BAB 11

TINJAUAN PUSTAKA

2.1 Justifikasi Solusi
2.1.1 Implementasi UNet++ untuk Segmentasi Peta Kawasan Kebun
Salak

Penelitian Zaini [7] meletakkan dasar pemrosesan citra drone
untuk komoditas salak dengan menerapkan arsitektur UNet++ dan
backbone MobileNetV2 yang telah dilatih sebelumnya (pre-trained)
pada ImageNet. Penelitian ini menggunakan strategi patching citra
berukuran 256x256 piksel dengan steps sebesar 220 untuk menangani
resolusi tinggi dari citra drone. Dalam evaluasinya, model ini
menunjukkan performa yang solid untuk klasifikasi biner (salak vs
non-salak), dengan pencapaian nilai Dice Coefficient sebesar 0,8361
dan IoU (Intersection over Union) sebesar 0,7747. Meskipun
akurasinya tinggi, model ini memiliki keterbatasan dalam
membedakan objek non-salak secara spesifik, seperti memisahkan

antara vegetasi inang alternatif, bangunan, dan objek-objek lainnya.

Acuan yang dapat diambil dari penelitian ini adalah:

e Strategi pemotongan citra (patching) berukuran 256x256
piksel dengan steps sebesar 220 terbukti efektif
mempertahankan detail tekstur tanaman salak tanpa
membebani memori komputasi, sehingga metode ini akan
diadopsi kembali untuk dataset multi-class dalam penelitian
ini.

e Penggunaan arsitektur UNet++ dengan backbone
MobileNetV2 (pre-trained) dijadikan baseline karena
efektivitasnya yang telah teruji untuk segmentasi citra drone

perkebunan salak.
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e Ketidakmampuan model biner dalam memetakan
kompleksitas lingkungan menjadi landasan kuat perlunya
pengembangan model baru dengan label ekologis yang

lebih rinci (7 kelas).
2.1.2 Implementasi DeepLabV3+ untuk Segmentasi Kebun Salak

Tjandra [10] mengeksplorasi arsitektur DeepLabV3+ dengan
membandingkan tiga variasi backbone, yaitu Xception, ResNet-101,
dan EfficientNet-B3. Hasil eksperimen menunjukkan bahwa
konfigurasi DeepLabV3+ dengan backbone Xception menghasilkan
performa terbaik, mencapai nilai IoU 0,8196, F1-Score 0,8549, dan
Recall 0,9089. Sebaliknya, penggunaan backbone yang lebih dalam
seperti ResNet-101 dan EfficientNet-B3 justru menunjukkan indikasi
overfitting, di mana selisih antara fraining loss dan validation loss
cukup signifikan (misalnya selisth 0,12 pada ResNet-101), yang
disebabkan oleh ketidakseimbangan antara kompleksitas model yang
tinggi dengan variasi data yang terbatas.

Acuan yang dapat diambil dari penelitian ini adalah:

e Kemampuan DeepLabV3+ dalam menangkap konteks

spasial melalui modul Atrous Spatial Pyramid Pooling
(ASPP) dinilai potensial untuk menangani variasi skala
objek di perkebunan, sehingga arsitektur ini dipilih sebagai
model pembanding serta menjadi kerangka dasar bagi
pengembangan metode DiverseNet dalam penelitian ini,
berhubung DiverseNet pada dasarnya menggunakan
arsitektur DeepLabV3+ dengan backbone ResNet-50.

e Temuan mengenai overfitting pada model berkapasitas

besar (seperti ResNet-101) menegaskan bahwa sekadar
memperdalam jaringan tidak efektif jika data terbatas. Hal

ini menjadi catatan untuk memilih kompleksitas backbone
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yang proporsional dengan volume dan kerumitan pola atau

tekstur data yang tersedia guna menjaga generalisasi model.

2.1.3 DiverseNet: Decision Diversified Semi-supervised Semantic
Segmentation Networks for Remote Sensing Imagery

Penelitian ini menggunakan DiverseNet, sebuah framework
Semi-Supervised Learning (SSL) yang dirancang spesifik untuk
karakteristik citra penginderaan jauh. Metode ini menggunakan
arsitektur DiverseHead, yaitu satu jaringan encoder-decoder tunggal
yang dimodifikasi dengan decision heads ringan. Dalam publikasi
aslinya, metode ini divalidasi secara komprehensif menggunakan
empat dataset benchmark penginderaan jauh (ISPRS Potsdam,
DFC2020, RoadNet, dan Massachusetts Buildings). Hasil evaluasi
rata-rata menunjukkan bahwa varian DiverseHead (dengan Dynamic
Freezing) mampu mencapai performa unggul dengan Overall
Accuracy (OA) sebesar 0,89 dan Producers Accuracy (PA) sebesar
0,8583, serta mencatatkan nilai mloU (mean Intersection over Union)
sebesar 0,7128. Angka ini mengungguli metode kompetitor
konvensional seperti Mean Teacher (MT), Cross-Consistency Training
(CCT), dan Cross Pseudo Supervision (CPS) [11].

Keunggulan utama DiverseNet terletak pada efisiensi
arsitekturnya. Alih-alih menduplikasi seluruh jaringan, arsitektur ini
hanya memodifikasi bagian akhir jaringan dengan menambahkan
beberapa decision heads paralel yang sangat ringan, di mana setiap
head hanya terdiri dari dua lapisan konvolusi (2 convolutional layers).
Untuk menciptakan variasi keputusan yang diperlukan dalam
pembelajaran semi-supervised, metode ini menerapkan strategi
perturbasi unik berupa dynamic freezing yang secara acak
membekukan parameter pada sebagian head selama iterasi pelatihan
dan dropout pada fitur spasial. Hasil prediksi yang beragam dari

multi-head ini kemudian disatukan melalui mekanisme dual voting
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(kombinasi mean voting dan max voting) untuk menghasilkan
pseudo-label yang robust dan memiliki fidelitas tinggi, sehingga
meminimalkan noise saat model belajar dari data tidak berlabel [11].

Acuan yang dapat diambil dari penelitian ini adalah:

o Arsitektur multi-head memungkinkan model mempelajari
representasi fitur yang beragam dari setiap head. Hal ini
berdasarkan validasi pada dataset ISPRS Potsdam dan
DFC2020 yang merupakan dataset segmentasi multi-kelas.

e Strategi perturbasi parameter melalui dynamic freezing dan
mekanisme dual voting menjadi solusi untuk menangani
ambiguitas antar-kelas. Mengingat penelitian ini melibatkan
7 label ekologis yang kompleks (seperti membedakan jalan,
bangunan, tanaman inang, dan salak), strategi ini mencegah
model terjebak pada kesalahan yang berulang dengan cara
memvalidasi prediksi melalui voting dari berbagai decision
heads, sehingga menghasilkan pseudo-label yang lebih
akurat.

e Validitas metode ini telah teruji pada domain citra remote
sensing yang memiliki karakteristik sudut pandang
top-down menyerupai citra drone. Efektivitasnya terbukti
stabil meskipun menggunakan proporsi data berlabel yang
sangat minim, yaitu rasio 1/4 (25%) pada dataset ISPRS
Potsdam (total 3.456 data), RoadNet (410 data), dan
Massachusetts Buildings (137 data), serta rasio 1/5 (20%)
pada dataset DFC2020 yang memiliki volume data lebih
besar (6.112 data). Fakta ini menjadi landasan kuat bagi
penelitian ini untuk merancang skenario eksperimen dengan
efisiensi anotasi tinggi (misalnya mulai dari 5% atau 10%

data).

