
 
 

BAB II  

TINJAUAN PUSTAKA 

2.1 Justifikasi Solusi 

2.1.1 Implementasi UNet++ untuk Segmentasi Peta Kawasan Kebun 

Salak 

 Penelitian Zaini [7] meletakkan dasar pemrosesan citra drone 

untuk komoditas salak dengan menerapkan arsitektur UNet++ dan 

backbone MobileNetV2 yang telah dilatih sebelumnya (pre-trained) 

pada ImageNet. Penelitian ini menggunakan strategi patching citra 

berukuran 256×256 piksel dengan steps sebesar 220 untuk menangani 

resolusi tinggi dari citra drone. Dalam evaluasinya, model ini 

menunjukkan performa yang solid untuk klasifikasi biner (salak vs 

non-salak), dengan pencapaian nilai Dice Coefficient sebesar 0,8361 

dan IoU (Intersection over Union) sebesar 0,7747. Meskipun 

akurasinya tinggi, model ini memiliki keterbatasan dalam 

membedakan objek non-salak secara spesifik, seperti memisahkan 

antara vegetasi inang alternatif, bangunan, dan objek-objek lainnya. 

Acuan yang dapat diambil dari penelitian ini adalah: 

● Strategi pemotongan citra (patching) berukuran 256x256 

piksel dengan steps sebesar 220 terbukti efektif 

mempertahankan detail tekstur tanaman salak tanpa 

membebani memori komputasi, sehingga metode ini akan 

diadopsi kembali untuk dataset multi-class dalam penelitian 

ini. 

● Penggunaan arsitektur UNet++ dengan backbone 

MobileNetV2 (pre-trained) dijadikan baseline karena 

efektivitasnya yang telah teruji untuk segmentasi citra drone 

perkebunan salak. 
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● Ketidakmampuan model biner dalam memetakan 

kompleksitas lingkungan menjadi landasan kuat perlunya 

pengembangan model baru dengan label ekologis yang 

lebih rinci (7 kelas). 

2.1.2 Implementasi DeepLabV3+ untuk Segmentasi Kebun Salak  

 Tjandra [10] mengeksplorasi arsitektur DeepLabV3+ dengan 

membandingkan tiga variasi backbone, yaitu Xception, ResNet-101, 

dan EfficientNet-B3. Hasil eksperimen menunjukkan bahwa 

konfigurasi DeepLabV3+ dengan backbone Xception menghasilkan 

performa terbaik, mencapai nilai IoU 0,8196, F1-Score 0,8549, dan 

Recall 0,9089. Sebaliknya, penggunaan backbone yang lebih dalam 

seperti ResNet-101 dan EfficientNet-B3 justru menunjukkan indikasi 

overfitting, di mana selisih antara training loss dan validation loss 

cukup signifikan (misalnya selisih 0,12 pada ResNet-101), yang 

disebabkan oleh ketidakseimbangan antara kompleksitas model yang 

tinggi dengan variasi data yang terbatas. 

Acuan yang dapat diambil dari penelitian ini adalah: 

● Kemampuan DeepLabV3+ dalam menangkap konteks 

spasial melalui modul Atrous Spatial Pyramid Pooling 

(ASPP) dinilai potensial untuk menangani variasi skala 

objek di perkebunan, sehingga arsitektur ini dipilih sebagai 

model pembanding serta menjadi kerangka dasar bagi 

pengembangan metode DiverseNet dalam penelitian ini, 

berhubung DiverseNet pada dasarnya menggunakan 

arsitektur DeepLabV3+ dengan backbone ResNet-50. 

● Temuan mengenai overfitting pada model berkapasitas 

besar (seperti ResNet-101) menegaskan bahwa sekadar 

memperdalam jaringan tidak efektif jika data terbatas. Hal 

ini menjadi catatan untuk memilih kompleksitas backbone 
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yang proporsional dengan volume dan kerumitan pola atau 

tekstur data yang tersedia guna menjaga generalisasi model. 

2.1.3 DiverseNet: Decision Diversified Semi-supervised Semantic 

Segmentation Networks for Remote Sensing Imagery 

 Penelitian ini menggunakan DiverseNet, sebuah framework 

Semi-Supervised Learning (SSL) yang dirancang spesifik untuk 

karakteristik citra penginderaan jauh. Metode ini menggunakan 

arsitektur DiverseHead, yaitu satu jaringan encoder-decoder tunggal 

yang dimodifikasi dengan decision heads ringan. Dalam publikasi 

aslinya, metode ini divalidasi secara komprehensif menggunakan 

empat dataset benchmark penginderaan jauh (ISPRS Potsdam, 

DFC2020, RoadNet, dan Massachusetts Buildings). Hasil evaluasi 

rata-rata menunjukkan bahwa varian DiverseHead (dengan Dynamic 

Freezing) mampu mencapai performa unggul dengan Overall 

Accuracy (OA) sebesar 0,89 dan Producer’s Accuracy (PA) sebesar 

0,8583, serta mencatatkan nilai mIoU (mean Intersection over Union) 

sebesar 0,7128. Angka ini mengungguli metode kompetitor 

konvensional seperti Mean Teacher (MT), Cross-Consistency Training 

(CCT), dan Cross Pseudo Supervision (CPS) [11]. 

 Keunggulan utama DiverseNet terletak pada efisiensi 

arsitekturnya. Alih-alih menduplikasi seluruh jaringan, arsitektur ini 

hanya memodifikasi bagian akhir jaringan dengan menambahkan 

beberapa decision heads paralel yang sangat ringan, di mana setiap 

head hanya terdiri dari dua lapisan konvolusi (2 convolutional layers). 

Untuk menciptakan variasi keputusan yang diperlukan dalam 

pembelajaran semi-supervised, metode ini menerapkan strategi 

perturbasi unik berupa dynamic freezing yang secara acak 

membekukan parameter pada sebagian head selama iterasi pelatihan 

dan dropout pada fitur spasial. Hasil prediksi yang beragam dari 

multi-head ini kemudian disatukan melalui mekanisme dual voting 
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(kombinasi mean voting dan max voting) untuk menghasilkan 

pseudo-label yang robust dan memiliki fidelitas tinggi, sehingga 

meminimalkan noise saat model belajar dari data tidak berlabel [11]. 

Acuan yang dapat diambil dari penelitian ini adalah: 

● Arsitektur multi-head memungkinkan model mempelajari 

representasi fitur yang beragam dari setiap head. Hal ini 

berdasarkan validasi pada dataset ISPRS Potsdam dan 

DFC2020 yang merupakan dataset segmentasi multi-kelas. 

● Strategi perturbasi parameter melalui dynamic freezing dan 

mekanisme dual voting menjadi solusi untuk menangani 

ambiguitas antar-kelas. Mengingat penelitian ini melibatkan 

7 label ekologis yang kompleks (seperti membedakan jalan, 

bangunan, tanaman inang, dan salak), strategi ini mencegah 

model terjebak pada kesalahan yang berulang dengan cara 

memvalidasi prediksi melalui voting  dari berbagai decision 

heads, sehingga menghasilkan pseudo-label yang lebih 

akurat. 

