendukung

konfigurasi sistem.

S5 Lanjutan pengembangan service pada modul searching
serta memastikan integrasinya dengan komponen lain
berjalan dengan baik. Selain itu, dilakukan inisialisasi
dan pengembangan contract testing, termasuk penyesuaian

berdasarkan hasil pengujian, hingga tahap finalisasi.

6 Finalisasi back-end modul searching disertai pengecekan
ulang untuk memastikan stabilitas, performa, dan kesiapan
seluruh fitur yang telah dikembangkan. Selain itu, dilakukan
integrasi modul searching dengan front-end hingga tahap

finalisasi.

7 Pembuatan dan pengembangan testing pada front-end untuk
memastikan fitur pencarian berjalan sesuai dengan kebutuhan
dan berbagai skenario penggunaan. Selain itu, dilakukan
penyempurnaan pengujian, perbaikan bug, serta finalisasi dan

pengecekan ulang seluruh fitur.

8 Preparasi dan pengajuan pull request untuk back-end
dan front-end, termasuk pengecekan kode, fungsionalitas,
tampilan, serta penyesuaian dengan standar pengembangan

yang berlaku.

9 Tindak lanjut terhadap hasil review dari senior developer
dengan melakukan revisi pada front-end sesuai feedback
yang diberikan. Revisi dilakukan secara bertahap untuk

memperbaiki bug dan menyesuaikan kebutuhan sistem hingga

seluruh perubahan dinyatakan sesuai dengan hasil review.

Lanjut di halaman berikutnya

19

Pengembangan Modul Searching..., Nathaniel Ezra Anasbi, Universitas Multimedia Nusantara

Tabel 3.1 — lanjutan dari halaman sebelumnya

Minggu Ke - | Pekerjaan yang dilakukan

10 Revisi pada back-end untuk memperbaiki bug yang terdeteksi
serta menyesuaikan implementasi berdasarkan masukan
hasil review sebelumnya. Revisi dilanjutkan dengan
penyempurnaan logika, alur data, dan performa sistem hingga
seluruh modul terintegrasi dengan baik dan back end siap

untuk tahap deployment selanjutnya.

11 Push revisi back-end ke repository serta menunggu proses
review dari senior developer. Selain itu, dimulai pengerjaan
task baru berupa pengembangan fitur document number
pada sistem ERP, diawali dengan inisialisasi struktur dan
konfigurasi dasar hingga tahap awal implementasi logika dan

integrasi modul.

12 Pengerjaan fitur document number dilanjutkan dengan fokus
pada fungsionalitas dan validasi data, kemudian dilakukan
finalisasi dan proses build. Selanjutnya, diajukan pull request
untuk mendapatkan review dari senior developer sambil
mempersiapkan kemungkinan revisi berdasarkan masukan

yang diberikan.

13 Revisi fitur document number berdasarkan masukan senior
developer hingga fungsionalitas berjalan stabil, kemudian hasil
revisi di-push ke repository dan menunggu persetujuan akhir.
Selain itu, mulai dikerjakan task baru berupa pengembangan

master notification untuk modul ERP.

14 Pengerjaan awal master notification dengan inisialisasi
struktur dan konfigurasi service, kemudian dilanjutkan dengan
integrasi fitur notification ke modul selling disertai pengujian
dan penyempurnaan. Pada tahap akhir, integrasi notification

diperluas ke modul purchasing untuk memastikan notifikasi

lintas modul berjalan sesuai kebutuhan bisnis.

Lanjut di halaman berikutnya

20

Pengembangan Modul Searching..., Nathaniel Ezra Anasbi, Universitas Multimedia Nusantara

Tabel 3.1 — lanjutan dari halaman sebelumnya

Minggu Ke - | Pekerjaan yang dilakukan

15 Lanjutan integrasi fitur notification ke modul purchasing
hingga stabil melalui pengujian fungsional. Selain itu,
integrasi notification diperluas ke modul finance dengan
fokus pada akurasi, kelengkapan informasi, serta pengujian
menyeluruh untuk memastikan notifikasi berjalan dengan baik

secara end-to-end.

16 Persiapan dan pengajuan pull request untuk task notification,
termasuk pengecekan perubahan kode. Selanjutnya, dilakukan
proses review dan revisi berdasarkan masukan senior
developer hingga seluruh perbaikan diterapkan dan sistem siap

untuk tahap finalisasi.

17 Inisialisasi task baru berupa penambahan field image pada
modul user dengan menyiapkan struktur dan rencana
implementasi. Pengerjaan dilakukan pada sisi back-end untuk
memastikan proses penyimpanan, pengolahan, dan validasi

data gambar berjalan dengan baik,

18 Pengerjaan pada sisi front-end untuk task penambahan field
image pada modul user, termasuk implementasi form input
serta tampilan preview image. Pengembangan difokuskan
untuk memastikan kemudahan penggunaan dan kesesuaian

tampilan dengan kebutuhan sistem.

19 Finalisasi task penambahan field image pada modul user serta
pembuatan pull request untuk seluruh perubahan yang telah

diimplementasikan.

20 Pengerjaan revisi untuk task penambahan field image pada
modul user berdasarkan masukan dari senior developer.
Revisi difokuskan pada penyempurnaan fungsionalitas dan
penyesuaian implementasi agar sesuai dengan standar sistem,

serta memastikan seluruh perubahan berjalan stabil sebelum

dinyatakan selesai.

21

Pengembangan Modul Searching..., Nathaniel Ezra Anasbi, Universitas Multimedia Nusantara

3.4.2 Konsep Sofware Development Life Cycle ERP Cranium

Software Development Life Cycle (SDLC) digunakan sebagai acuan dalam
pelaksanaan pengembangan sistem ERP Cranium untuk menggambarkan tahapan
kerja yang dilakukan secara berurutan, mulai dari perencanaan hingga tahap
pemeliharaan. Penerapan SDLC membantu memastikan bahwa setiap proses
pengembangan dilakukan secara terarah dan sesuai dengan kebutuhan sistem serta
tujuan bisnis perusahaan. Ilustrasi alur SDLC pada pengembangan ERP Cranium
ditunjukkan pada Gambar 3.1.

Requirement ﬁ
A
Design ﬁ
F Y
Implementation ﬁ
h
Testing —l
h
Deployment —¢
T Maintenance

Gambar 3.1. Alur SDLC ERP Cranium

Dalam pengembangan perangkat lunak ERP Cranium, pendekatan SDLC
yang diterapkan adalah Waterfall Model. Model ini menerapkan alur kerja
yang sistematis dengan tahapan yang disusun secara berurutan. Setiap tahap
pengembangan harus diselesaikan dan dievaluasi terlebih dahulu sebelum proses
dilanjutkan ke tahap berikutnya. Dengan alur yang bersifat satu arah, model
ini menekankan pentingnya dokumentasi dan persetujuan pada setiap fase guna
menjaga konsistensi dan kualitas pengembangan sistem.

Tahapan-tahapan dalam Waterfall Model yang diterapkan pada proyek ERP
Cranium dapat dijelaskan sebagai berikut:

* Requirement: Tahap ini merupakan fase awal yang berfokus pada identifikasi
dan analisis kebutuhan sistem, baik dari sisi teknis maupun kebutuhan
bisnis. Aktivitas yang dilakukan meliputi pengumpulan informasi terkait
fungsionalitas sistem, penyusunan spesifikasi kebutuhan perangkat lunak,
serta pemahaman terhadap alur proses bisnis yang akan diimplementasikan
dalam sistem ERP.

22

Pengembangan Modul Searching..., Nathaniel Ezra Anasbi, Universitas Multimedia Nusantara

* Design: Setelah kebutuhan sistem ditetapkan, tahap perancangan dilakukan
untuk merumuskan struktur dan arsitektur sistem secara menyeluruh. Proses
ini mencakup penyusunan desain modul, relasi antar komponen, perancangan
basis data, serta rancangan antarmuka pengguna (user interface). Hasil dari
tahap ini berupa dokumen desain yang menjadi acuan utama dalam proses

pengembangan sistem.

» Implementation: Tahap implementasi berfokus pada penerjemahan desain
sistem ke dalam bentuk kode program. Proses pengembangan dilakukan
secara bertahap dan modular, dimulai dari implementasi fungsi-fungsi dasar
seperti operasi CRUD (Create, Read, Update, Delete) pada entitas sistem.
Selain itu, pada tahap ini juga diterapkan logika bisnis serta dilakukan

integrasi awal antar modul yang dikembangkan.