2.1.4 Exploring the Limits of Weakly Supervised Pretraining
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Penelitian  fundamental oleh  Mahajan dkk. (2018)
mengeksplorasi batas kemampuan Deep Learning pada dataset
berskala besar dengan distribusi kelas yang sangat timpang
(Ziptian/Long-tailed). Dalam eksperimen yang melibatkan miliaran
citra media sosial, mereka menunjukkan bahwa strategi
penyeimbangan distribusi menggunakan pendekatan akar kuadrat
(square-root sampling) menghasilkan performa transfer learning,
dengan peningkatan akurasi 5-6% dibandingkan metode distribusi
alami. Temuan ini menjadi landasan teoritis bagi penerapan metode
Sqrt-Damped Class Weighting dalam penelitian ini, karena pendekatan
berbasis akar kuadrat tersebut terbukti efektif dalam memitigasi
dominasi kelas mayoritas pada total /oss, sekaligus menjaga stabilitas
pelatihan dibandingkan dengan penyeimbangan frekuensi linear yang
ekstrem [35].

Acuan yang dapat diambil dari penelitian ini adalah:

e Penelitian ini menunjukkan bahwa penggunaan metode
pembobotan berbasis akar kuadrat yang diadaptasi dalam
penelitian ini, cukup optimal untuk menangani data yang
sangat timpang. Dalam konteks kebun salak, pendekatan ini
memvalidasi  keputusan untuk tidak menggunakan
pembobotan linear yang terlalu agresif, melainkan
menggunakan versi yang lebih halus (smoothing dengan
akar kuadrat) agar model dapat memberikan perhatian
proporsional pada kelas mayoritas maupun minoritas.

e Pembobotan standar sering kali menyebabkan model
mengalami lonjakan perubahan bobot yang drastis saat
menemukan kelas yang jarang muncul. Dengan strategi akar
kuadrat, lonjakan tersebut diredam sehingga model dapat
belajar mengenali objek kecil dengan aman tanpa merusak

pengetahuan yang sudah ada mengenai objek dominan.
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2.15

FlexMatch: Boosting Semi-Supervised Learning with Curriculum

Pseudo Labeling

2.1.6

Zhang et al. melalui pengembangan algoritma FlexMatch
mengidentifikasi bahwa penggunaan ambang batas kepercayaan statis
pada metode seperti FixMatch cenderung mengabaikan perbedaan
tingkat kesulitan pembelajaran antar kelas yang berbeda. Mereka
mengusulkan pendekatan Curriculum Pseudo Labeling (CPL) melalui
metode FlexMatch, yang secara fleksibel menyesuaikan ambang batas
kepercayaan untuk setiap kelas berdasarkan hasil pembelajaran model.
Selain meningkatkan akurasi pada skenario label yang sangat terbatas,
mekanisme ini terbukti secara signifikan mempercepat kecepatan
konvergensi model hingga lima kali lebih cepat dibandingkan metode
konvensional [36].

Acuan yang dapat diambil dari penelitian ini adalah:

e Prinsip penyesuaian ambang batas setiap kelas dipakai
untuk menggantikan fixed threshold pada semua kelas
dalam arsitektur DiverseNet, memungkinkan model untuk
mempelajari fitur kelas sulit.

e Mekanisme ini digunakan untuk menyeimbangkan
kontribusi pseudo-label dari data tidak berlabel, mencegah
model hanya memperkuat bias pada kelas-kelas yang

mudah diprediksi di awal pelatihan.

Penerapan Inductive Semi-Supervised Learning dengan Evaluasi
Terpisah

Dalam paradigma Machine Learning klasik dengan jumlah
sampel terbatas, rule of thumb seperti rasio Pareto 80:20 atau 70:30
sering dijadikan standar baku untuk pembagian data latih dan data uji.
Namun, seiring dengan evolusi Deep Learning dan ketersediaan data
berskala masif, Ng [22] menegaskan bahwa ketergantungan pada rasio

persentase tetap menjadi tidak relevan dan bahkan kontra-produktif.
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Menurut Ng, prioritas utama dalam pembagian data bukan lagi
memenuhi kuota persentase tertentu (misalnya 20% untuk pengujian),
melainkan memastikan bahwa himpunan data uji memiliki ukuran
absolut yang cukup untuk mencapai signifikansi statistik. Pada dataset
dengan volume jutaan titik data, alokasi 1% atau bahkan kurang untuk
pengujian sudah sangat memadai untuk merepresentasikan distribusi
populasi, asalkan jumlah sampel tersebut cukup besar (misalnya
>1.000 sampel) untuk memberikan estimasi performa model yang
stabil dan tidak bias.

Landasan teoritis mengenai maksimisasi data latih ini divalidasi
secara matematis oleh Joseph [29] melalui formulasi rasio pembagian
data optimal. Dalam studi statistiknya, Joseph membuktikan bahwa
rasio ideal antara himpunan data latih dan data uji mengikuti proporsi
p : 1, di mana p merepresentasikan jumlah parameter model.
Formulasi ini mengimplikasikan hubungan invers di mana proporsi
data yang dialokasikan untuk pengujian (y) harus menurun seiring
dengan lonjakan kompleksitas model atau peningkatan nilai p. Joseph
menegaskan bahwa perilaku ini merupakan konsekuensi logis dalam
pemodelan statistik, mengingat bahwa model dengan kompleksitas
tinggi, seperti arsitektur Deep Learning yang memuat jutaan
parameter, membutuhkan alokasi data pelatihan yang maksimal untuk
menjamin akurasi estimasi parameter, sembari mempertahankan data
uji pada batas kecukupan statistik semata.