● Validitas metode ini telah teruji pada domain citra remote 

sensing yang memiliki karakteristik sudut pandang 

top-down menyerupai citra drone. Efektivitasnya terbukti 

stabil meskipun menggunakan proporsi data berlabel yang 

sangat minim, yaitu rasio 1/4 (25%) pada dataset ISPRS 

Potsdam (total 3.456 data), RoadNet (410 data), dan 

Massachusetts Buildings (137 data), serta rasio 1/5 (20%) 

pada dataset DFC2020 yang memiliki volume data lebih 

besar (6.112 data). Fakta ini menjadi landasan kuat bagi 

penelitian ini untuk merancang skenario eksperimen dengan 

efisiensi anotasi tinggi (misalnya mulai dari 5% atau 10% 

data). 

2.1.4 Exploring the Limits of Weakly Supervised Pretraining 
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 Penelitian fundamental oleh Mahajan dkk. (2018) 

mengeksplorasi batas kemampuan Deep Learning pada dataset 

berskala besar dengan distribusi kelas yang sangat timpang 

(Zipfian/Long-tailed). Dalam eksperimen yang melibatkan miliaran 

citra media sosial, mereka menunjukkan bahwa strategi 

penyeimbangan distribusi menggunakan pendekatan akar kuadrat 

(square-root sampling) menghasilkan performa transfer learning, 

dengan peningkatan akurasi 5-6% dibandingkan metode distribusi 

alami. Temuan ini menjadi landasan teoritis bagi penerapan metode 

Sqrt-Damped Class Weighting dalam penelitian ini, karena pendekatan 

berbasis akar kuadrat tersebut terbukti efektif dalam memitigasi 

dominasi kelas mayoritas pada total loss, sekaligus menjaga stabilitas 

pelatihan dibandingkan dengan penyeimbangan frekuensi linear yang 

ekstrem [35]. 

Acuan yang dapat diambil dari penelitian ini adalah: 

● Penelitian ini menunjukkan bahwa penggunaan metode 

pembobotan berbasis akar kuadrat yang diadaptasi dalam 

penelitian ini, cukup optimal untuk menangani data yang 

sangat timpang. Dalam konteks kebun salak, pendekatan ini 

memvalidasi keputusan untuk tidak menggunakan 

pembobotan linear yang terlalu agresif, melainkan 

menggunakan versi yang lebih halus (smoothing dengan 

akar kuadrat) agar model dapat memberikan perhatian 

proporsional pada kelas mayoritas maupun minoritas. 

● Pembobotan standar sering kali menyebabkan model 

mengalami lonjakan perubahan bobot yang drastis saat 

menemukan kelas yang jarang muncul. Dengan strategi akar 

kuadrat, lonjakan tersebut diredam sehingga model dapat 

belajar mengenali objek kecil dengan aman tanpa merusak 

pengetahuan yang sudah ada mengenai objek dominan. 
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2.1.5 FlexMatch: Boosting Semi-Supervised Learning with Curriculum 

Pseudo Labeling 

Zhang et al. melalui pengembangan algoritma FlexMatch 

mengidentifikasi bahwa penggunaan ambang batas kepercayaan statis 

pada metode seperti FixMatch cenderung mengabaikan perbedaan 

tingkat kesulitan pembelajaran antar kelas yang berbeda. Mereka 

mengusulkan pendekatan Curriculum Pseudo Labeling (CPL) melalui 

metode FlexMatch, yang secara fleksibel menyesuaikan ambang batas 

kepercayaan untuk setiap kelas berdasarkan hasil pembelajaran model. 

Selain meningkatkan akurasi pada skenario label yang sangat terbatas, 

mekanisme ini terbukti secara signifikan mempercepat kecepatan 

konvergensi model hingga lima kali lebih cepat dibandingkan metode 

konvensional [36]. 

Acuan yang dapat diambil dari penelitian ini adalah: 

● Prinsip penyesuaian ambang batas setiap kelas dipakai 

untuk menggantikan fixed threshold pada semua kelas 

dalam arsitektur DiverseNet, memungkinkan model untuk 

mempelajari fitur kelas sulit. 

● Mekanisme ini digunakan untuk menyeimbangkan 

kontribusi pseudo-label dari data tidak berlabel, mencegah 

model hanya memperkuat bias pada kelas-kelas yang 

mudah diprediksi di awal pelatihan. 

2.1.6 Penerapan Inductive Semi-Supervised Learning dengan Evaluasi 

Terpisah 

 Dalam paradigma Machine Learning klasik dengan jumlah 

sampel terbatas, rule of thumb seperti rasio Pareto 80:20 atau 70:30 

sering dijadikan standar baku untuk pembagian data latih dan data uji. 

Namun, seiring dengan evolusi Deep Learning dan ketersediaan data 

berskala masif, Ng [22] menegaskan bahwa ketergantungan pada rasio 

persentase tetap menjadi tidak relevan dan bahkan kontra-produktif. 
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Menurut Ng, prioritas utama dalam pembagian data bukan lagi 

memenuhi kuota persentase tertentu (misalnya 20% untuk pengujian), 

melainkan memastikan bahwa himpunan data uji memiliki ukuran 

absolut yang cukup untuk mencapai signifikansi statistik. Pada dataset 

dengan volume jutaan titik data, alokasi 1% atau bahkan kurang untuk 

pengujian sudah sangat memadai untuk merepresentasikan distribusi 

populasi, asalkan jumlah sampel tersebut cukup besar (misalnya 

>1.000 sampel) untuk memberikan estimasi performa model yang 

stabil dan tidak bias. 

 Landasan teoritis mengenai maksimisasi data latih ini divalidasi 

secara matematis oleh Joseph [29] melalui formulasi rasio pembagian 

data optimal. Dalam studi statistiknya, Joseph membuktikan bahwa 

rasio ideal antara himpunan data latih dan data uji mengikuti proporsi 

p : 1, di mana p merepresentasikan jumlah parameter model. 

Formulasi ini mengimplikasikan hubungan invers di mana proporsi 

data yang dialokasikan untuk pengujian (γ) harus menurun  seiring 

dengan lonjakan kompleksitas model atau peningkatan nilai p. Joseph 

menegaskan bahwa perilaku ini merupakan konsekuensi logis dalam 

pemodelan statistik, mengingat bahwa model dengan kompleksitas 

tinggi, seperti arsitektur Deep Learning yang memuat jutaan 

parameter, membutuhkan alokasi data pelatihan yang maksimal untuk 

menjamin akurasi estimasi parameter, sembari mempertahankan data 

uji pada batas kecukupan statistik semata. 

 Acuan yang dapat diambil dari penelitian ini adalah: 

● Berdasarkan pandangan Ng [22], validitas evaluasi model 

dalam penelitian ini tidak ditentukan oleh pemenuhan kuota 

persentase data uji (seperti 20% atau 30%), melainkan oleh 

kecukupan jumlah absolut sampel untuk mencapai 

signifikansi statistik. Dalam konteks citra resolusi tinggi, 

himpunan uji yang secara persentase kecil (±2%) tetap valid 

secara ilmiah karena proses patching menghasilkan ribuan 
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sampel evaluasi independen yang melampaui ambang batas 

signifikansi statistik (>1.000 sampel). Hal ini menjustifikasi 

penggunaan set data uji terpisah dengan jumlah terbatas, 

tapi representatif demi mengalokasikan sumber daya data 

yang lebih besar untuk pelatihan. 

