
BAB 3
METODE PENELITIAN

3.1 Metode Penelitian

Penelitian ini menggunakan pendekatan Software Development Life Cycle

(SDLC) sebagai dasar metodologis dalam pengembangan sistem AIRA. SDLC
memberikan kerangka terstruktur mulai dari tahap perencanaan hingga evaluasi
sistem, sehingga seluruh proses penelitian dapat dilakukan secara sistematis,
terukur, dan dapat direplikasi. Model SDLC yang digunakan terdiri dari enam
tahap utama yaitu planning, analysis, design, implementation, testing, dan
maintenance. Alur penelitian divisualisasikan dalam bentuk research pipeline yang
menggambarkan hubungan antar tahapan secara menyeluruh.

Gambar 3.1. Research Pipeline Penelitian

Pada Gambar 3.1 ditunjukkan alur penelitian yang digunakan dalam
pengembangan dan evaluasi sistem AIRA. Research pipeline ini menggambarkan
tahapan penelitian secara sistematis, mulai dari tahap perencanaan hingga evaluasi
performa sistem. Setiap tahapan dirancang untuk memastikan bahwa pengujian
performa arsitektur backend dilakukan secara terstruktur dan terukur.

12
Implementasi Arsitektur Backend..., Jacques Farrell Dharma, Universitas Multimedia Nusantara



1. Planning

Tahap planning dilakukan secara iteratif dengan fokus pada identifikasi
permasalahan utama, penentuan ruang lingkup awal, serta prioritas
pengembangan sistem AIRA. Pada tahap ini dilakukan studi literatur terkait
arsitektur backend untuk machine learning inference, pola API gateway,
serta metode evaluasi performa sistem. Hasil dari tahap ini berupa tujuan
penelitian, batasan penelitian, serta hipotesis awal yang dapat disesuaikan
kembali pada iterasi berikutnya berdasarkan temuan selama pengembangan
dan pengujian.

2. Analysis

Tahap analysis bertujuan untuk mengidentifikasi kebutuhan sistem secara
bertahap dan dapat diperbarui seiring berjalannya proses pengembangan.
Kebutuhan fungsional mencakup kemampuan sistem dalam menangani
berbagai jenis kanker, routing permintaan berdasarkan cancer type dan
feature key, serta penyediaan layanan metadata dan prediksi. Kebutuhan
non-fungsional difokuskan pada performa, scalability, dan keandalan sistem,
yang dianalisis dengan mempertimbangkan berbagai alternatif arsitektur serta
trade-offs yang mungkin muncul selama iterasi pengembangan.

3. Design

Tahap design dilakukan secara inkremental dengan merancang dan
menyempurnakan arsitektur backend berdasarkan hasil analisis dan umpan
balik dari iterasi sebelumnya. Perancangan mencakup layered architecture,
API gateway, komponen AI Backend, serta skema basis data. Aliran
data antar komponen dimodelkan menggunakan DFD Level 0 dan Level 1
sebagaimana ditunjukkan pada Gambar 3.4 dan Gambar 3.5. Selain itu, pada
tahap ini juga dirancang daftar layanan (service endpoints) dan skenario awal
load testing serta stress testing yang dapat disesuaikan kembali pada iterasi
selanjutnya.

4. Implementation

Tahap implementation dilakukan melalui pengembangan modul sistem secara
bertahap dan terpisah. Cancer Gateway dikembangkan menggunakan
Node.js dan Express, sementara AI Backend dibangun menggunakan FastAPI
dan model TensorFlow. Setiap komponen diimplementasikan, diuji secara

13
Implementasi Arsitektur Backend..., Jacques Farrell Dharma, Universitas Multimedia Nusantara



mandiri, dan kemudian diintegrasikan secara bertahap. Seluruh layanan
dikemas menggunakan Docker untuk memastikan konsistensi lingkungan,
dengan Docker Compose digunakan untuk mengelola orkestrasi multi-
container pada satu server.

