BAB 2
TINJAUAN PUSTAKA

2.1 Aspek Klinis dan Patologis Kanker Ginjal ccRCC

Clear Cell Renal Cell Carcinoma (ccRCC) adalah subtipe kanker ginjal
paling umum pada orang dewasa, yang dinamai berdasarkan penampilan sel
tumornya yang ‘“‘jernih” atau pucat saat diamati di bawah mikroskop [13, 14].
Kanker ini berasal dari sel-sel yang melapisi tubulus kecil di ginjal, yang berfungsi
menyaring limbah dari darah [13]. Diagnosis awal sering kali bersifat insidental,
ditemukan melalui pemeriksaan pencitraan seperti Computed Tomography (CT)
atau Magnetic Resonance Imaging (MRI) yang dilakukan untuk kondisi lain [6].
Setelah tumor terdeteksi, diagnosis definitif umumnya dikonfirmasi melalui biopsi,
di mana seorang ahli patologi memeriksa sampel jaringan di bawah mikroskop
untuk menentukan subtipe dan grade tumor [6].

Sistem grading tumor memiliki peran penting dalam menentukan prognosis
dan perencanaan terapi [15]. Sistem grading yang paling banyak digunakan
saat ini adalah klasifikasi World Health Organization / International Society of
Urological Pathology (WHO/ISUP), yang telah menggantikan sistem Fuhrman
sebelumnya [16]. Sistem ISUP/WHO ini tidak hanya mengandalkan ukuran
nukleus, tetapi secara khusus menekankan pada prominensi nukleolus serta
keberadaan morfologi rhabdoid atau sarkomatoid, yang dikategorikan sebagai
grade 4 [16]. Ketergantungan pada fitur-fitur mikroskopis ini sangat relevan karena
mencerminkan agresivitas dan heterogenitas tumor pada tingkat seluler [17]. Oleh
karena itu, model diagnostik berbasis Artificial Intelligence (Al) yang efektif perlu
mampu mengidentifikasi fitur kuantitatif dari pencitraan medis yang berkorelasi
dengan karakteristik mikroskopis tersebut. Kemampuan ini berpotensi menjadikan
model Al sebagai alat prediksi grade histologis secara non-invasif, yang merupakan
kemajuan signifikan dalam diagnosis kanker ginjal.

Secara umum, tahapan kanker ginjal berdasarkan sistem Tumor—Node—
Metastasis (TNM) diklasifikasikan sebagai berikut:

 Stadium I: Tumor berukuran kecil, yaitu 7 cm atau kurang, dan sepenuhnya
terbatas di dalam ginjal. Tumor belum menyebar ke kelenjar getah bening
maupun organ lain (7, NO, M0) [18, 19].
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Adrenal gland

—— Fascia
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or smaller
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Cancer Research UK

Gambar 2.1. Ilustrasi Kanker Ginjal Stadium I

Sumber: Cancer Research UK

e Stadium II: Tumor berukuran lebih besar dari 7 cm, namun masih
sepenuhnya berada di dalam ginjal dan belum menyebar (72, NO, MO)
[18, 19].

Adrenal gland

Fascia

Cancer is larger
than 7cm

Ureter

Cancer Research UK

Gambar 2.2. Ilustrasi Kanker Ginjal Stadium II

Sumber: Cancer Research UK
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e Stadium III: Tumor dengan ukuran berapa pun yang telah menyebar ke
pembuluh darah utama ginjal (seperti vena ginjal atau vena kava) dan/atau
ke setidaknya satu kelenjar getah bening regional, namun belum menyebar ke
organ jauh (73 atau NI, MO) [18, 19].

Adrenal gland
Lymph node

Fascia

Cancer has
grown into one
of the veins and
there may be
cancer cells

in a lymph node

Ureter

Cancer Research UK

Gambar 2.3. Ilustrasi Kanker Ginjal Stadium III

Sumber: Cancer Research UK

e Stadium IV: Stadium paling lanjut, ditandai dengan penyebaran tumor
ke luar fasia Gerota (Gerota’s fascia), keterlibatan kelenjar adrenal, atau
metastasis jauh ke organ lain seperti paru-paru atau tulang (74 atau M)
[18, 19].
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Gambar 2.4. Ilustrasi Kanker Ginjal Stadium IV

Sumber: Cancer Research UK

2.2 Peran Artificial Intelligence dalam Pencitraan Medis dan Radiomik

Penerapan Artificial Intelligence (Al) telah merevolusi analisis pencitraan
medis. Algoritma machine learning dan deep learning mampu menganalisis citra
medis seperti MRI, CT scan, maupun X-ray secara otomatis untuk mendeteksi
tumor, lesi, atau kelainan jaringan [10]. Kemampuan ini memungkinkan deteksi
dini dan perencanaan terapi yang lebih cepat, serta berpotensi mengurangi
kesalahan manusia dalam proses diagnosis.

Dalam konteks ini, radiomik muncul sebagai bidang penelitian yang
berfokus pada ekstraksi sejumlah besar fitur kuantitatif dari citra medis
konvensional [20]. Radiomik mengubah citra diagnostik menjadi data terukur
yang dapat dianalisis lebih lanjut menggunakan metode statistik atau pendekatan A/
[11]. Fitur-fitur kuantitatif tersebut, yang dikenal sebagai fitur radiomik, berpotensi
mengungkap pola dan karakteristik tumor yang tidak dapat diidentifikasi melalui
observasi visual semata [20]. Dengan demikian, radiomik memungkinkan konversi
citra medis menjadi biomarker non-invasif yang mampu merepresentasikan biologi

dan perilaku tumor secara lebih mendalam [21].
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2.3 Keunggulan Pendekatan Multimodal

Dalam pengembangan model kecerdasan buatan (AI) untuk diagnosis
medis, pendekatan multimodal telah terbukti memiliki keunggulan yang signifikan
dibandingkan pendekatan unimodal [22]. Perbedaan mendasar antara kedua
pendekatan ini terletak pada cakupan dan keragaman data yang digunakan dalam
proses pemodelan. Model unimodal hanya memanfaatkan satu jenis data atau satu
modalitas pencitraan, seperti CT atau MRI saja. Sebaliknya, model multimodal
mengintegrasikan beberapa sumber data secara bersamaan, sehingga mampu
menangkap karakteristik informasi yang lebih beragam dan saling melengkapi [11].

Integrasi  berbagai modalitas memungkinkan model multimodal
memperoleh pemahaman kontekstual yang lebih kaya dan komprehensif. Informasi
yang tidak tertangkap oleh satu modalitas dapat dikompensasi oleh modalitas lain,
sehingga menghasilkan representasi fitur yang lebih informatif. Hal ini berdampak
langsung pada peningkatan performa prediksi, terutama pada tugas klasifikasi
dan prognosis klinis yang memerlukan pemahaman kompleks terhadap kondisi
patologis pasien [22].

