
BAB 2
TINJAUAN PUSTAKA

2.1 Arsitektur Backend untuk ML Inference

Arsitektur backend untuk machine learning inference dirancang untuk
mendukung pemrosesan prediksi secara efisien, skalabel, dan terisolasi antar
komponen. Pendekatan ini memisahkan tanggung jawab antara request handling,
routing, dan eksekusi model inference guna meningkatkan performa dan stabilitas
sistem [11]. Dengan menerapkan layered architecture, sistem mampu mengelola
beban I/O-bound dan compute-intensive secara terpisah sesuai karakteristik masing-
masing proses [8]. Selain itu, pemanfaatan Docker memungkinkan penerapan
arsitektur hybrid yang fleksibel dan efisien pada lingkungan deployment terpusat
[9].

2.1.1 Layered Architecture

Arsitektur backend sistem AIRA dirancang dengan pendekatan layered

architecture yang memisahkan tanggung jawab berdasarkan fungsi [12]. Sistem
dibagi menjadi empat layer, yaitu presentation layer untuk interaksi pengguna
melalui frontend, application layer berupa Cancer Gateway yang menangani
routing dan validasi, service layer berupa AI Backend yang menjalankan model

inference, serta data layer berupa MySQL database untuk penyimpanan metadata
dan history. Pemisahan ini membuat setiap layer dapat dikembangkan dan diuji
secara independen, serta memudahkan scaling pada bagian yang bersifat lebih
compute-intensive [13]. Pada implementasinya, backend dibagi menjadi dua
komponen utama, yaitu Cancer Gateway dan AI Backend, yang berkoordinasi untuk
menangani alur prediksi.

2.1.2 Cancer Gateway

Cancer Gateway dibangun menggunakan Node.js dan Express.js sebagai
API gateway yang menjadi entry point dari frontend. Komponen ini bertugas
melakukan request routing berdasarkan jenis kanker dan tipe data, menerapkan rate

limiting untuk melindungi AI Backend dari overload, serta melakukan validasi input
dan logging untuk keperluan monitoring. Node.js dipilih karena menggunakan

6
Implementasi Arsitektur Backend..., Jacques Farrell Dharma, Universitas Multimedia Nusantara



event-driven dan non-blocking I/O model yang efisien untuk menangani concurrent

connections [9][11].

2.1.3 AI Backend

AI Backend dibangun menggunakan FastAPI untuk menangani loading dan
manajemen multiple TensorFlow models, melakukan preprocessing input CSV
(misalnya normalisasi dan feature scaling), menjalankan inference menggunakan
model yang sesuai, dan mengembalikan hasil prediksi dalam format JSON. FastAPI
dipilih karena performanya tinggi, dukungan native async, serta kompatibel dengan
ekosistem ML seperti TensorFlow, NumPy, dan Pandas. Dalam sistem AIRA,
model TensorFlow dimuat saat startup dan disimpan di memori untuk mendukung
fast inference, sesuai dengan praktik umum dalam AI model serving [3][14].

2.1.4 Pemisahan Komponen

Pemisahan Cancer Gateway dan AI Backend dilakukan berdasarkan
pertimbangan teknis. Node.js lebih efisien untuk operasi yang bersifat
I/O-bound seperti routing requests dan database queries, sedangkan Python
memiliki ekosistem yang matang untuk operasi ML dengan library seperti
TensorFlow dan NumPy. Dengan pemisahan ini, compute-intensive service

dapat dilakukan scale secara independen tanpa mempengaruhi gateway service,
sebagaimana direkomendasikan dalam arsitektur microservices [11][12]. Selain
itu, isolasi kesalahan lebih terjaga karena crash pada satu service tidak langsung
mempengaruhi service lain.

2.1.5 Hybrid Architecture dengan Docker

Sistem di-deploy menggunakan Docker containerization dengan tiga
container terpisah untuk Cancer Gateway, AI Backend, dan MySQL database.
Ketiga container berjalan dalam satu server dan saling terhubung melalui
Docker bridge network [15]. Pendekatan hybrid ini menggabungkan modularitas
microservices dengan efisiensi co-location untuk mengurangi network latency

antar-services, sekaligus menyederhanakan proses deployment dan maintenance.
Docker menyediakan lingkungan yang terisolasi dan konsisten dari tahap
development hingga production.

7
Implementasi Arsitektur Backend..., Jacques Farrell Dharma, Universitas Multimedia Nusantara



MySQL digunakan untuk menyimpan metadata sistem seperti cancer

types, konfigurasi model, dan prediction history yang dibutuhkan CMS. MySQL
dipilih karena memiliki ACID compliance yang menjamin integritas data serta
ekosistem yang matang dengan banyak tools dan dokumentasi. Docker Compose
dimanfaatkan untuk mengatur services, networks, dan volumes dalam satu berkas
konfigurasi sehingga proses deployment menjadi lebih terstruktur.