5. Testing

Tahap testing dilakukan secara berulang pada setiap iterasi pengembangan
untuk mengevaluasi stabilitas dan performa sistem. Pengujian mencakup
seluruh REST API (GET dan POST) pada berbagai tingkat beban untuk
mengukur response time, throughput, dan error rate. Selain itu, pengujian
performa mendalam dilakukan pada endpoint prediksi sebagai inti sistem
melalui skenario load testing dan stress testing. Skenario tambahan
diterapkan untuk membandingkan beban komputasi antar model prediksi
dengan konfigurasi workload yang sama, sehingga perbedaan performa
mencerminkan kompleksitas komputasi masing-masing model.

6. Maintenance

Tahap maintenance dilakukan secara berkelanjutan berdasarkan hasil
pengujian dan umpan balik dari tahap sebelumnya. Aktivitas pada
tahap ini mencakup perbaikan minor, penyesuaian konfigurasi sistem,
serta optimalisasi performa tanpa mengubah arsitektur utama. Tahap ini
memastikan sistem AIRA tetap stabil dan dapat digunakan kembali untuk
iterasi pengujian atau pengembangan lanjutan di masa depan.

3.1.1 Model Software Development Life Cycle

Model Software Development Life Cycle (SDLC) yang digunakan dalam
penelitian ini adalah Agile SDLC. Model Agile dipilih karena karakteristik
pengembangan sistem AIRA yang bersifat iteratif dan eksperimental, khususnya
dalam integrasi model AI dan evaluasi performa backend. Pengembangan
sistem deteksi kanker berbasis AI memerlukan fleksibilitas dalam penyesuaian
arsitektur, konfigurasi model, serta skenario pengujian, yang sulit dicapai apabila
menggunakan model SDLC linear seperti Waterfall.

Pendekatan Agile memungkinkan proses pengembangan dilakukan secara
bertahap melalui siklus iterasi yang berulang, sehingga setiap komponen sistem
dapat diuji dan disempurnakan secara bertahap berdasarkan hasil evaluasi
sebelumnya. Hal ini sangat relevan dalam konteks penelitian ini, di mana perubahan

14
Implementasi Arsitektur Backend..., Jacques Farrell Dharma, Universitas Multimedia Nusantara



pada konfigurasi API gateway, arsitektur backend, maupun skenario load testing

dapat terjadi selama proses penelitian berlangsung.
Kelebihan utama Agile SDLC dalam penelitian ini adalah kemampuannya

untuk mendukung pengembangan yang adaptif, mempercepat umpan balik dari
hasil pengujian performa, serta meminimalkan risiko kesalahan desain arsitektur
sejak tahap awal. Dengan demikian, penggunaan Agile SDLC dinilai sesuai untuk
mendukung tujuan penelitian dalam mengevaluasi performa dan efisiensi sistem
AIRA secara sistematis dan terukur.

3.2 Perancangan Arsitektur Backend

Perancangan arsitektur backend dilakukan untuk memastikan sistem AIRA
mampu menangani proses machine learning inference secara terstruktur, efisien,
dan mudah dikembangkan. Pada tahap ini, fokus utama diarahkan pada pemisahan
tanggung jawab antar-komponen sistem, pengelolaan alur data, dan implementasi
struktur database pada sistem. Arsitektur dirancang dengan mempertimbangkan
karakteristik ML workload yang bersifat compute-intensive dan berbeda dari
layanan web konvensional. Hasil perancangan ini menjadi dasar implementasi dan
evaluasi performa yang dibahas pada bab-bab selanjutnya.

3.2.1 Layered Architecture Design

Arsitektur sistem AIRA dirancang menggunakan pendekatan layered

architecture yang terdiri dari empat layer utama. Presentation layer berupa frontend

yang menyediakan antarmuka pengguna untuk mengunggah data genomik dan
menampilkan hasil prediksi. Application layer diisi oleh Cancer Gateway yang
menangani routing request, validasi input, rate limiting, serta komunikasi dengan
basis data untuk manajemen metadata. Service layer berupa AI Backend yang
bertanggung jawab untuk preprocessing data, loading models, melakukan inference,
dan mengembalikan hasil prediksi. Data layer berupa MySQL database yang
menyimpan konfigurasi model, jenis kanker, serta riwayat prediksi.