Testing:

Tahap pengujian dilaksanakan setelah seluruh proses pengkodean sistem
selesai dilakukan. Pada fase ini, sistem ERP Cranium dievaluasi untuk
memastikan setiap fitur berfungsi dengan benar sesuai dengan kebutuhan yang
telah ditetapkan. Proses pengujian mencakup pemeriksaan alur kerja aplikasi,
pendeteksian kesalahan, serta validasi hasil keluaran, baik melalui pengujian
manual maupun penerapan wunit test, guna menjamin stabilitas dan kualitas

perangkat lunak.

Deployment:

Setelah sistem dinyatakan memenuhi kriteria pada tahap pengujian, proses
selanjutnya adalah melakukan deployment ke lingkungan produksi. Pada tahap ini,
aplikasi ERP Cranium dipasang dan dikonfigurasi pada server yang telah disiapkan,
termasuk penyesuaian lingkungan operasional, agar sistem dapat berjalan secara

optimal dan siap digunakan oleh pengguna.

Maintenance:

Setelah aplikasi mulai dioperasikan, dilakukan tahap pemeliharaan sebagai
upaya menjaga keberlanjutan sistem. Kegiatan pada fase ini meliputi penanganan
bug yang muncul setelah deployment, peningkatan performa aplikasi, serta
pengembangan fitur tambahan guna menyesuaikan sistem dengan kebutuhan

pengguna yang terus berkembang.

23

Pengembangan Modul Searching..., Nathaniel Ezra Anasbi, Universitas Multimedia Nusantara

3.4.3 Ruang Lingkup dan Konsep Pengembangan

Ruang lingkup pengembangan yang dilaksanakan selama program magang
pada proyek ERP Cranium difokuskan pada pengembangan modul searching
sebagai bagian dari peningkatan fungsionalitas sistem. Pengembangan modul
ini bertujuan untuk mempermudah pengguna dalam melakukan pencarian data
secara cepat, akurat, dan sesuai dengan kebutuhan operasional perusahaan. Modul
searching dirancang agar mampu menangani berbagai parameter pencarian serta
menyesuaikan hasil pencarian dengan konteks data yang digunakan pada masing-
masing modul ERP.

Dalam proses pengembangannya, dilakukan penyesuaian logika pencarian
pada sisi back-end untuk memastikan data yang ditampilkan telah melalui
proses validasi dan pemfilteran yang sesuai dengan aturan bisnis. Selain itu,
pengembangan juga mencakup integrasi modul searching dengan antarmuka
pengguna, sehingga pengguna dapat melakukan pencarian melalui tampilan yang
mudah digunakan. Penyesuaian struktur data antara front-end dan back-end
turut dilakukan untuk menjamin konsistensi format data serta kelancaran proses
pertukaran informasi.

Dalam pengembangan sistem ERP Cranium, digunakan beberapa konsep
dasar yang menjadi landasan utama dalam perancangan struktur sistem serta
penyusunan logika aplikasi. Konsep-konsep ini diterapkan secara konsisten untuk
memastikan pengembangan sistem berjalan terarah, terstruktur, dan sesuai dengan
kebutuhan operasional yang telah ditetapkan. Berikut adalah uraian konsep yang

umum digunakan dalam pengembangan ERP Cranium :

1. Data Transfer Object, Entity, & Mapper

Dalam pengembangan sistem ERP Cranium, diterapkan konsep pemisahan
data melalui penggunaan Data Transfer Object (DTO), entity, dan mapper
sebagai bagian dari perancangan arsitektur sistem. DTO berperan sebagai
objek sederhana yang digunakan untuk mengirimkan data antar lapisan
aplikasi tanpa memuat logika bisnis, sehingga proses komunikasi antara client
dan server dapat berlangsung secara lebih efisien. Dengan hanya membawa
data yang diperlukan dan menyembunyikan detail internal seperti struktur
tabel pada basis data, penggunaan DTO membantu menjaga keamanan
informasi sekaligus menyederhanakan alur pertukaran data antar komponen

sistem.

24

Pengembangan Modul Searching..., Nathaniel Ezra Anasbi, Universitas Multimedia Nusantara

Entity merupakan objek berbasis Java yang merepresentasikan struktur tabel
pada basis data relasional dan berfungsi sebagai komponen persistensi dalam
sistem. Objek ini dilengkapi dengan anotasi dari Java Persistence API (JPA)
atau Jakarta Persistence yang digunakan untuk mendefinisikan pemetaan
atribut, nama kolom, serta hubungan antar entitas di dalam database. Dalam
konteks ORM (Object-Relational Mapping), entity memiliki peran penting
karena memungkinkan proses pengelolaan data dilakukan melalui objek Java,
sehingga pengembang tidak perlu berinteraksi langsung dengan qguery SQL

secara manual.

Sebagai penghubung antara DTO dan entity, digunakan komponen mapper
yang berperan dalam melakukan transformasi data secara dua arah.
Mapper mengonversi DTO menjadi entity ketika data akan disimpan ke
dalam basis data, serta mengubah entity kembali menjadi DTO untuk
kebutuhan pengiriman data ke sisi front-end. Mekanisme ini membantu
menjaga konsistensi struktur data, meningkatkan keamanan informasi, serta
memastikan alur pemrosesan data dalam aplikasi ERP Cranium berjalan

dengan baik.

2. Controller, Service, & Repository

Pengembangan sisi back-end pada sistem ERP Cranium menerapkan pola
layered architecture yang membagi sistem ke dalam beberapa lapisan utama,
yaitu controller, service, dan repository. Setiap lapisan memiliki peran
dan tanggung jawab yang berbeda, di mana controller berfungsi sebagai
pengelola permintaan dari client, service menangani logika bisnis termasuk
pengolahan dan pemfilteran data pada modul searching, serta repository
bertanggung jawab terhadap interaksi langsung dengan basis data. Penerapan
arsitektur berlapis ini bertujuan untuk menjaga keterpisahan fungsi antar
komponen, meningkatkan kemudahan pemeliharaan sistem, serta mendukung
pengembangan fitur pencarian yang terstruktur dan mudah dikembangkan
lebih lanjut.

25

Pengembangan Modul Searching..., Nathaniel Ezra Anasbi, Universitas Multimedia Nusantara

Client

HTTP A

Request \

HTTP
Response

4

Controller

A
DTO

A

Service

A

A

Repository |

JPA \ 4

Entity

A

DB

Gambar 3.2. Hubungan Controller-Service-Repository dalam arsitektur ERP Cranium

Berdasarkan ilustrasi pada Gambar 3.2, lapisan controller berfungsi sebagai
komponen awal yang menerima permintaan HTTP dari sisi client. Pada
lapisan ini, data permintaan tidak diproses secara langsung, melainkan
diteruskan ke lapisan service untuk menjalankan logika aplikasi. Walaupun
tidak menangani logika bisnis, controller tetap dapat melakukan validasi
dasar terhadap data masukan guna memastikan kesesuaian format dan
struktur permintaan sebelum diproses lebih lanjut. Seluruh pertukaran data
pada lapisan ini disampaikan menggunakan objek DTO untuk menjaga

keteraturan dan keamanan alur data.

Lapisan service berperan sebagai inti pengolahan logika bisnis dalam
pengembangan back-end ERP Cranium. Seluruh proses utama, seperti
validasi lanjutan terhadap data, pengelolaan alur bisnis, serta konversi antara
DTO dan entity, dijalankan pada lapisan ini sebelum data diteruskan ke
repository. Selain itu, service menjadi pusat koordinasi pemanggilan mapper

dan komponen pendukung lainnya untuk memastikan alur pemrosesan data

26

Pengembangan Modul Searching..., Nathaniel Ezra Anasbi, Universitas Multimedia Nusantara

berjalan sesuai dengan aturan sistem. Oleh karena itu, perancangan lapisan
service harus dilakukan secara terstruktur karena memuat sebagian besar

kebijakan dan aturan bisnis yang mendukung operasional ERP Cranium.

