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Halaman Persembahan / Motto

”Strategy isn’t words, strategy is action.”

Jensen Huang
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OPTIMASI DAN SELEKSI FITUR PADA NAMA DOMAIN
UNTUK DETEKSI DGA DENGAN PENDEKATAN

RANDOM FOREST DAN BILSTM

Muhammad Zaidan Fiqri

ABSTRAK

Serangan siber berbasis Domain Generation Algorithm (DGA) merupakan teknik
yang umum digunakan oleh malware untuk mengaburkan komunikasi dengan
server Command and Control (C&C). Sifat dinamis dari DGA membuat
metode deteksi konvensional berbasis daftar hitam (blacklist) menjadi tidak
efektif. Penelitian ini bertujuan untuk mengevaluasi kinerja deteksi DGA melalui
komparasi dua pendekatan Machine Learning, yaitu Random Forest (berbasis
fitur) dan Bidirectional LSTM (berbasis sekuensial), serta menganalisis dampak
optimasi fitur terhadap akurasi deteksi. Dataset penelitian disusun melalui unifikasi
sumber data sekunder (UMUDGA, Data Driven Security, Kaggle, dan ExtraHop)
serta arsip Alexa dan Tranco untuk domain legit. Metodologi meliputi ekstraksi
Second Level Domain (SLD), penyeimbangan data latih dengan undersampling
(2.142.460 sampel latih seimbang), serta evaluasi pada data uji hold-out 20%
yang tetap imbalanced (5.666.143 sampel). Rekayasa fitur mencakup TF-IDF
n-gram dan fitur statistik handcrafted (misalnya entropi Shannon). Evaluasi
dilakukan menggunakan Stratified 5-Fold Cross-Validation dan interpretasi model
menggunakan SHAP (SHapley Additive exPlanations). Hasil pengujian pada data
uji menunjukkan bahwa model BiLSTM murni (tanpa fitur buatan) menghasilkan
kinerja terbaik dengan akurasi 95,36% dan ROC-AUC 0,9929. Di sisi lain, Random
Forest teroptimasi menghasilkan akurasi 91,95% dengan ROC-AUC 0,9888, serta
lebih baik dalam menekan false positive pada domain legit (indikasi dari recall
kelas legit yang tinggi). Kesimpulan penelitian menunjukkan bahwa pendekatan
deep learning berbasis sekuensial lebih efektif untuk menangkap variasi pola DGA
yang kompleks, sementara pendekatan berbasis fitur lebih sesuai ketika prioritas
utama adalah meminimalkan kesalahan pemblokiran pada domain legit.

Kata kunci: BiLSTM, DGA, Keamanan Siber, Random Forest, Rekayasa Fitur.
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Optimization and Feature Selection on Domain Names for DGA Detection
with Random Forest and BiLSTM Approaches

Muhammad Zaidan Fiqri

ABSTRACT

Cyberattacks based on Domain Generation Algorithms (DGA) are a common
technique used by malware to obfuscate communication with Command and
Control (C&C) servers. The dynamic nature of DGA renders conventional
blacklist-based detection methods ineffective. This study aims to evaluate DGA
detection performance by comparing two Machine Learning approaches Random
Forest (feature-based) and Bidirectional LSTM (sequential-based), and to analyze
the impact of feature optimization on detection accuracy. The research dataset
was constructed by unifying secondary data sources (UMUDGA, Data Driven
Security, Kaggle, and ExtraHop) alongside Alexa and Tranco archives for legitimate
domains. The methodology involves Second-Level Domain (SLD) extraction,
training data balancing via undersampling (resulting in 2,142,460 balanced training
samples), and evaluation on a 20% hold-out test set that remained imbalanced
(5,666,143 samples). Feature engineering included n-gram TF-IDF and handcrafted
statistical features (e.g., Shannon entropy). Evaluation was conducted using
Stratified 5-Fold Cross-Validation, and model interpretation was performed using
SHAP (SHapley Additive exPlanations). The results on the test data show that the
pure BiLSTM model (without handcrafted features) yielded the best performance
with an accuracy of 95.36% and an ROC-AUC of 0.9929. On the other hand, the
optimized Random Forest produced an accuracy of 91.95% with an ROC-AUC of
0.9888, and proved superior in suppressing false positives for legitimate domains
(indicated by a high recall for the legitimate class). The study concludes that
sequential-based deep learning approaches are more effective at capturing complex
DGA variations, while feature-based approaches are more suitable when the
primary priority is to minimize the accidental blocking of legitimate domains.

Keywords: BiLSTM, Cybersecurity, DGA, Feature Engineering, Random Forest.
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