15
Implementasi Arsitektur Backend..., Jacques Farrell Dharma, Universitas Multimedia Nusantara



Gambar 3.2. Layered Architecture Design of AIRA

Pemisahan ke dalam empat layer yang ditampilkan pada Gambar 3.2
ini memberikan separation of concerns yang jelas antara antarmuka pengguna,
logika aplikasi, proses inferensi AI, dan penyimpanan data. Pendekatan tersebut
memudahkan proses pengembangan dan pemeliharaan karena setiap layer dapat
dikembangkan atau dimodifikasi secara relatif independen. Selain itu, pemisahan
Application layer (Cancer Gateway) dan Service layer (AI Backend) mendukung
tujuan penelitian ini, yaitu mengevaluasi performa arsitektur backend berbasis
API gateway untuk ML inference workload tanpa mengganggu lapisan presentasi
maupun lapisan data.

3.2.2 Deployment Strategy

Strategi deployment pada sistem AIRA dirancang untuk mendukung
pengujian performa backend secara terkontrol dan efisien. Pendekatan yang
digunakan menekankan kesederhanaan arsitektur, minimisasi latency, serta
kemudahan pengelolaan layanan selama fase penelitian. Oleh karena itu, sistem
diimplementasikan menggunakan Docker containerization dengan pendekatan co-

location dalam satu server.

16
Implementasi Arsitektur Backend..., Jacques Farrell Dharma, Universitas Multimedia Nusantara



Gambar 3.3. Deployment Architecture Sistem AIRA dengan Docker

Pada Gambar 3.3 ini, terdapat dua service utama yaitu Cancer Gateway

dan AI Backend yang dikemas dalam container terpisah untuk memastikan isolasi
proses dan independensi layanan. Basis data MySQL dijalankan langsung pada
VM tanpa containerization, namun tetap berada pada server fisik yang sama untuk
mengurangi network overhead. Komunikasi antar-container difasilitasi melalui
Docker bridge network yang memungkinkan pertukaran data melalui internal

network dengan latency minimal. Seluruh layanan didefinisikan dan dijalankan
secara konsisten menggunakan Docker Compose, sehingga memudahkan proses
deployment, maintenance, dan replikasi lingkungan pengujian.

3.2.3 Data Flow Diagram

1. DFD Level 0

DFD Level 0 digunakan untuk memberikan gambaran umum alur data
dan batasan sistem AIRA secara keseluruhan. Diagram ini memfokuskan pada
interaksi antara pengguna sebagai entitas eksternal dengan sistem inti tanpa
menampilkan detail proses internal. Tujuan utama penyusunan DFD Level 0 adalah

17
Implementasi Arsitektur Backend..., Jacques Farrell Dharma, Universitas Multimedia Nusantara



untuk menunjukkan bagaimana data mengalir dari pengguna hingga menghasilkan
keluaran prediksi.

Gambar 3.4. Data Flow Diagram Level 0

Pada Gambar 3.4 ditampilkan DFD Level 0 yang dimana sistem AIRA
direpresentasikan sebagai satu proses utama yang menerima input berupa berkas
data genomik dari pengguna melalui frontend. Data tersebut diteruskan ke Cancer

Gateway untuk diproses dan kemudian dikirim ke AI Backend (FastAPI) guna
melakukan proses inference. Output dari sistem berupa hasil prediksi kanker beserta
nilai probabilitas yang dikembalikan kepada pengguna. Diagram ini menegaskan
batas sistem dan alur pertukaran data antara entitas eksternal dan proses inti AIRA.

2. DFD Level 1

DFD Level 1 disusun untuk memberikan representasi alur data yang lebih
rinci dibandingkan Level 0. Diagram ini memecah proses utama AIRA menjadi
beberapa komponen fungsional yang saling berinteraksi. Dengan pendekatan ini,
setiap peran sistem dapat dianalisis secara lebih terstruktur.