● Berdasarkan formulasi Joseph [29], penggunaan arsitektur 

Deep Learning dengan kompleksitas parameter tinggi 

menuntut alokasi data pelatihan yang maksimal. Oleh 

karena itu, strategi meminimalkan proporsi data uji hingga 

batas kecukupan statistik adalah langkah optimasi yang 

terjustifikasi secara matematis untuk menjamin model dapat 

mempelajari jutaan parameter secara akurat, terutama dalam 

skenario kelangkaan data berlabel yang dihadapi. 

● Pendekatan pembagian data ini selaras dengan tujuan 

Inductive Semi-Supervised Learning, di mana data uji 

diambil dari kumpulan citra yang dipisahkan sepenuhnya 

dari proses pelatihan. Hal ini menjamin bahwa metrik 

akurasi mencerminkan kemampuan model dalam mengenali 

objek pada citra-citra belum pernah dilihat sebelumnya, 

memvalidasi bahwa prediksi didasarkan pada pembelajaran 

fitur morfologi tanaman, bukan sekadar menghafal posisi 

atau pola visual dari data latih (overfitting). 

2.2 Tinjauan Teori 

2.2.1 Deep Learning 

Deep learning merupakan cabang dari machine learning yang 

memungkinkan model komputasi yang terdiri dari multiple processing 

layers untuk mempelajari representasi data dengan berbagai tingkat 

abstraksi [12]. Metode ini telah meningkatkan performa 

state-of-the-art dalam berbagai domain, termasuk pengenalan objek 

visual dan deteksi objek. Berbeda dengan metode machine learning 

konvensional yang memiliki keterbatasan dalam memproses data 
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alami dalam bentuk mentahnya, deep learning mampu menemukan 

struktur yang rumit dalam dataset besar. 

Mekanisme pembelajaran dalam deep learning melibatkan 

penggunaan algoritma backpropagation untuk mengindikasikan 

bagaimana mesin harus mengubah parameter internalnya guna 

meminimalkan kesalahan. Parameter yang dapat disesuaikan ini, 

sering disebut sebagai bobot (weights), dimodifikasi untuk 

mengurangi selisih pada fungsi objektif yang mengukur jarak antara 

skor output dan target yang diinginkan. Untuk tugas klasifikasi citra, 

lapisan representasi yang lebih tinggi berfungsi memperkuat aspek 

input yang penting untuk diskriminasi dan menekan variasi yang tidak 

relevan, seperti variasi posisi atau pencahayaan. 

Dalam konteks pengolahan citra visual, arsitektur Deep 

Convolutional Networks (ConvNets) telah membawa terobosan besar. 

ConvNets dirancang khusus untuk memproses data yang hadir dalam 

bentuk multiple arrays, seperti citra warna 2D. Arsitektur ini 

memanfaatkan empat ide kunci yang mengambil keuntungan dari 

properti sinyal alami, yaitu local connections, shared weights, 

pooling, dan penggunaan banyak lapisan [12]. Struktur ini terinspirasi 

langsung oleh hierarki visual dalam neurosains, di mana fitur tingkat 

rendah digabungkan membentuk motif, dan motif membentuk bagian 

objek yang lebih kompleks. 

Mengingat kemampuan deep learning yang sangat baik dalam 

menemukan struktur rumit pada data berdimensi tinggi serta 

meminimalkan kebutuhan rekayasa fitur manual, pendekatan ini 

menjadi sangat relevan untuk diterapkan dalam penelitian ini. 

Kompleksitas morfologi tanaman salak atau objek lainnya juga pada 

citra drone membutuhkan model yang mampu mempelajari fitur 

invarian secara otomatis, yang mana arsitektur berbasis deep learning 

menawarkan solusi yang lebih robust dibandingkan metode ekstraksi 

fitur konvensional. 
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2.2.2 Segmentasi 

Segmentasi citra merupakan salah satu tugas dalam computer 

vision yang bertujuan untuk mempartisi sebuah gambar digital 

menjadi beberapa segmen atau region. Setiap segmen 

merepresentasikan objek atau bagian tertentu dari citra, yang 

kemudian dapat digunakan untuk analisis lebih lanjut seperti deteksi 

objek dan pengenalan pola. Proses ini penting untuk 

menyederhanakan representasi citra menjadi sesuatu yang lebih 

bermakna dan lebih mudah untuk dianalisis. 

Dalam praktiknya, objek pada gambar dapat dikategorikan 

menjadi dua jenis, yaitu things dan stuff. Things merujuk pada 

objek-objek yang dapat dihitung, seperti pohon, manusia, atau 

kendaraan. Sementara itu, stuff merujuk pada wilayah amorf yang 

tidak dapat dihitung dan cenderung memiliki tekstur yang seragam, 

seperti langit, rumput, air, atau tanah [13]. 

Berdasarkan perbedaan perlakuan terhadap things dan stuff, 

tugas segmentasi citra terbagi menjadi tiga kategori utama: 

1. Segmentasi Semantik (Semantic Segmentation) yang 

bertujuan untuk memberikan label kelas pada setiap piksel 

dalam citra. Segmentasi semantik memperlakukan semua 

piksel sebagai stuff, sehingga semua objek dari kelas yang 

sama akan digabungkan menjadi satu segmen tunggal tanpa 

adanya pemisahan antar-instansi (misalnya, semua pohon 

salak dalam satu area dianggap sebagai satu kelas "pohon 

salak"). 

2. Segmentasi Instansi (Instance Segmentation), berbeda 

dengan segmentasi semantik, segmentasi instansi berfokus 

pada deteksi dan segmentasi setiap instansi objek yang 

termasuk dalam kategori things. Tujuannya adalah untuk 

membedakan satu objek dari objek lainnya, bahkan jika 
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mereka berasal dari kelas yang sama (misalnya, 

mengidentifikasi "pohon salak 1", "pohon salak 2", dan 

seterusnya). 

3. Segmentasi Panoptik (Panoptic Segmentation), 

diperkenalkan oleh Kirillov et al. (2019) untuk 

menggabungkan keunggulan dari segmentasi semantik dan 

instansi. Segmentasi panoptik memberikan label semantik 

dan instance ID yang unik untuk setiap piksel pada citra. 

Hasilnya adalah pemahaman adegan yang komprehensif, di 

mana stuff diberi label kelas dan things diberi label kelas 

sekaligus ID unik [14]. 

Secara metodologis, segmentasi dapat dilakukan dengan teknik 

tradisional berbasis pemrosesan citra (seperti thresholding, clustering, 

atau watershed). Namun, seiring berkembangnya deep learning, 

berbagai arsitektur Convolutional Neural Network (CNN) seperti 

Fully Convolutional Networks (FCN), U-Net, dan DeepLab telah 

menunjukkan kinerja yang jauh lebih unggul dalam tugas segmentasi 

semantik yang kompleks pada citra penginderaan jauh (Zhu et al., 

2017) [15]. 

