
BAB 3
PELAKSANAAN KERJA MAGANG

3.1 Kedudukan dan Koordinasi

Pekerjaan Freelance di PT. Devoteam memiliki peran dan tanggung jawab
utama dalam pengembangan data pipeline dan pengelolaan data untuk mendukung
transformasi digital klien.

3.1.1 Kedudukan

Posisi yang ditempati adalah Data Engineer Freelance yang tergabung
dalam Tribe Data Engineering di PT. Devoteam. Fokus utama penempatan ini
adalah pada pengembangan dan implementasi solusi data berbasis cloud. Dalam
proyek migrasi Enterprise Data Platform (EDP) klien CIMB, tanggung jawab
utama yang dimiliki tim ini mencakup perancangan dan pengembangan data
pipeline, migrasi dan transformasi data dari sistem on-premises ke platform cloud,
serta penerapan tata kelola data, termasuk data masking menggunakan Policy

Tags. Teknologi utama yang digunakan dalam posisi ini adalah Google BigQuery

sebagai data warehouse tujuan dan Dataform sebagai tool untuk pengembangan dan
orkestrasi pipeline data.

3.1.2 Koordinasi

Pelaksanaan pekerjaan Freelance dijalankan di bawah struktur pengawasan
dan pembimbingan yang terstruktur. Pengawasan dan penasehatan lapangan
dilakukan oleh Bapak Fauzal Atmodirono sebagai Tribe Lead Data dan AI/ML,
sementara arahan teknis harian dalam pengembangan data pipeline menjadi
tanggung jawab Pembimbing Teknis, yaitu Bapak Fadel Fauzan dan Ibu Dhita
Angreny.

Koordinasi selama pekerjaan Freelance di PT. Devoteam dilakukan secara
fleksibel karena penerapan sistem kerja hybrid. Saat bekerja di kantor, koordinasi
langsung dengan tim dan pertemuan mingguan diadakan untuk membahas progres
proyek. Ketika bekerja secara remote, komunikasi dilakukan melalui google

chat. Evaluasi hasil pekerjaan dilakukan secara rutin oleh pembimbing dan tim,
yang kemudian memberikan masukan untuk perbaikan. Selain itu, keaktifan

6
Migrasi dan Pengembangan Tabel..., Matthew Chang, Universitas Multimedia Nusantara

dalam diskusi teknis juga dilakukan untuk memastikan bahwa pengembangan data
pipeline tetap sesuai dengan standar dan kebutuhan perusahaan.

Gambar 3.1. Struktur Supervisi dan Bimbingan Magang

3.2 Tugas yang Dilakukan

Keterlibatan dalam proyek migrasi Enterprise Data Platform (EDP) klien
CIMB menuju Google BigQuery dilakukan sebagai bagian dari pelaksanaan
pekerjaan Freelance di PT. Devoteam. Adapun tugas yang dilakukan dalam proyek
strategis ini adalah sebagai berikut:

• Pengembangan dan Refactoring Data Pipeline: Berfokus pada pemrosesan
data dari sistem on-premises menuju lingkungan cloud-native Google

BigQuery. Ini melibatkan perancangan dan refactoring skrip transformasi
data pada layer Silver dan Gold Collection.

• Pemetaan Skema Data (Schema Mapping): Melakukan analisis mendalam
terhadap skema data sumber (on-premises), menentukan pemetaan kolom,
dan menetapkan tipe data BigQuery yang optimal (seperti penggunaan tipe
data timestamp dan integer) untuk skema target di layer Silver dan Gold.

• Penggunaan Dataform: Digunakan untuk merancang dan merefaktor skrip
transformasi data, termasuk konversi berkas SQL, penggunaan Common

Table Expression (CTE) untuk modularitas kode.

7
Migrasi dan Pengembangan Tabel..., Matthew Chang, Universitas Multimedia Nusantara

• Validasi table: Fokus pada validasi data yang dihasilkan antara hasil
transformasi di BigQuery dan data sumber (MIS). Validasi dilakukan dengan
memastikan kesamaan 100% jumlah baris antara hasil transformasi dan data
sumber.

• Validasi Kolom: Dilakukan berdasarkan dua kriteria, yaitu data numerik
harus 100% sama antara data sumber dan hasil transformasi, sementara data
bertipe string diperbolehkan memiliki perbedaan hingga batas toleransi 5%
sebelum dianggap mismatch.

• Penerapan Tata Kelola Data: Implementasi Policy Tags pada kolom sensitif
di tabel Gold untuk memastikan kepatuhan terhadap kebijakan privasi dan
keamanan data.

3.3 Uraian Pelaksanaan Magang

Berikut adalah uraian mengenai pelaksanaan kerja magang yang telah
dilakukan. Pelaksanaan kerja magang diuraikan seperti pada Tabel 3.1.