Acuan yang dapat diambil dari penelitian ini adalah:

e Berdasarkan pandangan Ng [22], validitas evaluasi model
dalam penelitian ini tidak ditentukan oleh pemenuhan kuota
persentase data uji (seperti 20% atau 30%), melainkan oleh
kecukupan jumlah absolut sampel untuk mencapai
signifikansi statistik. Dalam konteks citra resolusi tinggi,
himpunan uji yang secara persentase kecil (+2%) tetap valid

secara ilmiah karena proses patching menghasilkan ribuan
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sampel evaluasi independen yang melampaui ambang batas
signifikansi statistik (>1.000 sampel). Hal ini menjustifikasi
penggunaan set data uji terpisah dengan jumlah terbatas,
tapi representatif demi mengalokasikan sumber daya data
yang lebih besar untuk pelatihan.

e Berdasarkan formulasi Joseph [29], penggunaan arsitektur
Deep Learning dengan kompleksitas parameter tinggi
menuntut alokasi data pelatihan yang maksimal. Oleh
karena itu, strategi meminimalkan proporsi data uji hingga
batas kecukupan statistik adalah langkah optimasi yang
terjustifikasi secara matematis untuk menjamin model dapat
mempelajari jutaan parameter secara akurat, terutama dalam
skenario kelangkaan data berlabel yang dihadapi.

e Pendekatan pembagian data ini selaras dengan tujuan
Inductive Semi-Supervised Learning, di mana data uji
diambil dari kumpulan citra yang dipisahkan sepenuhnya
dari proses pelatihan. Hal ini menjamin bahwa metrik
akurasi mencerminkan kemampuan model dalam mengenali
objek pada citra-citra belum pernah dilihat sebelumnya,
memvalidasi bahwa prediksi didasarkan pada pembelajaran
fitur morfologi tanaman, bukan sekadar menghafal posisi
atau pola visual dari data latih (overfitting).

2.2 Tinjauan Teori
2.2.1 Deep Learning

Deep learning merupakan cabang dari machine learning yang
memungkinkan model komputasi yang terdiri dari multiple processing
layers untuk mempelajari representasi data dengan berbagai tingkat
abstraksi  [12]. Metode ini telah meningkatkan performa
state-of-the-art dalam berbagai domain, termasuk pengenalan objek
visual dan deteksi objek. Berbeda dengan metode machine learning

konvensional yang memiliki keterbatasan dalam memproses data
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alami dalam bentuk mentahnya, deep learning mampu menemukan
struktur yang rumit dalam dataset besar.

Mekanisme pembelajaran dalam deep learning melibatkan
penggunaan algoritma backpropagation untuk mengindikasikan
bagaimana mesin harus mengubah parameter internalnya guna
meminimalkan kesalahan. Parameter yang dapat disesuaikan ini,
sering disebut sebagai bobot (weights), dimodifikasi untuk
mengurangi selisih pada fungsi objektif yang mengukur jarak antara
skor output dan target yang diinginkan. Untuk tugas klasifikasi citra,
lapisan representasi yang lebih tinggi berfungsi memperkuat aspek
input yang penting untuk diskriminasi dan menekan variasi yang tidak
relevan, seperti variasi posisi atau pencahayaan.

Dalam konteks pengolahan citra visual, arsitektur Deep
Convolutional Networks (ConvNets) telah membawa terobosan besar.
ConvNets dirancang khusus untuk memproses data yang hadir dalam
bentuk multiple arrays, seperti citra warna 2D. Arsitektur ini
memanfaatkan empat ide kunci yang mengambil keuntungan dari
properti sinyal alami, yaitu local connections, shared weights,
pooling, dan penggunaan banyak lapisan [12]. Struktur ini terinspirasi
langsung oleh hierarki visual dalam neurosains, di mana fitur tingkat
rendah digabungkan membentuk motif, dan motif membentuk bagian
objek yang lebih kompleks.

Mengingat kemampuan deep learning yang sangat baik dalam
menemukan struktur rumit pada data berdimensi tinggi serta
meminimalkan kebutuhan rekayasa fitur manual, pendekatan ini
menjadi sangat relevan untuk diterapkan dalam penelitian ini.
Kompleksitas morfologi tanaman salak atau objek lainnya juga pada
citra drone membutuhkan model yang mampu mempelajari fitur
invarian secara otomatis, yang mana arsitektur berbasis deep learning
menawarkan solusi yang lebih robust dibandingkan metode ekstraksi

fitur konvensional.
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2.2.2 Segmentasi

Segmentasi citra merupakan salah satu tugas dalam computer
vision yang bertujuan untuk mempartisi sebuah gambar digital
menjadi  beberapa  segmen atau region. Setiap segmen
merepresentasikan objek atau bagian tertentu dari citra, yang
kemudian dapat digunakan untuk analisis lebih lanjut seperti deteksi
objek dan pengenalan pola. Proses ini penting untuk
menyederhanakan representasi citra menjadi sesuatu yang lebih
bermakna dan lebih mudah untuk dianalisis.

Dalam praktiknya, objek pada gambar dapat dikategorikan
menjadi dua jenis, yaitu things dan stuff. Things merujuk pada
objek-objek yang dapat dihitung, seperti pohon, manusia, atau
kendaraan. Sementara itu, stuff merujuk pada wilayah amorf yang
tidak dapat dihitung dan cenderung memiliki tekstur yang seragam,
seperti langit, rumput, air, atau tanah [13].

Berdasarkan perbedaan perlakuan terhadap things dan stuff,

tugas segmentasi citra terbagi menjadi tiga kategori utama:

1. Segmentasi Semantik (Semantic Segmentation) yang
bertujuan untuk memberikan label kelas pada setiap piksel
dalam citra. Segmentasi semantik memperlakukan semua
piksel sebagai stuff, sehingga semua objek dari kelas yang
sama akan digabungkan menjadi satu segmen tunggal tanpa
adanya pemisahan antar-instansi (misalnya, semua pohon
salak dalam satu area dianggap sebagai satu kelas "pohon
salak™).

2. Segmentasi Instansi (Instance Segmentation), berbeda
dengan segmentasi semantik, segmentasi instansi berfokus
pada deteksi dan segmentasi setiap instansi objek yang
termasuk dalam kategori things. Tujuannya adalah untuk

membedakan satu objek dari objek lainnya, bahkan jika

24

Implementasi Semi-Supervised Learning..., Albert Tirto Kusumo, Universitas Multimedia
Nusantara



223

mereka berasal dari kelas yang sama (misalnya,
mengidentifikasi "pohon salak 1", "pohon salak 2", dan
seterusnya).

3. Segmentasi Panoptik (Panoptic Segmentation),
diperkenalkan oleh Kirillov et al. (2019) untuk
menggabungkan keunggulan dari segmentasi semantik dan
instansi. Segmentasi panoptik memberikan label semantik
dan instance ID yang unik untuk setiap piksel pada citra.
Hasilnya adalah pemahaman adegan yang komprehensif, di
mana stuff diberi label kelas dan things diberi label kelas
sekaligus ID unik [14].

Secara metodologis, segmentasi dapat dilakukan dengan teknik
tradisional berbasis pemrosesan citra (seperti thresholding, clustering,
atau watershed). Namun, seiring berkembangnya deep learning,
berbagai arsitektur Convolutional Neural Network (CNN) seperti
Fully Convolutional Networks (FCN), U-Net, dan DeepLab telah
menunjukkan kinerja yang jauh lebih unggul dalam tugas segmentasi
semantik yang kompleks pada citra penginderaan jauh (Zhu et al.,
2017) [15].

Mengingat kompleksitas citra drone perkebunan salak yang
memiliki variasi tekstur, pencahayaan, dan kerapatan tajuk yang
tinggi, serta tantangan dalam ketersediaan data berlabel anotasi,
penelitian ini akan berfokus pada penerapan dan adaptasi arsitektur
deep learning untuk segmentasi semantik dengan pendekatan

semi-supervised.