Mengingat kompleksitas citra drone perkebunan salak yang 

memiliki variasi tekstur, pencahayaan, dan kerapatan tajuk yang 

tinggi, serta tantangan dalam ketersediaan data berlabel anotasi, 

penelitian ini akan berfokus pada penerapan dan adaptasi arsitektur 

deep learning untuk segmentasi semantik dengan pendekatan 

semi-supervised. 

2.2.3 Semi-Supervised Learning 

Dalam pengembangan model pembelajaran mesin, pendekatan 

pelatihan umumnya diklasifikasikan berdasarkan ketersediaan label. 

Pendekatan yang paling umum, Supervised Learning, melatih sistem 
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menggunakan himpunan data besar di mana setiap contoh memiliki 

label kategori. Tujuannya adalah meminimalkan kesalahan antara 

output prediksi dan target yang diinginkan. Namun, pendekatan ini 

sangat bergantung pada keberadaan data berlabel yang masif. Di sisi 

lain, Unsupervised Learning bertujuan menangkap struktur data tanpa 

label, menyerupai cara manusia dan hewan belajar melalui 

pengamatan pasif terhadap dunia [15]. 

Semi-Supervised Learning (SSL) hadir sebagai solusi untuk 

mengatasi keterbatasan data berlabel dengan memanfaatkan data tidak 

berlabel yang melimpah. SSL bekerja dengan menggabungkan 

sejumlah kecil data berlabel dan sejumlah besar data tidak berlabel 

untuk meningkatkan kinerja model [16]. 

Agar data tidak berlabel dapat efektif membantu proses 

pembelajaran, algoritma SSL bersandar pada tiga asumsi distribusi 

data fundamental [17]: 

1. Smoothness Assumption 

Jika dua titik data  dan  berdekatan dalam ruang input 𝑥
1

𝑥
2

yang padat, maka output (label) keduanya seharusnya serupa. 

Asumsi ini menyiratkan bahwa keputusan klasifikasi tidak boleh 

berubah secara drastis di area yang padat data. 

2. Cluster Assumption 

Titik-titik data cenderung membentuk kelompok atau 

klaster yang terpisah. Titik-titik yang berada dalam klaster yang 

sama kemungkinan besar memiliki kelas yang sama. 

Implikasinya, decision boundary model seharusnya melewati 

daerah dengan kepadatan data rendah, bukan memotong klaster 

yang padat. 

3. Manifold Assumption 

Data berdimensi tinggi (seperti citra) sebenarnya terletak 

pada struktur manifold berdimensi lebih rendah. Dengan 
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mempelajari struktur manifold ini dari data tidak berlabel, model 

dapat melakukan generalisasi yang lebih baik meskipun data 

berlabelnya sedikit. 

Berdasarkan asumsi-asumsi di atas, metode SSL modern dalam 

Deep Learning umumnya menerapkan dua mekanisme utama: 

A. Pseudo-Labeling  

Metode ini menerapkan Cluster Assumption dengan 

mendorong model untuk membuat keputusan yang tegas. Model 

dilatih pada data berlabel, kemudian digunakan untuk 

memprediksi kelas pada data tidak berlabel. Prediksi dengan 

confidence di atas ambang batas tertentu (misalnya > 0,95) 

dianggap sebagai pseudo-label dan digunakan kembali untuk 

melatih model [18]. 

B. Consistency Regularization 

Metode ini menerapkan Smoothness Assumption. Teknik ini 

didasarkan pada prinsip bahwa prediksi model harus konsisten 

terhadap gangguan (perturbation) pada input yang tidak 

mengubah semantik objek. Jika sebuah citra  diberi gangguan 𝑥

(seperti rotasi atau noise) menjadi , model dipaksa untuk 𝑥'

menghasilkan prediksi yang sama untuk keduanya. Metode 

modern seperti FixMatch menggabungkan augmentasi lemah 

untuk pembuatan label semu dan augmentasi kuat untuk 

menegakkan konsistensi ini [19]. 

2.2.4 DiverseNet 

DiverseNet merupakan sebuah framework semi-supervised 

learning yang dikembangkan secara spesifik untuk menangani 

tantangan segmentasi semantik pada citra remote sensing. Metode ini 

hadir sebagai solusi atas keterbatasan sumber daya komputasi yang 
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sering dihadapi ketika menerapkan algoritma SSL konvensional 

berbasis Teacher-Student yang cenderung berat. Dalam literatur 

utamanya, DiverseNet sebenarnya memayungi dua pendekatan 

strategi yang berbeda, yaitu DiverseModel yang menggunakan 

pendekatan multi-model untuk sumber daya komputasi tinggi, dan 

DiverseHead yang dirancang sebagai arsitektur ringan dengan prinsip 

efisiensi ekstrem. Arsitektur ini memungkinkan model untuk 

mencapai keragaman keputusan yang tinggi tanpa perlu melatih dua 

jaringan saraf tiruan secara penuh, melainkan cukup dengan 

memodifikasi bagian akhir jaringan menjadi cabang-cabang keputusan 

yang majemuk. 

Secara fundamental, arsitektur DiverseNet (dengan 

implementasi DiverseHead) dibangun di atas struktur 

Encoder-Decoder standar yang kemudian diekspansi pada bagian 

keluarannya. Aliran pemrosesan data dimulai dari komponen Encoder 

yang bertugas sebagai backbone untuk mengekstraksi representasi 

fitur mendalam dari citra masukan, baik itu citra berlabel maupun 

tidak berlabel. Fitur-fitur hasil ekstraksi ini kemudian diteruskan ke 

komponen Decoder, yang bertanggung jawab untuk memulihkan 

resolusi spasial fitur tersebut agar sesuai dengan dimensi asli citra. 

Perbedaan fundamental DiverseNet dibandingkan arsitektur 

segmentasi standar terletak pada apa yang terjadi setelah tahap 

decoder; alih-alih menggunakan satu lapisan klasifikasi tunggal, 

arsitektur ini mendistribusikan feature maps ke dalam komponen 

Diverse Heads, yaitu sekumpulan decision head yang disusun secara 

paralel untuk menghasilkan prediksi yang bervariasi dari sumber fitur 

yang sama. 

Untuk menjamin efisiensi komputasi, struktur setiap decision 

head pada DiverseNet dirancang agar bersifat sangat ringan. Setiap 

head hanya terdiri dari dua lapisan konvolusi, sehingga penambahan 

jumlah head tidak akan membebani memori GPU secara signifikan 
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dibandingkan dengan menduplikasi seluruh jaringan decoder. 

Meskipun memiliki struktur yang sederhana, keragaman keputusan 

yang dihasilkan oleh masing-masing head berbobot. Keragaman ini 

dicapai melalui mekanisme network perturbation yang diterapkan 

selama proses pelatihan, yaitu strategi dynamic freezing dan 

penggunaan dropout pada fitur tingkat tinggi. Dalam mekanisme 

dynamic freezing, parameter pada sebagian head akan dibekukan 

secara acak dan bergantian pada setiap iterasi pelatihan, sementara 

dropout memberikan gangguan stokastik pada representasi fitur. 

Kombinasi kedua strategi ini memaksa setiap head untuk mempelajari 

representasi yang sedikit berbeda namun saling melengkapi, 

mencegah terjadinya penyeragaman prediksi yang sering terjadi pada 

pelatihan model tunggal. Arsitektur DiverseNet berdasarkan yang 

sudah dijelaskan dapat dilihat pada Gambar 2.1. 