Gambar 3.5. Data Flow Diagram Level 1

18
Implementasi Arsitektur Backend..., Jacques Farrell Dharma, Universitas Multimedia Nusantara



Pada DFD Level 1 yang ditampilkan pada Gambar 3.5, sistem dibagi
menjadi Cancer Gateway, AI Backend, dan Metadata/News Database. Cancer

Gateway berfungsi menangani validasi input, routing request, pengambilan
metadata, penyajian sampel dataset, serta pengiriman payload prediksi ke AI
Backend. AI Backend melakukan preprocessing data, pemetaan model, dan
eksekusi inference sebelum mengembalikan hasil prediksi. Sementara itu, database

menyediakan data pendukung seperti konfigurasi model, fitur, contoh dataset, dan
konten berita yang dibutuhkan oleh sistem.

3.2.4 Database Schema

Perancangan database pada sistem AIRA bertujuan untuk menyimpan
metadata kanker, konfigurasi model, opsi fitur yang tersedia, serta riwayat
permintaan prediksi. Selain itu, skema juga memuat sejumlah tabel tambahan untuk
kebutuhan CMS seperti manajemen berita, banner, dan pengguna sistem.

Gambar 3.6. AIRA Database Schema

Gambar 3.6 menampilkan struktur lengkap database yang digunakan
pada penelitian ini. Penelitian ini berfokus pada empat tabel inti yang
secara langsung mendukung proses inferensi AI, yaitu cancers, ai features,
features options, dan histories. Penjelasan masing-masing tabel adalah
sebagai berikut:

19
Implementasi Arsitektur Backend..., Jacques Farrell Dharma, Universitas Multimedia Nusantara



1. Tabel cancers

Tabel ini menyimpan daftar jenis kanker yang dapat diprediksi oleh sistem,
seperti kanker prostat dan kanker payudara. Setiap entri memuat slug,
nama kanker, dan deskripsi singkat yang digunakan sebagai metadata pada
antarmuka pengguna maupun proses backend.

2. Tabel ai features

Tabel ini berisi daftar tipe fitur biologis yang digunakan oleh model
AI, seperti gene expression, DNA methylation, dan microRNA. Kolom
key dan nama fitur digunakan untuk mengelompokkan model berdasarkan
karakteristik data yang dipakai.

3. Tabel features options

Tabel ini merupakan komponen kunci dalam sistem AIRA karena
menghubungkan jenis kanker (cancer id), jenis fitur AI (ai feature id),
serta konfigurasi model yang tersedia. Informasi seperti key, label,
ai model name, ai data type, dan sample dataset url digunakan oleh
Cancer Gateway untuk menentukan model prediksi dan sample dataset yang
sesuai.

4. Tabel histories

Tabel ini menyimpan riwayat permintaan prediksi yang dilakukan pengguna.
Kolom-kolom di dalamnya mencatat referensi ke features options, data
input dalam bentuk teks, alamat IP, waktu permintaan, serta hasil prediksi
yang dikembalikan oleh AI Backend. Informasi ini berfungsi sebagai dasar
untuk kebutuhan audit, logging, dan analisis penggunaan sistem di masa
mendatang.

Selain tabel inti tersebut, skema basis data AIRA juga mencakup sejumlah
tabel tambahan yang digunakan untuk mendukung fungsionalitas CMS dan
manajemen pengguna. Tabel-tabel ini tidak berhubungan langsung dengan proses
inferensi AI, namun tetap ditampilkan dalam skema untuk memberikan gambaran
menyeluruh mengenai lingkungan aplikasi. Penjelasan ringkas tabel-tabel tersebut
adalah sebagai berikut:

1. Tabel news menyimpan artikel atau berita yang ditampilkan pada aplikasi.

20
Implementasi Arsitektur Backend..., Jacques Farrell Dharma, Universitas Multimedia Nusantara



2. Tabel banners digunakan untuk manajemen gambar promosi atau banner
informatif.

3. Tabel users menyimpan akun pengguna admin beserta informasi organisasi
dan autentikasinya.

4. Tabel roles mendefinisikan peran pengguna untuk keperluan otorisasi.

5. Tabel organizations menyimpan metadata organisasi yang terkait dengan
pengguna admin.

3.3 List Service Development

Pada penelitian ini, Cancer Gateway menyediakan sejumlah RESTful

endpoints yang digunakan oleh frontend untuk berinteraksi dengan sistem AIRA.
Daftar layanan utama yang dikembangkan ditunjukkan pada Tabel 3.1.

