
BAB 2
LANDASAN TEORI

2.1 Tinjauan Teori

Bagian 2.1.1 menjelaskan secara singkat tentang kanker usus besar, informasi penentuan
stadium yang berasal dari sistem AJCC. Bagian 2.1.2 menjelaskan fungsi ANOVA untuk melakukan
filter dalam memilih gen dengan variansi tinggi. Bagian 2.1.3 memaparkan kerangka seleksi fitur
berbasis approximate conditional entropy, mulai dari definisi sistem informasi keputusan, relasi fuzzy
berbasis Laplacian kernel, approximate accuracy, approximate conditional entropy (Hace), hingga
konsep reduksi atribut. Bagian ini juga menjelaskan cara mengevaluasi pentingnya setiap atribut
menggunakan indikator Importance of Internal Attribute (IIA) dan Importance of External Attribute
(IEA), serta alur iteratif seleksi fitur menggunakan FSACE. Terakhir, bagian 2.1.4 menguraikan
model klasifikasi XGBoost yang digunakan untuk menilai kinerja subset fitur terpilih, termasuk
fungsi objektif dan mekanisme pencegahan overfitting.

2.1.1 Kanker Usus Besar dan Staging

Kanker usus besar (colon cancer) merupakan salah satu jenis kanker yang paling umum
dan mematikan di dunia. Kanker ini berasal dari sel epitel pada dinding usus besar, termasuk kolon
dan rektum. Secara klinis, kanker usus besar dapat menimbulkan gejala seperti perubahan kebiasaan
buang air besar, perdarahan rektal, nyeri perut, penurunan berat badan, dan anemia.

Untuk menentukan stadium kanker dan rencana terapi, sistem staging AJCC (American
Joint Committee on Cancer) edisi ke-8 menggunakan kombinasi tiga komponen utama: Tumor (T),
Node (N), dan Metastasis (M), yang selanjutnya digabungkan menjadi stage 0 sampai IV. Komponen
TNM dijelaskan sebagai berikut:

1. Tumor (T): Ukuran dan penetrasi tumor pada dinding usus.

(a) Tis: Carcinoma in situ, sel kanker hanya berada pada lapisan mukosa.

(b) T1: Tumor menembus submukosa.

(c) T2: Tumor menembus muscularis propria.

(d) T3: Tumor menembus muscularis propria ke jaringan sekitar.

(e) T4a: Tumor menembus peritoneum visceral.

(f) T4b: Tumor menempel atau menyusup ke organ/struktur lain.

2. Node (N): Keterlibatan kelenjar getah bening regional.

(a) N0: Tidak ada kelenjar getah bening positif.

(b) N1: 1–3 kelenjar getah bening positif.

(c) N2: 4 atau lebih kelenjar getah bening positif.

5
Seleksi Fitur Ekspresi..., Steven Lie, Universitas Multimedia Nusantara



3. Metastasis (M): Penyebaran ke organ jauh.

(a) M0: Tidak ada metastasis jauh.

(b) M1a: Metastasis tunggal ke organ lain.

(c) M1b: Metastasis ke lebih dari satu organ.

(d) M1c: Metastasis termasuk peritoneum.

Berdasarkan kombinasi TNM tersebut, klasifikasi stadium kanker usus besar menurut AJCC
edisi ke-8 disajikan pada Tabel 2.1.

Tabel 2.1. Pengelompokan Stadium Kanker Usus Besar menurut AJCC Edisi ke-8

Stage Tumor (T) Node (N), Metastasis (M)
0 Tis N0 M0
I T1, T2 N0 M0
IIA T3 N0 M0
IIB T4a N0 M0
IIC T4b N0 M0
IIIA T1-2 N1 M0
IIIB T3-4a N1 M0
IIIC Any T N2 M0
IVA Any T Any N M1a
IVB Any T Any N M1b
IVC Any T Any N M1c

Sumber: American Joint Committee on Cancer (AJCC) [2]

Klasifikasi ini penting untuk menentukan prognosis dan strategi pengobatan, di mana
stadium lebih tinggi (misal IV) menunjukkan penyebaran lebih luas dan memerlukan intervensi yang
lebih agresif dibanding stadium awal (misal I atau II).

2.1.2 ANOVA (Analysis of Variance)

Analysis of Variance (ANOVA) merupakan salah satu teknik statistik klasik yang digunakan
untuk menguji apakah terdapat perbedaan berarti pada rata-rata sebuah variabel kontinu di antara dua
atau lebih kelompok kategori. Secara umum, ANOVA menghitung nilai F dengan membandingkan
varians antar kelompok terhadap varians dalam kelompok. Perbandingan ini menunjukkan sejauh
mana variasi pada suatu fitur (misalnya ekspresi gen) berkaitan dengan perbedaan kelas target —
dalam penelitian klasifikasi kanker ekspresi gen, kelas target ini dapat berupa stadium kanker atau
kondisi biologis tertentu.