 

Gambar 2.1 Arsitektur framework DiverseNet  [11] 

Dalam konteks pelatihan semi-supervised, keberadaan Multiple 

Decision Heads ini dimanfaatkan untuk memperkuat kualitas 

pseudo-label. Data berlabel digunakan untuk melatih setiap head 

secara independen menggunakan fungsi supervised loss. Sementara 

itu, untuk data tidak berlabel, prediksi dari seluruh head yang 
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berbeda-beda tersebut diagregasi untuk menghasilkan satu 

pseudo-label yang lebih robust dan akurat dibandingkan jika hanya 

mengandalkan satu prediksi tunggal. Melalui pendekatan ini, 

DiverseNet mampu mengeksploitasi informasi dari data tidak berlabel 

secara maksimal melalui konsistensi antar-head, sekaligus menjaga 

biaya komputasi tetap rendah karena mayoritas parameter pada 

encoder dan decoder digunakan secara bersama, bukan diduplikasi. 

2.2.5 UNet++ 

UNet++ merupakan pengembangan arsitektur Convolutional 

Neural Network (CNN) berbasis U-Net yang diperkenalkan oleh Zhou 

et al. (2018) [30]. Arsitektur ini dirancang untuk mengatasi kelemahan 

pada skip connections standar U-Net dengan memperkenalkan strategi 

koneksi yang didesain ulang, yaitu Nested Skip Pathways. Secara 

visual, arsitektur ini dapat direpresentasikan sebagai susunan node 

yang membentuk matriks segitiga, di mana baris direpresentasikan 

oleh indeks  menandakan tingkat down-sampling pada encoder dan 𝑖

kolom oleh indeks  menandakan tingkat kedalaman blok konvolusi 𝑗

pada decoder. Arsitektur UNet++ dapat dilihat pada Gambar 2.2. 

Unit dasar pembangun arsitektur ini adalah node . Berbeda 𝑥𝑖,𝑗

dengan U-Net konvensional yang hanya meneruskan fitur dari 

encoder ke decoder secara langsung, setiap node pada UNet++ 

terhubung melalui mekanisme dense convolution block. Dalam 

mekanisme ini, sebuah node  tidak hanya menerima masukan dari 𝑥𝑖,𝑗

lapisan di bawahnya (hasil up-sampling dari $), tetapi juga 𝑥{𝑖,𝑗, 𝑗−1}

menerima akumulasi fitur dari seluruh node skip pathway sebelumnya 

pada baris yang sama (yaitu , , ..., ). Secara matematis, 𝑥𝑖,0 𝑥𝑖,1 𝑥𝑖,𝑗−1

operasi penggabungan fitur ini memastikan bahwa semantic gap 

antara fitur encoder dan decoder dapat dijembatani secara bertahap, 

bukan secara mendadak. 
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Logika konektivitas ini membuat jumlah lapisan konvolusi pada 

jalur skip connection menjadi adaptif terhadap kedalaman jaringan. 

Semakin besar nilai indeks , semakin banyak blok konvolusi yang 𝑗

dilalui oleh fitur sebelum mencapai tahap akhir decoder. Sebagai 

contoh, informasi yang mengalir pada jalur  akan melalui 𝑥0,𝑗

serangkaian transformasi non-linear yang padat sebelum digabungkan 

dengan fitur hasil up-sampling. Proses ini menjamin bahwa fitur yang 

diterima oleh decoder memiliki resolusi spasial yang kaya sekaligus 

informasi semantik yang telah dimurnikan. 

Selain struktur koneksi yang padat, UNet++ juga 

mengimplementasikan Deep Supervision. Fitur ini memungkinkan 

model menghasilkan luaran segmentasi dari setiap cabang node  𝑥0,𝑗

(di mana ). Hal ini memberikan fleksibilitas mode 𝑗 ∈ {1,  2,  3,  4}

operasi pada saat inferensi, mode akurasi yang merata-rata hasil dari 

seluruh cabang untuk performa maksimal, atau mode cepat yang 

melakukan pruning dengan hanya mengambil luaran dari salah satu 

cabang awal untuk mempercepat waktu komputasi. Kemampuan ini 

menjadikan UNet++ sangat adaptif untuk diterapkan pada skenario 

dengan batasan perangkat keras yang bervariasi. 

 

Gambar 2.2 Arsitektur UNet++  [31] 

2.2.6 MobileNetV2 
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MobileNetV2 merupakan arsitektur Convolutional Neural 

Network (CNN) yang diperkenalkan oleh Sandler et al. (2018) dan 

difungsikan sebagai backbone untuk tugas ekstraksi fitur pada sistem 

dengan sumber daya komputasi terbatas. Arsitektur ini dikembangkan 

dari pendahulunya, MobileNetV1, dengan tetap mempertahankan 

efisiensi melalui penggunaan Depthwise Separable Convolution. 

Namun, MobileNetV2 menghadirkan inovasi struktural yang 

signifikan untuk menangani hilangnya informasi pada operasi 

non-linier di dimensi rendah, yaitu melalui pengenalan mekanisme 

Inverted Residuals dan Linear Bottlenecks. Dalam konteks segmentasi 

semantik, MobileNetV2 bertugas mengubah citra masukan menjadi 

representasi fitur yang kaya namun padat, yang kemudian akan 

diproses lebih lanjut oleh bagian decoder atau head jaringan [32]. 

Komponen fundamental yang menyusun struktur backbone ini 

adalah blok Inverted Residual. Berbeda dengan arsitektur residual 

klasik seperti ResNet yang menghubungkan lapisan dengan jumlah 

kanal besar melalui mekanisme Wide-Narrow-Wide, MobileNetV2 

membalik logika tersebut menjadi Narrow-Wide-Narrow, seperti yang 

diilustrasikan pada Gambar 2.3. Dalam konfigurasi ini, koneksi skip 

menghubungkan lapisan-lapisan bottleneck yang memiliki dimensi 

rendah. Pendekatan arsitektural ini memungkinkan model untuk 

mentransmisikan informasi mentah melalui jalur pintas dengan 

penggunaan memori yang sangat efisien, sementara proses ekspansi 

fitur untuk mempelajari pola-pola visual yang kompleks dilakukan di 

dalam blok internal yang memiliki dimensi lebih besar. 
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Gambar 2.3 Struktur Inverted Residual Block  [32] 

Secara operasional, setiap blok Inverted Residual memproses 

aliran data melalui tiga tahapan konvolusi yang berurutan. Tahap 

pertama adalah ekspansi, di mana fitur masukan berdimensi rendah 

diproyeksikan ke dimensi yang lebih tinggi menggunakan konvolusi 

1×1 yang diikuti oleh fungsi aktivasi ReLU6. Penggunaan ReLU6, 

yang membatasi nilai aktivasi maksimum di angka 6, bertujuan untuk 

menjaga stabilitas numerik saat model dijalankan pada perangkat 

dengan presisi rendah. Setelah fitur diekspansi, tahap kedua 

melakukan penyaringan spasial menggunakan konvolusi 3×3 

depthwise, yang memproses setiap kanal secara terpisah untuk 

meminimalkan beban komputasi. Tahap terakhir adalah proyeksi 

kembali ke dimensi rendah menggunakan konvolusi 1×1. Pada tahap 

akhir ini, fungsi aktivasi non-linier dihilangkan dan digantikan dengan 

fungsi Linear Bottleneck. Hal ini didasarkan pada temuan bahwa 

penerapan fungsi non-linier seperti ReLU pada tensor berdimensi 

rendah berpotensi menghancurkan informasi penting, sehingga 

linearitas diperlukan untuk mempertahankan keutuhan informasi yang 

akan diteruskan ke lapisan berikutnya. Rincian spesifikasi operasi dan 

urutan lapisan pada arsitektur ini dapat dilihat pada Tabel 2.1. 
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Tabel 2.1 Spesifikasi Arsitektur MobileNetV2 