Tabel 3.1. Daftar Layanan Backend (Service Endpoints)

Service Endpoint Deskripsi

Get Cancers /cancers?ai feature={fitur ai} Mengambil daftar jenis kanker yang dapat diprediksi
berdasarkan feature tertentu.

Cancer Detail /cancers/:slug?ai feature={fitur ai} Mengambil detail jenis kanker, termasuk deskripsi, gejala
umum, dan model AI yang digunakan.

Feature Option /cancers/:slug/feature-options?
ai feature={fitur ai}

Mengambil daftar opsi fitur (tipe dataset dan jumlah fitur),
contoh: GENE-35.

Sample Dataset /cancers/:slug/feature-options/:
feature key/sample-dataset?
ai feature={fitur ai}

Mengunduh contoh berkas CSV sebagai sample dataset
sesuai feature key.

Get News /news Mengambil daftar berita terkait sistem AIRA.

News Detail /news/{news id} Mengambil detail berita berdasarkan ID.

Predict Cancer /cancers/:slug/predict (multipart) Mengirim berkas CSV untuk melakukan prediksi kanker
menggunakan model sesuai feature key dan jenis kanker.

Layanan-layanan yang tercantum pada Tabel 3.1 merepresentasikan fungsi
utama yang disediakan oleh Cancer Gateway sebagai perantara antara frontend dan
AI Backend. Setiap endpoint dirancang untuk mendukung alur penggunaan sistem
AIRA, mulai dari penyajian informasi kanker hingga proses machine learning

inference melalui pengiriman berkas dataset. Daftar layanan ini juga menjadi dasar
penentuan endpoint yang diuji pada skenario load testing dan stress testing di Bab
IV. Dengan demikian, evaluasi performa sistem difokuskan pada endpoint yang
secara langsung merepresentasikan beban kerja nyata pada sistem.

21
Implementasi Arsitektur Backend..., Jacques Farrell Dharma, Universitas Multimedia Nusantara

/cancers?ai_feature={fitur_ai}
/cancers/:slug?ai_feature={fitur_ai}
/cancers/:slug/feature-options?ai_feature={fitur_ai}
/cancers/:slug/feature-options?ai_feature={fitur_ai}
/cancers/:slug/feature-options/:feature_key/sample-dataset?ai_feature={fitur_ai}
/cancers/:slug/feature-options/:feature_key/sample-dataset?ai_feature={fitur_ai}
/cancers/:slug/feature-options/:feature_key/sample-dataset?ai_feature={fitur_ai}
/news
/news/{news_id}
/cancers/:slug/predict


3.4 Skenario Load Test dan Stress Testing

Pengujian load test dan stress testing dilakukan untuk mengevaluasi
bagaimana arsitektur backend AIRA berperforma ketika menerima beban
permintaan yang meningkat. Fokus utama pengujian adalah mengamati response

time, throughput, error rate, dan utilisasi resource ketika sistem mendekati dan
melewati kapasitas normalnya, sehingga dapat diidentifikasi batas kemampuan dan
indikasi bottleneck.

Metrik yang digunakan pada pengujian meliputi:

• Response time: waktu yang dibutuhkan sejak request dikirim hingga response

diterima. Analisis difokuskan pada nilai rata-rata, minimum, maksimum,
serta distribusi persentil pada beberapa skenario pengujian.

• Throughput: jumlah requests per second (RPS) yang dapat diproses sistem
selama periode pengujian.

• Error rate: persentase request yang gagal (HTTP status 4xx/5xx) pada tiap
skenario pengujian sebagai indikator reliabilitas sistem di bawah beban.