Tabel 3.1. Pekerjaan yang dilakukan tiap minggu selama pelaksanaan kerja magang

Minggu Ke - Pekerjaan yang dilakukan
1 Onboarding, setup environment, Merapihkan script lewat

github, memastikan di semua table Gold sudah terimplemen
Policy Tags yg sesuai, update filter pada silver dan gold table,
dan mengubah penulisan format dataform.

2 update script gold yang memiliki source silver banyak
dijadikan CTE, dan update mappingan di sheets UAT Progress.

3 update table gold, menentukan fixing category untuk table
gold pada sheets SIT UAT Progress, mengubah nama table
di dataform sesuai dengan config name pada gold, dan
mengcapture ssis.

4 Cek count rows pada gold collection dan NDB, Fixing table
gold dan collection yang memiliki rows berbeda dengan MIS.

5 Membuat SCD untuk table silver di NDB dan fixing gold NDB.
6 Fixing gold NDB yang memiliki rows tidak match dengan

MIS.
7 Melanjutkan Fixing gold NDB dan Collection yang tidak

match dengan MIS.

8
Migrasi dan Pengembangan Tabel..., Matthew Chang, Universitas Multimedia Nusantara

Minggu Ke - Pekerjaan yang dilakukan
8 Melanjutkan Fixing gold Collection yang tidak match dengan

MIS.
9 Melanjutkan Fixing gold Collection yang tidak match dengan

MIS.
10 Melanjutkan Fixing gold Collection yang tidak match dengan

MIS.
11 Melanjutkan Fixing gold Collection yang tidak match dengan

MIS dan fixing SCD yang valuenya tidak muncul di table.
12 Fixing SCD yang valuenya tidak muncul di table.
13 Fixing SCD dan fixing table NDB yang belum match.

3.4 User Requirements

Setiap aktivitas yang dijalankan dalam proses migrasi didasarkan pada
kebutuhan dan persyaratan fungsional dari pengguna akhir (User Requirements)
dan kebutuhan bisnis klien (CIMB). Secara garis besar, kebutuhan utama yang
harus dipenuhi oleh Enterprise Data Platform (EDP) yang baru ini mencakup aspek
fungsional dan non-fungsional, yang dirinci sebagai berikut:

• Akurasi dan Konsistensi Data: Data yang dihasilkan oleh sistem EDP harus
memiliki akurasi dan konsistensi 100% dengan data sumber (MIS), yang diuji
melalui validasi untuk layer Silver dan Gold.

• Kemudahan Akses Data: Penyediaan data untuk konsumsi Business

Intelligence (BI) melalui query SQL yang efisien dan dapat diakses oleh
pengguna bisnis.

• Skalabilitas Platform: EDP harus dirancang untuk menangani volume data
yang besar dan dapat diskalakan seiring pertumbuhan data di masa depan.

• Keamanan Data: Penerapan Policy Tags untuk data masking pada kolom
sensitif, guna memastikan bahwa data yang sensitif terlindungi dengan baik
dan memenuhi kebijakan keamanan data.

• Kemudahan Pemeliharaan (Maintainability): Platform harus mudah untuk
dipelihara dan diperbarui, yang dicapai melalui pengembangan data pipeline
yang terstruktur menggunakan Dataform.

Semua persyaratan ini menjadi dasar utama dalam perancangan skema dan
logika transformasi di BigQuery.

9
Migrasi dan Pengembangan Tabel..., Matthew Chang, Universitas Multimedia Nusantara

3.5 Proses Migrasi

Alur kerja implementasi dimulai dari analisis skrip SQL sumber hingga
integrasi akhir ke Dataform. Berikut adalah alur proses migrasi yang dilakukan,
sesuai dengan alur pada Gambar 3.2:

Gambar 3.2. Alur Migrasi Data dari SQL ke BigQuery

Alur migrasi data ini merupakan rangkaian langkah-langkah yang
sistematis, dimulai dari tahapan pemahaman logika sumber hingga deployment
akhir ke data warehouse. Proses diawali dengan analisis SQL (Stored Procedure)
yang merupakan logika ETL sumber utama. Tahap ini krusial untuk memetakan
semua logika bisnis, join, dan filter yang digunakan pada sistem legacy.
Selanjutnya, dilakukan Schema Mapping, yaitu proses penentuan skema data yang
baru, termasuk pemilihan tipe data BigQuery yang tepat dan penamaan kolom
yang sudah terstandarisasi untuk Gold Layer. Setelah skema disepakati, proses
berlanjut ke Develop Dataform, di mana semua query migrasi dan transformasi

10
Migrasi dan Pengembangan Tabel..., Matthew Chang, Universitas Multimedia Nusantara

diimplementasikan menggunakan sintaks SQLX Dataform, termasuk penentuan
materialisasi View dan Incremental. Tahap kritis berikutnya adalah Validasi Table
dan Column, di mana data reconciliation dua langkah (pengecekan Row Count
dan Data Quality Check) dilakukan untuk memastikan integritas dan akurasi data.
Setelah validasi berhasil, data dimuat secara permanen ke BigQuery, mengakhiri
siklus migrasi data.

