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KLASIFIKASI MULTI-KELAS SUBTIPE KANKER GINJAL
MENGGUNAKAN FITUR RADIOMIK DAN MACHINE LEARNING

Audrey Gracia Chandra

ABSTRAK

Karsinoma Sel Ginjal atau Renal Cell Carcinoma (RCC) terdiri dari beberapa
subtipe dengan karakteristik biologis dan respons terapi yang berbeda, sehingga
klasifikasi subtipe yang akurat menjadi sangat penting dalam pengambilan
keputusan klinis. Namun, penilaian visual citra computed tomography sering
menghadapi keterbatasan akibat kemiripan karakteristik morfologi, terutama antara
tumor jinak seperti oncocytoma dan subtipe ganas seperti chromophobe RCC.
Penelitian ini mengusulkan sebuah kerangka kerja berbasis radiomik dan machine
learning untuk klasifikasi multikelas subtipe kanker ginjal menggunakan citra
computed tomography. Fitur radiomik yang mencakup karakteristik bentuk,
statistik orde pertama, dan fitur tekstur diekstraksi dari area tumor hasil segmentasi.
Untuk mengurangi redundansi fitur dan meningkatkan kinerja model, tiga metode
seleksi fitur digunakan, yaitu ANOVA F-test, Recursive Feature Elimination
berbasis Linear Support Vector Machine, dan Mutual Information. Proses
klasifikasi dilakukan menggunakan algoritma Logistic Regression, Random Forest,
dan XGBoost.  Hasil eksperimen menunjukkan bahwa kombinasi Logistic
Regression dengan Recursive Feature Elimination berbasis Linear Support Vector
Machine memberikan performa terbaik dengan akurasi sebesar 81,8% serta nilai
Fl-score tertinggi dibandingkan konfigurasi lainnya. Temuan ini menunjukkan
bahwa pemilihan fitur yang tepat berperan penting dalam meningkatkan performa
klasifikasi berbasis radiomik dan menegaskan potensi machine learning sebagai alat
bantu diagnosis non-invasif untuk klasifikasi subtipe kanker ginjal.

Kata kunci: Kanker ginjal; Pembelajaran Mesin; Radiomik
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MULTI-CLASS CLASSIFICATION OF RENAL CANCER SUBTYPES USING
RADIOMIC FEATURES AND MACHINE LEARNING

Audrey Gracia Chandra

ABSTRACT

Renal Cell Carcinoma (RCC) consists of several subtypes with different biological
characteristics and therapeutic responses, making accurate subtype classification
essential for clinical decision making. However, visual assessment of computed
tomography images often faces limitations due to overlapping morphological
characteristics, particularly between benign tumors such as oncocytoma and
malignant subtypes like chromophobe RCC. This study proposes a radiomics based
machine learning framework for multi class classification of kidney tumor subtypes
using computed tomography images. Radiomic features including shape, first order
statistics, and texture features were extracted from segmented tumor regions. To
reduce feature redundancy and improve model performance, three feature selection
methods, namely ANOVA F test, Recursive Feature Elimination with Linear SVM,
and Mutual Information, were evaluated. Classification was performed using
Logistic Regression, Random Forest, and XGBoost models. Experimental results
show that the combination of Logistic Regression and RFE LSVM achieved the best
performance, with an accuracy of 81.8 percent and the highest F1 score among all
evaluated configurations. These findings indicate that appropriate feature selection
plays a crucial role in improving radiomics based classification performance and
demonstrate the potential of machine learning as a non invasive decision support
tool for kidney cancer subtype classification.

Keywords: Kidney cancer; Machine learning; Radiomics
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