Secara matematis, statistik F dalam ANOVA dinyatakan sebagai rasio antara varians antar
kelas dan varians dalam kelas. Nilai F yang lebih tinggi menunjukkan bahwa perbedaan rata-rata
ekspresi gen antar kelas lebih dominan dibanding variasi dalam kelas itu sendiri.
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Dalam konteks seleksi fitur untuk dataset ekspresi gen kanker, ANOVA berperan sebagai
metode filter. Metode filter bekerja dengan mengevaluasi setiap gen secara independen terhadap
kelas target tanpa keterikatan langsung dengan model klasifikasi tertentu. Penggunaan ANOVA
memungkinkan identifikasi gen-gen yang memiliki perbedaan ekspresi signifikan antar kelas tumor
dibanding kelas lainnya, sehingga gen-gen tersebut dianggap sebagai kandidat fitur yang informatif
dan relevan untuk pengklasifikasian lebih lanjut. Strategi ini efektif dalam mereduksi ruang fitur
yang sangat besar sebelum menerapkan teknik seleksi fitur multivariat atau pembelajaran mesin
yang lebih kompleks [3].

ANOVA juga dipahami sebagai salah satu tes statistik univariat yang sering dipakai dalam
studi gen ekspresi untuk memilih fitur-fitur awal yang potensial. Seperti dijelaskan oleh Abduallah
(2023), ANOVA digunakan sebagai salah satu algoritma seleksi fitur pada profil ekspresi gen untuk
meningkatkan akurasi klasifikasi kanker, yang menyoroti peran penting ANOVA dalam tahap awal
pemilihan fitur untuk dataset gen ekspresi yang berdimensi tinggi [3].

Singkatnya, ANOVA memberi ukuran statistik yang menyatakan apakah ekspresi suatu gen
berbeda secara signifikan di antara kelas target yang berbeda, sehingga membantu menyaring gen-
gen yang lebih mungkin berkaitan dengan perbedaan biologis antar kelas sebelum langkah seleksi
lanjutan dilakukan. Pendekatan ini membantu mengurangi jumlah fitur yang dipertimbangkan,
menurunkan kompleksitas komputasi, serta meningkatkan fokus pada gen-gen yang paling
berpotensi informatif dalam konteks klasifikasi kanker berdasarkan ekspresi gen.

2.1.3 Feature Selection Using Approximate Conditional Entropy

Dalam sistem informasi keputusan IS = (U,C ∪D), dengan U himpunan objek (pasien),
C himpunan atribut kondisi (fitur ekspresi gen), dan D atribut keputusan (kelas), feature selection
dilakukan untuk mengurangi dimensi data sekaligus mempertahankan informasi penting terkait
keputusan. Untuk menangani data kontinu dan ketidakpastian, digunakan pendekatan fuzzy set
dengan relasi kemiripan Laplacian kernel [1]:

Rc(xi,x j) = exp
(
−∥c(xi)− c(x j)∥

σc

)
(2.1)

Relasi fuzzy ini membentuk information granule untuk setiap objek, yang menjadi dasar
perhitungan approximate accuracy dan approximate conditional entropy (Hace). Approximate
accuracy mengukur ketidakpastian atau ketidaktepatan granule informasi yang dibentuk dari subset
atribut B ⊆C. Untuk X ⊆U,X ̸= /0, approximate accuracy didefinisikan sebagai:

aB(X) =
|P(X)|
|P(X)| , 0 ≤ aB(X)≤ 1 (2.2)

di mana P(X) adalah positive region dari X dan | · | menunjukkan kardinalitas himpunan.
Berdasarkan approximate accuracy, approximate conditional entropy Hace mengukur

ketidakpastian informasi dari atribut keputusan D relatif terhadap subset atribut B. Jika U berasal
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dari D = {X1,X2, . . . ,Xk} adalah partisi objek menurut keputusan, maka Hace didefinisikan sebagai:

Hace(D|B) =−
k

∑
j=1

|U |
∑
i=1

log(2−aB(X j))
|[xi]RB ∩X j|
|[xi]RB |

(2.3)

Hace menggabungkan efek ketidakpastian granule informasi dan ketidaktepatan boundary region,
sehingga memberikan ukuran yang lebih lengkap terhadap informasi atribut.