Secara teknis, pengembangan model multimodal memiliki tingkat
kompleksitas yang lebih tinggi karena memerlukan arsitektur khusus untuk
memproses dan menggabungkan data dari berbagai sumber secara simultan, seperti
melalui teknik fusi fitur (feature fusion) atau fusi keputusan (decision fusion).
Meskipun demikian, peningkatan kompleksitas ini sebanding dengan peningkatan
kinerja model. Studi sebelumnya melaporkan bahwa model radiomik multimodal
yang menggabungkan fitur dari CT dan MRI mampu mencapai nilai Area Under
the Curve (AUC) hingga 0,925, yang lebih tinggi dibandingkan model yang hanya
menggunakan satu modalitas [22].

Keunggulan pendekatan multimodal menjadi sangat relevan dalam
penelitian yang menggunakan dataset heterogen, seperti The Cancer Imaging
Archive (TCIA). Data pada TCIA berasal dari pencitraan standar pelayanan klinis
(standard of care imaging) di berbagai institusi, sehingga mencerminkan variasi
yang tinggi dalam jenis pemindai, produsen perangkat, serta protokol akuisisi
citra. Variasi ini dapat menjadi tantangan serius bagi model unimodal karena
berpotensi menimbulkan bias dan menurunkan performa generalisasi. Dengan
mengombinasikan informasi dari beberapa modalitas, pendekatan multimodal
mampu mengurangi dampak variasi tersebut dan menghasilkan representasi

data yang lebih robust, sehingga model yang dihasilkan memiliki kemampuan
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generalisasi yang lebih baik untuk penerapan di lingkungan klinis yang beragam
di masa depan [22].
Tabel 2.1 menyajikan ringkasan perbandingan antara model Al unimodal

dan multimodal, serta menegaskan alasan pemilihan pendekatan multimodal

sebagai metode yang optimal dalam penelitian ini.

Tabel 2.1. Perbandingan Aspek Model Unimodal dan Model Multimodal

Aspek Model Unimodal Model Multimodal

Lingkup Data Mengolah satu  jenis | Mengintegrasikan beberapa
data atau satu modalitas | jenis data atau modalitas
pencitraan (misalnya CT | pencitraan (misalnya CT
atau MRI) dan MRI)

Pemahaman Pemahaman konteks | Pemahaman  kontekstual

Konteks terbatas dan rentan terhadap | lebih kaya dan
ambiguitas informasi komprehensif

Performa Model | Performa baik pada tugas | Memberikan analisis yang
spesifik, namun menurun | lebih akurat dan stabil pada
pada kasus kompleks berbagai kondisi

Kompleksitas Relatif sederhana karena | Lebih kompleks karena

Teknis hanya memproses satu | membutuhkan mekanisme
sumber data fusi data

Ketahanan Rentan terhadap variasi | Lebih  robust terhadap

terhadap Variasi | perangkat dan protokol | heterogenitas data

Data akuisisi

2.4 Ekstraksi Fitur dengan Radiomics

Radiomics merupakan pendekatan komputasional yang bertujuan untuk
mengubah citra medis menjadi representasi data numerik melalui proses ekstraksi
fitur dari wilayah tumor yang telah disegmentasi, yang dikenal sebagai Region
of Interest (ROI). Pendekatan ini memungkinkan penggalian informasi kuantitatif
tingkat lanjut yang tidak dapat diamati secara visual oleh radiolog, sehingga
hubungan antara pola pencitraan dan Kkarakteristik biologis tumor dapat dianalisis
secara objektif dan non-invasif.

Dalam penelitian ini, proses ekstraksi fitur radiomik dilakukan
menggunakan pustaka PyRadiomics, yaitu sebuah framework berbasis Python
yang dirancang untuk melakukan ekstraksi fitur secara terstandarisasi, transparan,
dan dapat direproduksi [23]. PyRadiomics mengikuti definisi matematis yang

direkomendasikan oleh [Image Biomarker Standardization Initiative (IBSI),
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sehingga hasil fitur yang diperoleh memiliki konsistensi dan validitas yang tinggi
serta dapat dibandingkan dengan penelitian radiomik lainnya. Framework ini

mendukung berbagai modalitas citra medis, termasuk CT, MRI, dan PET.

2.4.1 PyRadiomics sebagai Framework Ekstraksi Fitur

PyRadiomics memerlukan dua input utama, yaitu citra medis dan mask ROI
yang merepresentasikan area tumor hasil segmentasi. Sebelum proses ekstraksi fitur
dilakukan, citra terlebih dahulu melalui tahapan pra-pemrosesan, seperti resampling
voxel ke resolusi isotropik dan normalisasi intensitas. Tahapan ini bertujuan untuk
mengurangi variasi spasial dan intensitas antar citra yang berasal dari perangkat dan
protokol akuisisi yang berbeda, sehingga konsistensi perhitungan fitur dapat terjaga.

Ekstraksi fitur dilakukan tidak hanya pada citra asli (original image),
tetapi juga pada citra hasil transformasi, seperti wavelet, Laplacian of Gaussian
(LoG), dan square root filters. Transformasi citra ini digunakan untuk menyoroti
karakteristik tekstur dan pola spasial pada berbagai skala, sehingga mampu
menangkap heterogenitas internal tumor secara lebih komprehensif [24].

Seluruh parameter ekstraksi fitur, termasuk bin width, metode interpolasi,
serta jenis filter pra-pemrosesan, didefinisikan melalui file konfigurasi berbasis
YAML. Pendekatan ini memungkinkan proses ekstraksi dilakukan secara konsisten
dan dapat direplikasi dengan mudah pada dataset lain, sehingga meningkatkan

reliabilitas dan reprodusibilitas penelitian [23].

2.4.2 Fitur-Fitur Radiomik

PyRadiomics mengelompokkan fitur radiomik ke dalam beberapa kategori
utama, yang masing-masing merepresentasikan aspek statistik, morfologis,
dan tekstural dari jaringan tumor.  Fitur-fitur ini berperan penting dalam
mendeskripsikan heterogenitas tumor yang berkaitan dengan agresivitas, stadium,

dan karakteristik biologis kanker.

* First-Order Statistics: Fitur ini menggambarkan distribusi nilai intensitas
voxel di dalam ROI tanpa mempertimbangkan hubungan spasial antar voxel.
Contoh fitur meliputi Mean, Variance, Skewness, Kurtosis, Entropy, dan
Energy, yang mencerminkan variasi intensitas, tingkat homogenitas, serta

kompleksitas jaringan tumor.
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» Shape Features: Fitur bentuk merepresentasikan karakteristik geometris
tiga dimensi dari ROI tumor, seperti Volume, Surface Area, Compactness,
Sphericity, dan Elongation. Informasi ini berkaitan dengan ukuran dan
morfologi tumor yang sering diasosiasikan dengan tingkat invasi dan stadium

penyakit.

* Gray Level Co-occurrence Matrix (GLCM): GLCM mengukur hubungan
spasial antar pasangan voxel dengan nilai intensitas tertentu pada jarak
dan arah tertentu. Fitur seperti Contrast, Correlation, Homogeneity,
dan Dissimilarity digunakan untuk menilai keteraturan pola tekstur dan

kompleksitas struktur jaringan tumor [24].

* Gray Level Run Length Matrix (GLRLM): GLRLM menghitung panjang
urutan voxel dengan nilai intensitas yang sama dalam arah tertentu.
Fitur seperti Short Run Emphasis (SRE) dan Long Run Emphasis (LRE)

memberikan indikasi tingkat kehalusan atau kekasaran pola tekstur tumor.