Lapisan repository berfungsi sebagai komponen yang menangani interaksi
langsung dengan basis data dalam pengembangan ERP Cranium. Pada
lapisan ini digunakan JPA Repository yang menyediakan berbagai operasi
dasar, seperti penyimpanan data, pengambilan data berdasarkan identitas
tertentu, penghapusan data, serta penelusuran seluruh data yang tersimpan.
Selain fungsi standar tersebut, repository juga dapat dikembangkan dengan
custom query atau pemanfaatan anotasi seperti @Query untuk memenuhi
kebutuhan pengambilan data yang lebih kompleks dan spesifik. Dengan
adanya lapisan ini, service dapat mengakses dan mengelola data tanpa harus
menuliskan perintah SQL secara langsung, sehingga struktur kode menjadi

lebih rapi, terjaga konsistensinya, dan mudah dipelihara.

Secara keseluruhan, alur pemrosesan data dalam sistem ERP Cranium
dimulai dari permintaan yang dikirimkan oleh client ke lapisan controller.
Selanjutnya, data tersebut diteruskan ke lapisan service dalam bentuk DTO
untuk diproses sesuai dengan logika bisnis yang berlaku. Pada tahap ini,
data dapat dikonversi menjadi entity sebelum dilakukan pengolahan lebih
lanjut atau disimpan melalui lapisan repository. Data hasil pemrosesan yang
akan dikirim kembali ke client mengikuti alur sebaliknya, sehingga tercipta

struktur sistem yang terorganisir, modular, dan mudah dikembangkan.

3. Unit Test & Contract Test

Untuk menjaga stabilitas serta kualitas perangkat lunak, pengembangan ERP
Cranium menerapkan proses pengujian otomatis yang mencakup unit test
dan contract test. Unit test difokuskan pada pengujian komponen terkecil
dalam sistem, seperti fungsi atau metode pada suatu kelas, yang dijalankan
secara terpisah dari komponen lainnya. Pengujian ini bertujuan memastikan
bahwa setiap bagian internal sistem berfungsi sesuai dengan kebutuhan
dan spesifikasi yang telah ditetapkan tanpa dipengaruhi oleh dependensi
eksternal. Pada sisi back-end, pelaksanaan unit test dilakukan dengan
memanfaatkan beberapa framework pendukung, antara lain JUnit, Mockito,
serta Spring Boot Test, yang membantu dalam proses simulasi dependensi

dan validasi logika aplikasi.

27

Pengembangan Modul Searching..., Nathaniel Ezra Anasbi, Universitas Multimedia Nusantara

Selain unit test, pengembangan ERP Cranium juga menerapkan contract
test untuk memastikan kesesuaian komunikasi antara komponen front-end
dan back-end, khususnya pada lapisan controller. Contract test berfungsi
untuk memverifikasi bahwa setiap endpoint API menghasilkan respons
dengan struktur data, format, serta status yang sesuai dengan kontrak
yang telah disepakati bersama oleh pengembang front-end dan back-end.
Melalui pendekatan ini, potensi ketidaksesuaian integrasi dapat dideteksi
lebih awal sebelum sistem digunakan secara menyeluruh. Pada sisi back-end,
pengujian ini dilakukan dengan memanfaatkan library seperti Spring Cloud
Contract, MockMVC, dan JUnit untuk memastikan bahwa controller mampu
menangani permintaan dengan benar serta memenuhi spesifikasi kontrak

yang telah ditetapkan.

Pada sisi front-end, proses pengujian difokuskan untuk memastikan bahwa
setiap komponen user interface dapat di-render dengan baik, mampu
merespons interaksi pengguna, serta menampilkan data sesuai dengan kondisi
yang diharapkan. Pengujian ini mencakup verifikasi perilaku komponen
terhadap berbagai skenario input maupun perubahan stafte aplikasi. Untuk
mendukung proses tersebut, digunakan /ibrary seperti Jest dan React Testing
Library dalam pelaksanaan unit test pada komponen berbasis React yang
dikembangkan menggunakan Next.js. Dengan penerapan pengujian yang
komprehensif pada sisi back-end dan front-end, pengembangan ERP Cranium
dapat berjalan lebih andal, terukur, serta mendukung aspek keamanan dan

kualitas sistem secara keseluruhan.

3.4.4 Pengembangan Modul searching

Modul searching dalam sistem ERP Cranium berfungsi sebagai komponen
utama yang memungkinkan pengguna untuk menelusuri dan mengambil data secara
cepat dan akurat dari berbagai sumber dalam sistem. Modul ini bertanggung
jawab untuk menyediakan mekanisme pencarian yang efisien, fleksibel, dan dapat
menyesuaikan dengan kebutuhan bisnis yang dinamis.

Modul searching diperlukan dalam pengembangan ERP Cranium untuk
menangani kebutuhan pencarian data yang semakin kompleks seiring dengan
bertambahnya volume, variasi, dan keterkaitan data antar modul. Dalam sistem
ERP, proses pencarian tidak hanya terbatas pada pencarian berdasarkan satu

kolom, tetapi sering melibatkan kombinasi berbagai parameter, seperti kata kunci,

28

Pengembangan Modul Searching..., Nathaniel Ezra Anasbi, Universitas Multimedia Nusantara

status data, rentang waktu, serta relasi dengan entitas lain. Apabila seluruh
proses pencarian ini dilakukan langsung pada basis data relasional, maka beban
pemrosesan akan meningkat dan berpotensi menurunkan performa sistem, terutama
pada kondisi penggunaan secara bersamaan oleh banyak pengguna. Oleh karena
itu, diperlukan sebuah layanan khusus yang berfokus pada proses pencarian agar
sistem utama tetap responsif dan stabil.

Pemisahan fungsi pencarian ke dalam modul searching juga memberikan
keuntungan dari sisi arsitektur sistem. Dengan adanya layanan terpisah,
proses pencarian tidak lagi bercampur dengan logika transaksi utama, sehingga
pengembangan dan pemeliharaan sistem menjadi lebih terstruktur. Modul
searching dapat dikembangkan secara independen untuk menyesuaikan kebutuhan
pencarian yang terus berkembang, tanpa harus mengubah struktur basis data
atau logika bisnis inti pada modul lain. Pendekatan ini sejalan dengan prinsip
modularitas dalam pengembangan perangkat lunak, di mana setiap layanan
memiliki tanggung jawab yang jelas dan terdefinisi dengan baik.

Elasticsearch dipilih sebagai teknologi pendukung modul searching karena
dirancang secara khusus untuk menangani kebutuhan pencarian data secara cepat
dan efisien. Berbeda dengan basis data relasional yang dioptimalkan untuk
transaksi, Elasticsearch menggunakan mekanisme indexing berbasis dokumen yang
memungkinkan pencarian full-text, pemfilteran, dan pengurutan data dilakukan
dalam waktu singkat meskipun pada kumpulan data yang besar. Selain
itu, Elasticsearch mendukung skema data yang fleksibel, sehingga mudah
menyesuaikan perubahan struktur data tanpa mengganggu proses pencarian yang
sudah berjalan. Dengan memanfaatkan Elasticsearch, modul searching pada ERP
Cranium mampu menyediakan hasil pencarian yang lebih relevan, konsisten, dan
responsif, sekaligus menjaga performa sistem secara keseluruhan.

Pengembangan fitur pada modul searching melibatkan perancangan dan
implementasi berbagai komponen pendukung yang saling terintegrasi, mulai dari
pembuatan Data Transfer Object (DTO), event, mapper, controller, entity, event
listener, repository, hingga service. Selain itu, proses pengembangan juga
dilengkapi dengan tahap testing guna memastikan setiap fungsi pencarian bekerja
sesuai dengan kebutuhan sistem dan dapat diintegrasikan dengan baik ke dalam

modul searching.

29

Pengembangan Modul Searching..., Nathaniel Ezra Anasbi, Universitas Multimedia Nusantara

A Alur Kerja Modul Searching

Client
vt HTTP
Response v Request
Controller
A
DTO
h 4
Senvice
A
Y
> Repository -
¥
Elasticsearch € Entity

Gambar 3.3. Alur kerja Modul Searching

Alur kerja modul searching dimulai ketika client mengirimkan permintaan
pencarian dalam bentuk HTTP request melalui antarmuka aplikasi. Permintaan
ini berisi kata kunci atau parameter pencarian yang merepresentasikan kebutuhan
informasi pengguna. Request tersebut kemudian diteruskan ke lapisan controller
sebagai titik masuk utama layanan pencarian.

Pada lapisan controller, permintaan HTTP diterima dan dipetakan ke
endpoint yang sesuai. Controller berperan untuk menangani komunikasi API,
melakukan validasi awal terhadap parameter pencarian, serta membungkus data
permintaan ke dalam bentuk DTO. DTO ini digunakan untuk memastikan bahwa
data yang dikirim ke lapisan berikutnya memiliki struktur yang konsisten dan
terkontrol. Selanjutnya, controller meneruskan DTO tersebut ke lapisan service

untuk diproses lebih lanjut.

