

DAFTAR PUSTAKA

- [1] H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, and F. Bray, “Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” *CA: A Cancer Journal for Clinicians*, vol. 71, no. 3, pp. 209–249, 2021.
- [2] P. Cortazar *et al.*, “Pathological complete response and long-term clinical benefit in breast cancer: the ctneobc pooled analysis,” *The Lancet*, vol. 384, no. 9938, pp. 164–172, 2014.
- [3] H. Li *et al.*, “Association of radiomic imaging features and gene expression patterns in breast cancer,” *npj Breast Cancer*, vol. 6, no. 1, pp. 1–10, 2020.
- [4] H. Duanmu, P. Huang, Z. Brahmibhatt *et al.*, “Prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer using deep learning with integrative imaging, molecular and demographic data,” in *Medical Image Computing and Computer Assisted Intervention – MICCAI 2020*. Springer, 2020, pp. 242–252.
- [5] N. M. Braman *et al.*, “Intratumoral and peritumoral radiomics for the prediction of pathological complete response to neoadjuvant chemotherapy based on breast dce-mri,” *Breast Cancer Research*, vol. 19, no. 1, pp. 1–14, 2017.
- [6] A. Goldhirsch *et al.*, “Personalizing the treatment of women with early breast cancer: highlights of the st gallen international expert consensus on the primary therapy of early breast cancer 2013,” *Annals of oncology*, vol. 24, no. 9, pp. 2206–2223, 2013.
- [7] C. M. Perou *et al.*, “Molecular portraits of human breast tumours,” *Nature*, vol. 406, no. 6797, pp. 747–752, 2000.
- [8] C. K. Kuhl, “The current status of breast mr imaging,” *Clinical radiology*, vol. 62, pp. 35–50, 2007.
- [9] N. Tajbakhsh, J. Y. Shin, S. R. Gurudu, R. T. Hurst, C. B. Kendall, M. B. Gotway, and J. Liang, “Convolutional neural networks for medical image analysis: Full training or fine tuning?” *IEEE transactions on medical imaging*, vol. 35, no. 5, pp. 1299–1312, 2016.
- [10] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in *Proceedings of the IEEE conference on computer vision and pattern recognition*. IEEE, 2016, pp. 770–778.
- [11] M. Kuhn and K. Johnson, *Applied predictive modeling*. Springer, 2013.

- [12] Z.-H. Zhou, *Ensemble methods: foundations and algorithms*. CRC press, 2012.
- [13] A. Paszke *et al.*, “Pytorch: An imperative style, high-performance deep learning library,” in *Advances in neural information processing systems*, vol. 32, 2019.
- [14] F. Pedregosa *et al.*, “Scikit-learn: Machine learning in python,” *Journal of machine learning research*, vol. 12, pp. 2825–2830, 2011.
- [15] N. M. Hylton *et al.*, “Locally advanced breast cancer: Mr imaging quantitative features for prediction of response to neoadjuvant chemotherapy,” *Radiology*, vol. 278, no. 3, pp. 725–732, 2016.
- [16] H. Li, N. Hylton, M. Giger *et al.*, “ISPY1-Tumor-SEG-Radiomics: Expert tumor annotations and radiomic features for the ISPY1/ACRIN 6657 trial data collection,” 2020. [Online]. Available: <https://doi.org/10.7937/TCIA.XC7A-QT20>
- [17] K. Clark *et al.*, “The cancer imaging archive (tcia): maintaining and operating a public information repository,” *Journal of digital imaging*, vol. 26, pp. 1045–1057, 2013.
- [18] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in *Proceedings of the IEEE conference on computer vision and pattern recognition*, 2016, pp. 770–778.
- [19] R. Tibshirani, “Regression shrinkage and selection via the lasso,” *Journal of the Royal Statistical Society: Series B (Methodological)*, vol. 58, no. 1, pp. 267–288, 1996.
- [20] C. Cortes and V. Vapnik, “Support-vector networks,” *Machine learning*, vol. 20, no. 3, pp. 273–297, 1995.
- [21] L. Breiman, “Random forests,” *Machine learning*, vol. 45, no. 1, pp. 5–32, 2001.
- [22] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in *Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining*, 2016, pp. 785–794.