* Gray Level Size Zone Matrix (GLSZM): GLSZM mengukur ukuran zona
voxel dengan intensitas seragam tanpa memperhatikan arah. Fitur seperti
Small Zone Emphasis (SZE) dan Large Zone Emphasis (LZE) mencerminkan

tingkat heterogenitas area tumor dengan distribusi keabuan yang serupa.

* Gray Level Dependence Matrix (GLDM): GLDM menggambarkan tingkat
ketergantungan antar voxel dengan intensitas yang sama. Fitur seperti
Dependence Non-Uniformity dan Dependence Entropy digunakan untuk

mendeskripsikan kompleksitas tekstur dan variasi struktur internal tumor.

* Neighboring Gray Tone Difference Matrix (NGTDM): NGTDM
mengukur perbedaan antara intensitas suatu voxel dengan rata-rata intensitas
voxel tetangganya. Fitur seperti Coarseness, Contrast, dan Strength

memberikan informasi mengenai tingkat kekasaran dan keteraturan tekstur
pada ROL.

Seluruh fitur radiomik dihitung berdasarkan formulasi matematis yang
terdokumentasi dalam pustaka PyRadiomics [24]. Hasil ekstraksi berupa vektor
fitur numerik yang merepresentasikan karakteristik statistik dan spasial tumor.
Vektor fitur ini selanjutnya digunakan sebagai masukan pada tahap seleksi fitur dan
pembangunan model klasifikasi untuk memprediksi stadium atau subtipe kanker

ginjal secara otomatis.
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2.5 Seleksi Fitur

Seleksi fitur (Feature Selection) merupakan tahapan fundamental dalam
pemrosesan data pra-analisis yang bertujuan untuk mengidentifikasi dan memilih
subset fitur optimal § dari himpunan fitur asli /. Kualitas subset S C F diukur
dari kemampuannya untuk mempertahankan, atau bahkan meningkatkan, kinerja
prediktif model klasifikasi sambil mengurangi dimensi input data. Proses ini
menjadi sangat penting di tengah ledakan data berdimensi tinggi (high-dimensional
data), terutama dalam bidang Genomika, di mana jumlah gen dapat mencapai
ribuan, dan Radiomika yang menghasilkan ratusan hingga ribuan fitur tekstur dan
statistik dari citra medis [25].

Tantangan utama dalam analisis data berdimensi tinggi adalah fenomena
curse of dimensionality, di mana volume ruang pencarian meningkat secara
eksponensial seiring bertambahnya dimensi, sehingga data menjadi semakin jarang
dan proses analisis komputasional menjadi tidak praktis. Dengan melakukan seleksi
fitur, manfaat utama yang diperoleh meliputi pencegahan overfitting (terutama
ketika jumlah fitur jauh melebihi jumlah sampel), peningkatan interpretasi model
melalui identifikasi fitur-fitur yang paling diskriminatif (misalnya, identifikasi
biomarker spesifik), serta percepatan waktu komputasi dalam proses pelatihan
model [26].

2.5.1 Taksonomi Metode Seleksi Fitur: Filter, Wrapper, dan Embedded

Metode seleksi fitur diklasifikasikan menjadi tiga kategori utama,
yang dibedakan berdasarkan cara evaluasi subset fitur dilakukan, khususnya
hubungannya dengan algoritma pembelajaran mesin target [25]. Pemilihan kategori

ini sangat menentukan biaya komputasi dan kualitas hasil akhir seleksi.

Metode Filter (Metode Penyaring)

Metode Filter mengevaluasi relevansi fitur berdasarkan properti intrinsik
data, independen dari model pembelajaran mesin yang akan digunakan [25].
Fitur-fitur diberi peringkat menggunakan metrik statistik seperti korelasi, uji x2,
atau Mutual Information. Keunggulan utama metode Filter adalah efisiensi
komputasi yang tinggi, menjadikannya pilihan ideal untuk data berdimensi sangat

tinggi. Fitur yang dipilih cenderung lebih generalizable karena tidak terikat
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pada karakteristik spesifik model klasifikasi tertentu [25]. Minimum Redundancy

Maximum Relevance (mRMR) adalah contoh inti dari metode Filter.

Metode Wrapper (Metode Pembungkus)

Sebaliknya, metode Wrapper menggunakan kinerja model klasifikasi yang
diuji (misalnya akurasi cross-validation atau AUC) sebagai fungsi objektif untuk
memandu strategi pencarian. Metode ini secara eksplisit mempertimbangkan
interaksi antar fitur karena subset dievaluasi secara kolektif berdasarkan dampaknya
pada kinerja prediksi [25]. Meskipun Wrapper telah terbukti menghasilkan kinerja
prediktif yang lebih tinggi, kelemahan kritikalnya adalah biaya komputasi yang
substansial, sebab memerlukan pelatihan dan pengujian model berulang kali pada
setiap iterasi pencarian [27]. Genetic Algorithm (GA) merupakan salah satu strategi

pencarian heuristik paling efektif dalam kategori Wrapper.

Metode Embedded (Metode Tertanam)

Metode  Embedded menawarkan kompromi seimbang dengan
mengintegrasikan proses seleksi fitur langsung ke dalam pelatihan model, di
mana fitur yang paling relevan dipelajari selama proses optimasi, seperti yang
terlihat pada teknik regularisasi L (Lasso) [27].

Perbedaan mendasar antara Filter dan Wrapper—efisiensi komputasi
versus akurasi optimasi—menentukan kebutuhan metodologis untuk studi yang
berurusan dengan data berdimensi tinggi dan kompleksitas interaksi fitur. Metode
Filter (seperti mRMR) menawarkan efisiensi tinggi namun dapat mengabaikan
sinergi fitur, sementara metode Wrapper (seperti GA) menangkap sinergi namun
menghadapi kendala skalabilitas komputasi. Kontras ini membentuk justifikasi

teknis untuk pengembangan pendekatan hibrida.[27]

2.5.2 Minimum Redundancy Maximum Relevance (mRMRe)

Minimum Redundancy Maximum Relevance (mRMRe) adalah salah satu
metode seleksi fitur berbasis Filter yang paling efektif, terutama dalam aplikasi yang
ditandai oleh banyaknya fitur yang saling berkorelasi atau berlebihan (redundant),

seperti genetika dan radiomik [25].
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A Prinsip Dasar dan Filsafat Seleksi Fitur Berbasis Informasi

mRMRe didasarkan pada kriteria ketergantungan statistik maksimal
(maximal statistical dependency criterion). Secara teoritis, seleksi fitur yang
optimal seharusnya memaksimalkan ketergantungan antara subset fitur yang dipilih
dan variabel target. Karena kriteria ini sulit diimplementasikan secara langsung,
Peng, Long, dan Ding (2005) menurunkan kriteria yang setara, yaitu mRMR, untuk
seleksi fitur inkremental tingkat pertama [28]. Karya fundamental ini awalnya
diterapkan pada data ekspresi gen mikroarray, dengan tujuan memilih subset kecil
dari ribuan gen untuk klasifikasi fenotipe yang akurat [25]. Kriteria mRMR
memastikan bahwa gen yang dipilih memberikan cakupan ruang fitur yang lebih
seimbang dan mampu menangkap karakteristik fenotipe yang lebih luas, sehingga
meningkatkan performa prediksi [25].