Semi-Supervised Learning
Dalam pengembangan model pembelajaran mesin, pendekatan
pelatthan umumnya diklasifikasikan berdasarkan ketersediaan label.

Pendekatan yang paling umum, Supervised Learning, melatih sistem
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menggunakan himpunan data besar di mana setiap contoh memiliki
label kategori. Tujuannya adalah meminimalkan kesalahan antara
output prediksi dan target yang diinginkan. Namun, pendekatan ini
sangat bergantung pada keberadaan data berlabel yang masif. Di sisi
lain, Unsupervised Learning bertujuan menangkap struktur data tanpa
label, menyerupai cara manusia dan hewan belajar melalui
pengamatan pasif terhadap dunia [15].

Semi-Supervised Learning (SSL) hadir sebagai solusi untuk
mengatasi keterbatasan data berlabel dengan memanfaatkan data tidak
berlabel yang melimpah. SSL bekerja dengan menggabungkan
sejumlah kecil data berlabel dan sejumlah besar data tidak berlabel
untuk meningkatkan kinerja model [16].

Agar data tidak berlabel dapat efektif membantu proses
pembelajaran, algoritma SSL bersandar pada tiga asumsi distribusi
data fundamental [17]:

1.  Smoothness Assumption

Jika dua titik data X, dan X, berdekatan dalam ruang input

yang padat, maka output (label) keduanya seharusnya serupa.
Asumsi ini menyiratkan bahwa keputusan klasifikasi tidak boleh
berubah secara drastis di area yang padat data.
2. Cluster Assumption

Titik-titik data cenderung membentuk kelompok atau
klaster yang terpisah. Titik-titik yang berada dalam klaster yang
sama kemungkinan besar memiliki kelas yang sama.
Implikasinya, decision boundary model seharusnya melewati
daerah dengan kepadatan data rendah, bukan memotong klaster
yang padat.
3. Manifold Assumption

Data berdimensi tinggi (seperti citra) sebenarnya terletak
pada struktur manifold berdimensi lebih rendah. Dengan
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mempelajari struktur manifold ini dari data tidak berlabel, model
dapat melakukan generalisasi yang lebih baik meskipun data

berlabelnya sedikit.

Berdasarkan asumsi-asumsi di atas, metode SSL modern dalam

Deep Learning umumnya menerapkan dua mekanisme utama:

A. Pseudo-Labeling

Metode ini menerapkan Cluster Assumption dengan
mendorong model untuk membuat keputusan yang tegas. Model
dilatth pada data berlabel, kemudian digunakan untuk
memprediksi kelas pada data tidak berlabel. Prediksi dengan
confidence di atas ambang batas tertentu (misalnya > 0,95)
dianggap sebagai pseudo-label dan digunakan kembali untuk
melatih model [18].

B. Consistency Regularization

Metode ini menerapkan Smoothness Assumption. Teknik ini
didasarkan pada prinsip bahwa prediksi model harus konsisten
terhadap gangguan (perturbation) pada input yang tidak
mengubah semantik objek. Jika sebuah citra x diberi gangguan
(seperti rotasi atau noise) menjadi x', model dipaksa untuk
menghasilkan prediksi yang sama untuk keduanya. Metode
modern seperti FixMatch menggabungkan augmentasi lemah
untuk pembuatan label semu dan augmentasi kuat untuk

menegakkan konsistensi ini [19].

2.2.4 DiverseNet
DiverseNet merupakan sebuah framework semi-supervised
learning yang dikembangkan secara spesifik untuk menangani
tantangan segmentasi semantik pada citra remote sensing. Metode ini

hadir sebagai solusi atas keterbatasan sumber daya komputasi yang
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sering dihadapi ketika menerapkan algoritma SSL konvensional
berbasis Teacher-Student yang cenderung berat. Dalam literatur
utamanya, DiverseNet sebenarnya memayungi dua pendekatan
strategi yang berbeda, yaitu DiverseModel yang menggunakan
pendekatan multi-model untuk sumber daya komputasi tinggi, dan
DiverseHead yang dirancang sebagai arsitektur ringan dengan prinsip
efisiensi ekstrem. Arsitektur ini memungkinkan model untuk
mencapai keragaman keputusan yang tinggi tanpa perlu melatih dua
jaringan saraf tiruan secara penuh, melainkan cukup dengan
memodifikasi bagian akhir jaringan menjadi cabang-cabang keputusan
yang majemuk.

Secara  fundamental,  arsitektur =~ DiverseNet  (dengan
implementasi ~ DiverseHead)  dibangun di  atas  struktur
Encoder-Decoder standar yang kemudian diekspansi pada bagian
keluarannya. Aliran pemrosesan data dimulai dari komponen Encoder
yang bertugas sebagai backbone untuk mengekstraksi representasi
fitur mendalam dari citra masukan, baik itu citra berlabel maupun
tidak berlabel. Fitur-fitur hasil ekstraksi ini kemudian diteruskan ke
komponen Decoder, yang bertanggung jawab untuk memulihkan
resolusi spasial fitur tersebut agar sesuai dengan dimensi asli citra.
Perbedaan  fundamental DiverseNet dibandingkan arsitektur
segmentasi standar terletak pada apa yang terjadi setelah tahap
decoder; alih-alih menggunakan satu lapisan klasifikasi tunggal,
arsitektur ini mendistribusikan feature maps ke dalam komponen
Diverse Heads, yaitu sekumpulan decision head yang disusun secara
paralel untuk menghasilkan prediksi yang bervariasi dari sumber fitur
yang sama.

Untuk menjamin efisiensi komputasi, struktur setiap decision
head pada DiverseNet dirancang agar bersifat sangat ringan. Setiap
head hanya terdiri dari dua lapisan konvolusi, sehingga penambahan

jumlah head tidak akan membebani memori GPU secara signifikan
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dibandingkan dengan menduplikasi seluruh jaringan decoder.
Meskipun memiliki struktur yang sederhana, keragaman keputusan
yang dihasilkan oleh masing-masing /ead berbobot. Keragaman ini
dicapai melalui mekanisme network perturbation yang diterapkan
selama proses pelatihan, yaitu strategi dynamic freezing dan
penggunaan dropout pada fitur tingkat tinggi. Dalam mekanisme
dynamic freezing, parameter pada sebagian head akan dibekukan
secara acak dan bergantian pada setiap iterasi pelatihan, sementara
dropout memberikan gangguan stokastik pada representasi fitur.
Kombinasi kedua strategi ini memaksa setiap sead untuk mempelajari
representasi yang sedikit berbeda namun saling melengkapi,
mencegah terjadinya penyeragaman prediksi yang sering terjadi pada
pelatihan model tunggal. Arsitektur DiverseNet berdasarkan yang
sudah dijelaskan dapat dilihat pada Gambar 2.1.
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Gambar 2.1 Arsitektur framework DiverseNet [11]

