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DETEKSI DEEPHOAX TERHADAP SERANGAN ADVERSARIAL
DENGAN MODEL EFFICIENTNET-B0 UNTUK KEAMANAN SIBER

Andrew Thomas Agustinus

ABSTRAK

Perkembangan pesat teknologi deephoax memungkinkan manipulasi wajah
manusia secara realistis, namun penggunaannya semakin meluas untuk disinformasi
dan ancaman keamanan siber. Sistem deteksi deephoax berbasis deep learning
masih rentan terhadap serangan adversarial, khususnya metode Projected Gradient
Descent (PGD), yang dapat menurunkan akurasi model secara signifikan.
Penelitian ini mengkaji penerapan adversarial training (AT) berbasis PGD
pada arsitektur EfficientNet-B0 untuk meningkatkan ketahanan detektor terhadap
serangan adversarial sekaligus mempertahankan efisiensi komputasi. Metodologi
meliputi pembangunan model deteksi, pra-pemrosesan citra wajah, serta pelatihan
menggunakan tiga skenario: Baseline, Adversarial Training, dan Mixed AT.
Evaluasi dilakukan pada data bersih serta data yang dimodifikasi menggunakan
PGD dengan iterasi 5, 10, dan 20. Hasil menunjukkan model Baseline memiliki
clean accuracy 98,7% namun akurasinya 0% terhadap serangan PGD. Model AT
mempertahankan akurasi adversarial sekitar 49,7%. Sementara itu, Mixed AT
menunjukkan performa seimbang dengan clean accuracy 95,2% dan akurasi PGD
50,4 49,5% (PGD-5/10) serta 32,2% (PGD-20). Penelitian menegaskan bahwa
adversarial training efektif meningkatkan robustness, dan Mixed AT menyediakan
keseimbangan terbaik antara akurasi dan ketahanan terhadap serangan.

Kata kunci: adversarial training, deephoax, EfficientNet-B0, Projected Gradient
Descent (PGD)
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DEEPHOAX DETECTION AGAINST ADVERSARIAL ATTACKS USING
EFFICIENTNET-B0 MODEL FOR CYBERSECURITY

Andrew Thomas Agustinus

ABSTRACT

The rapid development of deephoax technology enables realistic manipulation of
human faces, yet its usage has increasingly been exploited for disinformation
and cyber security threats. Deep learning–based deephoax detection systems
remain vulnerable to adversarial attacks, particularly the Projected Gradient
Descent (PGD) method, which can significantly reduce model accuracy. This
study investigates the application of PGD-based adversarial training (AT) on the
EfficientNet-B0 architecture to enhance detector robustness against adversarial
attacks while maintaining computational efficiency. The methodology includes
model development, facial image preprocessing, and training using three scenarios:
Baseline, Adversarial Training, and Mixed AT. Evaluation was conducted on clean
data as well as data modified with PGD at 5, 10, and 20 iterations. Results
show that the Baseline model achieved 98.7% clean accuracy but 0% accuracy
under PGD attacks. The AT model maintained adversarial accuracy around 49.7%.
Meanwhile, the Mixed AT model demonstrated a balanced performance, with 95.2%
clean accuracy and PGD accuracy of 50.4%,49,5% (PGD-5/10) and 32.2% (PGD-
20). The study confirms that adversarial training effectively enhances robustness,
and Mixed AT provides the best trade-off between accuracy and resilience against
attacks.

Keywords: adversarial training, deephoax, EfficientNet-B0, Projected Gradient
Descent (PGD)
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