B Informasi Mutual (Mutual Information, MI) sebagai Metrik
Ketergantungan

mRMRe memanfaatkan Informasi Mutual (MI), /(X;Y), sebagai metrik
utama untuk mengukur ketergantungan antar variabel [29]. MI mampu menangkap
hubungan non-linear yang kompleks antara fitur dan target. Dalam kerangka

mRMRe terdapat dua komponen krusial:

* Relevansi Maksimum (MaxRelevance): /(x;;y), yaitu ketergantungan

antara fitur ke-j dan target.

* Redundansi Minimum (MinRedundancy): /(x;;x;), yaitu MI antar fitur
dalam subset yang dipilih.

C Formulasi Matematis Kriteria mRMRe

Tujuan mRMRe adalah memilih subset fitur § yang memaksimalkan

relevansi rata-rata D(S) dan meminimalkan redundansi rata-rata R(S) [29].

1
D(S) = ] Y I1(x)3y) .1)
XjGS
1
R(S) = SF AZESI(xj;xk) (2.2)
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Fungsional objektif kombinasi (MID Scheme) diformulasikan sebagai:

§1x |S| le], — |2 Z Ix],xk 2.3)

x;€S Xj,XkES

D Strategi Pencarian Sekuensial Inkremental

Karena jumlah total subset adalah 2, pencarian exhaustif tidak praktis
untuk data berdimensi tinggi. Oleh karena itu mRMRe menggunakan pendekatan
greedy inkremental [28], yang menurunkan kompleksitas dari O(2") menjadi
O(M-|S)).

Strategi ini memilih fitur baru berdasarkan kriteria:

max | I(x;;y)— I(xj;x;) 2.4)

Meskipun efisien dan skalabel, strategi ini merupakan aproksimasi sehingga
tidak menjamin optimum global, membuka ruang bagi optimasi berbasis Wrapper
seperti Genetic Algorithm (GA) [30, 31].

2.5.3 Genetic Algorithm (GA)

Proses Genetic Algorithm (GA) dalam seleksi fitur melibatkan siklus

berulang yang terdiri dari inisialisasi, evaluasi, seleksi, dan reproduksi [31].

A Inisialisasi Populasi dan Pengkodean (Encoding)

Langkah awal melibatkan inisialisasi populasi awal yang terdiri dari solusi
kandidat. Dalam seleksi fitur, setiap solusi, yang disebut individu atau kromosom,
mewakili satu subset fitur spesifik. Skema pengkodean paling umum adalah vektor
biner [32]. Vektor biner ini memiliki panjang N (jumlah total fitur dalam himpunan
data). Jika sebuah fitur disertakan dalam subset, nilai bit adalah 1; jika dikecualikan,
nilai bit adalah O [32].
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B Fungsi Kebugaran (Fitness Function): Pusat Biaya Komputasi

Fungsi Kebugaran (Fitness Function) merupakan komponen paling kritis
sekaligus paling mahal secara komputasi dalam GA [32]. Evaluasi kebugaran
F(S;) melibatkan pelatihan model klasifikasi (misalnya SVM atau Naive Bayes)
pada subset fitur S; dan mengujinya menggunakan cross-validation.  Skor
performa model—misalnya Akurasi, AUC, atau F1-score—berfungsi sebagai
ukuran kebugaran [32]. Fungsi ini umumnya dirancang untuk menyeimbangkan
akurasi dan prinsip parsimoni. Sifat repetitif dari pelatihan dan evaluasi inilah yang
menciptakan computational bottleneck, membuat GA murni sulit diterapkan pada
dataset berdimensi tinggi [25].

Desain fungsi kebugaran yang optimal menuntut pemahaman menyeluruh
terhadap keseimbangan antara kinerja model, jumlah fitur yang dipilih, dan efisiensi
komputasi [31]. Formula umum yang banyak diadopsi dalam konteks GA untuk

seleksi fitur dirumuskan sebagai berikut:

Fitness = a X Model Per formance — B X SubsetSize+ Y x ComputationalE f ficiency
(2.5)

dengan:

* «, 3,y merupakan faktor pembobot yang mengatur tingkat kontribusi masing-

masing komponen,

* Model Performance mengacu pada metrik evaluasi seperti akurasi, AUC, atau

F1-score,
* Subset Size merepresentasikan jumlah fitur yang dipilih,

» Computational Efficiency dapat dinyatakan melalui waktu pemrosesan atau

konsumsi sumber daya.

Salah satu tantangan utama dalam perumusan fungsi kebugaran adalah
menentukan nilai bobot yang paling sesuai dengan tujuan sistem dan karakteristik
dataset. Penyetelan bobot yang tepat memiliki pengaruh signifikan terhadap
dinamika evolusi populasi dan kualitas solusi akhir. Dengan demikian, fungsi
kebugaran berperan sebagai komponen pengendali utama dalam memandu

pencarian GA menuju subset fitur yang efisien dan berkinerja tinggi [31].
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C Operator Seleksi (Selection Operator)

Operator Seleksi bertugas memilih individu terbaik untuk menghasilkan
generasi berikutnya. Mekanisme umum meliputi Roulette Wheel Selection
dan Tournament Selection [32]. Pendekatan probabilistik ini memberikan

keseimbangan antara eksploitasi solusi unggul dan eksplorasi solusi alternatif [32].

D Operator Rekombinasi dan Mutasi (Crossover and Mutation)

Individu baru dihasilkan melalui operasi genetika:

* Crossover: menggabungkan materi genetik dua orang tua untuk

menghasilkan keturunan baru.

e Mutation: mempertahankan keragaman dengan membalikkan nilai bit (0 <>

1) pada probabilitas kecil.

Mutasi mencegah konvergensi prematur dan membantu menghindari jebakan local
optimum [32].
Tabel 2.2 merangkum peran dan mekanisme implementasi setiap komponen

utama GA dalam konteks seleksi fitur.
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Tabel 2.2. Komponen Utama dan Implementasi dalam Genetic Algorithm untuk Seleksi

Fitur

Tahap GA Tujuan dalam | Detail Implikasi

Seleksi Fitur Implementasi Kebugaran /
(Encoding & | Pencarian
Mekanisme)

Encoding Representasi Vektor biner (0/1) | Memungkinkan

subset fitur sepanjang N fitur | operasi genetika
[31] diskrit yang
efisien.

Fitness Function | Mengukur Akurasi Menggerakkan
kualitas  subset | klasifikasi, AUC, | pencarian menuju
fitur atau F1-score | kinerja model

menggunakan yang optimal
cross-validation (eksploitasi).
[31]

Selection Memilih individu | Roulette ~ Wheel | Memastikan
terbaik  sebagai | atau Tournament | individu paling fit
induk Selection [31] memiliki peluang

reproduksi lebih
tinggi.