30

Pengembangan Modul Searching..., Nathaniel Ezra Anasbi, Universitas Multimedia Nusantara

Lapisan service bertanggung jawab mengelola logika bisnis pada proses
pencarian. Pada tahap ini, parameter pencarian yang diterima dalam bentuk DTO
diolah sesuai kebutuhan, seperti penyesuaian format pencarian, penerapan aturan
bisnis, maupun pengaturan mekanisme pagination dan sorting. Service kemudian
berinteraksi dengan lapisan repository untuk mengeksekusi proses pencarian data.

Lapisan repository berfungsi sebagai penghubung antara service dengan
sumber data pencarian. Repository memanfaatkan entity sebagai representasi
struktur dokumen yang tersimpan di dalam Elasticsearch. Pada tahap ini, repository
menyusun dan mengeksekusi query pencarian ke Elasticsearch berdasarkan
parameter yang telah diproses oleh service. Elasticsearch kemudian melakukan
pencarian terhadap data yang telah diindeks dan mengembalikan hasil pencarian
dalam bentuk kumpulan dokumen yang sesuai.

Hasil pencarian dari Elasticsearch dikonversi kembali ke dalam bentuk
entity, kemudian dikembalikan oleh repository ke lapisan service. Service
selanjutnya meneruskan hasil tersebut ke controller tanpa menambahkan logika
bisnis tambahan, karena seluruh proses pencarian telah ditangani pada lapisan
repository. Controller kemudian mengemas hasil pencarian ke dalam bentuk HTTP
response yang terstruktur dan mengirimkannya kembali ke client untuk ditampilkan
pada antarmuka aplikasi.

Secara keseluruhan, alur kerja ini menunjukkan bahwa modul Searching
dirancang dengan pemisahan tanggung jawab yang jelas antara lapisan controller,
service, repository, entity, dan Elasticsearch. Pendekatan ini memungkinkan proses
pencarian berjalan secara efisien, terstruktur, dan mudah dikembangkan, sekaligus
memastikan bahwa beban pencarian tidak langsung dibebankan pada basis data
utama. Dengan memanfaatkan Elasticsearch sebagai mesin pencari, sistem mampu
memberikan hasil pencarian yang cepat, relevan, dan skalabel sesuai kebutuhan
ERP Cranium.

B Alur Listener dan Proses Indexing pada Modul Searching

Untuk memastikan data yang tersimpan pada Elasticsearch selalu selaras
dengan data pada basis data utama, modul searching dilengkapi dengan mekanisme
pembaruan indeks secara otomatis. Mekanisme ini berperan penting dalam menjaga
konsistensi data pencarian ketika terjadi perubahan data pada sistem, sehingga
hasil pencarian yang disajikan kepada pengguna tetap mencerminkan kondisi data

terkini.

31

Pengembangan Modul Searching..., Nathaniel Ezra Anasbi, Universitas Multimedia Nusantara

Event

Service
(create, update, delete) '

> Event Listener
event D7D

h 4

Repository

elasticsearch

Gambar 3.4. Alur kerja Listener pada Modul Searching

Mekanisme diimplementasikan melalui /istener yang bertugas mendeteksi
setiap peristiwa perubahan data di modul lain, seperti proses penambahan (create),
pembaruan (update), maupun penghapusan (delete). Setiap perubahan tersebut
menghasilkan sebuah event yang merepresentasikan kondisi terbaru dari data yang
mengalami perubahan. Event ini berfungsi sebagai pemicu awal agar modul
searching dapat mengetahui bahwa terdapat data yang perlu diselaraskan dengan
indeks pencarian.

Event yang dihasilkan kemudian diterima oleh event listener yang telah
terdaftar pada modul searching. Event listener berperan sebagai penghubung antara
modul sumber data dan modul searching, dengan tugas utama menangkap event
yang masuk serta menyiapkan data yang diperlukan untuk proses lanjutan. Pada
tahap ini, data dari event dikemas ke dalam bentuk Data Transfer Object (DTO)
agar dapat diproses secara terstruktur dan konsisten oleh lapisan service, tanpa
bergantung langsung pada struktur data modul asal.

Selanjutnya, DTO yang telah disiapkan diteruskan ke lapisan service
untuk diproses sesuai dengan kebutuhan pembaruan indeks pencarian. Lapisan
service mengelola logika bisnis yang berkaitan dengan proses indexing, termasuk
penyesuaian struktur data agar sesuai dengan format dokumen Elasticsearch.
Setelah proses tersebut selesai, service meneruskan data ke lapisan repository untuk
disimpan atau diperbarui pada Elasticsearch. Dengan alur ini, setiap perubahan data
pada sistem operasional dapat secara otomatis tercermin pada indeks pencarian,

sehingga modul searching selalu menyajikan data yang relevan, konsisten, dan

32

Pengembangan Modul Searching..., Nathaniel Ezra Anasbi, Universitas Multimedia Nusantara

selaras dengan kondisi terkini sistem ERP Cranium.

3.4.5 Potongan Kode

Berdasarkan alur kerja tersebut, dapat dipahami bahwa Modul Searching
tidak berdiri sebagai satu proses tunggal, melainkan dibangun dari sejumlah
komponen yang saling terintegrasi untuk mendukung pemisahan proses pencarian
dari basis data utama. Setiap komponen memiliki peran spesifik dalam memastikan
proses pencarian berjalan secara efisien, konsisten, dan mudah dikembangkan.
Berikut adalah rincian komponen utama yang menyusun modul Searching beserta
peran masing-masing dalam mendukung proses pencarian data pada sistem ERP

Cranium.

A Metode Get

A.1 Lapisan Controller

@GetMapping (value = "/purchasing/orders", params = "input",
headers = "X-Api-Version=1")

@IsSearchingPurchasingOrderRead

@ResponseStatus (HttpStatus.OK)

@LogExecutionTime

public Page<PurchasingOrder> getOrderDocumentNoAndSupplierName

Pageable pageable,
PurchasingOrderRequestDto purchasingOrderRequestDto) {
return purchasingOrderService.findAllOrderAndSupplier (
pageable, purchasingOrderRequestDto) ;
}

Kode 3.1: Implementasi Metode Controller untuk Menangani Permintaan Pencarian Data

Purchasing Order

Pada lapisan controller, metode getOrderDocumentNoAndSupplierName
berfungsi sebagai titik masuk utama dalam menangani permintaan pencarian data
dari pengguna. Metode ini dipetakan menggunakan anotasi @ GetMapping dengan
parameter tertentu, sehingga hanya akan dieksekusi ketika permintaan HTTP GET
memenuhi kriteria yang telah ditetapkan oleh sistem. Permintaan yang diterima
kemudian dipetakan ke dalam objek Pageable untuk pengaturan pagination serta

PurchasingOrderRequestDto yang berfungsi sebagai wadah parameter pencarian.

33

Pengembangan Modul Searching..., Nathaniel Ezra Anasbi, Universitas Multimedia Nusantara

Penggunaan request DTO memungkinkan berbagai kriteria pencarian, seperti kata
kunci atau filter tertentu, dikelompokkan dalam satu struktur data yang terorganisir
dan mudah dikelola.

Setelah proses penerimaan dan validasi awal selesai, lapisan controller tidak
menjalankan logika bisnis pencarian secara langsung. Seluruh data permintaan
dalam bentuk request DTO diteruskan ke lapisan service melalui pemanggilan
metode findAllOrderAndSupplier. Pendekatan ini menegaskan pemisahan tanggung
jawab antar lapisan, di mana controller berfokus pada pengelolaan alur permintaan
dan pengamanan akses, sementara lapisan service bertanggung jawab penuh atas
pengolahan logika pencarian dan pengambilan data. Dengan demikian, struktur
sistem tetap modular, terstruktur, dan mudah dikembangkan.