3.4.1 Lingkungan Pengujian

Lingkungan testing disiapkan dengan spesifikasi hardware dan konfigurasi
yang memadai untuk menjalankan sistem dan load testing secara bersamaan.
Spesifikasi hardware mencakup prosesor, kapasitas RAM, dan storage pada
server yang digunakan untuk men-deploy sistem AIRA dan menjalankan Apache
JMeter. Konfigurasi jaringan menggunakan localhost atau local network untuk
meminimalkan variabilitas network latency eksternal yang dapat mempengaruhi
hasil pengukuran. Apache JMeter dipilih sebagai tool utama untuk load testing

karena memiliki antarmuka yang user-friendly dan kemampuan reporting yang
cukup lengkap. Monitoring tools tambahan seperti Docker stats dan htop digunakan
untuk mengumpulkan data utilisasi resource selama testing.

3.4.2 Konfigurasi dan Prosedur Pengujian Menggunakan Apache JMeter

Pengujian performa sistem AIRA dilakukan menggunakan Apache JMeter
dengan memanfaatkan komponen Thread Group dan HTTP Request Sampler.
Thread Group digunakan untuk mensimulasikan jumlah pengguna simultan

22
Implementasi Arsitektur Backend..., Jacques Farrell Dharma, Universitas Multimedia Nusantara



(concurrent users), ramp-up period, serta jumlah iterasi pengujian sesuai dengan
skenario load testing dan stress testing yang ditetapkan.

Gambar 3.7. Konfigurasi Thread Group pada Apache JMeter untuk Simulasi Beban
Pengguna

Pada Gambar 3.7 ditunjukkan konfigurasi Thread Group yang digunakan
untuk mengatur jumlah pengguna simultan dan pola beban. Setiap pengguna
mengirimkan permintaan HTTP secara paralel ke sistem backend untuk
mensimulasikan kondisi penggunaan nyata.

Gambar 3.8. Konfigurasi HTTP Request Sampler untuk Endpoint Prediksi Kanker

Selanjutnya, setiap Thread Group dikonfigurasikan dengan satu atau lebih

23
Implementasi Arsitektur Backend..., Jacques Farrell Dharma, Universitas Multimedia Nusantara



HTTP Request Sampler sebagaimana ditunjukkan pada Gambar 3.8. HTTP Request
ini merepresentasikan endpoint prediksi kanker dengan metode POST, lengkap
dengan parameter ai feature dan feature key yang sesuai dengan model AI yang
diuji. Pendekatan ini memastikan bahwa pengujian dilakukan pada endpoint yang
sama dengan yang digunakan oleh aplikasi frontend.

Hasil pengujian dikumpulkan menggunakan Aggregate Report dan
Summary Report pada Apache JMeter, kemudian dianalisis dalam bentuk tabel dan
grafik untuk mengevaluasi response time, throughput, dan error rate.

3.4.3 Skenario Pengujian Seluruh API

Skenario pertama dirancang untuk mengevaluasi stabilitas seluruh layanan
REST API pada sistem AIRA, yang mencakup layanan GET (metadata, berita, dan
fitur) serta layanan POST (prediksi). Pengujian dilakukan pada dua tingkat beban
umum untuk merepresentasikan kondisi penggunaan normal dan beban menengah.
Fokus utama pengujian ini adalah memastikan seluruh endpoint dapat merespons
permintaan secara konsisten sebelum dilakukan pengujian yang lebih terfokus pada
endpoint prediksi.

Tabel 3.2. Skenario Pengujian Seluruh API (GET dan POST)

Skenario Concurrent Users Total Requests Ramp-up Time Durasi

Low 10 100 5 detik 1 menit

High 100 500 10 detik 2 menit

Tabel 3.2 menunjukkan konfigurasi pengujian untuk seluruh layanan API
pada sistem AIRA. Skenario Low digunakan sebagai baseline untuk memverifikasi
bahwa seluruh endpoint GET dan POST dapat berfungsi dengan baik pada kondisi
beban ringan. Sementara itu, skenario High merepresentasikan kondisi beban
menengah dengan jumlah pengguna yang lebih besar untuk mengamati stabilitas
sistem secara keseluruhan sebelum dilakukan pengujian yang lebih spesifik pada
endpoint prediksi.