Mutation Mempertahankan | Flipping bit | Mencegah
keragaman (0O « 1) pada | konvergensi
populasi probabilitas prematur dan

rendah [31] membantu
menghindari
optimum  lokal
(eksplorasi).

2.54 Regularisasi L1-LASSO (Least Absolute Shrinkage and Selection
Operator)

Regularisasi LI-LASSO adalah metode seleksi fitur berbasis Embedded
yang menggabungkan proses seleksi fitur dan pelatihan model regresi secara
simultan [33]. LASSO mengatasi keterbatasan regresi linear standar dengan
menambahkan penalti L; pada fungsi objektif, sehingga koefisien dari fitur yang
kurang relevan didorong menjadi nol [33].

Fungsi objektif LASSO dapat dituliskan sebagai berikut:
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A N
(&,pB) —argmln

2
( -0 — Zﬁjxij> subject to Z‘ﬁ]’ <t (2.6)
1 J J

1

Persamaan di atas merupakan formulasi asli yang diperkenalkan oleh
Tibshirani (1996), di mana N menyatakan jumlah sampel, p adalah jumlah fitur,
dan r merupakan parameter pembatas (constraint) yang mengatur total nilai absolut
koefisien regresi. Batasan tersebut berfungsi sebagai mekanisme regularisasi:
semakin kecil nilai 7, semakin kuat efek penalti terhadap koefisien ;, sehingga
lebih banyak fitur dieliminasi dari model [33].

Dalam implementasi modern, bentuk batasan di atas sering ditulis ulang

dalam bentuk penalti eksplisit A, menghasilkan formulasi ekuivalen berikut:

N
— AP, 2.7
(Bo, B)GRPH ; = ) T AR(P)] &7
dengan fungsi penalti:
1
Pou(B) = (1= a)5|IBI; +o[[Bls, (2.8)

Formulasi ini diperkenalkan oleh Friedman, Hastie, dan Tibshirani (2010)
sebagai bagian dari kerangka Elastic Net, yang menggabungkan regularisasi Ridge
(¢ =0) dan LASSO (o = 1). Untuk kasus LASSO murni, nilai & = 1 digunakan
sehingga penalti hanya bergantung pada norma L dari koefisien f3.

Pendekatan ini memberikan keseimbangan antara penyusutan (shrinkage)
dan seleksi fitur, di mana parameter A mengontrol tingkat penalti terhadap
kompleksitas model. Semakin besar A, semakin banyak koefisien yang ditekan
menuju nol, sehingga model menjadi lebih sederhana dan terhindar dari overfitting.

Optimasi nilai A pada implementasi modern seperti LassoCV dilakukan
secara otomatis melalui prosedur k-fold cross-validation. Proses ini menghitung
jalur regularisasi (regularization paths) menggunakan algoritme coordinate
descent, yang efisien untuk berbagai nilai A pada model linear maupun generalisasi
lainnya [34, 35].

Formulasi penalti LASSO juga merupakan kasus khusus dari Elastic Net, di
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mana penalti Py () menciptakan kompromi antara penalti Ridge yang menyusutkan
semua koefisien secara halus dan penalti LASSO yang mengeliminasi beberapa
fitur sepenuhnya. Pendekatan ini terbukti efektif dalam menghadapi data radiomik

berukuran besar dengan korelasi tinggi antar fitur.

2.6 Klasifikasi Staging

Klasifikasi staging pada kanker ginjal clear cell renal cell carcinoma
(ccRCC) merupakan proses penting untuk menentukan strategi penanganan klinis
dan prognosis pasien. Dengan kemajuan dalam analisis radiomik, fitur kuantitatif
yang diekstraksi dari citra medis seperti CT dan MRI dapat digunakan untuk
mendukung proses klasifikasi ini. Berbagai algoritma komputasi, mulai dari
machine learning tradisional hingga deep learning, telah diterapkan untuk mengolah

fitur radiomik dan menghasilkan prediksi yang akurat mengenai karakteristik tumor.

2.6.1 Algoritma Support Vector Machine (SVM)

Support Vector Machine (SVM) merupakan algoritma pembelajaran mesin
yang kuat, awalnya diperkenalkan oleh Cortes dan Vapnik [2]. Algoritma ini
dirancang terutama untuk masalah klasifikasi dan regresi, dengan prinsip utama
membangun batas keputusan (hyperplane) yang optimal untuk memisahkan kelas-
kelas data dengan margin terbesar. Dalam konteks aplikasi medis, termasuk
klasifikasi staging, SVM dikenal karena kemampuan generalisasinya yang tinggi,

bahkan pada dataset dengan jumlah fitur tinggi dan sampel terbatas [3].

A Dasar Teori Support Vector Machine

Prinsip dasar SVM adalah memetakan vektor input x € X ke ruang fitur
berdimensi tinggi, di mana di ruang fitur tersebut dapat dibangun permukaan
keputusan linier (hyperplane). Untuk data yang terpisah secara linier, tujuannya
adalah menemukan vektor bobot w dan bias b yang mendefinisikan hyperplane

optimal:

w-x+b=0 (2.9)
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Hyperplane ini harus memenuhi kendala pemisahan kelas:

yiw-x;+b)>1, untuki=1,...,] (2.10)

di mana y; € {—1,1} adalah label kelas dan x; adalah vektor fitur
pelatihan. Tujuan SVM adalah memaksimalkan margin, yaitu jarak terpendek
antara hyperplane dan titik data pelatihan terdekat. Titik data terdekat ini disebut
support vectors [2]. Memaksimalkan margin ﬁ ekuivalen dengan meminimalkan

norma kuadrat bobot w:

1
minEHsz (2.11)

di bawah kendala y;(w -x; +b) > 1.

B Soft Margin dan Penalti Kesalahan

Dalam kasus di mana data pelatihan tidak terpisah secara linier, atau untuk
mencapai generalisasi yang lebih baik dengan mengorbankan beberapa kesalahan
pelatihan [2], konsep margin lunak (soft margin) diperkenalkan. Hal ini dicapai
dengan memperkenalkan variabel slack (&;) non-negatif yang mengukur tingkat
pelanggaran kendala pemisahan untuk setiap titik data.

Masalah optimasi margin lunak dalam formulasi primal adalah [3]:

1 l
mm§||w||2+cZ§,~ (2.12)
i=1

dengan kendala:

Yiw o(xi)+b)—1+&>0, i=1,...,1 2.13)
E>0, i=1,...,1 '
Konstanta penalti C adalah parameter yang ditentukan pengguna
yang merepresentasikan pertukaran antara memaksimalkan ukuran margin dan

meminimalkan jumlah variabel slack [3].
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C Formulasi Dual

Masalah optimasi SVM diselesaikan secara efisien melalui formulasi dual,
yang merupakan masalah pemrograman kuadratik cembung.
Untuk kasus margin lunak (dengan penalti kesalahan linier), fungsi dual

yang dimaksimalkan terhadap koefisien Lagrange multiplier ¢; adalah:

max W (o)

o

[
ZZ i0Lyiy (% x ;) (2.14)

HMN
NI*—‘

Fungsional yang sama juga dapat diekspresikan dalam bentuk
matriks/vektor yang lebih ringkas [2]:

1
W(A) =AT1— zATDA (2.15)
di mana AT = (aq,...,q;), 1 adalah vektor unit, dan D adalah matriks [ x [

dengan elemen D;; = y;y;x; - x;.