2.2 Machine Learning untuk Deteksi Kanker

Machine Learning (ML) telah menunjukkan potensi besar dalam membantu
diagnosis penyakit, termasuk deteksi dini kanker [1]. Dalam konteks kesehatan,
ML dapat menganalisis data klinis dan genomik untuk mengidentifikasi pola
yang mengindikasikan keberadaan sel kanker. Model dilatih menggunakan data
historis pasien untuk membedakan kondisi sehat dan kondisi kanker, kemudian
dimanfaatkan kembali pada tahap inference untuk menghasilkan prediksi terhadap
data baru. Tantangan yang muncul bukan hanya pada pembuatan model, tetapi juga
pada integrasi multiple ML models ke dalam sistem web yang stabil dan mudah
diakses [7].

Sistem AIRA menggunakan data genomik untuk deteksi kanker prostat dan
payudara. Data genomik yang digunakan meliputi gene expression yang mengukur
tingkat aktivitas gen dalam sel, DNA methylation sebagai modifikasi epigenetik
yang mempengaruhi ekspresi gen, serta microRNA (miRNA) sebagai molekul RNA
kecil yang mengatur ekspresi gen. Sistem mengelola multiple models dengan
jumlah dan jenis fitur yang berbeda, misalnya model kanker prostat dengan 18
fitur ekspresi gen, 25 fitur ekspresi gen, dan 90 fitur metilasi DNA. Keragaman ini
menuntut arsitektur backend yang fleksibel dan mampu menangani variasi payload

serta logika model inference.

2.3 API Gateway Pattern

API Gateway pattern adalah pola desain di mana satu single entry

point menangani semua client requests dan meneruskannya ke backend services

yang sesuai [12]. Gateway bertindak sebagai facade yang menyembunyikan
kompleksitas backend dari client. Dalam sistem AIRA, Cancer Gateway

mengimplementasikan pola ini dengan melakukan request routing ke AI Backend,
menerapkan rate limiting, serta menyediakan centralized logging untuk keperluan

8
Implementasi Arsitektur Backend..., Jacques Farrell Dharma, Universitas Multimedia Nusantara



monitoring. Pendekatan ini membuat client hanya perlu berinteraksi dengan
satu endpoint, sementara perubahan pada backend services dapat dilakukan tanpa
mengganggu client.

Pada konteks ML inference, API gateway juga menambah overhead latency

karena request harus melewati satu layer tambahan sebelum mencapai AI Backend.
Overhead ini berasal dari aktivitas routing, validasi input, dan transformasi data.
Oleh karena itu, perlu dilakukan evaluasi untuk memastikan overhead tersebut
masih acceptable untuk kebutuhan healthcare yang menuntut response time cepat.

2.4 Performance Metrics dan Benchmarking

Evaluasi performa merupakan aspek penting dalam pengembangan sistem
backend, khususnya untuk aplikasi yang melibatkan proses komputasi intensif
seperti machine learning inference. Pengukuran performa diperlukan untuk
memastikan bahwa sistem mampu memberikan waktu respons yang dapat diterima,
menjaga stabilitas layanan, serta menangani peningkatan beban pengguna secara
bertahap. Oleh karena itu, penggunaan metrik performa yang tepat dan metodologi
pengujian yang terstruktur menjadi dasar dalam menilai kesiapan sistem sebelum
digunakan pada skenario mendekati kondisi nyata. Pada bagian ini dibahas konsep
metrik performa, metodologi load testing, serta pendekatan benchmarking yang
digunakan sebagai acuan dalam evaluasi sistem AIRA.

2.4.1 Metrik Performa untuk Backend Systems

Evaluasi performa backend systems umumnya menggunakan beberapa
kategori metrik seperti response time, throughput, reliabilitas, dan utilisasi resource.
Response time mengukur waktu dari request dikirim hingga response diterima,
sedangkan throughput menggambarkan jumlah requests per second (RPS) yang
dapat diproses sistem [9][11]. Selain itu, success rate dan error rate digunakan
untuk melihat reliabilitas sistem di bawah beban tertentu, sementara penggunaan
CPU dan memori dipantau untuk memahami efisiensi pemakaian resource. Konsep-
konsep dasar ini menjadi landasan perancangan stress testing yang dijelaskan lebih
rinci pada bab metodologi.

9
Implementasi Arsitektur Backend..., Jacques Farrell Dharma, Universitas Multimedia Nusantara



2.4.2 Metodologi Load Testing

Load testing adalah metode untuk mengevaluasi performa sistem dengan
mensimulasikan banyak concurrent users atau requests. Berbagai skenario beban
dapat disusun, mulai dari beban ringan hingga stress untuk melihat titik ketika
sistem mulai mengalami degradasi performa [11]. Beragam tools seperti Apache
JMeter, Locust, dan k6 umum digunakan karena menyediakan fitur reporting

dan konfigurasi skenario yang fleksibel. Pada penelitian ini, konsep load testing

dimanfaatkan terutama untuk melakukan stress testing terhadap arsitektur AIRA.