A Schema Mapping

Tahap Schema Mapping merupakan aktivitas fundamental dan kritikal dalam
proyek migrasi data. Aktivitas ini berfokus pada penerjemahan dan penentuan
struktur data yang optimal dari sistem sumber on-premises ke lingkungan Google

BigQuery. Proses ini memiliki tujuan ganda, yaitu memastikan bahwa data tidak
hanya tersimpan, tetapi juga terstruktur secara efisien untuk analisis dan memenuhi
seluruh persyaratan tata kelola data. Secara umum, proses ini mencakup dua fase
transformasi besar dari Bronze Layer ke Silver Layer, dan dilanjutkan ke Gold

Layer.
Alur kerja Schema Mapping yang dijalankan bersifat terstruktur dan iteratif.

Alur ini dimulai dengan analisis mendalam terhadap SQL (Stored Procedure)
sumber dan identifikasi Metadata Bronze. Proses kemudian dibagi menjadi dua
siklus validasi, di mana Validasi Skema Silver dan Validasi Skema Gold harus
berhasil sebelum proses dilanjutkan.

Alur lengkapnya disajikan pada Gambar 3.3. Flowchart tersebut
menunjukkan bahwa jika terjadi ketidaksesuaian pada tahap validasi, proses harus
kembali ke langkah perbaikan untuk koreksi. Langkah fixing ini memastikan setiap
skema layer tervalidasi sebelum melanjutkan ke tahap Pengembangan Dataform.

11
Migrasi dan Pengembangan Tabel..., Matthew Chang, Universitas Multimedia Nusantara

Gambar 3.3. Flowchart Schema Mapping

Pemetaan dari Bronze ke Silver Layer bertujuan menciptakan shared layer
yang bersih dan terstandarisasi. Struktur di Silver Layer sendiri dibagi berdasarkan
klasifikasi tabel NDB dan COLLECTION. Gambar 3.4 menunjukkan sheets rows
untuk pemetaan tersebut. Setiap kolom di Silver Layer ditentukan secara hati-
hati, termasuk penyesuaian Data Type untuk standarisasi di lingkungan BigQuery.
Aturan transformasi (Transformation Rule) diterapkan untuk case casting atau
konversi format data yang diperlukan. Policy Tags didefinisikan untuk kolom-kolom

12
Migrasi dan Pengembangan Tabel..., Matthew Chang, Universitas Multimedia Nusantara

yang memerlukan penyamaran data (Masking Type) sejak dini, meskipun sebagian
besar hanya dicatat sebagai No Masked.

Gambar 3.4. Mapping bronze ke silver

Dalam proses pemetaan 3.4, diidentifikasi pula kebutuhan akan kolom-
kolom yang memerlukan nilai referensi, seperti adanya ketergantungan pada
Parameter Table untuk mencari nilai deskriptif dari kode, dan disiapkannya kolom
List of Value (LOV) untuk tujuan data profiling nilai-nilai unik. Kolom Remarks

juga digunakan untuk mencatat informasi penting terkait sumber data yang hilang
atau perubahan nama kolom.

Setelah Silver Layer selesai dibuat dan divalidasi, proses dilanjutkan dengan
pemetaan dari Silver ke Gold Layer. Gambar 3.5 menunjukkan contoh mapping
sheet untuk transformasi ini.

Gambar 3.5. Mapping silver ke gold

Untuk setiap tabel Gold (Gold Table Name), skema mencatat kolom sumber
dari Silver Layer dan mengidentifikasi Stored Procedure sumber (Existing Job

Name) sebagai referensi logika bisnis. Di Gold Layer, penetapan Policy Tags dan
Data Type menjadi lebih ketat, menjamin bahwa data siap dikonsumsi, memiliki
akurasi tinggi, dan mematuhi regulasi keamanan data.

B Develop Dataform

Setelah proses Schema Mapping selesai, pengembangan data pipeline
dilanjutkan dengan implementasi kode di Dataform. Proses ini berfokus pada dua
jenis materialisasi di Silver Layer dan integrasi kompleks di Gold Layer, yang

13
Migrasi dan Pengembangan Tabel..., Matthew Chang, Universitas Multimedia Nusantara

masing-masing memiliki peran unik dalam menjaga kualitas data dan mendukung
analisis bisnis lanjutan. Gambar 3.6 menunjukkan implementasi kode di Dataform

yang digunakan untuk mengelola pipeline data. Kode ini mencakup proses
materialisasi incremental dan pengelolaan partition yang memastikan data yang
terproses selalu konsisten dan siap digunakan untuk analisis lebih lanjut.