Masalah maksimisasi ini tunduk pada kendala (untuk kasus soft margin):
0<o<C, i=1,...,1

I
Y ayi=0
i=1

(2.16)

Hanya ¢o; > 0 yang berkontribusi pada solusi, dan titik-titik data yang

bersesuaian disebut support vectors [2].

D Ekstensi Non-Linear dan Fungsi Kernel

Untuk data yang tidak terpisah secara linier, SVM menggunakan pemetaan
non-linier ¢(x) untuk memindahkan data ke ruang fitur berdimensi tinggi. Teknik
Kernel Trick memungkinkan produk titik di ruang fitur (¢ (x;), ¢ (x;)) dihitung tanpa
secara eksplisit mendefinisikan ¢ (x), dengan menggunakan fungsi kernel K (x;,x;)

[2].
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Dengan menggunakan kernel, fungsi dual menjadi:

I T —
rnaxW Z ZZ i0yiy i K (xi,x;) (2.17)

I\JIH

Fungsi keputusan untuk titik data tak dikenal x diberikan oleh:

!
f(x) =sign (Z)’iaiK (x,x;) +b> (2.18)
i=1
Contoh fungsi kernel yang sering digunakan adalah kernel fungsi basis
radial (RBF) [3]:
K (xi,x}) = exp(=7llxi —x;[*) (2.19)

E Cara Kerja Algoritma SVM

Secara konseptual, proses pelatihan dan penggunaan algoritma Support
Vector Machine untuk klasifikasi melibatkan beberapa langkah utama, yang
bertujuan untuk menemukan batas keputusan paling optimal yang mampu

membedakan kelas data:

1. Transformasi Data (Pemetaan Fitur): Data input fitur (vektor x;) dipetakan
ke ruang fitur berdimensi tinggi. Jika masalahnya non-linier, Kernel Trick
(seperti RBF) digunakan untuk secara implisit memetakan data, sehingga data
yang tadinya tidak terpisah linier di ruang input menjadi terpisah linier di

ruang fitur yang baru.

2. Penentuan Fungsi Objektif dan Kendala: Algoritma merumuskan
masalah optimasi, yaitu mencari hyperplane yang memaksimalkan margin
(meminimalkan ||w||?) sambil memenuhi kendala pemisahan kelas. Untuk
kasus data yang tidak terpisah sempurna (non-separable), variabel slack (&;)

dan parameter regulasi C (margin lunak) diperkenalkan.

3. Penyelesaian Masalah Dual: Masalah optimasi primal diubah menjadi
formulasi dual menggunakan Lagrange Multipliers (o;). Fungsional dual ini

kemudian dimaksimalkan untuk menemukan nilai ¢; yang optimal.
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4. Identifikasi Support Vectors: Hanya titik-titik data yang memiliki o; > 0
yang menjadi signifikan dalam penentuan batas keputusan. Titik-titik ini

adalah support vectors dan menentukan posisi akhir dari hyperplane.

5. Penentuan Hyperplane dan Bias (b): Berdasarkan support vectors dan
koefisien ¢; yang ditemukan, vektor bobot optimal w dan bias b dihitung.

Ini secara efektif mendefinisikan batas keputusan hyperplane di ruang fitur.

6. Klasifikasi Data Baru: Untuk mengklasifikasikan titik data baru x, algoritma
menggunakan fungsi keputusan berbasis kernel: f(x) = sign(}; yiot K (x,x;) +
b). Tanda dari hasil fungsi (41 atau —1) menentukan kelas label dari data

baru tersebut.

F Aplikasi dalam Klasifikasi Medis

Support Vector Machine (SVM) merupakan alat pembelajaran mesin
yang banyak digunakan dalam aplikasi perawatan kesehatan, meliputi diagnosis,
prognosis, dan prediksi hasil penyakit [3]. SVM efektif dalam menangani data
medis yang kompleks karena kemampuannya dalam mengatasi hubungan non-

linear antara fitur dan kelas [3].

Interpretasi dan Ekstensi

» Aplikasi Citra Medis dan Radiomik: SVM telah diterapkan secara luas
untuk deteksi dan diagnosis penyakit pada pencitraan medis seperti MRI,
X-ray, dan CT-PET [3]. Algoritma ini sangat relevan dalam klasifikasi
data radiomik, yang melibatkan ekstraksi dan analisis fitur kuantitatif dari
citra medis untuk memprediksi prognosis atau staging penyakit [3]. Untuk
interpretasi visual, pendekatan seperti Quadtree dapat digunakan untuk
melokalisasi Region of Interest (ROI) atau wilayah diskriminatif yang
mendasari prediksi SVM pada citra medis [36].

* Twin Support Vector Machine (TWSVM): Varian ini menghasilkan dua
hyperplane non-paralel dan umumnya lebih cepat dibandingkan dengan SVM

standar, dengan aplikasi yang semakin berkembang di bidang medis [3].

* Cost-Sensitive SVM: Model ini menangani masalah ketidakseimbangan

kelas (imbalanced datasets) yang umum pada data kesehatan dengan
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memberikan bobot penalti yang berbeda (C; dan C_) untuk misklasifikasi

kelas minoritas, sehingga meningkatkan sensitivitas terhadap kelas target [3].

2.6.2 Algoritma Random Forest (Ensemble Learning)

Random Forest (RF) adalah metode Ensemble Learning (EL) atau
Pembelajaran Gabungan yang kuat untuk klasifikasi dan regresi, diperkenalkan
oleh Breiman [4]. Berbeda dengan algoritma Machine Learning tradisional seperti
SVM yang menggunakan satu model, RF menggabungkan keluaran dari banyak
pohon keputusan untuk menghasilkan prediksi yang lebih akurat dan stabil. Prinsip
dasar Ensemble Learning adalah bahwa sekumpulan prediktor yang lemah dapat

membentuk prediktor yang kuat ketika digabungkan [37].

A Dasar Teori Random Forest

Random Forest beroperasi dengan membangun sejumlah besar (misalnya
N) pohon keputusan individual pada subset data pelatihan. Ada dua sumber utama

“keacakan” yang mendefinisikan algoritma ini:

1. Bagging (Bootstrap Aggregating): Setiap pohon dilatih pada sampel data
yang diambil dengan penggantian (bootstrap sample) dari data pelatihan asli.
Proses ini memastikan bahwa setiap pohon dibangun di atas subset data yang

berbeda, meningkatkan keragaman [4].

2. Random Subspace Method: Selama proses pembangunan pohon, alih-alih
mempertimbangkan semua fitur untuk setiap pemisahan (split), hanya subset
fitur yang dipilih secara acak yang dipertimbangkan. Ini mengurangi korelasi
antar pohon, yang merupakan kunci untuk meningkatkan akurasi keseluruhan

ensemble [4].

Untuk klasifikasi, output akhir dari Random Forest adalah mode (kelas yang

paling sering dipilih) dari semua prediksi pohon keputusan individu.