2.4.3 Benchmarking ML Inference Performance

Benchmarking ML inference memiliki karakteristik yang berbeda
dibandingkan general web services karena melibatkan workload yang lebih
compute-intensive. MLPerf, misalnya, berfokus mengukur pure model inference

tanpa memasukkan overhead dari API gateway dan lapisan arsitektural lain
[14]. Di sisi lain, studi lain melaporkan bahwa operasi CRUD pada aplikasi web
umumnya memiliki response time sekitar 30–70 ms, sementara sistem healthcare

multi-tier dapat berada pada rentang 200–800 ms, dan ML inference di edge

devices berkisar 50–500 ms [9][16][17]. Rentang ini digunakan sebagai acuan
awal untuk mengevaluasi apakah performa sistem AIRA berada pada kategori yang
masih acceptable.

2.5 Penelitian Terkait

Penelitian terkait diperlukan untuk memberikan konteks terhadap posisi
dan kontribusi penelitian yang dilakukan. Melalui tinjauan terhadap studi-studi
sebelumnya, dapat diidentifikasi pendekatan yang umum digunakan dalam evaluasi
performa backend systems serta keterbatasan yang masih ada, khususnya pada
sistem yang melibatkan machine learning inference. Selain itu, kajian literatur
membantu menunjukkan perbedaan karakteristik antara layanan web konvensional
dan sistem ML di bidang kesehatan. Berdasarkan pemahaman tersebut, penelitian
ini diposisikan untuk mengisi celah yang belum banyak dibahas dalam studi
sebelumnya.

10
Implementasi Arsitektur Backend..., Jacques Farrell Dharma, Universitas Multimedia Nusantara



2.5.1 Performance Evaluation untuk Backend Systems

Blinowski et al. mengevaluasi performa arsitektur monolithic dan
microservices untuk general web services seperti e-commerce, dan menemukan
bahwa arsitektur monolithic memiliki throughput sedikit lebih tinggi untuk operasi
CRUD [11]. Szewczyk dan Skublewska-Paszkowska membandingkan beberapa
framework seperti Node.js, Django, dan ASP.NET, dan melaporkan average

response time sekitar 30–70 ms untuk Express.js pada payload kecil [9]. Namun,
kedua studi tersebut berfokus pada operasi CRUD umum dan tidak secara spesifik
membahas ML workloads yang memiliki karakteristik latency dan payload berbeda.

2.5.2 ML Inference dan Healthcare Systems

Yan et al. menyusun roadmap implementasi ML di healthcare dan
menyoroti bahwa banyak penelitian hanya berfokus pada akurasi model, sementara
metrik performa sistem seperti response time dan throughput sering diabaikan
[7]. Martinez-Garcia et al. menemukan bahwa hanya sebagian kecil studi ML
di bidang kesehatan yang melaporkan metrik system-level performance, sehingga
masih terdapat ruang untuk penelitian yang mengevaluasi performa arsitektur secara
menyeluruh [8]. Mattson et al. melalui MLPerf juga menunjukkan pentingnya
pengukuran inference performance, meskipun fokusnya masih pada pure inference

tanpa overhead arsitektur [14].

2.5.3 Research Gap dan Positioning

Berdasarkan tinjauan literatur, masih terdapat research gap terkait evaluasi
performa arsitektur backend untuk ML inference di konteks healthcare. Studi
yang ada umumnya mengevaluasi operasi CRUD atau pure model inference tanpa
memasukkan overhead dari API gateway, komunikasi multi-tier, dan preprocessing

pipeline [9] [11][14]. Selain itu, hanya sedikit penelitian yang melaporkan metrik
system-level performance yang relevan untuk clinical deployment [7][8]. Penelitian
ini memosisikan diri untuk mengisi gap tersebut dengan menyediakan evaluasi
empiris terhadap performa pola API gateway berbasis Node.js dan Express yang
terintegrasi dengan AI Backend berbasis FastAPI dan TensorFlow pada sistem
deteksi kanker berbasis data genomik.

11
Implementasi Arsitektur Backend..., Jacques Farrell Dharma, Universitas Multimedia Nusantara


	BAB 2 Tinjauan Pustaka
	2.1 Arsitektur Backend untuk ML Inference
	2.1.1 Layered Architecture
	2.1.2 Cancer Gateway
	2.1.3 AI Backend
	2.1.4 Pemisahan Komponen
	2.1.5 Hybrid Architecture dengan Docker

	2.2 Machine Learning untuk Deteksi Kanker
	2.3 API Gateway Pattern
	2.4 Performance Metrics dan Benchmarking
	2.4.1 Metrik Performa untuk Backend Systems
	2.4.2 Metodologi Load Testing
	2.4.3 Benchmarking ML Inference Performance

	2.5 Penelitian Terkait
	2.5.1 Performance Evaluation untuk Backend Systems
	2.5.2 ML Inference dan Healthcare Systems
	2.5.3 Research Gap dan Positioning