Gambar 3.6. Dataform pada BigQuery

B.1 Develop Table Silver

Pengembangan tabel di Silver Layer merupakan fase krusial dalam arsitektur
Enterprise Data Platform (EDP) ini. Tahap ini bertujuan utama untuk menciptakan
data shared layer yang terstandarisasi, bersih, dan siap konsumsi oleh Gold Layer

downstream. Di dalam Silver Layer, tabel dimaterialisasikan dalam dua tipe yaitu
View dan Incremental.

Tabel dengan tipe materialisasi View digunakan pada Silver Layer yang
fungsinya hanya mereplikasi data dari tabel Bronze secara apa adanya (as-is) atau
dengan transformasi minimal. Penggunaan View di tahap ini bertujuan untuk
mengoptimalkan efisiensi biaya penyimpanan (storage cost), karena View tidak
menyimpan data secara fisik di BigQuery melainkan hanya menyimpan kueri logis.
Hal ini memungkinkan sistem untuk menarik data dalam jendela waktu yang lebih
luas, misalnya hingga 90 hari terakhir dari sumber Bronze, tanpa menambah beban
biaya penyimpanan ganda.

14
Migrasi dan Pengembangan Tabel..., Matthew Chang, Universitas Multimedia Nusantara

Di sisi lain, tipe materialisasi Incremental digunakan untuk mengelola data
berukuran besar dan melakukan semi-aggregation yang kompleks secara efisien.
Berbeda dengan View, tipe Incremental menyimpan data secara fisik dalam bentuk
tabel. Saat skrip SQLX dijalankan berdasarkan jadwal (schedule), data untuk
tanggal baru akan langsung ditambahkan (append) ke tabel yang sudah ada (existing

table) tanpa perlu membuat tabel baru dari awal. Hal ini secara signifikan
mengurangi beban kerja komputasi dan biaya kueri di BigQuery. Alur dari develop
silver pada Dataform dapat dilihat pada gambar 3.7

Gambar 3.7. Flow Dataform Silver

15
Migrasi dan Pengembangan Tabel..., Matthew Chang, Universitas Multimedia Nusantara

Tabel tabel silver view mewakili salah satu entitas di Silver Layer

dengan tipe materialisasi View. Tabel ini dikembangkan untuk menyediakan data
yang telah distandardisasi dan siap konsumsi bagi Gold Layer. Contoh query tabel
view ini dapat dilihat pada kode 3.1.

1 config {

2 name: "table_silver_view",

3 type: "view",

4 schema: "cn_integrated_model",

5 tags: ["silver", "ndb", "customer", "silver_ndb"],

6 description: "Standardized demographic attributes for NDB

customers.",

7 columns: {

8 customer_id: "Unique identifier for the customer",

9 business_date: "Business processing date (partition key)",

10 date_of_birth: "Customer ’s date of birth (standardized format)

",

11 marital_status_code: "Code representing marital status",

12 nationality_name: "Standardized nationality description",

13 last_maintenance_date: "Date when the record was last updated"

14 }

15 }

16

17 SELECT

18 ${dataform.projectConfig.vars.run_date} AS bq_process_date ,

19 CAST(bussdate_bq AS DATE) AS business_date ,

20 TRIM(cust_id) AS customer_id ,

21 SAFE.PARSE_DATE(’%Y%m%d’, CAST(cust_dob AS STRING)) AS

date_of_birth ,

22 TRIM(cust_marital_sts) AS marital_status_code ,

23 CASE

24 WHEN TRIM(cust_nat_code) = ’ID’ THEN ’Indonesia’

25 WHEN TRIM(cust_nat_code) = ’SG’ THEN ’Singapore’

26 ELSE ’Other’

27 END AS nationality_name ,

28 prludt AS last_maintenance_date

29 FROM

30 ${ref(’bronze_customer_source’)}

31 WHERE

32 bussdate_bq BETWEEN ${dataform.projectConfig.vars.partition_date

} - INTERVAL ’30’ DAY

33 AND ${dataform.projectConfig.vars.partition_date}

Kode 3.1: Query Create Silver table Tipe View

16
Migrasi dan Pengembangan Tabel..., Matthew Chang, Universitas Multimedia Nusantara

Implementasi tabel table silver view pada kode 3.1 menunjukkan fokus
utama Silver Layer pada standardisasi, data cleansing, dan efisiensi komputasi.
Dengan menggunakan type: ”view”, perusahaan dapat menghemat biaya
penyimpanan secara signifikan terutama untuk dataset yang hanya memerlukan
standardisasi format tanpa perubahan logika bisnis yang masif. Penggunaan
type: "view" memastikan bahwa tabel ini tidak menyimpan data fisik sendiri
di BigQuery, melainkan berfungsi sebagai query standar yang dieksekusi secara
on-the-fly setiap kali dipanggil oleh Gold Layer atau aplikasi downstream. Hal ini
sangat efisien dari sisi biaya penyimpanan (storage) dan menjamin data yang ditarik
selalu merupakan representasi paling mutakhir dari Bronze Layer.