A.2 Lapisan Service

public Page<PurchasingOrder> findAllOrderAndSupplier (Pageable
pageable, PurchasingOrderRequestDto dto) {
return purchasingOrderRepository.
findAllOrderDocumentNoAndSupplierName (pageable, dto);
}
Kode 3.2: Implementasi Service Layer sebagai Penghubung Controller dan Repository pada

Proses Pencarian

Pada lapisan service, metode findAllOrderAndSupplier berperan sebagai
penghubung antara controller dan repository dalam proses pengambilan data
purchasing order berdasarkan kriteria pencarian. Service ini menerima dua
parameter utama, yaitu Pageable untuk mengatur mekanisme pagination serta
PurchasingOrderRequestDto yang berisi parameter pencarian dari sisi klien.
Dengan pemisahan ini, logika bisnis tetap terjaga pada lapisan service tanpa
tercampur dengan detail teknis akses data.

Request DTO yang diterima oleh service diteruskan secara langsung ke
lapisan repository tanpa perubahan, karena pada proses ini service berfungsi
sebagai penghubung alur data antar lapisan. DTO tersebut memuat nilai pencarian
seperti order document number dan supplier name yang telah divalidasi dan
dipetakan sejak lapisan controller. Pendekatan ini memastikan bahwa service hanya
memproses data yang telah terstruktur dengan baik dan sesuai dengan kebutuhan
pencarian.

Metode findAllOrderAndSupplier ~ kemudian memanggil fungsi

34

Pengembangan Modul Searching..., Nathaniel Ezra Anasbi, Universitas Multimedia Nusantara

findAllOrderDocumentNoAndSupplierName pada repository. Pemanggilan ini
menandakan bahwa seluruh logika gquery dan optimasi pencarian, termasuk
integrasi dengan modul searching berbasis Elasticsearch, ditempatkan sepenuhnya
pada lapisan repository. Dengan demikian, service tidak bergantung pada detail
implementasi penyimpanan data, baik itu database relasional maupun mesin

pencari.

A.3 Lapisan Repository

Pada lapisan repository, implementasi pencarian data purchasing
order pada modul searching dibagi menjadi tiga komponen utama, yaitu
PurchasingOrderRepository, Purchasing OrderCustomRepository, dan
Purchasing OrderCustomRepositorylmpl. Pemisahan ini bertujuan untuk
menjaga prinsip separation of concerns, di mana operasi bawaan Spring Data
Elasticsearch dipisahkan dari logika pencarian kustom yang lebih kompleks.
PurchasingOrderRepository berperan sebagai repository utama yang mewarisi
ElasticsearchRepository, sehingga menyediakan fungsi dasar seperti pencarian
berdasarkan id dan relasi sederhana dengan entitas lain. Potongan kode berikut
menunjukkan implementasi PurchasingOrderRepository.

| @Repository("elasticPurchasingOrderRepository")
> public interface PurchasingOrderRepository

3 extends ElasticsearchRepository<PurchasingOrder, Long>,

4 PurchasingOrderCustomRepository {

ANRTRY
6

7 Optional <PurchasingOrder> findById(Long id);
8 List<PurchasingOrder> findBySupplierId(Long supplierId);

9

10 @Query (value = "{\"match_all\": {}}")
i1 Page<PurchasingOrder> getAllOrder (Pageable pageable);

AR
12

13

14}

Kode 3.3: Implementasi Repository Utama pada Elasticsearch

Selain menyediakan metode bawaan, PurchasingOrderRepository
juga meng-extend PurchasingOrderCustomRepository. Pendekatan ini
memungkinkan lapisan service untuk tetap Dberinteraksi dengan satu

repository tanpa perlu mengetahui detail implementasi guery yang digunakan.

35

Pengembangan Modul Searching..., Nathaniel Ezra Anasbi, Universitas Multimedia Nusantara

PurchasingOrderCustomRepository berfungsi sebagai kontrak yang mendefinisikan
kebutuhan pencarian khusus yang tidak dapat ditangani oleh metode turunan Spring
Data secara langsung, seperti pencarian berdasarkan order document number atau
kombinasi antara document number dan supplier name. Kontrak ini ditunjukkan
pada potongan kode berikut.

public interface PurchasingOrderCustomRepository ({

Page<PurchasingOrder> findAllOrderDocumentNo (

3 Pageable pageable, String documentNo) ;

ANRTAY

Page<PurchasingOrder> findAllOrderDocumentNoAndSupplierName (
Pageable pageable, PurchasingOrderRequestDto dto);

Kode 3.4: Implementasi CustomRepository pada Elasticsearch

Implementasi konkret dari kontrak PurchasingOrderCustomRepository
direalisasikan pada kelas PurchasingOrderCustomRepositorylmpl. Kelas ini
bertanggung jawab untuk menangani kebutuhan pencarian lanjutan yang tidak
dapat dicapai melalui mekanisme query turunan bawaan Spring Data. Oleh
karena itu, digunakan FElasticsearchOperations sebagai abstraksi tingkat lanjut
yang memungkinkan penyusunan guery secara manual dan lebih fleksibel terhadap
struktur indeks Elasticsearch. Potongan kode berikut menunjukkan implementasi

metode pencarian kustom tersebut.

@Repository ("purchasingOrderCustomRepositoryImpl")

» public class PurchasingOrderCustomRepositoryImpl

3 implements PurchasingOrderCustomRepository {

4

5

ANRTAY

@Autowired

private ElasticsearchOperations searchingElasticsearchOperations;

@override
public Page<PurchasingOrder> findAllOrderDocumentNoAndSupplierName

(
Pageable pageable, PurchasingOrderRequestDto dto) {

String wildcardInput =
"¥" + EscapeQueryUtil.escapedQuery (dto.getInput ()) + "*";

36

Pengembangan Modul Searching..., Nathaniel Ezra Anasbi, Universitas Multimedia Nusantara

NativeQuery query = NativeQuery.builder ()
.withQuery(q -> g.bool(b -> b
.should(s -> s.wildcard(w -> w.field("documentNo")
.value (wildcardInput).caselnsensitive (true)))
.should(s -> s.wildcard(w -> w.field("supplierName")
.value (wildcardInput) .caselnsensitive (true)))
.minimumShouldMatch ("1")

))
.withPageable (pageable)

.build () ;

SearchHits<PurchasingOrder> response =
searchingElasticsearchOperations.search (query,

PurchasingOrder.class);

return (Page<PurchasingOrder >)
SearchHitSupport.unwrapSearchHits (

searchPageFor (response, pageable));

ANRTRY

Kode 3.5: Implementasi Query Elasticsearch pada CustomRepositorylmpl

Pada tahap awal proses, metode ini menerima parameter pencarian dalam
bentuk PurchasingOrderRequestDto. Nilai input terlebih dahulu divalidasi
untuk memastikan bahwa pencarian hanya dilakukan ketika kata kunci tersedia.
Selanjutnya, input tersebut diproses menggunakan EscapeQueryUtil dan dikonversi
ke dalam pola wildcard search. Pendekatan ini memungkinkan sistem menemukan
data yang mengandung kata kunci tertentu secara parsial, tanpa harus mencocokkan
nilai secara eksak.

Query pencarian kemudian dibangun menggunakan NativeQuery dengan
pendekatan boolean query. Pada struktur ini, beberapa kondisi should diterapkan
untuk memungkinkan pencarian dilakukan pada lebih dari satu field, yaitu
documentNo dan supplierName. Dengan pengaturan minimumShouldMatch, sistem
memastikan bahwa minimal satu kriteria pencarian harus terpenuhi agar suatu
dokumen dapat dikembalikan sebagai hasil. Selain itu, pencarian bersifat case-
insensitive, sehingga perbedaan huruf besar dan kecil tidak memengaruhi hasil

pencarian.

37

Pengembangan Modul Searching..., Nathaniel Ezra Anasbi, Universitas Multimedia Nusantara

1

Hasil pencarian yang diperoleh dari Elasticsearch dikembalikan dalam
bentuk SearchHits, yang selanjutnya dikonversi menjadi objek Page menggunakan
SearchHitSupport. Proses ini menjaga konsistensi mekanisme pagination dengan
lapisan service dan controller. Dengan demikian, seluruh kompleksitas logika
pencarian ditempatkan secara terpusat pada lapisan repository kustom, sementara
lapisan di atasnya tetap sederhana dan fokus pada pengelolaan alur bisnis.