A.1 Definisi Formal Random Forest

Random Forest didefinisikan sebagai himpunan pohon keputusan
independen yang melakukan klasifikasi melalui proses voting dari seluruh

pohon dalam ensemble [4]. Setiap pohon dibangun menggunakan vektor acak
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parameter ®; yang bersifat independen dan terdistribusi identik (i.i.d). Secara

formal, model Random Forest didefinisikan sebagai:

RF = {h(x,0),k=1,...,N} (2.20)

di mana setiap pohon h(x,®;) memberikan satu suara untuk kelas yang

paling sesuai pada input Xx.

A.2 Proses Prediksi: Voting Mayoritas

Prediksi akhir pada input x dilakukan menggunakan majority voting. Kelas
yang dipilih adalah kelas dengan suara terbanyak dari seluruh pohon [4]. Secara

matematis:

T \k=1

N
Yrr(X) = argmax (Z I(h(x,0y) = ])) (2.21)

dengan /() adalah fungsi indikator yang bernilai 1 jika kondisi benar dan 0
jika salah.

A.3 Margin Function dan Generalization Error

Breiman menekankan bahwa Random Forest memiliki sifat konvergensi
yang kuat, sehingga tidak mengalami overfitting meskipun jumlah pohon
diperbanyak [4]. Hal ini dianalisis melalui Margin Function, yang mengukur

seberapa besar rata-rata suara untuk kelas benar dibandingkan kelas lain:

mg(X,Y)=aviI(h(X)=Y) —m;})}avkl(hk(X) =) (2.22)
J

Berdasarkan Strong Law of Large Numbers, ketika jumlah pohon N — oo,

Generalization Error (PE*) konvergen sebagai berikut:

PE* — PX7Y (P@(h(X,@) = Y) —m;;(P@)(h(X,@) = ]) < O) (2.23)
J
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A.4 Kekuatan dan Korelasi

Akurasi Random Forest sangat bergantung pada dua parameter: kekuatan
(strength) setiap pohon individual dan korelasi (correlation) antara pohon-pohon
tersebut [4]. Margin fungsi (mr(X,Y)) mengukur sejauh mana probabilitas suara

untuk kelas yang benar (¥') melebihi probabilitas suara untuk kelas saingan lainnya

(J#Y)[4].

mr(X,Y) = Pe(h(X,0)=Y) —rr;?;cP@)(h(X,GD) =J) (2.24)
J
Kekuatan (strength) dari himpunan klasifier {A(x,®)} didefinisikan sebagai

nilai ekspektasi dari margin fungsi:

s =Exymr(X,Y) (2.25)

A.5 Batas Atas Generalization Error

Berdasarkan kekuatan (s) dan rata-rata korelasi (p) antar prediksi, diperoleh
batas atas untuk kesalahan generalisasi (PE™), yang menunjukkan bahwa Random

Forest yang baik harus memiliki korelasi rendah dan kekuatan tinggi [4]:

p(l=s)

PE* <

(2.26)

di mana p adalah rata-rata korelasi [4] antara fungsi margin mentah (raw

margin function) dari dua pohon yang berbeda, dan s> adalah kuadrat kekuatan [4].

A.6 Konvergensi

Karena sifat independen dan terdistribusi identik dari vektor acak ®; yang
digunakan untuk membangun pohon, hukum bilangan besar yang kuat (Strong
Law of Large Numbers) memastikan bahwa Generalization Error Random Forest
konvergen ke nilai batas saat jumlah pohon meningkat, sehingga tidak terjadi
overfitting [4].
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B Keunggulan dan Penerapan dalam Staging Medis

Random Forest sangat populer dalam aplikasi biomedis dan kesehatan [37]

karena:

 Kemampuan Mengatasi Overfitting: Dengan menggabungkan banyak
pohon, RF secara efektif mengurangi varians, yang merupakan masalah

umum pada pohon keputusan tunggal [4].

» Skalabilitas dan Efisiensi: Algoritma ini mudah diparalelkan dan dapat

menangani dataset besar dengan banyak fitur [37].

* Pentingnya Fitur (Feature Importance): RF secara intrinsik dapat
mengukur kontribusi relatif dari setiap fitur terhadap klasifikasi (misalnya,
melalui Gini Importance), memungkinkan identifikasi biomarker atau faktor

klinis paling relevan untuk staging penyakit.

Dalam klasifikasi staging penyakit (misalnya kanker), Random Forest telah
digunakan untuk memprediksi stadium berdasarkan data gen, ekspresi gen, atau

fitur radiomik, memberikan hasil yang tangguh dan dapat diinterpretasikan [?].

2.6.3 Deep Neural Network (DNN)

Deep Neural Network (DNN) merupakan fondasi dari bidang Deep
Learning (DL), yang merupakan subset dari Machine Learning. DL dicirikan
oleh penggunaan jaringan saraf buatan dengan banyak lapisan tersembunyi (hidden
layers) antara lapisan input dan output [37]. Kedalaman inilah yang memungkinkan
DNN mempelajari representasi fitur yang kompleks dan hirarkis secara otomatis

langsung dari data mentah, tanpa perlu rekayasa fitur manual.

A Dasar Teori Deep Neural Network

Jaringan Saraf Tiruan (ANN) merupakan inti dari Deep Learning, yang
dicirikan oleh kemampuannya untuk memodelkan kapabilitas otak manusia dan
potensinya dalam prediksi dan klasifikasi, bahkan ketika data tidak tepat dan bising

(imprecise and noisy) [5].
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A.1 Definisi Neuron Buatan

Dasar dari jaringan saraf tiruan adalah neuron buatan. Sebuah neuron
buatan dengan bobot ®@y,...,®, € R, bias b € R, dan fungsi aktivasi p : R -+ R
didefinisikan sebagai fungsi f : R — R yang diberikan oleh [5]:

fxr,...x)=p (Zn:xia)i—b> =p((x,w) —b) (2.27)
i=1

Fungsi aktivasi non-linier yang umum digunakan (selain fungsi Heaviside)

meliputi:

* Sigmoid: p(x) L 5]

= 1+e*

* Rectifiable Linear Unit (ReLU): p(x) = max{0,x} [5]

A.2 Definisi Matematis Deep Neural Network (DNN)

Deep Neural Network (DNN) didefinisikan sebagai fungsi komposit dari
banyak lapisan. Misalkan d € N adalah dimensi lapisan input, L adalah jumlah
lapisan, dan N; adalah dimensi lapisan ke-/. Transformasi affine-linear pada lapisan
ke-I/ (T;) didefinisikan sebagai [5]:

T;: RY-1 — R

Tix = Wx+p0 (2.28)

di mana W() € RN*Ni-1 adalah matriks bobot dan b)) € RM adalah vektor
bias dari lapisan ke-/ [5].
Maka, DNN & : R? — RM dengan kedalaman L didefinisikan oleh

komposisi fungsi-fungsi ini [5]:

®(x) = TLp(TL-1p(-..p(T1(x))...)) (2.29)

A.3 Pelatihan Jaringan dan Optimasi

Pelatihan DNN bertujuan untuk menemukan bobot dan bias optimal dengan

meminimalkan risiko empiris melalui optimasi. Masalah optimasi umum dalam

30

Pemodelan Radiomik untuk..., Friedrich Litani Santoso, Universitas Multimedia Nusantara



pelatihan DNN, yang melibatkan Fungsi Kerugian (.¢’) dan suku regularisasi (%),
adalah [5]:
m

min Y . 2(@WY,61),(x) —y D)+ 2 2(W + 1)) (2.30)
w.p0), 12

Salah satu pendekatan algoritmik yang umum untuk menyelesaikan masalah
ini adalah Stochastic Gradient Descent (SGD), yang digunakan karena efisiensinya
dalam mengatasi skala data yang besar (m yang besar), dengan cara mengambil

hanya sebagian gradien secara acak di setiap iterasi [5].