Dalam konteks pelatihan semi-supervised, keberadaan Multiple
Decision Heads ini dimanfaatkan untuk memperkuat kualitas
pseudo-label. Data berlabel digunakan untuk melatih setiap head
secara independen menggunakan fungsi supervised loss. Sementara
itu, untuk data tidak berlabel, prediksi dari seluruh head yang
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2.2.5

berbeda-beda tersebut diagregasi untuk menghasilkan satu
pseudo-label yang lebih robust dan akurat dibandingkan jika hanya
mengandalkan satu prediksi tunggal. Melalui pendekatan ini,
DiverseNet mampu mengeksploitasi informasi dari data tidak berlabel
secara maksimal melalui konsistensi antar-iead, sekaligus menjaga
biaya komputasi tetap rendah karena mayoritas parameter pada
encoder dan decoder digunakan secara bersama, bukan diduplikasi.
UNet++

UNet++ merupakan pengembangan arsitektur Convolutional
Neural Network (CNN) berbasis U-Net yang diperkenalkan oleh Zhou
et al. (2018) [30]. Arsitektur ini dirancang untuk mengatasi kelemahan
pada skip connections standar U-Net dengan memperkenalkan strategi
koneksi yang didesain ulang, yaitu Nested Skip Pathways. Secara
visual, arsitektur ini dapat direpresentasikan sebagai susunan node
yang membentuk matriks segitiga, di mana baris direpresentasikan
oleh indeks i menandakan tingkat down-sampling pada encoder dan
kolom oleh indeks j menandakan tingkat kedalaman blok konvolusi

pada decoder. Arsitektur UNet++ dapat dilihat pada Gambar 2.2.

Unit dasar pembangun arsitektur ini adalah node x”. Berbeda
dengan U-Net konvensional yang hanya meneruskan fitur dari
encoder ke decoder secara langsung, setiap node pada UNet++

terhubung melalui mekanisme dense convolution block. Dalam

. " oy : .
mekanisme ini, sebuah node x° tidak hanya menerima masukan dari

lapisan di bawahnya (hasil up-sampling dari x{i'j'j_1}$), tetapi juga

menerima akumulasi fitur dari seluruh node skip pathway sebelumnya
\ . 0 il ij-1 )

pada baris yang sama (yaitu x , x , ..., x ). Secara matematis,

operasi penggabungan fitur ini memastikan bahwa semantic gap

antara fitur encoder dan decoder dapat dijembatani secara bertahap,

bukan secara mendadak.

30

Implementasi Semi-Supervised Learning..., Albert Tirto Kusumo, Universitas Multimedia

Nusantara



2.2.6

Logika konektivitas ini membuat jumlah lapisan konvolusi pada
jalur skip connection menjadi adaptif terhadap kedalaman jaringan.
Semakin besar nilai indeks j, semakin banyak blok konvolusi yang

dilalui oleh fitur sebelum mencapai tahap akhir decoder. Sebagai

contoh, informasi yang mengalir pada jalur x”) akan melalui
serangkaian transformasi non-linear yang padat sebelum digabungkan
dengan fitur hasil up-sampling. Proses ini menjamin bahwa fitur yang
diterima oleh decoder memiliki resolusi spasial yang kaya sekaligus
informasi semantik yang telah dimurnikan.

Selain  struktur  koneksi yang padat, UNet++ juga

mengimplementasikan Deep Supervision. Fitur ini memungkinkan

model menghasilkan luaran segmentasi dari setiap cabang node x
(di mana j € {1, 2, 3, 4}). Hal ini memberikan fleksibilitas mode
operasi pada saat inferensi, mode akurasi yang merata-rata hasil dari
seluruh cabang untuk performa maksimal, atau mode cepat yang
melakukan pruning dengan hanya mengambil luaran dari salah satu
cabang awal untuk mempercepat waktu komputasi. Kemampuan ini
menjadikan UNet++ sangat adaptif untuk diterapkan pada skenario

dengan batasan perangkat keras yang bervariasi.

\ Down-sampling
/ Up-sampling

» Skip-connection
X"

Convolution

Gambar 2.2 Arsitektur UNet++ [31]
MobileNetV2
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MobileNetV2 merupakan arsitektur Convolutional Neural
Network (CNN) yang diperkenalkan oleh Sandler et al. (2018) dan
difungsikan sebagai backbone untuk tugas ekstraksi fitur pada sistem
dengan sumber daya komputasi terbatas. Arsitektur ini dikembangkan
dari pendahulunya, MobileNetV1, dengan tetap mempertahankan
efisiensi melalui penggunaan Depthwise Separable Convolution.
Namun, MobileNetV2 menghadirkan inovasi struktural yang
signifikan untuk menangani hilangnya informasi pada operasi
non-linier di dimensi rendah, yaitu melalui pengenalan mekanisme
Inverted Residuals dan Linear Bottlenecks. Dalam konteks segmentasi
semantik, MobileNetV2 bertugas mengubah citra masukan menjadi
representasi fitur yang kaya namun padat, yang kemudian akan
diproses lebih lanjut oleh bagian decoder atau head jaringan [32].

Komponen fundamental yang menyusun struktur backbone ini
adalah blok Inverted Residual. Berbeda dengan arsitektur residual
klasik seperti ResNet yang menghubungkan lapisan dengan jumlah
kanal besar melalui mekanisme Wide-Narrow-Wide, MobileNetV?2
membalik logika tersebut menjadi Narrow-Wide-Narrow, seperti yang
diilustrasikan pada Gambar 2.3. Dalam konfigurasi ini, koneksi skip
menghubungkan lapisan-lapisan bottleneck yang memiliki dimensi
rendah. Pendekatan arsitektural ini memungkinkan model untuk
mentransmisikan informasi mentah melalui jalur pintas dengan
penggunaan memori yang sangat efisien, sementara proses ekspansi
fitur untuk mempelajari pola-pola visual yang kompleks dilakukan di

dalam blok internal yang memiliki dimensi lebih besar.
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Gambar 2.3 Struktur Inverted Residual Block [32]

Secara operasional, setiap blok Inverted Residual memproses
aliran data melalui tiga tahapan konvolusi yang berurutan. Tahap
pertama adalah ekspansi, di mana fitur masukan berdimensi rendah
diproyeksikan ke dimensi yang lebih tinggi menggunakan konvolusi
1x1 yang diikuti oleh fungsi aktivasi ReLU6. Penggunaan ReLUS,
yang membatasi nilai aktivasi maksimum di angka 6, bertujuan untuk
menjaga stabilitas numerik saat model dijalankan pada perangkat
dengan presisi rendah. Setelah fitur diekspansi, tahap kedua
melakukan penyaringan spasial menggunakan konvolusi 3x3
depthwise, yang memproses setiap kanal secara terpisah untuk
meminimalkan beban komputasi. Tahap terakhir adalah proyeksi
kembali ke dimensi rendah menggunakan konvolusi 1x1. Pada tahap
akhir ini, fungsi aktivasi non-linier dihilangkan dan digantikan dengan
fungsi Linear Bottleneck. Hal ini didasarkan pada temuan bahwa
penerapan fungsi non-linier seperti ReLU pada tensor berdimensi
rendah berpotensi menghancurkan informasi penting, sehingga
linearitas diperlukan untuk mempertahankan keutuhan informasi yang
akan diteruskan ke lapisan berikutnya. Rincian spesifikasi operasi dan
urutan lapisan pada arsitektur ini dapat dilihat pada Tabel 2.1.
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Tabel 2.1 Spesifikasi Arsitektur MobileNetV2