3.4.4 Skenario Load Test dan Stress Test untuk Endpoint Prediksi

Skenario kedua berfokus pada endpoint prediksi kanker (POST multipart),
yang merupakan komponen inti dari penelitian ini. Pengujian dilakukan secara
bertahap melalui skenario load test dan stress test untuk mengidentifikasi batas

24
Implementasi Arsitektur Backend..., Jacques Farrell Dharma, Universitas Multimedia Nusantara



performa sistem ketika menangani ML inference workload. Secara umum, skenario
dibagi menjadi beberapa tingkat beban sebagai berikut:

• Baseline load: mensimulasikan penggunaan normal dengan jumlah
concurrent users dan total requests yang relatif rendah untuk memperoleh
baseline performance.

• Increased load: mensimulasikan kondisi beban menengah dengan
peningkatan jumlah concurrent users dan total requests untuk melihat
bagaimana sistem beradaptasi terhadap beban yang lebih tinggi.

• Stress load: mensimulasikan kondisi stress dengan jumlah concurrent users

dan total requests yang lebih besar untuk mengidentifikasi batas kapasitas
dan titik ketika sistem mulai mengalami degradasi performa dan peningkatan
error rate.

Setiap skenario direncanakan dengan parameter umum seperti jumlah
concurrent users, total requests, ramp-up time, dan durasi pengujian. Parameter
rinci untuk setiap skenario akan dirangkum dalam tabel yang mencakup tujuan
masing-masing skenario.

Tabel 3.3. Skenario Load Test dan Stress Test Endpoint Prediksi Model Prostate

Skenario Concurrent Users Total Requests Ramp-up Time Durasi

Load 1 10 100 5 detik 1 menit

Load 2 20 200 5 detik 1 menit

Load 3 50 500 10 detik 2 menit

Load 4 100 1000 15 detik 3 menit

Stress 1 100 1500 10 detik 2 menit

Stress 2 200 2500 15 detik 2 menit

Stress 3 500 4000 20 detik 3 menit

Stress 4 1000 6000 30 detik 3 menit

Tabel 3.3 menunjukkan konfigurasi skenario pengujian untuk endpoint

prediksi model kanker prostat. Pengujian dimulai dari beban ringan dengan 10
concurrent users sebagai baseline, kemudian ditingkatkan secara bertahap hingga
kondisi stress dengan 1000 pengguna bersamaan. Konfigurasi ini digunakan
untuk mengamati perubahan response time, throughput, dan error rate seiring
meningkatnya beban permintaan inferensi.

25
Implementasi Arsitektur Backend..., Jacques Farrell Dharma, Universitas Multimedia Nusantara



Tabel 3.4. Skenario Load Test dan Stress Test Endpoint Prediksi Model Breast

Skenario Concurrent Users Total Requests Ramp-up Time Durasi

Load 1 10 100 5 detik 1 menit

Load 2 20 200 5 detik 1 menit

Load 3 50 500 10 detik 2 menit

Load 4 100 1000 15 detik 3 menit

Stress 1 100 1500 10 detik 2 menit

Stress 2 200 2500 15 detik 2 menit

Stress 3 500 4000 20 detik 3 menit

Stress 4 1000 6000 30 detik 3 menit

Tabel 3.4 menyajikan skenario pengujian yang sama untuk endpoint prediksi
model kanker payudara. Penggunaan parameter yang identik dengan pengujian
model prostat bertujuan untuk memastikan konsistensi skenario sehingga hasil
pengujian kedua model dapat dibandingkan secara langsung. Perbedaan performa
yang muncul pada tahap analisis selanjutnya dengan demikian dapat dikaitkan
terutama dengan kompleksitas komputasi model, bukan dengan variasi konfigurasi
pengujian.

3.4.5 Skenario Perbandingan Model Prostate dan Breast

Selain dua skenario sebelumnya, penelitian ini juga menyertakan satu
skenario tambahan yang berfokus pada perbandingan performa antar model. Tujuan
skenario ini adalah untuk mengetahui model mana yang memiliki beban komputasi
paling ringan hingga paling berat, baik pada kelompok kanker prostat maupun
kanker payudara, ketika dijalankan dengan konfigurasi workload yang sama.
Dengan demikian, hasil pengujian tidak hanya menunjukkan performa arsitektur
secara umum, tetapi juga memberikan gambaran relatif mengenai karakteristik
masing-masing model yang di-deploy.