2.2.7 DeepLabV3+ 

DeepLabV3+ merupakan varian dari model segmentasi semantik 

DeepLab yang dikembagkan oleh Google Research. Diperkenalkan 

oleh Chen et al. [33], model ini dirancang untuk mengatasi 

keterbatasan pendahulunya, DeepLabV3, dalam merekonstruksi 

informasi batas objek yang mendetail. Secara fundamental, 

DeepLabV3+ berstruktur encoder-decoder yang bertujuan untuk 

menyeimbangkan penangkapan konteks global dengan pelestarian 

resolusi spasial, sebuah mekanisme yang diilustrasikan secara 

skematis pada Gambar 2.4.  
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Input Operator t c n s 

2242×3 conv2d - 32 1 2 

1122×32 bottleneck 1 16 1 1 

1122×16 bottleneck 6 24 2 2 

562×24 bottleneck 6 32 3 2 

282×32 bottleneck 6 64 4 2 

142×64 bottleneck 6 96 3 1 

142×96 bottleneck 6 160 3 2 

72×160 bottleneck 6 320 1 1 

72×320 conv2d 1x1 - 1280 1 1 

72×1280 avgpool 7x7 - - 1 - 

1×1×1280 conv2d 1x1 - k - - 



 
 

 

Gambar 2.4 Arsitektur DeepLabV3+  [33] 

Mekanisme kerja DeepLabV3+ dimulai pada bagian Encoder, di 

mana tulang punggung (backbone) jaringan mengekstrak fitur 

semantik tingkat tinggi. Pada tahap ini, modul ASPP menerapkan 

konvolusi berlubang (atrous convolution) dengan berbagai tingkat 

dilasi untuk memperluas receptive field tanpa menurunkan resolusi 

secara drastis. Output dari encoder ini mengandung informasi kategori 

objek yang kuat namun memiliki resolusi spasial yang rendah 

(biasanya 1/16 dari citra asli). 

Peran selanjutnya dijalankan oleh modul Decoder, yang menjadi 

fitur pembeda utama arsitektur ini. Alih-alih langsung mengembalikan 

ukuran citra ke resolusi asli, fitur dari encoder terlebih dahulu 

di-upsample sebesar 4× dan digabungkan dengan fitur tingkat rendah 

yang diambil dari lapisan awal backbone. Fitur tingkat rendah ini 

dipilih karena masih menyimpan informasi detail spasial yang kaya, 

seperti tekstur dan garis batas objek. Sebelum penggabungan, fitur 

tingkat rendah diproses dengan konvolusi 1×1 untuk 

menyeimbangkan jumlah kanal. Kombinasi antara fitur semantik yang 

kaya dari encoder dan detail spasial dari decoder inilah yang 
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memungkinkan DeepLabV3+ menghasilkan batas segmentasi yang 

jauh lebih tajam dibandingkan pendahulunya. 

Untuk menunjang kompleksitas struktur encoder-decoder 

tersebut tanpa membebani sumber daya komputasi, DeepLabV3+ 

menggunakan teknik Depthwise Separable Convolution (DSC). 

Teknik ini memodifikasi operasi konvolusi standar menjadi dua tahap 

terpisah, yaitu konvolusi depthwise (per kanal) diikuti oleh konvolusi 

pointwise (1×1). Penerapan DSC, yang terinspirasi dari arsitektur 

Xception, memungkinkan model untuk mengurangi jumlah parameter 

dan biaya komputasi (FLOPs) secara signifikan sambil 

mempertahankan performa akurasi yang setara. Efisiensi ini 

menjadikan DeepLabV3+ sangat relevan untuk diterapkan pada 

skenario dengan sumber daya terbatas namun tetap menuntut hasil 

segmentasi vegetasi yang presisi. 

2.2.8 Xception 

Xception (Extreme Inception) merupakan arsitektur 

Convolutional Neural Network (CNN) yang diperkenalkan oleh 

François Chollet (2017) [37]. Arsitektur yang dapat dilihat pada 

Gambar 2.5 ini dirancang sebagai pengembangan evolusioner dari 

keluarga Inception, dengan tujuan memaksimalkan efisiensi 

penggunaan parameter tanpa mengorbankan performa model. Nama 

Xception sendiri berasal dari konsep Extreme Inception, di mana 

arsitektur ini mendorong hipotesis Inception ke titik ekstremnya. Jika 

modul Inception standar mencoba memisahkan konvolusi spasial dan 

korelasi lintas-saluran (cross-channel correlations) secara parsial, 

Xception didasarkan pada asumsi yang lebih kuat bahwa pemetaan 

korelasi lintas-saluran dan korelasi spasial dapat dipisahkan 

sepenuhnya (fully decoupled). 
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Gambar 2.5 Arsitektur Xception [38] 

Inovasi fundamental yang membedakan arsitektur Xception dari 

jaringan konvolusi standar seperti VGG atau ResNet awal terletak 

pada penggunaan depthwise separable convolution sebagai pengganti 

konvolusi konvensional yang dapat dilihat pada Gambar 2.6. 

Mekanisme ini memecah proses konvolusi menjadi dua tahap terpisah, 

yaitu depthwise convolution dan pointwise convolution. Pada tahap 

depthwise convolution, operasi konvolusi spasial (misalnya kernel 

3×3) diterapkan secara independen pada setiap channel masukan, 

sehingga hanya menangkap korelasi spasial tanpa mencampurkan 

informasi antar-channel. Selanjutnya, pointwise convolution 

menggunakan kernel 1×1 untuk memproyeksikan hasil tersebut ke 

ruang channel yang baru, memungkinkan model untuk mempelajari 

korelasi lintas-saluran (cross-channel correlations) secara efisien. 

Pemisahan ini memungkinkan ekstraksi fitur yang lebih hemat 

parameter dan komputasi, sekaligus mempertahankan kemampuan 

representasi yang tinggi. 
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Gambar 2.6 Mekanisme Depthwise Separable Convolution [38] 

Secara matematis, pemisahan ini secara drastis mengurangi 

beban komputasi dan jumlah parameter model. Jika konvolusi standar 

dengan kernel ,  input channel, dan  output channel 𝐾 ×  𝐾 𝐶
𝑖𝑛

𝐶
𝑜𝑢𝑡

membutuhkan operasi sebanyak , maka depthwise 𝐾2 ×  𝐶
𝑖𝑛

 × 𝐶
𝑜𝑢𝑡

separable convolution hanya membutuhkan 

. Pengurangan kompleksitas ini (𝐾2 ×  𝐶
𝑖𝑛

) + (𝐾2 ×  𝐶
𝑜𝑢𝑡

)

memungkinkan Xception untuk memiliki arsitektur yang sangat dalam 

namun tetap ringan dan efisien untuk dijalankan, yang sangat krusial 

dalam pemrosesan citra resolusi tinggi seperti citra drone. 