Dari sisi kualitas data, bagian SELECT menerapkan praktik data cleansing
awal melalui fungsi TRIM(cust id) dan TRIM(cust marital sts) untuk
menghilangkan whitespace yang tidak perlu, yang krusial untuk menjaga integritas
kunci saat join di tahap Gold Layer. Selain itu, fungsi SAFE.PARSE DATE()

dan CAST(... AS DATE) digunakan untuk mengonversi kolom tanggal mentah
(bussdate bq) dari format string atau integer menjadi tipe data DATE yang
konsisten dan dapat dipartisi.

Sementara itu, Filter Windowing diterapkan pada klausul WHERE untuk
membatasi scan data sumber (Bronze) hanya pada partition date yang diproses
dan jendela lookback 30 hari, sehingga menjaga efisiensi komputasi query
BigQuery.

Tabel tabel silver incremental mewakili entitas di Silver Layer dengan
tipe materialisasi incremental. Tabel ini menggunakan tipe incremental untuk
mengelola data berukuran besar secara efisien dan menyediakan output yang
teragregasi untuk Gold Layer. Query dapat dilihat pada kode 3.2.

1 config {

2 name: "tabel_silver_incremental",

3 type: "incremental",

4 schema: "cn_integrated_model_fiktif",

5 tags: ["silver", "collection", "sales", "incremental"],

6 bigquery: {

7 partitionBy: "business_date",

8 requirePartitionFilter: true

9 },

10 description: "Stores daily standardized and semi -aggregated

sales data.",

11 columns: {

12 bq_process_date: "Migration date to BigQuery",

17
Migrasi dan Pengembangan Tabel..., Matthew Chang, Universitas Multimedia Nusantara

13 business_date: "Business processing date",

14 store_id: {

15 description: "Store identifier",

16 bigqueryPolicyTags: [dataform.projectConfig.vars.

policy_tags_test]

17 },

18 total_revenue: {

19 description: "Calculated revenue",

20 bigqueryPolicyTags: [dataform.projectConfig.vars.

policy_tags_test]

21 },

22 total_cost: {

23 description: "Total cost of goods sold",

24 bigqueryPolicyTags: [dataform.projectConfig.vars.

policy_tags_test]

25 },

26 shipping_cost: {

27 description: "Total shipping cost",

28 bigqueryPolicyTags: [dataform.projectConfig.vars.

policy_tags_test]

29 },

30 promo_discount: {

31 description: "Total promotional discount applied",

32 bigqueryPolicyTags: [dataform.projectConfig.vars.

policy_tags_test]

33 },

34 last_maintenance_datetime: "Last maintenance datetime"

35 }

36 }

37

38 pre_operations {

39 DECLARE run_date DEFAULT ${dataform.projectConfig.vars.run_date

};

40 DECLARE partition_date DEFAULT ${dataform.projectConfig.vars.

partition_date};

41 ${when(incremental(), DELETE FROM ${self()} WHERE

bq_process_date = run_date AND business_date = partition_date)}

42 }

43

44 WITH cte_1 AS (

45 SELECT

46 store_id ,

47 SUM(quantity) AS total_quantity ,

18
Migrasi dan Pengembangan Tabel..., Matthew Chang, Universitas Multimedia Nusantara

48 SUM(sales_amount) AS daily_revenue

49 FROM ${ref(’source_bronze_table_1’)}

50 WHERE bussdate_bq = partition_date

51 GROUP BY store_id

52),

53 main_source AS (

54 SELECT

55 store_id ,

56 shipping_cost ,

57 promo_discount ,

58 cust_date_maint ,

59 cust_time_maint

60 FROM ${ref(’source_bronze_table_3’)}

61 WHERE bussdate_bq = partition_date

62)

63 SELECT

64 run_date AS bq_process_date ,

65 CAST(t_main.bussdate_bq AS DATE) AS business_date ,

66 t_main.store_id ,

67 t1.daily_revenue AS total_revenue ,

68 t_main.shipping_cost ,

69 t_main.promo_discount ,

70 t_main.cust_date_maint AS last_maintenance_datetime

71 FROM main_source t_main

72 LEFT JOIN cte_1 t1

73 ON t_main.store_id = t1.store_id

Kode 3.2: Query create silver tabel tipe incremental

Implementasi tabel tabel silver incremental ini menunjukkan bahwa
di Silver Layer, dilakukan agregasi tingkat menengah (semi-aggregation) dan join

kompleks langsung dari Bronze Layer. Tipe ini dipilih karena data disimpan secara
fisik, sehingga mempercepat akses kueri untuk tahap berikutnya dibandingkan
dengan View yang harus menghitung ulang logika setiap kali dipanggil. Strategi
ini digunakan untuk mempercepat time-to-market data, di mana pemrosesan heavy-

duty dilakukan pada satu langkah transformasi.
Fitur paling krusial adalah blok pre operations yang menerapkan prinsip

Upsert. Logika DELETE FROM $self() WHERE... memastikan bahwa data lama
untuk hari proses (partition date) dihapus sebelum data baru dimasukkan,
menjamin integritas data dan memungkinkan pipeline diulang.