Seluruh model diuji dengan konfigurasi concurrent users yang sama, yaitu
100 pengguna, ramp-up time selama 20 detik, dan loop count sebanyak 10. Setiap
virtual user akan mengirimkan permintaan prediksi berulang sesuai loop count,
sehingga diperoleh jumlah sampel yang cukup untuk setiap model. Pemilihan 100
concurrent users dimaksudkan sebagai titik tengah antara beban normal dan beban
mendekati stress, sehingga hasilnya masih relevan untuk skenario penggunaan
nyata, tetapi cukup menonjol untuk membedakan performa antar model. Ramp-

up 20 detik dipilih agar kenaikan beban tidak terlalu mendadak, namun tetap
memberikan tekanan yang konsisten pada backend.

26
Implementasi Arsitektur Backend..., Jacques Farrell Dharma, Universitas Multimedia Nusantara



Tabel 3.5. Skenario Perbandingan Model Prostate dan Breast

No Model Concurrent Users Loop Count Ramp-up Time

1 Prostate – GENE-18 100 10 20 detik

2 Prostate – GENE-25 100 10 20 detik

3 Prostate – METHYL-90 100 10 20 detik

4 Prostate – MIRNA-19 100 10 20 detik

5 Breast – GENE-35 100 10 20 detik

6 Breast – GENE-41 100 10 20 detik

7 Breast – METHYL-100 100 10 20 detik

Hasil dari skenario yang ditampilkan pada Tabel 3.5 ini akan dianalisis pada
Bab selanjutnya bersama dengan skenario lainnya, dengan fokus pada perbandingan
average response time, throughput, dan error rate antar model. Dari sana dapat
ditarik kesimpulan mengenai model mana yang paling ringan dan paling berat
secara komputasi, serta implikasinya terhadap kapasitas sistem ketika jumlah model
yang di-serve semakin bertambah.

3.4.6 Persiapan Data Uji dan Analisis

Data uji disiapkan dalam bentuk sampel CSV data genomik yang
merepresentasikan berbagai tipe data yang didukung oleh sistem AIRA, seperti
gene expression, DNA methylation, dan microRNA. Variasi ukuran payload

digunakan untuk mengamati pengaruh ukuran data input terhadap response time

dan throughput. Format dan struktur data mengikuti spesifikasi yang diharapkan
oleh AI Backend.

Analisis hasil pengujian dilakukan dengan menghitung statistik deskriptif
untuk setiap skenario, memvisualisasikan hasil dalam bentuk grafik (misalnya
line chart untuk response time over time dan bar chart untuk throughput), serta
mengamati pola error rate dan utilisasi resource. Hasil pengamatan kemudian
dibandingkan secara kualitatif dengan rentang response time dari literatur untuk
menilai apakah performa sistem AIRA berada pada level yang masih acceptable.

27
Implementasi Arsitektur Backend..., Jacques Farrell Dharma, Universitas Multimedia Nusantara


	BAB 3 Metode Penelitian
	3.1 Metode Penelitian
	3.1.1 Model Software Development Life Cycle

	3.2 Perancangan Arsitektur Backend
	3.2.1 Layered Architecture Design
	3.2.2 Deployment Strategy
	3.2.3 Data Flow Diagram
	3.2.4 Database Schema

	3.3 List Service Development
	3.4 Skenario Load Test dan Stress Testing
	3.4.1 Lingkungan Pengujian
	3.4.2 Konfigurasi dan Prosedur Pengujian Menggunakan Apache JMeter
	3.4.3 Skenario Pengujian Seluruh API
	3.4.4 Skenario Load Test dan Stress Test untuk Endpoint Prediksi
	3.4.5 Skenario Perbandingan Model Prostate dan Breast
	3.4.6 Persiapan Data Uji dan Analisis