Struktur jaringan Xception tersusun secara linear sebagai 

tumpukan lapisan depthwise separable convolution yang dilengkapi 

dengan koneksi residual (residual connections). Arsitektur ini terbagi 

menjadi tiga aliran utama. Entry Flow (alur masuk untuk ekstraksi 

fitur awal dan downsampling), Middle Flow (blok pengulangan utama 

untuk memperdalam representasi fitur), dan Exit Flow (alur keluar 

untuk konsolidasi fitur akhir sebelum klasifikasi atau rekonstruksi). 

Penggunaan koneksi residual pada setiap blok konvolusi (mirip 

dengan ResNet) memastikan aliran gradien yang lancar selama proses 
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backpropagation, mencegah masalah vanishing gradient, dan 

mempercepat konvergensi pelatihan. Dalam konteks segmentasi 

semantik, Xception sering diadopsi sebagai backbone (enkoder) yang 

kuat karena kemampuannya mengekstrak fitur hierarkis yang kaya 

dengan efisiensi komputasi yang superior dibandingkan Inception V3. 

2.2.9 ResNet-50 

ResNet-50 adalah salah satu varian arsitektur Residual Network 

(ResNet) yang diperkenalkan oleh He et al. [34] sebagai solusi atas 

fenomena degradasi performa pada pelatihan Deep Neural Networks 

(DNN). Sebelum kemunculan ResNet, memperdalam jaringan saraf 

sering kali berujung pada masalah vanishing gradient, di mana sinyal 

gradien menjadi sangat kecil saat dipropagasikan balik ke lapisan 

awal, menyebabkan model gagal belajar secara efektif. Untuk 

mengatasi hal ini, ResNet memperkenalkan konsep Residual Learning 

melalui mekanisme skip connection atau shortcut connection, seperti 

yang ditunjukkan pada Gambar 2.7. Mekanisme ini memungkinkan 

sinyal input diteruskan secara langsung ke lapisan berikutnya dengan 

melewati beberapa lapisan konvolusi, sehingga jaringan hanya perlu 

mempelajari fungsi residual alih-alih fungsi pemetaan utuh dari nol. 

Pendekatan ini terbukti mempermudah proses optimasi dan 

memungkinkan pelatihan jaringan yang jauh lebih dalam hingga 

ratusan lapisan. 
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Gambar 2.7 Residual Learning Block dan Bottleneck Block pada 

ResNet-50 [39] 

Secara spesifik, ResNet-50 dibedakan dari varian yang lebih 

dangkal (seperti ResNet-18 atau ResNet-34) melalui penggunaan 

struktur blok "Bottleneck". Blok ini dirancang untuk efisiensi 

komputasi tinggi dengan menyusun tiga lapisan konvolusi berurutan: 

konvolusi 1×1, 3×3, dan 1×1. Konvolusi 1×1 pertama berfungsi untuk 

mereduksi dimensi kanal input, konvolusi 3×3 melakukan pemrosesan 

spasial pada dimensi yang lebih rendah, dan konvolusi 1×1 terakhir 

mengembalikan dimensi ke jumlah kanal semula. Desain bottleneck 

ini memungkinkan ResNet-50 memiliki kapasitas ekstraksi fitur yang 

jauh lebih kaya namun dengan kompleksitas parameter yang tetap 

terkendali dibandingkan jika menggunakan konvolusi 3×3 standar 

secara terus-menerus. 

Dalam implementasi segmentasi semantik, ResNet-50 sering 

difungsikan sebagai backbone atau tulang punggung ekstraktor fitur 

pada arsitektur encoder. Struktur layernya yang terdiri dari lima 

tahapan (conv1 hingga conv5_x) mampu menghasilkan representasi 

fitur hierarkis yang kuat, mulai dari deteksi tepi dan tekstur dasar di 

40 
Implementasi Semi-Supervised Learning…, Albert Tirto Kusumo, Universitas Multimedia 

Nusantara 
 



 
 

lapisan awal hingga pengenalan bentuk objek kompleks di lapisan 

akhir. Detail konfigurasi lapisan pada arsitektur ResNet-50 dapat 

dilihat pada Gambar 2.7 di atas, yang menunjukkan susunan filter dan 

jumlah pengulangan blok residual pada setiap tahapan pemrosesan. 

Kekuatan representasi fitur inilah yang menjadikan ResNet-50 pilihan 

standar untuk mendukung tugas Computer Vision. 

2.2.10 Pest Risk Assessment 

Pest Risk Assessment (PRA) merupakan proses fundamental 

yang menyediakan landasan ilmiah bagi Organisasi Perlindungan 

Tanaman Nasional (NPPO) dalam menetapkan status hama, 

mendukung sertifikasi fitosanitari, dan membangun area bebas hama 

[20], [21]. Dalam konteks surveilans, PRA adalah pendekatan berbasis 

sains yang digunakan untuk menentukan tata letak dan kepadatan 

perangkap (trap density) agar strategi monitoring berjalan efisien. 

Mengacu pada Trapping Guidelines for Area-Wide Fruit Fly 

Programmes (FAO/IAEA, 2018), strategi pengendalian hama modern 

tidak lagi mengandalkan estimasi kasar, melainkan harus didasarkan 

pada penilaian risiko kuantitatif. Metodologi ini menuntut konversi 

berbagai faktor lingkungan menjadi bobot nilai numerik terukur 

hingga mencapai total kumulatif 100 poin. Area dengan akumulasi 

skor risiko tertinggi mewajibkan pemasangan densitas perangkap yang 

paling padat, sementara area dengan risiko rendah dapat dikurangi 

atau ditiadakan, memungkinkan optimalisasi sumber daya monitoring 

[6]. Contoh tabel PRA dapat dilihat pada Gambar 2.8 di bawah. 
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Gambar 2.8 Contoh Tabel Pest Risk Assessment [6] 

 Berbagai faktor risiko umum yang dikaji meliputi ketersediaan 

inang (jenis, kelimpahan, dan distribusi spasial dan temporal), 

preferensi inang (primer dan sekunder), kondisi iklim (seperti suhu, 

hujan, dan angin), pergerakan inang (komersial dan non-komersial), 

permukiman manusia (urban, sub-urban, pedesaan), jarak ke area 

terinfestasi, dan profil historis kemunculan hama. Penilaian risiko 

yang berhasil dari faktor-faktor ini akan diplot ke dalam peta untuk 

menghasilkan peta tematik area risiko yang kemudian digunakan 

sebagai dasar penyebaran perangkap di lapangan. Pemanfaatan konsep 

risiko ini telah terbukti efektif dalam restrukturisasi dan 

mengoptimalkan jaringan penjeratan, memungkinkan penambahan 

perangkap di area berisiko tinggi dan pengurangan atau penghilangan 

perangkap di area berisiko rendah. Secara umum, kepadatan 

perangkap ditentukan berdasarkan tingkat risiko yang dinilai, di mana 
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area berisiko tertinggi memerlukan kepadatan perangkap yang paling 

tinggi [6]. 