Bagian utama SELECT menggunakan Common Table Expression (CTE)
yaitu cte 1 untuk memisahkan logika agregasi (seperti SUM(quantity) dan

19
Migrasi dan Pengembangan Tabel..., Matthew Chang, Universitas Multimedia Nusantara

SUM(sales amount)) dan perhitungan awal. Logika ini kemudian di LEFT
JOIN dengan tabel detail lainnya, memastikan data teragregasi dan terstandarisasi.
Logika konversi last maintenance datetime yang kompleks juga diterapkan,
menggabungkan tanggal dan waktu mentah menjadi satu kolom TIMESTAMP yang
akurat.

Penerapan Policy Tags pada kolom sensitif (misalnya, total revenue)
menggunakan variabel policy tags test di config menjamin keamanan data.

B.2 Develop Table Gold

Seluruh pengembangan tabel di Gold Layer diwajibkan menggunakan tipe
materialisasi Incremental. Hal ini dikarenakan Gold Layer merupakan tahap akhir
yang dikonsumsi langsung oleh laporan MIS dan alat Business Intelligence (BI),
sehingga performa kueri harus sangat cepat. Dengan menyimpan data secara fisik
melalui metode append harian, BigQuery tidak perlu memproses ulang data historis,
yang secara langsung mengoptimalkan biaya operasional (OPEX) dan memastikan
ketersediaan data historis yang stabil. Alur dari develop table gold dapat dilihat
pada flowchart Gambar 3.8.

20
Migrasi dan Pengembangan Tabel..., Matthew Chang, Universitas Multimedia Nusantara

Gambar 3.8. Flow Dataform Gold

Berikut adalah contoh kode 3.3 query SQL untuk memproses dan
menggabungkan data dari berbagai sumber menjadi tabel table gold.

1 config {

2 name: "table_gold",

3 type: "incremental",

4 schema: "cn_integrated_model_fiktif",

5 tags: ["gold", "dimension", "customer", "dim_profile"],

6 bigquery: {

21
Migrasi dan Pengembangan Tabel..., Matthew Chang, Universitas Multimedia Nusantara

7 partitionBy: "business_date",

8 requirePartitionFilter: true

9 },

10 description: "Rich customer profile combining demographic data

and recent aggregated metrics.",

11 columns: {

12 bq_process_date: "Migration date",

13 business_date: "Business processing date",

14 customer_id: {

15 description: "Unique customer identifier",

16 bigqueryPolicyTags: [dataform.projectConfig.vars.

policy_tags_test]

17 },

18 total_revenue_current: "Aggregated revenue metric for the

current partition",

19 total_profit_margin: "Calculated profit margin",

20 last_maint_date_profile: "Last update timestamp from source"

21 }

22 }

23

24 pre_operations {

25 DECLARE run_date DEFAULT ${dataform.projectConfig.vars.run_date

};

26 DECLARE partition_date DEFAULT ${dataform.projectConfig.vars.

partition_date};

27 ${when(incremental(), DELETE FROM ${self()} WHERE

bq_process_date = run_date AND business_date = partition_date)}

28 }

29

30 WITH cte AS (

31 SELECT

32 business_date ,

33 customer_id ,

34 SUM(sales_amount) AS total_revenue_raw ,

35 SUM(unit_cost) AS total_cost_raw

36 FROM ${ref(’source_silver_table_1’)}

37 WHERE business_date = partition_date

38 GROUP BY business_date , customer_id

39)