Secara keseluruhan, alur kerja pencarian dimulai dari pemanggilan metode
pada PurchasingOrderRepository oleh lapisan service. Operasi bawaan Spring
Data akan langsung dieksekusi, sedangkan metode pencarian kustom secara
otomatis diteruskan ke PurchasingOrderCustomRepositorylmpl. Hasil pencarian
yang diperoleh dari Elasticsearch dikembalikan dalam bentuk objek Page ke
lapisan service, kemudian diteruskan ke controller untuk dikemas sebagai respons
API dan dikirimkan kembali ke client. Dengan desain ini, logika pencarian
kompleks terpusat pada lapisan repository kustom, sementara lapisan di atasnya
tetap sederhana. Pendekatan tersebut tidak hanya meningkatkan modularitas dan
keterbacaan kode, tetapi juga memudahkan penambahan kebutuhan pencarian
baru tanpa mengubah struktur repository utama maupun lapisan service, sehingga

mendukung skalabilitas modul searching di masa mendatang.

B Metode Listener (Create, Update, Delete)

B.1 Event Publisher

Optional <HttpHeaderDto> httpHeaderDto = httpHeaderService.
getHttpHeader () ;

> 1f (!'httpHeaderDto.isEmpty ()) {

MasterSupplierCreateEvent supplierCreateEvent =
MasterSupplierCreateEvent .builder ()
.xUserld (UserAuthInfo.getUserId())
.xRequestId (httpHeaderDto.get () .getXRequestId())
.xAuthorization (httpHeaderDto.get () .getXAuthorization ())
.xAcceptlLanguage (httpHeaderDto.get () .getXAcceptLanguage ())
.xApiVersion (httpHeaderDto.get () .getXApiVersion ())
.id(supplier.getId())
.supplierName (supplier.getSupplierName ())
.supplierCode (supplier.getSupplierCode ())
Lbuild () ;
supplierPublisher.publishEvent (supplierCreateEvent);

38

Pengembangan Modul Searching..., Nathaniel Ezra Anasbi, Universitas Multimedia Nusantara

Kode 3.6: Contoh Implementasi Pengiriman Event Perubahan Data Antar Modul

Potongan kode tersebut menggambarkan mekanisme pengiriman event yang
digunakan untuk meneruskan informasi perubahan data dari suatu modul ke modul
searching. Proses diawali dengan pengambilan informasi header HTTP melalui
httpHeaderService.getHttpHeader(), yang disimpan dalam bentuk HttpHeaderDto.
Apabila data header tersedia, sistem kemudian membentuk sebuah objek event
bertipe MasterSupplierCreateEvent menggunakan pola builder. Event ini memuat
dua jenis informasi utama, yaitu metadata permintaan dan data inti entitas yang
mengalami perubahan. Meradata seperti xUserld, xRequestld, xAuthorization,
XAcceptLanguage, dan xApiVersion disertakan untuk menjaga konteks komunikasi
antar layanan serta mendukung proses pelacakan dan audit.

Selain metadata, event juga memuat data inti yang mengalami perubahan,
yaitu id, supplierName, dan supplierCode. Informasi ini merepresentasikan
entitas supplier yang baru dibuat dan menjadi dasar bagi modul searching untuk
melakukan proses lanjutan, seperti pembentukan atau pembaruan indeks pencarian
di Elasticsearch. Dengan hanya mengirimkan data yang relevan, event tetap bersifat
ringan dan efisien untuk diproses.

Setelah event berhasil dibangun, event tersebut dipublikasikan melalui
supplierPublisher.publishEvent(supplierCreateEvent). Tahap ini menandai bahwa
event perubahan data telah dipublikasikan ke sistem event listener. Dengan
mekanisme ini, sinkronisasi data antar modul dapat dilakukan secara otomatis
dan reaktif tanpa ketergantungan langsung antar layanan, sehingga mendukung

arsitektur sistem yang modular dan terintegrasi.

39

Pengembangan Modul Searching..., Nathaniel Ezra Anasbi, Universitas Multimedia Nusantara

B.2

Lapisan Event Listener

Pu

@Compaonent nashizd *
@SIf4]
public class SearchingMasterCreateSupplierEventlListener extends BaseEventListener {

@Autowired

private MasterSupplierService masterSupplierService;

@Autowired

private UserJwtUtil userJwtUtil;

@EventListener({MasterSupplierCreateEvent.class}) nashiz4 *

blic void handler(BaseEvent baseEvent) {

MasterSupplierCreateEvent event = {(MasterSupplierCreateEvent) baseEvent;
setRequestid(event);

UserAuthinfo.setEventUserAuthinfo{event, userJwtUtil);
log.info({"SearchingMasterDeleteSupplierEventListener.handler: {}", JsonUtil.dtoToJson(event)};

MasterSupplierCreateDto masterSupplierCreateDto = MasterSupplierCreateDto.builder()
idi{event.getld(})
.supplierdame(event.getSupplierMame())
.supplierCodelevent.getSupplierCode()}).createdBylevent.getCreatedBy())
build({);

HttpHeaderDto httpHeaderDto = HttpHeaderDto.builder()
XUserld{UserAuthinfo.getUserld().toString(})
XApiVersion{event.getXApiVersion())
XAcceptLanguage(event.getXAcceptLanguagel())
XAuthorization(event.getXAuthorization())
.XRequestld(event.getXRequestld())
Luild();
try {
MasterSupplierDto masterSupplier = ScopedValue.callWhere(CustomContextHolder HOLDER,
httpHeaderDto, () -> masterSupplierService.createMasterSupplierimasterSupplierCreateDto));
} catch (Exception ex) {
log.error{"SearchingMasterCreateSupplierEventListener.handler: " + ex.getMessage());

Gambar 3.5. Implementasi SearchingMasterCreateSupplierEventListener

Setelah event perubahan data dipublikasikan oleh modul sumber, event

tersebut akan ditangkap oleh event listener yang terdaftar di modul searching.

Pada

implementasi ini, class SearchingMasterCreateSupplierEventListener

berperan sebagai listener yang secara khusus menangani event bertipe

40

Pengembangan Modul Searching..., Nathaniel Ezra Anasbi, Universitas Multimedia Nusantara

1

MasterSupplierCreateEvent. Penggunaan anotasi @ EventListener memungkinkan
listener ini merespons event secara otomatis tanpa pemanggilan langsung antar
modul, sehingga mendukung arsitektur sistem yang terpisah dan modular.

Ketika event diterima, listener terlebih dahulu melakukan inisialisasi
konteks eksekusi, seperti penetapan request identifier dan informasi pengguna
yang terkait dengan event. Setelah itu, data yang dibawa oleh event dipetakan
ke dalam DTO khusus modul searching, yaita MasterSupplierCreateDto, yang
merepresentasikan data supplier dalam format yang siap diproses oleh lapisan
layanan pencarian.

Tahap berikutnya adalah pemanggilan service layer pada modul searching
untuk menjalankan proses bisnis utama, yaitu pembuatan atau pembaruan
data supplier pada indeks pencarian. Pemanggilan ini dilakukan melalui
masterSupplierService.createMasterSupplier, yang secara internal akan mengelola
proses indexing ke Elasticsearch. Dengan alur ini, setiap perubahan data pada
sistem utama akan langsung diteruskan dan direfleksikan ke dalam indeks pencarian
secara otomatis, sehingga konsistensi data antara basis data utama dan Elasticsearch

tetap terjaga tanpa memerlukan proses sinkronisasi manual.

B.3 Lapisan Service

public MasterSupplierDto createMasterSupplier (
MasterSupplierCreateDto masterSupplierCreateDto) {
MasterSupplier masterSupplier = MasterSupplier
.builder ()
.id(masterSupplierCreateDto.getId())
.supplierName (masterSupplierCreateDto.getSupplierName ())
.supplierCode (masterSupplierCreateDto.getSupplierCode ())
.createdBy (masterSupplierCreateDto.getCreatedBy ())
.build () ;
masterSupplier = masterSupplierRepository.save (masterSupplier)
1
return masterSupplierMapper.map (masterSupplier,

MasterSupplierDto.class);

Kode 3.7: Implementasi Service dalam Menangani Event Perubahan Data

Pada lapisan service, proses pembaruan indeks pencarian dilakukan
melalui metode createMasterSupplier. Metode ini menerima objek

MasterSupplierCreateDto yang berasal dari event listener sebagai representasi

41

Pengembangan Modul Searching..., Nathaniel Ezra Anasbi, Universitas Multimedia Nusantara

data hasil perubahan pada sistem utama. Data tersebut kemudian digunakan untuk
membangun objek domain MasterSupplier, yang disesuaikan dengan struktur
dokumen yang akan disimpan pada Elasticsearch. Tahap ini memastikan bahwa

hanya atribut yang relevan untuk kebutuhan pencarian yang diproses lebih lanjut.