Input Operator t c n S
2242x3 conv2d - 32 1 2
1122x32 | bottleneck 1 16 1 1
1122x16 | bottleneck 6 24 2 2
562x24 | bottleneck 6 32 3 2
282x32 | bottleneck 6 64 4 2
142x64 | bottleneck 6 96 3 1
142x96 | bottleneck 6 160 3 2
72x160 | bottleneck 6 320 1 1
72x320 | conv2d 1x1 - 1280 1 1
72%x1280 | avgpool 7x7 - - 1 -
1x1x1280| conv2d 1x1 - k - -

2.2.7 DeepLabV3+

DeepLabV3+ merupakan varian dari model segmentasi semantik
DeepLab yang dikembagkan oleh Google Research. Diperkenalkan
oleh Chen et al. [33], model ini dirancang untuk mengatasi
keterbatasan pendahulunya, DeepLabV3, dalam merekonstruksi
informasi batas objek yang mendetail. Secara fundamental,
DeepLabV3+ berstruktur encoder-decoder yang bertujuan untuk
menyeimbangkan penangkapan konteks global dengan pelestarian
resolusi spasial, sebuah mekanisme yang diilustrasikan secara

skematis pada Gambar 2.4.
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Gambar 2.4 Arsitektur DeepLabV3+ [33]

Mekanisme kerja DeepLabV3+ dimulai pada bagian Encoder, di
mana tulang punggung (backbone) jaringan mengekstrak fitur
semantik tingkat tinggi. Pada tahap ini, modul ASPP menerapkan
konvolusi berlubang (atrous convolution) dengan berbagai tingkat
dilasi untuk memperluas receptive field tanpa menurunkan resolusi
secara drastis. Output dari encoder ini mengandung informasi kategori
objek yang kuat namun memiliki resolusi spasial yang rendah

(biasanya 1/16 dari citra asli).

Peran selanjutnya dijalankan oleh modul Decoder, yang menjadi
fitur pembeda utama arsitektur ini. Alih-alih langsung mengembalikan
ukuran citra ke resolusi asli, fitur dari encoder terlebih dahulu
di-upsample sebesar 4x dan digabungkan dengan fitur tingkat rendah
yang diambil dari lapisan awal backbone. Fitur tingkat rendah ini
dipilih karena masih menyimpan informasi detail spasial yang kaya,
seperti tekstur dan garis batas objek. Sebelum penggabungan, fitur
tingkat rendah  diproses dengan  konvolusi 1x1  untuk
menyeimbangkan jumlah kanal. Kombinasi antara fitur semantik yang

kaya dari encoder dan detail spasial dari decoder inilah yang
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2.2.8

memungkinkan DeepLabV3+ menghasilkan batas segmentasi yang

jauh lebih tajam dibandingkan pendahulunya.

Untuk menunjang kompleksitas struktur encoder-decoder
tersebut tanpa membebani sumber daya komputasi, DeepLabV3+
menggunakan teknik Depthwise Separable Convolution (DSC).
Teknik ini memodifikasi operasi konvolusi standar menjadi dua tahap
terpisah, yaitu konvolusi depthwise (per kanal) diikuti oleh konvolusi
pointwise (1x1). Penerapan DSC, yang terinspirasi dari arsitektur
Xception, memungkinkan model untuk mengurangi jumlah parameter
dan biaya komputasi (FLOPs) secara signifikan sambil
mempertahankan performa akurasi yang setara. Efisiensi ini
menjadikan DeepLabV3+ sangat relevan untuk diterapkan pada
skenario dengan sumber daya terbatas namun tetap menuntut hasil

segmentasi vegetasi yang presisi.

Xception

Xception  (Extreme  Inception)  merupakan  arsitektur
Convolutional Neural Network (CNN) yang diperkenalkan oleh
Francois Chollet (2017) [37]. Arsitektur yang dapat dilihat pada
Gambar 2.5 ini dirancang sebagai pengembangan evolusioner dari
keluarga Inception, dengan tujuan memaksimalkan efisiensi
penggunaan parameter tanpa mengorbankan performa model. Nama
Xception sendiri berasal dari konsep Extreme Inception, di mana
arsitektur ini mendorong hipotesis Inception ke titik ekstremnya. Jika
modul Inception standar mencoba memisahkan konvolusi spasial dan
korelasi lintas-saluran (cross-channel correlations) secara parsial,
Xception didasarkan pada asumsi yang lebih kuat bahwa pemetaan
korelasi lintas-saluran dan Kkorelasi spasial dapat dipisahkan

sepenuhnya (fully decoupled).
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Gambar 2.5 Arsitektur Xception [38]

Inovasi fundamental yang membedakan arsitektur Xception dari
jaringan konvolusi standar seperti VGG atau ResNet awal terletak
pada penggunaan depthwise separable convolution sebagai pengganti
konvolusi konvensional yang dapat dilithat pada Gambar 2.6.
Mekanisme ini memecah proses konvolusi menjadi dua tahap terpisah,
yaitu depthwise convolution dan pointwise convolution. Pada tahap
depthwise convolution, operasi konvolusi spasial (misalnya kernel
3x3) diterapkan secara independen pada setiap channel masukan,
sehingga hanya menangkap korelasi spasial tanpa mencampurkan
informasi  antar-channel.  Selanjutnya, pointwise convolution
menggunakan kernel 1x1 untuk memproyeksikan hasil tersebut ke
ruang channel yang baru, memungkinkan model untuk mempelajari
korelasi lintas-saluran (cross-channel correlations) secara efisien.
Pemisahan ini memungkinkan ekstraksi fitur yang lebih hemat
parameter dan komputasi, sekaligus mempertahankan kemampuan

representasi yang tinggi.
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Gambar 2.6 Mekanisme Depthwise Separable Convolution [38]

Secara matematis, pemisahan ini secara drastis mengurangi
beban komputasi dan jumlah parameter model. Jika konvolusi standar

dengan kernel K X K, Cin input channel, dan Cout output channel

membutuhkan operasi sebanyak K % Cin X Cout, maka depthwise
separable convolution hanya membutuhkan
(K ' x C in) + (K ? x Cout). Pengurangan  kompleksitas  ini

memungkinkan Xception untuk memiliki arsitektur yang sangat dalam
namun tetap ringan dan efisien untuk dijalankan, yang sangat krusial

dalam pemrosesan citra resolusi tinggi seperti citra drone.