40 SELECT

41 ${dataform.projectConfig.vars.run_date} AS bq_process_date ,

42 t_view.business_date ,

43 t_view.customer_id ,

22
Migrasi dan Pengembangan Tabel..., Matthew Chang, Universitas Multimedia Nusantara

44 t_view.date_of_birth ,

45 t_view.nationality_name ,

46 t2.total_revenue_raw AS total_revenue_current ,

47 (t2.total_revenue_raw - t2.total_cost_raw) AS

total_profit_margin ,

48 t_inc.last_maintenance_datetime AS last_maint_date_profile

49 FROM

50 ${ref(’table_silver_view’)} AS t_view

51 LEFT JOIN

52 ${ref(’tabel_silver_incremental’)} AS t_inc

53 ON t_view.customer_id = t_inc.customer_id AND t_view.

business_date = t_inc.business_date

54 LEFT JOIN

55 cte AS t2

56 ON t_view.customer_id = t2.customer_id AND t_view.business_date

= t2.business_date

57 WHERE

58 t_view.business_date = partition_date

Kode 3.3: Query create gold table

Implementasi tabel table gold pada kode 3.3 menunjukkan inti dari data
warehousing yaitu penggabungan data dari berbagai pipeline yang berbeda, dengan
fokus pada performa dan tata kelola data. Tabel ini menggunakan tipe materialisasi
incremental dan mengandalkan partitioning pada business date untuk
optimasi, di mana blok pre operations menjamin proses Upsert (penghapusan

data lama sebelum data baru dimasukkan) berjalan lancar, mencegah duplikasi.
Dari sisi transformasi, Common Table Expression (CTE) digunakan secara

modular (misalnya, cte 2) untuk menerapkan Formula bisnis lanjutan, seperti
perhitungan profit margin, yang merupakan selisih antara revenue dan cost.
Setelah metrik dihitung, query utama melakukan penggabungan multi-sumber
dengan join antara data demografi terstandarisasi (table silver view) dengan
data agregasi yang baru dihitung.

Terakhir, aspek tata kelola data dijamin melalui penerapan Policy Tags

pada kolom sensitif (misalnya, total revenue, total profit margin) di blok
config, memastikan kebijakan keamanan (seperti data masking) secara otomatis
diterapkan pada level BigQuery.

23
Migrasi dan Pengembangan Tabel..., Matthew Chang, Universitas Multimedia Nusantara

C Validate Table

Proses validasi tabel (data reconciliation) merupakan tahapan krusial yang
dilakukan segera setelah data berhasil dimuat ke Gold Layer dari pipeline Dataform.
Validasi ini bertujuan untuk memastikan integritas, akurasi, dan konsistensi data
antara sumber dengan data hasil transformasi di BigQuery. Proses ini dilakukan
secara berlapis, dimulai dari pengecekan kuantitas hingga pengecekan kualitas
kolom berdasarkan toleransi yang telah ditetapkan.

Proses validasi ini mengikuti alur bertingkat, yang memastikan data yang
masuk tidak hanya lengkap tetapi juga memiliki nilai yang benar sesuai standar
bisnis, seperti yang diilustrasikan pada Gambar 3.9.

Gambar 3.9. Flow Validasi Table

24
Migrasi dan Pengembangan Tabel..., Matthew Chang, Universitas Multimedia Nusantara

Alur kerja validasi ini dimulai dengan Pengecekan Kuantitas (Row Count

Check) yang membandingkan jumlah baris antara Tabel Tujuan (Gold) dengan
Tabel Sumber (MIS/Bronze). Pengecekan ini diimplementasikan menggunakan
query dasar COUNT(*) untuk memastikan tidak ada kehilangan data. Jika kuantitas
cocok, alur berlanjut ke Validasi Kualitas Data (DQC) yang menerapkan aturan
ketat berdasarkan tipe data.

DQC memisahkan kolom yang dapat dicek dengan cara otomatis
menggunakan sheets MD5 untuk menunggu update hasil rows column terbaru. Cara
lain bisa dilakukan secara manual dengan menggunakan query pada BigQuery. Ada
dua tipe kolom, Numeric dan Non-Numeric. Untuk kolom Tipe Numeric toleransi
perbedaan ditetapkan pada 0% untuk menjamin integritas finansial. Pengecekan
dilakukan dengan menghitung total agregasi di kedua tabel:

1 SELECT SUM((nama_column))

2 FROM tabel_tujuan WHERE business_date = partition_date

Kode 3.4: Query untuk cek value column tipe numeric

Jika hasil agregasi tidak sama, terjadi kegagalan kritis. Sebaliknya, untuk
kolom Tipe Non-Numeric (misalnya, status code atau string), toleransi perbedaan
maksimum diizinkan 5% untuk mengakomodasi inkonsistensi minor. Secara
teknis, kolom Non-Numeric diuji menggunakan fungsi string atau checksum pada
playground pengujian, seperti:

1 SELECT SUM(playground.test_string(nama_column))

2 FROM tabel_tujuan WHERE business_date = partition_date

Kode 3.5: Query untuk cek value column tipe non-numeric

D Komparatif before and after implementation

Pada bagian ini, dilakukan analisis perbandingan teknis untuk mengevaluasi
efektivitas migrasi dari sistem legacy berbasis on-premises (menggunakan Stored

Procedure MySQL) ke sistem modern cloud-native (menggunakan Dataform di
Google BigQuery). Perbandingan ini bertujuan untuk menunjukkan peningkatan
efisiensi kueri, ketahanan sistem, serta pengelolaan transparansi data.