B.4 Lapisan Repository

Setelah objek domain terbentuk, data disimpan ke dalam repository
menggunakan mekanisme save. Lapisan repository pada modul searching berperan
sebagai komponen yang menangani interaksi langsung dengan Elasticsearch
sebagal media penyimpanan indeks pencarian. Repository digunakan untuk
mengelola proses penyimpanan, pembaruan, serta pengambilan data dokumen
pencarian tanpa mengharuskan lapisan service berinteraksi secara langsung
dengan detail teknis penyimpanan data. Dengan adanya lapisan ini, akses
terhadap Elasticsearch dapat dilakukan secara terstruktur dan terabstraksi, sehingga
kompleksitas operasi indeks tidak tersebar ke bagian sistem lainnya.

Repository dimanfaatkan untuk mengeksekusi operasi indexing ketika
terjadi perubahan data dari sistem utama, termasuk penyimpanan dokumen baru,
pembaruan dokumen yang sudah ada, maupun penghapusan dokumen dari indeks.
Pendekatan ini memastikan setiap perubahan data yang diterima melalui event
listener dapat segera direfleksikan ke dalam indeks pencarian secara konsisten dan

terkontrol.

3.4.6 Implementasi dan Hasil

Implementasi modul searching pada sistem ERP Cranium dilakukan dengan
mengintegrasikan layanan pencarian ke dalam sisi front-end melalui pemanggilan
endpoint API yang telah disediakan. Pada tahap ini, front-end tidak berinteraksi
langsung dengan basis data relasional, melainkan berkomunikasi dengan modul

searching sebagai layanan khusus yang menangani proses pencarian data.

export const getOrderListInfinite = async (
input: string,
size: number,
pageParam = 0
) : Promise<Page<OrderList>> => {
return getApiClient () .get (

"/searching-service/purchasing/orders’,

42

Pengembangan Modul Searching..., Nathaniel Ezra Anasbi, Universitas Multimedia Nusantara

params: {
page: pageParam,
size: size,
input: input,

I

}
)i
bi

Kode 3.8: Implementasi Pemanggilan Endpoint Modul Searching pada Sisi Front-End

Pada sisi front-end, pemanggilan modul searching diimplementasikan
menggunakan HTTP client dengan mengirimkan parameter pencarian seperti kata
kunci (input), ukuran halaman (size), serta nomor halaman (page). Parameter
tersebut dikirimkan sebagai query parameter untuk mendukung proses pencarian
dan mekanisme paginasi data secara dinamis. Pendekatan ini memungkinkan
antarmuka aplikasi menampilkan hasil pencarian secara bertahap sesuai kebutuhan
pengguna.

Dengan adanya modul searching, proses pencarian tidak lagi dilakukan
secara langsung terhadap basis data relasional. Seluruh logika pencarian,
pengolahan parameter, serta pengambilan data dilakukan pada layanan pencarian
yang terpisah. Hal ini memberikan pemisahan tanggung jawab yang lebih jelas
antara pengelolaan data transaksi dan proses pencarian, sehingga sistem menjadi

lebih terstruktur dan mudah dikembangkan.

Purchasing » Order Return » Tambah

Nomor Purchase Order *
[podl -

POD695073 | supp satu revisi
POD673192 | supplier 1
POD117587 | supplier 2

POD563731 | supplier 2

Gambar 3.6. Hasil Implementasi Searching pada field pencarian Purchasing Order Return
Master Supplier

43

Pengembangan Modul Searching..., Nathaniel Ezra Anasbi, Universitas Multimedia Nusantara

Hasil implementasi menunjukkan bahwa fitur pencarian pada sisi front-end
dapat berjalan dengan baik dan konsisten, di mana data purchasing order dan master
supplier dapat ditampilkan sesuai dengan parameter pencarian yang diberikan oleh
pengguna. Selain itu, pemusatan proses pencarian pada modul searching membantu
menjaga performa basis data utama, karena beban pencarian tidak lagi dibebankan
langsung pada sistem basis data relasional.

Sebagai perbandingan performa implementasi modul searching, dilakukan
evaluasi antara pencarian berbasis SQL pada basis data relasional dan pencarian
berbasis Elasticsearch. Perbandingan ini dilakukan menggunakan Apache JMeter
dengan skenario beban dan jumlah permintaan yang setara. Hasil perbandingan

performa dirangkum pada Tabel 3.2.

Tabel 3.2. Hasil Evaluasi Performa Pencarian Data Menggunakan Basis Data Relasional
dan Elasticsearch

Metode Pencarian | #Request | Avg (ms) | Std. Dev | Throughput (req/s) | Error (%)
SQL 70.019 508 178,69 178,3 0,00
Elasticsearch 70.010 40 122,42 178,4 0,00

Berdasarkan hasil evaluasi performa pada Tabel 3.2, metode pencarian
berbasis Elasticsearch menunjukkan waktu respons rata-rata yang jauh lebih rendah
dibandingkan pencarian berbasis SQL. Rata-rata waktu respons Elasticsearch
berada pada kisaran 40 ms, sedangkan pencarian menggunakan SQL memiliki rata-
rata waktu respons sekitar 508 ms. Perbedaan ini menunjukkan bahwa Elasticsearch
mampu menangani proses pencarian data dengan lebih cepat, terutama pada kondisi
jumlah permintaan yang tinggi.

Selain itu, nilai standard deviation pada pencarian berbasis Elasticsearch
lebih rendah dibandingkan SQL, yang mengindikasikan bahwa waktu respons
Elasticsearch lebih stabil dan konsisten. Nilai throughput pada kedua metode
relatif setara, menandakan bahwa pengujian dilakukan pada beban yang seimbang.
Tidak ditemukannya kesalahan (error rate sebesar 0%) pada kedua metode
menunjukkan bahwa seluruh permintaan berhasil diproses dengan baik selama
pengujian berlangsung.

Secara keseluruhan, hasil implementasi dan evaluasi performa menunjukkan
bahwa penggunaan modul searching dengan dukungan Elasticsearch memberikan
peningkatan signifikan terhadap kecepatan dan konsistensi pencarian data pada

sistem ERP Cranium. Pendekatan ini tidak hanya meningkatkan pengalaman

44

Pengembangan Modul Searching..., Nathaniel Ezra Anasbi, Universitas Multimedia Nusantara

pengguna pada sisi front-end, tetapi juga membantu menjaga performa dan

skalabilitas sistem secara keseluruhan.

3.4.7 Testing

Pada tahap pengujian, sistem modul searching diuji melalui tiga pendekatan
utama, yaitu pengujian front-end, back-end, serta pengujian manual oleh tim
Quality Assurance (QA). Pengujian back-end dilakukan menggunakan JUnit,
Mockito, Spring Boot Test, dan Spring Cloud Contract untuk memvalidasi logika
bisnis, integrasi layanan, serta konsistensi kontrak API. Sementara itu, pengujian
front-end memanfaatkan Mock Service Worker (MSW) untuk mensimulasikan
respons API, sedangkan pengujian manual QA digunakan untuk memastikan
kesesuaian fungsional sistem dengan kebutuhan pengguna. Berikut adalah

penjelasan mengenai masing-masing pendekatan dalam festing.

A Pengujian Back-End

Pengujian pada sisi back-end dilakukan untuk memastikan bahwa seluruh
fungsi layanan pada modul Searching berjalan sesuai dengan spesifikasi, baik dari
sisi logika bisnis maupun kontrak API antar layanan. Pendekatan pengujian yang
digunakan terdiri dari dua jenis, yaitu unit testing untuk memverifikasi logika
internal aplikasi dan contract testing untuk menjamin konsistensi komunikasi
antarlayanan.

Pengujian berbasis kontrak dilakukan menggunakan Spring Cloud Contract
dengan mendefinisikan spesifikasi APl dalam bentuk berkas Groovy. Salah
satu kontrak yang diuji adalah proses pembuatan data Master Supplier, yang
didefinisikan dalam berkas createMasterSupplierSuccess.groovy. Kontrak ini
menetapkan struktur permintaan HTTP, header, serta respons yang harus
dikembalikan oleh layanan Searching ketika proses pembuatan supplier berhasil.