Struktur jaringan Xception tersusun secara linear sebagai
tumpukan lapisan depthwise separable convolution yang dilengkapi
dengan koneksi residual (residual connections). Arsitektur ini terbagi
menjadi tiga aliran utama. Entry Flow (alur masuk untuk ekstraksi
fitur awal dan downsampling), Middle Flow (blok pengulangan utama
untuk memperdalam representasi fitur), dan Exit Flow (alur keluar
untuk konsolidasi fitur akhir sebelum klasifikasi atau rekonstruksi).
Penggunaan koneksi residual pada setiap blok konvolusi (mirip

dengan ResNet) memastikan aliran gradien yang lancar selama proses
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backpropagation, mencegah masalah vanishing gradient, dan
mempercepat konvergensi pelatihan. Dalam konteks segmentasi
semantik, Xception sering diadopsi sebagai backbone (enkoder) yang
kuat karena kemampuannya mengekstrak fitur hierarkis yang kaya

dengan efisiensi komputasi yang superior dibandingkan Inception V3.

ResNet-50

ResNet-50 adalah salah satu varian arsitektur Residual Network
(ResNet) yang diperkenalkan oleh He et al. [34] sebagai solusi atas
fenomena degradasi performa pada pelatihan Deep Neural Networks
(DNN). Sebelum kemunculan ResNet, memperdalam jaringan saraf
sering kali berujung pada masalah vanishing gradient, di mana sinyal
gradien menjadi sangat kecil saat dipropagasikan balik ke lapisan
awal, menyebabkan model gagal belajar secara efektif. Untuk
mengatasi hal ini, ResNet memperkenalkan konsep Residual Learning
melalui mekanisme skip connection atau shortcut connection, seperti
yang ditunjukkan pada Gambar 2.7. Mekanisme ini memungkinkan
sinyal input diteruskan secara langsung ke lapisan berikutnya dengan
melewati beberapa lapisan konvolusi, sehingga jaringan hanya perlu
mempelajari fungsi residual alih-alih fungsi pemetaan utuh dari nol.
Pendekatan ini terbukti mempermudah proses optimasi dan
memungkinkan pelatihan jaringan yang jauh lebih dalam hingga

ratusan lapisan.
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Gambar 2.7 Residual Learning Block dan Bottleneck Block pada
ResNet-50 [39]

Secara spesifik, ResNet-50 dibedakan dari varian yang lebih
dangkal (seperti ResNet-18 atau ResNet-34) melalui penggunaan
struktur blok "Bottleneck". Blok ini dirancang untuk efisiensi
komputasi tinggi dengan menyusun tiga lapisan konvolusi berurutan:
konvolusi 1x1, 3x3, dan 1x1. Konvolusi 1x1 pertama berfungsi untuk
mereduksi dimensi kanal input, konvolusi 3x3 melakukan pemrosesan
spasial pada dimensi yang lebih rendah, dan konvolusi 1x1 terakhir
mengembalikan dimensi ke jumlah kanal semula. Desain bottleneck
ini memungkinkan ResNet-50 memiliki kapasitas ekstraksi fitur yang
jauh lebih kaya namun dengan kompleksitas parameter yang tetap
terkendali dibandingkan jika menggunakan konvolusi 3x3 standar

secara terus-menerus.

Dalam implementasi segmentasi semantik, ResNet-50 sering
difungsikan sebagai backbone atau tulang punggung ekstraktor fitur
pada arsitektur encoder. Struktur layernya yang terdiri dari lima
tahapan (convl hingga conv5 x) mampu menghasilkan representasi

fitur hierarkis yang kuat, mulai dari deteksi tepi dan tekstur dasar di
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lapisan awal hingga pengenalan bentuk objek kompleks di lapisan
akhir. Detail konfigurasi lapisan pada arsitektur ResNet-50 dapat
dilihat pada Gambar 2.7 di atas, yang menunjukkan susunan filter dan
jumlah pengulangan blok residual pada setiap tahapan pemrosesan.
Kekuatan representasi fitur inilah yang menjadikan ResNet-50 pilihan

standar untuk mendukung tugas Computer Vision.

Pest Risk Assessment

Pest Risk Assessment (PRA) merupakan proses fundamental
yang menyediakan landasan ilmiah bagi Organisasi Perlindungan
Tanaman Nasional (NPPO) dalam menetapkan status hama,
mendukung sertifikasi fitosanitari, dan membangun area bebas hama
[20], [21]. Dalam konteks surveilans, PRA adalah pendekatan berbasis
sains yang digunakan untuk menentukan tata letak dan kepadatan
perangkap (trap density) agar strategi monitoring berjalan efisien.
Mengacu pada Trapping Guidelines for Area-Wide Fruit Fly
Programmes (FAO/IAEA, 2018), strategi pengendalian hama modern
tidak lagi mengandalkan estimasi kasar, melainkan harus didasarkan
pada penilaian risiko kuantitatif. Metodologi ini menuntut konversi
berbagai faktor lingkungan menjadi bobot nilai numerik terukur
hingga mencapai total kumulatif 100 poin. Area dengan akumulasi
skor risiko tertinggi mewajibkan pemasangan densitas perangkap yang
paling padat, sementara area dengan risiko rendah dapat dikurangi
atau ditiadakan, memungkinkan optimalisasi sumber daya monitoring

[6]. Contoh tabel PRA dapat dilihat pada Gambar 2.8 di bawah.

41

Implementasi Semi-Supervised Learning..., Albert Tirto Kusumo, Universitas Multimedia

Nusantara



Table 5. Risk assessment as a decision-making tool for trap placement and densities

Risk factor Risk value Assessed risk

1. Distance to Infested areas 12.0 Area | Area |l Area Il
0-50 Km 71012 12

51-100 km 41086

101-150 km Oto3 3 3
2. Host availability 200

High 111020 1

Medium 6to 10 6 8
Low Oto5

3. Climatic factors (temp., rain, winds) 15.0

Highly suitable 761015 9
Suitable 391075 5 6

Unsuitable 038

4. Host movement 23.0

Frequent 1161023 23

Sporadic 59w 115 1
Rear 058 3

5. Pest historical profile 300

2009-2010 16 to 30 30

2008-2007 761015 10
2006-2004 Ot 7.5 0

Total 100.0

High risk: 51-100; medium risk: 26~50; low risk: 0~-25 17 82 31
Trapsisq (0 to 2 traps/km?) 0.5 2 1

Gambar 2.8 Contoh Tabel Pest Risk Assessment [6]

Berbagai faktor risiko umum yang dikaji meliputi ketersediaan
inang (jenis, kelimpahan, dan distribusi spasial dan temporal),
preferensi inang (primer dan sekunder), kondisi iklim (seperti suhu,
hujan, dan angin), pergerakan inang (komersial dan non-komersial),
permukiman manusia (urban, sub-urban, pedesaan), jarak ke area
terinfestasi, dan profil historis kemunculan hama. Penilaian risiko
yang berhasil dari faktor-faktor ini akan diplot ke dalam peta untuk
menghasilkan peta tematik area risiko yang kemudian digunakan
sebagai dasar penyebaran perangkap di lapangan. Pemanfaatan konsep
risiko ini telah terbukti efektif dalam restrukturisasi dan
mengoptimalkan jaringan penjeratan, memungkinkan penambahan
perangkap di area berisiko tinggi dan pengurangan atau penghilangan
perangkap di area berisiko rendah. Secara umum, kepadatan
perangkap ditentukan berdasarkan tingkat risiko yang dinilai, di mana
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2.2.11

area berisiko tertinggi memerlukan kepadatan perangkap yang paling

tinggi [6].