2.2.11 Fruit Fly Trap 

Sistem penjeratan lalat buah merupakan alat manajemen hama 

yang sangat terspesialisasi dan efisien, menjadi prasyarat untuk 

pengambilan keputusan yang efektif dalam program pengendalian 

area-wide. Penggunaan perangkap yang efektif bergantung pada 

kombinasi yang tepat antara perangkat perangkap, atraktan, dan agen 

pembunuh/pengawet untuk menarik, menangkap, membunuh, dan 

mengawetkan spesies lalat target untuk dianalisis. Perangkap 

diklasifikasikan menjadi tiga jenis utama, di antaranya yaitu 

perangkap kering, perangkap basah, dan perangkap yang dapat 

digunakan kering atau basah. Untuk surveilans hama genus 

Bactrocera, digunakan Methyl Eugenol (ME), yaitu paraferomon 

spesifik jantan (male-specific lure), yang efektif menangkap spesies 

seperti B. dorsalis dan B. carambolae. Karena ME merupakan 

atraktan yang sangat mudah menguap, penggunaannya dalam 

perangkap kering harus dikombinasikan dengan toksikan, seperti 

malation atau deltamethrin, sebagai agen pembunuh [6], [21]. 

Salah satu perangkat perangkap kering yang umum digunakan 

untuk spesies Bactrocera dan atraktan ME adalah Steiner Trap (ST). 

Perangkap Steiner konvensional dideskripsikan sebagai silinder 

plastik bening horizontal dengan bukaan di setiap ujungnya. Atraktan 

berupa cotton wick atau dispenser digantung dari bagian tengah di 

dalam perangkap. Meskipun perangkap Steiner termasuk perangkap 

standar yang direkomendasikan, perangkap ini merupakan salah satu 

perangkap yang paling ekonomis dan mudah ditangani di lapangan, 

yang memungkinkan operator melayani jumlah perangkap yang lebih 

banyak per jam kerja dibandingkan perangkap jenis lain [6], [21]. 
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Penempatan perangkap yang efektif di lapangan memerlukan 

informasi dasar mengenai inang lalat buah, yang meliputi inang 

primer, inang sekunder, dan inang sesekali, serta fenologi, distribusi, 

dan kelimpahannya. Perangkap feromon harus ditempatkan di area 

perkawinan, yaitu di bagian tengah hingga atas kanopi tanaman inang, 

memilih tempat yang semi-teduh, dan idealnya di sisi upwind mahkota 

pohon. Selain itu, perangkap harus ditempatkan di pohon inang primer 

(misalnya, pohon salak) selama periode pematangan buah, dan jika 

inang primer tidak tersedia, inang sekunder harus digunakan. Strategi 

penempatan harus mencakup relokasi perangkap secara sistematis 

dengan mengikuti fenologi pematangan buah inang yang ada di area 

tersebut agar populasi lalat buah dapat dilacak sepanjang tahun. 

Sangat penting juga untuk memastikan pintu masuk perangkap bersih 

dari ranting, daun, atau penghalang lain seperti sarang laba-laba, 

untuk memungkinkan aliran udara yang tepat dan akses mudah bagi 

lalat buah. Penempatan beberapa perangkap dengan atraktan berbeda 

(misalnya ME dan atraktan berbasis protein) di pohon yang sama 

harus dihindari karena dapat menyebabkan interferensi antar atraktan 

dan mengurangi efisiensi penangkapan. Terakhir, untuk pengelolaan 

yang efisien, lokasi setiap perangkap wajib di-geo-reference 

menggunakan GPS dan dicatat dalam database GIS, yang 

menyediakan peta beresolusi tinggi untuk perencanaan dan 

pengawasan kegiatan surveilans [6], [21], [41]. 

2.2.12 Fruit Fly per Trap per Day (FTD) 

Flies per Trap per Day (FTD) merupakan indeks populasi 

standar yang digunakan secara internasional untuk mengukur 

kepadatan populasi lalat buah dewasa di suatu wilayah dalam periode 

waktu tertentu,. Indeks ini berfungsi sebagai data dasar yang bersifat 

komparatif untuk mengevaluasi fluktuasi populasi sebelum, selama, 

dan setelah pelaksanaan program manajemen hama, baik dalam skala 
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supresi maupun eradikasi,. Secara matematis, FTD dihitung dengan 

membagi total lalat yang tertangkap dengan hasil perkalian antara 

jumlah perangkap yang diperiksa dan rata-rata durasi paparan 

perangkap di lapangan,. Rumus perhitungan FTD adalah sebagai 

berikut: 

 𝐹𝑇𝐷 = 𝑇
𝐷 · 𝐹  

Keterangan: 

● F: Total jumlah lalat buah target yang tertangkap 

● T: Jumlah perangkap yang diperiksa 

● D: Rata-rata jumlah hari perangkap dipasang di lapangan di antara 

dua waktu pemeriksaan 

Dalam praktik manajemen hama terpadu area luas (AW-IPM), FTD 

digunakan sebagai ambang batas tindakan untuk pengambilan 

keputusan operasional. Apabila nilai FTD melampaui ambang batas 

ekonomi tertentu, maka tindakan pengendalian supresif, seperti 

penyemprotan umpan protein atau teknik jantan mandul, harus segera 

diintensifkan untuk mencegah ledakan populasi. Sebaliknya, tren 

penurunan nilai FTD menjadi indikator keberhasilan intervensi yang 

telah dilakukan. Bagi Paguyuban Mitra Turindo, pencapaian indeks 

FTD yang konsisten di angka harapan 0,00 sangat penting sebagai 

bukti ilmiah yang diakui oleh WTO. Data ini menjadi modal vital 

dalam diplomasi perdagangan untuk menegosiasikan penurunan beban 

sampling inspeksi karantina yang saat ini mencapai 10%, sehingga 

dapat meningkatkan daya saing ekspor dan kesejahteraan petani. 

Lebih jauh lagi, dalam kerangka perdagangan internasional, FTD 

bukan sekadar angka statistik, melainkan instrumen legalitas ekspor. 

Untuk komoditas bernilai tinggi seperti salak yang menargetkan pasar 

dengan regulasi karantina ketat (seperti Tiongkok atau Australia), 

pemeliharaan nilai FTD pada level yang sangat rendah (mendekati 

atau sama dengan nol) adalah prasyarat mutlak. Status Area Bebas 
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Hama (PFA) atau Area dengan Prevalensi Hama Rendah (ALPP) 

hanya dapat diakui secara internasional apabila didukung oleh data 

historis surveilans yang menunjukkan konsistensi nilai FTD di bawah 

ambang batas yang disepakati dalam protokol bilateral selama periode 

waktu tertentu [6], [21]. Oleh karena itu, akurasi dalam penempatan 

perangkap, yang didukung oleh peta risiko presisi, sangat menentukan 

validitas nilai FTD yang dihasilkan, karena penempatan yang salah 

dapat menghasilkan data false negative yang membahayakan 

kredibilitas fitosanitari negara pengekspor. 
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