I Contract.make {

> description "create master supplier"

4 request {
url "/searching-service/internal/master/supplier"
6 method POST ()

7 headers {
’ contentType (applicationJson ())
9 header "X-Api-Version": "1"

45

Pengembangan Modul Searching..., Nathaniel Ezra Anasbi, Universitas Multimedia Nusantara

4

body (
id: 3,
supplierName: "Supplier 06",
supplierCode: "SUPPLIER-06",
createdBy: 12

response {
status CREATED ()
body (
id: 3,
supplierName: "Supplier 06",
supplierCode: "SUPPLIER-06"

Kode 3.9: Kontrak API createMasterSupplierSuccess.groovy

Kontrak tersebut berfungsi sebagai kesepakatan formal antara layanan
penyedia (provider) dan layanan pemanggil (consumer) agar struktur data dan
perilaku API tetap konsisten meskipun terjadi pengembangan atau perubahan kode.

Agar kontrak Groovy dapat dieksekusi dan divalidasi terhadap implementasi
aplikasi, digunakan kelas SearchingMasterSupplierBase sebagai base class untuk
contract testing. Kelas ini bertanggung jawab menyediakan konteks aplikasi,
konfigurasi Elasticsearch, serta dependensi yang dibutuhkan selama proses
pengujian kontrak berlangsung.

@ContextConfiguration (classes = DataElasticSearchingConfiguration.

class)

> public abstract class SearchingMasterSupplierBase {

@Autowired

protected MasterSupplierService masterSupplierService;

Kode 3.10: Struktur SearchingMasterSupplierBase

Melalui kelas ini, kontrak yang didefinisikan dalam berkas Groovy akan

dieksekusi seolah-olah permintaan HTTP sungguhan dikirimkan ke aplikasi.

46

Pengembangan Modul Searching..., Nathaniel Ezra Anasbi, Universitas Multimedia Nusantara

1

o)

Dengan demikian, hasil respons yang dihasilkan oleh controller dan service dapat
divalidasi secara otomatis terhadap spesifikasi kontrak yang telah ditetapkan.
Selain pengujian kontrak, dilakukan pula unit testing untuk memverifikasi
logika bisnis pada lapisan service. Pengujian ini diimplementasikan dalam
kelas MasterSupplierServiceTest dengan menggunakan JUnit dan Mockito. Fokus
utama pengujian ini adalah memastikan setiap metode pada MasterSupplierService
menghasilkan keluaran yang sesuai dan menangani kondisi kesalahan dengan benar.

@Test
void testCreateMasterSupplier () throws DataNotFoundException ({

5 MasterSupplierCreateDto dto = MasterSupplierCreateDto.builder ()

20

5
21

.id(2L)

.supplierName ("Supplier 06")
.supplierCode ("SUPPLIER-06")
.createdBy (12L)

.build () ;

MasterSupplier entity = MasterSupplier.builder ()
.id(dto.getId())
.supplierName (dto.getSupplierName ())
.supplierCode (dto.getSupplierCode ())
.createdBy (dto.getCreatedBy ())
.build () ;

Mockito.when (masterSupplierRepository.save (entity))

.thenReturn (entity);

MasterSupplierDto result =

masterSupplierService.createMasterSupplier (dto);

3 assertEquals (dto.getId (), result.getId());

Kode 3.11: Unit Test createMasterSupplier pada MasterSupplierServiceTest

Pengujian ini memastikan bahwa proses pembuatan, pembaruan,
pengambilan, dan penghapusan data Master Supplier berjalan sesuai dengan

aturan bisnis yang telah ditetapkan tanpa melibatkan lapisan HTTP atau kontrak

antarlayanan.
Secara keseluruhan, MasterSupplierServiceTest berfungsi
untuk memvalidasi logika internal aplikasi, sedangkan

47

Pengembangan Modul Searching..., Nathaniel Ezra Anasbi, Universitas Multimedia Nusantara

1

createMasterSupplierSuccess.groovy yang dijalankan melalui
SearchingMasterSupplierBase berfungsi untuk memastikan kesesuaian antarmuka
API. Kombinasi kedua pendekatan ini memberikan jaminan bahwa layanan tidak
hanya benar secara fungsional, tetapi juga konsisten dalam konteks integrasi antar

sistem.

B Pengujian Front-End

Pengujian pada sisi front-end dilakukan untuk memastikan bahwa fitur
pencarian purchasing order dapat menampilkan data secara benar sesuai dengan
parameter pencarian yang diberikan oleh pengguna. Untuk menghindari
ketergantungan langsung terhadap layanan back-end, digunakan pendekatan
mocking API dengan Mock Service Worker (MSW).

MSW digunakan untuk mensimulasikan respons dari modul searching
ketika aplikasi front-end melakukan permintaan pencarian. Potongan kode berikut
menunjukkan handler yang menangani permintaan pencarian purchasing order.

const getOrderListInfiniteHandler = rest.get (
‘S{API_SEARCHING_URL}/searching-service/purchasing/orders ",

async (req, res, ctx) => {
const page = Number (reqg.url.searchParams.get ('page’));
const size = Number (reqg.url.searchParams.get (’size’));
const input = reqg.url.searchParams.get (’input’);
const orders = db.purchasing_order.findMany ({
where: {

documentNo: { contains: input },
b
take: size,
skip: page * size,
1)

return res (
ctx.status (200),
ctx.Jjson ({
content: orders,
totalPages: 5,
totalElements: 10,
})
)i

48

Pengembangan Modul Searching..., Nathaniel Ezra Anasbi, Universitas Multimedia Nusantara

Kode 3.12: Mock API Searching Purchasing Order

Pada implementasi tersebut, handler membaca parameter pencarian page,
size, dan input dari URL, lalu mengembalikan data tiruan yang telah difilter
berdasarkan document number. Respons disusun menyerupai format pagination
agar dapat diproses oleh komponen front-end tanpa perbedaan dengan layanan
nyata.

Handler pencarian ini kemudian didaftarkan ke dalam konfigurasi MSW
agar dapat digunakan selama proses pengujian, seperti ditunjukkan pada potongan
kode berikut.

I export const searchingPurchasingOrdersHandlers = [

getOrderListInfiniteHandler,
31

Kode 3.13: Registrasi Handler MSW

Melalui pengujian ini, dapat dipastikan bahwa komponen pencarian pada
front-end telah mampu menangani hasil pencarian, melakukan pagination, serta
menampilkan data purchasing order secara konsisten sesuai dengan respons dari

modul searching.

3.5 Kendala dan Solusi

Kendala yang ditemukan selama kerja praktik magang adalah sebagai
berikut:

e Keterbatasan pemahaman awal mengenai business process menyebabkan
proses pengerjaan modul membutuhkan waktu lebih lama karena harus

mempelajari alur business process terlebih dahulu.

» Kurang matangnya brief pada beberapa penugasan, sehingga seringkali ada

tambahan tugas ataupun penyesuaian di saat pengerjaan task sudah dimulai.

* Dokumentasi teknis pada beberapa modul belum lengkap, sehingga
pemahaman terhadap fungsi dan alur sistem harus dilakukan melalui

eksplorasi kode secara langsung.

Solusi atas kendala-kendala yang dihadapi selama kerja praktik magang
adalah sebagai berikut:

49

Pengembangan Modul Searching..., Nathaniel Ezra Anasbi, Universitas Multimedia Nusantara

* Melakukan pembelajaran secara mandiri melalui dokumen internal serta
secara aktif berdiskusi dan bertanya kepada mentor guna memahami alur

business process yang diterapkan.

* Klarifikasi kebutuhan dan ruang lingkup fask sejak awal pengerjaan serta
berkomunikasi secara berkala dengan mentor terkait perkembangan dan

perubahan yang terjadi..

» Melakukan eksplorasi kode sumber secara langsung, mempelajari struktur
dan alur program, serta mencatat temuan penting sebagai referensi pribadi

selama proses pengembangan.

50

Pengembangan Modul Searching..., Nathaniel Ezra Anasbi, Universitas Multimedia Nusantara

	BAB 3 Pelaksanaan Kerja Magang
	3.1 Kedudukan dan Koordinasi
	3.2 Alur dan Prosedur Kerja Proyek
	3.3 Tugas yang Dilakukan
	3.4 Uraian Pelaksanaan Magang
	3.4.1 Pelaksanaan Kerja Magang
	3.4.2 Konsep Sofware Development Life Cycle ERP Cranium
	3.4.3 Ruang Lingkup dan Konsep Pengembangan
	3.4.4 Pengembangan Modul searching
	3.4.5 Potongan Kode
	3.4.6 Implementasi dan Hasil
	3.4.7 Testing

	3.5 Kendala dan Solusi