B Penerapan dalam Klasifikasi Staging Medis

Dalam klasifikasi staging medis, DNN seringkali diterapkan ketika data
berupa citra medis (menggunakan Convolutional Neural Networks/CNN) atau data
sekuensial (menggunakan Recurrent Neural Networks/RNN). Untuk data tabular
(seperti data klinis atau genetik), DNN dapat berfungsi sebagai alat klasifikasi yang
ampuh, mampu menangkap interaksi non-linier yang kompleks antar fitur yang
mungkin terlewatkan oleh metode ML tradisional [38].

Keunggulan utama Deep Learning dalam staging medis:

* Representasi Fitur Otomatis: DNN dapat secara otomatis mempelajari
fitur yang paling diskriminatif untuk klasifikasi staging tanpa memerlukan

rekayasa fitur domain-spesifik yang intensif [38].

* Kinerja pada Data Skala Besar: DNN umumnya unggul ketika tersedia
data dalam jumlah besar, menjadikannya ideal untuk repositori data kesehatan

modern yang luas.

* Hubungan Non-Linear Kompleks: Kedalaman arsitektur memungkinkan
pemodelan hubungan yang sangat non-linier antara input fitur dan label

staging.

2.7 Metrik Evaluasi

Evaluasi model klasifikasi digunakan untuk mengukur seberapa baik
algoritma dari model klasifikasi, seperti Support Vector Machine (SVM), Random
Forest (RF), dan Deep Neural Network (DNN), dapat memprediksi kategori atau
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kelas yang benar dari data masukan yang diberikan. Dalam konteks penelitian
ini, klasifikasi dilakukan berdasarkan fitur radiomik yang diekstraksi dari citra
medis untuk menentukan stadium atau subtipe tumor. Evaluasi performa model
sangat penting karena hasil prediksi klasifikasi dapat berdampak langsung terhadap
diagnosis klinis dan pengambilan keputusan medis. Untuk itu, diperlukan metrik
yang dapat memberikan gambaran menyeluruh mengenai kemampuan model dalam
mendeteksi kasus positif maupun negatif dengan tingkat akurasi dan keandalan
tinggi [39].

Metrik evaluasi yang digunakan mencakup Accuracy, Precision, Recall
(Sensitivity), dan FI-Score. Kelima metrik ini dihitung berdasarkan nilai-nilai dari
confusion matrix, yang terdiri dari empat komponen utama: True Positive (TP),
True Negative (TN), False Positive (FP), dan False Negative (FN). Masing-
masing komponen memiliki makna klinis tersendiri; misalnya, dalam klasifikasi
tumor, TP menunjukkan jumlah pasien yang benar teridentifikasi memiliki tumor,
sedangkan FN menunjukkan jumlah pasien dengan tumor yang gagal terdeteksi oleh

model.

A Accuracy

Accuracy atau akurasi mengukur proporsi total prediksi yang benar terhadap
seluruh jumlah sampel data. Metrik ini memberikan pandangan umum tentang
seberapa sering model membuat prediksi yang benar, baik untuk kelas positif

maupun negatif:
TP+TN

TP+TN-+FP+FN

Accuracy = (2.31)

Akurasi adalah metrik paling sederhana namun sering digunakan sebagai
indikator awal performa model. Namun, dalam data medis yang sering kali
tidak seimbang (misalnya, jumlah pasien sehat jauh lebih banyak daripada pasien
dengan tumor), nilai akurasi saja tidak cukup untuk mengevaluasi kualitas model.
Model dapat mencapai akurasi tinggi hanya dengan memprediksi mayoritas kelas,
sementara gagal mendeteksi kasus minoritas yang justru lebih penting secara klinis
(39, 3].
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B Precision

Precision atau presisi menunjukkan seberapa banyak dari semua prediksi
positif yang benar-benar positif. Dengan kata lain, precision menggambarkan

keandalan model dalam memberikan hasil positif yang benar:

TP
Precision = ———. (2.32)
TP+ FP

Presisi yang tinggi menunjukkan bahwa sebagian besar sampel yang
diklasifikasikan sebagai positif memang benar-benar positif. Dalam konteks medis,
nilai precision yang tinggi sangat penting untuk menghindari kesalahan diagnosis
berupa false positive, yang dapat menyebabkan pasien sehat menerima perlakuan
atau pengobatan yang tidak perlu [39]. Sebaliknya, presisi rendah menunjukkan
bahwa banyak prediksi positif yang salah, sehingga menurunkan keandalan sistem
klasifikasi.

C Recall (Sensitivity)

Recall atau sensitivitas mengukur kemampuan model untuk menemukan
semua kasus positif secara benar. Metrik ini menunjukkan seberapa banyak pasien

yang benar-benar memiliki penyakit dapat terdeteksi oleh model:

TP TP

Recall= ——— = —.
TP+FN nt

(2.33)

Nilai recall yang tinggi menunjukkan bahwa model mampu menangkap
sebagian besar kasus positif, yang dalam dunia medis sangat penting karena
kesalahan mendeteksi pasien positif (FN) bisa berdampak serius terhadap keputusan
klinis. Sebagai contoh, dalam diagnosis kanker, recall rendah berarti model
gagal mendeteksi sejumlah pasien yang sebenarnya mengidap tumor, yang dapat
berakibat fatal [39, 3].

D F1-Score

FI-Score merupakan rata-rata harmonis antara precision dan recall, yang

memberikan keseimbangan antara kemampuan mendeteksi kasus positif dan
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kemampuan menghindari hasil positif palsu:

TP 2xTP Precision x Recall
F1-Score = = =2 — )
P+% x (FP+FN) 2x(TP+FP+FN) Precision + Recall

(2.34)

F1-Score menjadi metrik penting dalam klasifikasi medis dengan data tidak
seimbang karena menilai performa berdasarkan keseimbangan antara dua aspek
utama: sensitivitas dan presisi. Nilai F1 yang tinggi menunjukkan bahwa model
tidak hanya mendeteksi sebagian besar kasus positif, tetapi juga akurat dalam
prediksi tersebut. Sebaliknya, nilai F1 yang rendah menandakan ketidakseimbangan
antara banyaknya hasil positif palsu dan negatif palsu [39]. Pada penelitian
berbasis radiomik dan klasifikasi staging tumor, F1-Score sering digunakan sebagai
indikator utama karena mampu merepresentasikan performa model secara lebih

stabil dibandingkan hanya menggunakan akurasi [3].
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