1. Representasi Sistem Before (Legacy Stored Procedure)
Sistem lama menggunakan Stored Procedure yang dijalankan pada server
fisik. Pendekatan ini memiliki keterbatasan dalam menangani lonjakan data

25
Migrasi dan Pengembangan Tabel..., Matthew Chang, Universitas Multimedia Nusantara

karena metode pemrosesan yang cenderung statis dan menggunakan prinsip
Full Refresh (menghapus dan memuat ulang seluruh data), yang memakan
waktu lama serta sumber daya komputasi yang besar. Struktur logika kueri
pada sistem lama dapat dilihat seperti pada gambar 3.10.

Gambar 3.10. Contoh Store Procedure Mysql

2. Representasi Sistem After (Dataform SQLX)
Sistem baru memanfaatkan Dataform dengan materialisasi incremental yang
jauh lebih efisien. Logika pemrosesan dipecah secara modular, di mana data
cleansing dilakukan di Silver Layer yang dapat dilihat pada gambar 3.11 dan
logika bisnis di Gold Layer yang dapat dilihat pada gambar 3.12. Penggunaan
fitur Safe-parsing dan Lineage otomatis memastikan pipeline lebih tangguh
dan mudah dipantau.

26
Migrasi dan Pengembangan Tabel..., Matthew Chang, Universitas Multimedia Nusantara

Gambar 3.11. Contoh Bigquery Silver

Gambar 3.12. Contoh Bigquery Gold

Berdasarkan perbandingan, sistem baru memberikan keunggulan signifikan
dalam aspek operasional. Penggunaan incremental loading mengoptimalkan
biaya kueri di BigQuery karena hanya memproses data harian, bukan
keseluruhan dataset. Selain itu, transparansi data melalui lineage otomatis
mempermudah pelacakan error yang sebelumnya sulit dilakukan pada Stored

Procedure lama.

27
Migrasi dan Pengembangan Tabel..., Matthew Chang, Universitas Multimedia Nusantara

3.6 Kendala dan Solusi yang Ditemukan

Pengembangan data pipeline di lingkungan Enterprise Data Platform

(EDP) menggunakan Dataform dan BigQuery sering menghadapi tantangan terkait
kualitas data, performa komputasi, dan kompleksitas logika bisnis. Berikut adalah
kendala dan solusi yang diterapkan selama implementasi.

3.6.1 Kendala yang Ditemukan

• Inkonsistensi Kualitas Data (Data Quality Challenge): Data mentah yang
berasal dari Bronze Layer sering kali memiliki format yang tidak standar,
adanya whitespace tersembunyi pada kolom string, dan ketidaksesuaian tipe
data. Hal ini menyebabkan kegagalan dalam proses JOIN di Gold Layer

atau Silver Layer karena primary keys tidak terbaca secara identik, sehingga
menghambat aliran data yang bersih dan konsisten.

• Data Lineage dan Debugging Kesalahan: Kesulitan dalam melacak asal-usul
kesalahan atau data drift yang terjadi di Gold Layer dan Silver Layer, karena
beberapa Gold Layer dan Silver Layer bergantung pada join dan agregasi
dari banyak tabel Silver Layer atau Bronze Layer yang berbeda.

3.6.2 Solusi atas Kendala yang Ditemukan

• Standardisasi dan data cleansing di Gold Layer atau Silver Layer

dengan menggunakan fungsi TRIM() untuk menghilangkan whitespace
yang tidak terlihat. Konversi tipe data dilakukan menggunakan
SAFE.PARSE DATE(’%Y%m%d’, CAST(... AS STRING)) dalam fungsi
untuk memastikan data tanggal dikonversi secara benar dan aman dari error,
sehingga kolom date menjadi konsisten di seluruh layer dan mendapatkan
value yang sesuai.

• Dataform dimanfaatkan untuk mendokumentasikan dan memetakan aliran
data secara eksplisit. Pemanfaatan fungsi $ref(’nama tabel’) digunakan
untuk mendefinisikan dependency antar-tabel, yang memungkinkan
visualisasi dan pemantauan aliran data secara otomatis. Penggunaan Tags

(seperti gold, silver, customer) di blok config membantu pengembang
mengelompokkan dan mengisolasi eksekusi query saat debugging. Jika
terjadi kesalahan di Gold Layer atau Silver Layer, developer dapat dengan

28
Migrasi dan Pengembangan Tabel..., Matthew Chang, Universitas Multimedia Nusantara

cepat merujuk kembali ke query Silver Layer atau cek Bronze Layer di
BigQuery yang menjadi dependency dengan melacak fungsi ref.

29
Migrasi dan Pengembangan Tabel..., Matthew Chang, Universitas Multimedia Nusantara