Fruit Fly Trap

Sistem penjeratan lalat buah merupakan alat manajemen hama
yang sangat terspesialisasi dan efisien, menjadi prasyarat untuk
pengambilan keputusan yang efektif dalam program pengendalian
area-wide. Penggunaan perangkap yang efektif bergantung pada
kombinasi yang tepat antara perangkat perangkap, atraktan, dan agen
pembunuh/pengawet untuk menarik, menangkap, membunuh, dan
mengawetkan spesies lalat target untuk dianalisis. Perangkap
diklasifikasikan menjadi tiga jenis utama, di antaranya yaitu
perangkap kering, perangkap basah, dan perangkap yang dapat
digunakan kering atau basah. Untuk surveilans hama genus
Bactrocera, digunakan Methyl Eugenol (ME), yaitu paraferomon
spesifik jantan (male-specific lure), yang efektif menangkap spesies
seperti B. dorsalis dan B. carambolae. Karena ME merupakan
atraktan yang sangat mudah menguap, penggunaannya dalam
perangkap kering harus dikombinasikan dengan toksikan, seperti
malation atau deltamethrin, sebagai agen pembunuh [6], [21].

Salah satu perangkat perangkap kering yang umum digunakan
untuk spesies Bactrocera dan atraktan ME adalah Steiner Trap (ST).
Perangkap Steiner konvensional dideskripsikan sebagai silinder
plastik bening horizontal dengan bukaan di setiap ujungnya. Atraktan
berupa cotton wick atau dispenser digantung dari bagian tengah di
dalam perangkap. Meskipun perangkap Steiner termasuk perangkap
standar yang direkomendasikan, perangkap ini merupakan salah satu
perangkap yang paling ekonomis dan mudah ditangani di lapangan,
yang memungkinkan operator melayani jumlah perangkap yang lebih

banyak per jam kerja dibandingkan perangkap jenis lain [6], [21].
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2.2.12

Penempatan perangkap yang efektif di lapangan memerlukan
informasi dasar mengenai inang lalat buah, yang meliputi inang
primer, inang sekunder, dan inang sesekali, serta fenologi, distribusi,
dan kelimpahannya. Perangkap feromon harus ditempatkan di area
perkawinan, yaitu di bagian tengah hingga atas kanopi tanaman inang,
memilih tempat yang semi-teduh, dan idealnya di sisi upwind mahkota
pohon. Selain itu, perangkap harus ditempatkan di pohon inang primer
(misalnya, pohon salak) selama periode pematangan buah, dan jika
inang primer tidak tersedia, inang sekunder harus digunakan. Strategi
penempatan harus mencakup relokasi perangkap secara sistematis
dengan mengikuti fenologi pematangan buah inang yang ada di area
tersebut agar populasi lalat buah dapat dilacak sepanjang tahun.
Sangat penting juga untuk memastikan pintu masuk perangkap bersih
dari ranting, daun, atau penghalang lain seperti sarang laba-laba,
untuk memungkinkan aliran udara yang tepat dan akses mudah bagi
lalat buah. Penempatan beberapa perangkap dengan atraktan berbeda
(misalnya ME dan atraktan berbasis protein) di pohon yang sama
harus dihindari karena dapat menyebabkan interferensi antar atraktan
dan mengurangi efisiensi penangkapan. Terakhir, untuk pengelolaan
yang efisien, lokasi setiap perangkap wajib di-geo-reference
menggunakan GPS dan dicatat dalam database GIS, yang
menyediakan peta beresolusi tinggi untuk perencanaan dan

pengawasan kegiatan surveilans [6], [21], [41].

Fruit Fly per Trap per Day (FTD)

Flies per Trap per Day (FTD) merupakan indeks populasi
standar yang digunakan secara internasional untuk mengukur
kepadatan populasi lalat buah dewasa di suatu wilayah dalam periode
waktu tertentu,. Indeks ini berfungsi sebagai data dasar yang bersifat
komparatif untuk mengevaluasi fluktuasi populasi sebelum, selama,

dan setelah pelaksanaan program manajemen hama, baik dalam skala
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supresi maupun eradikasi,. Secara matematis, FTD dihitung dengan
membagi total lalat yang tertangkap dengan hasil perkalian antara
jumlah perangkap yang diperiksa dan rata-rata durasi paparan
perangkap di lapangan,. Rumus perhitungan FTD adalah sebagai
berikut:

FTDZW

Keterangan:
e F: Total jumlah lalat buah target yang tertangkap
e T: Jumlah perangkap yang diperiksa
e D: Rata-rata jumlah hari perangkap dipasang di lapangan di antara
dua waktu pemeriksaan
Dalam praktik manajemen hama terpadu area luas (AW-IPM), FTD
digunakan sebagai ambang batas tindakan untuk pengambilan
keputusan operasional. Apabila nilai FTD melampaui ambang batas
ekonomi tertentu, maka tindakan pengendalian supresif, seperti
penyemprotan umpan protein atau teknik jantan mandul, harus segera
diintensifkan untuk mencegah ledakan populasi. Sebaliknya, tren
penurunan nilai FTD menjadi indikator keberhasilan intervensi yang
telah dilakukan. Bagi Paguyuban Mitra Turindo, pencapaian indeks
FTD yang konsisten di angka harapan 0,00 sangat penting sebagai
bukti ilmiah yang diakui oleh WTO. Data ini menjadi modal vital
dalam diplomasi perdagangan untuk menegosiasikan penurunan beban
sampling inspeksi karantina yang saat ini mencapai 10%, sehingga
dapat meningkatkan daya saing ekspor dan kesejahteraan petani.
Lebih jauh lagi, dalam kerangka perdagangan internasional, FTD
bukan sekadar angka statistik, melainkan instrumen legalitas ekspor.
Untuk komoditas bernilai tinggi seperti salak yang menargetkan pasar
dengan regulasi karantina ketat (seperti Tiongkok atau Australia),
pemeliharaan nilai FTD pada level yang sangat rendah (mendekati

atau sama dengan nol) adalah prasyarat mutlak. Status Area Bebas
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Hama (PFA) atau Area dengan Prevalensi Hama Rendah (ALPP)
hanya dapat diakui secara internasional apabila didukung oleh data
historis surveilans yang menunjukkan konsistensi nilai FTD di bawah
ambang batas yang disepakati dalam protokol bilateral selama periode
waktu tertentu [6], [21]. Oleh karena itu, akurasi dalam penempatan
perangkap, yang didukung oleh peta risiko presisi, sangat menentukan
validitas nilai FTD yang dihasilkan, karena penempatan yang salah
dapat menghasilkan data false negative yang membahayakan

kredibilitas fitosanitari negara pengekspor.
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