Subset atribut B ⊆ C dikatakan sebagai reduction dari C relatif terhadap D jika memenuhi
dua kondisi [1]: pertama, Hace(D|B) = Hace(D|C), artinya subset terpilih memiliki jumlah informasi
sama dengan seluruh atribut; kedua, Hace(D|B−{b})> Hace(D|C) untuk semua b ∈ B, memastikan
tidak ada redundansi dalam subset.

Untuk mengevaluasi kontribusi masing-masing atribut dalam subset penuh C, digunakan
Importance of Internal Attribute (IIA):

IIA(c,C,D) = Hace(D|C−{c})−Hace(D|C) (2.4)

Jika IIA(c,C,D)> 0, atribut c dianggap sebagai core attribute.
Untuk mengevaluasi atribut kandidat d ∈C−B yang belum masuk ke subset B, digunakan

Importance of External Attribute (IEA):

IEA(d,B,C,D) = Hace(D|B)−Hace(D|B∪{d}) (2.5)

Atribut dengan nilai IEA yang lebih tinggi memiliki kontribusi lebih signifikan terhadap penurunan
ketidakpastian informasi, sehingga menjadi prioritas untuk dimasukkan ke subset fitur.

Proses seleksi fitur menggunakan FSACE dilakukan secara iteratif dengan pendekatan
forward selection, menambahkan fitur berdasarkan nilai IEA tertinggi hingga tidak ada penurunan
Hace yang signifikan atau jumlah fitur mencapai batas tertentu [1].

2.1.4 Model Klasifikasi XGBoost

XGBoost (eXtreme Gradient Boosting) merupakan algoritma pembelajaran mesin berbasis
gradient boosting yang membangun model prediksi secara aditif menggunakan kumpulan pohon
keputusan (decision trees). Algoritma ini dirancang untuk mengoptimalkan kinerja prediksi
melalui pemodelan kesalahan residual secara iteratif, sekaligus mengendalikan kompleksitas model
menggunakan mekanisme regularisasi yang eksplisit [4].

Misalkan diberikan dataset pelatihan {(xi,yi)}n
i=1, dengan xi ∈ Rm menyatakan vektor fitur

dan yi label kelas. Model XGBoost memprediksi keluaran ŷi sebagai penjumlahan dari K fungsi
pohon keputusan:

ŷi =
K

∑
k=1

fk(xi), fk ∈ F (2.6)

dengan F adalah ruang fungsi pohon keputusan yang memetakan fitur ke bobot pada simpul daun.
Proses pembelajaran XGBoost bertujuan meminimalkan fungsi objektif berikut:

L =
n

∑
i=1

ℓ(yi, ŷi)+
K

∑
k=1

Ω( fk) (2.7)
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di mana ℓ(·) adalah fungsi kerugian (loss function), sedangkan Ω( fk) merupakan fungsi regularisasi
yang mengontrol kompleksitas model.

Untuk sebuah pohon keputusan f , fungsi regularisasi didefinisikan sebagai:

Ω( f ) = γT +
1
2

λ

T

∑
j=1

w2
j (2.8)

dengan T jumlah simpul daun pada pohon, w j bobot pada daun ke- j, γ penalti kompleksitas struktur
pohon, dan λ parameter regularisasi bobot. Regularisasi ini berperan penting dalam mencegah
overfitting, khususnya pada data berdimensi tinggi seperti ekspresi gen.

Pada setiap iterasi, XGBoost membangun pohon baru untuk mempelajari kesalahan
residual model sebelumnya menggunakan pendekatan optimisasi orde kedua. Dengan melakukan
aproksimasi Taylor hingga orde kedua terhadap fungsi kerugian, optimisasi dilakukan menggunakan
gradien pertama dan kedua (Hessian), sehingga proses pembelajaran menjadi lebih stabil dan efisien
dibandingkan metode gradient boosting konvensional.

Dalam konteks klasifikasi biner, XGBoost umumnya menggunakan fungsi objektif logistic
loss untuk memodelkan probabilitas kelas. Kombinasi optimisasi berbasis gradien, struktur pohon
keputusan, serta regularisasi yang eksplisit menjadikan XGBoost sangat efektif dalam menangani
data dengan jumlah fitur besar, korelasi kompleks, dan rasio fitur terhadap sampel yang tinggi.

Berbagai penelitian terkini menunjukkan bahwa XGBoost mampu memodelkan hubungan
non-linear antar fitur gen dan label klinis secara efektif, sekaligus menyediakan mekanisme evaluasi
kontribusi fitur melalui struktur pohon keputusan yang dibangun [5]. Oleh karena itu, XGBoost
digunakan dalam penelitian ini sebagai model klasifikasi untuk mengevaluasi kualitas subset fitur
hasil seleksi FSACE.
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