BAB 2
LANDASAN TEORI

Bab ini membahas landasan teori yang menjadi dasar dalam perancangan
dan pengembangan sistem Human Resource (HR) berbasis arsitektur microservices.
Pembahasan teori bertujuan untuk memberikan pemahaman konseptual serta
kerangka ilmiah yang mendukung analisis, perancangan, dan implementasi sistem

yang dikembangkan pada penelitian ini.

Landasan teori yang dibahas meliputi konsep sistem informasi, arsitektur
perangkat lunak, khususnya arsitektur monolithic dan microservices, karakteristik
serta pola desain microservices, mekanisme konsistensi dan sinkronisasi data
antar layanan, serta teori pengujian perangkat lunak yang mencakup unit testing,

integration testing, dan API testing.

Dengan adanya landasan teori ini, diharapkan penelitian memiliki dasar
ilmiah yang kuat dan relevan dalam menjawab permasalahan yang dihadapi oleh PT
Annisaa Putri Kaligayam dalam pengembangan sistem HR yang lebih terstruktur,

scalable, dan handal.

2.1 Arsitektur Perangkat Lunak

Arsitektur perangkat lunak merupakan struktur fundamental dari suatu
sistem yang mencakup komponen, hubungan antar komponen, serta prinsip-
prinsip desain yang digunakan dalam pengembangannya. Keputusan arsitektural
memiliki dampak jangka panjang terhadap kualitas sistem, seperti skalabilitas,
maintainability, dan reliability [1].

Dalam konteks sistem informasi modern, arsitektur tidak hanya berfungsi
sebagai panduan teknis, tetapi juga sebagai dasar pengambilan keputusan organisasi

dalam menghadapi perubahan kebutuhan bisnis dan teknologi.

9

Rancang Bangun Aplikasi..., Michael Immanuel Herijanto, Universitas Multimedia Nusantara

2.2 Arsitektur Monolith dan Keterbatasannya

Arsitektur monolith merupakan pendekatan tradisional di mana seluruh
fungsi sistem dibangun dan dijalankan sebagai satu kesatuan aplikasi. Pendekatan
ini relatif mudah dikembangkan pada tahap awal, namun memiliki keterbatasan

ketika sistem berkembang menjadi lebih kompleks.

Menurut Su et al. [2], arsitektur monolith cenderung sulit diskalakan,
memiliki dependensi yang kuat antar modul, serta menyulitkan proses deployment
dan maintenance. Kondisi ini sering mendorong organisasi untuk melakukan

migrasi menuju arsitektur microservices.

2.3 Arsitektur Microservices

Microservices adalah pendekatan arsitektur di mana sistem dibangun
sebagai kumpulan layanan kecil yang berdiri sendiri, memiliki tanggung jawab
bisnis spesifik, dan berkomunikasi melalui mekanisme ringan seperti REST atau

message broker [4].

Setiap microservice dapat dikembangkan, diuji, dan dideploy secara
independen, sehingga meningkatkan fleksibilitas dan kecepatan pengembangan
sistem [13].

2.3.1 Karakteristik Arsitektur Microservices

Arsitektur microservices memiliki sejumlah karakteristik utama yang
membedakannya dari pendekatan arsitektur monolith. Karakteristik ini dirancang
untuk mendukung pengembangan sistem yang berskala besar, kompleks, serta

adaptif terhadap perubahan kebutuhan bisnis dan teknologi.

A Loose Coupling

Loose coupling merupakan karakteristik fundamental dari arsitektur
microservices, di mana setiap layanan dirancang agar memiliki ketergantungan

seminimal mungkin terhadap layanan lain. Setiap microservice berinteraksi

10

Rancang Bangun Aplikasi..., Michael Immanuel Herijanto, Universitas Multimedia Nusantara

melalui antarmuka yang terdefinisi dengan jelas, umumnya berupa Application

Programming Interface (API).

Dengan tingkat keterikatan yang rendah, perubahan atau pembaruan pada
satu layanan tidak secara langsung mempengaruhi layanan lainnya. Hal ini

meningkatkan fleksibilitas sistem dan mengurangi risiko kegagalan menyeluruh [4].

B Single Responsibility dan Business Capability

Setiap microservice dibangun berdasarkan prinsip single responsibility,
yaitu hanya menangani satu fungsi atau kapabilitas bisnis tertentu. Pendekatan ini

dikenal juga sebagai decomposition by business capability.

Narvdez et al. [7] menyatakan bahwa pemisahan layanan berdasarkan
kapabilitas bisnis membantu tim pengembang memahami domain sistem dengan

lebih baik serta meningkatkan konsistensi desain arsitektur microservices.

C Independensi Deployment

Salah satu keunggulan utama microservices adalah kemampuan untuk
melakukan deployment secara independen. Setiap layanan dapat diperbarui, diuji,

dan dideploy tanpa harus melakukan redeployment terhadap seluruh sistem.

Karakteristik ini memungkinkan organisasi untuk menerapkan continuous
integration dan continuous deployment (CI/CD), sehingga mempercepat siklus
pengembangan perangkat lunak dan meningkatkan responsivitas terhadap

kebutuhan pengguna [13].

D Desentralisasi Manajemen Data

Dalam arsitektur microservices, setiap layanan umumnya memiliki basis
data tersendiri yang dikelola secara independen. Pendekatan ini dikenal dengan

istilah database per service.

Menurut Tapia dan Gaona [8], desentralisasi data membantu mengurangi
ketergantungan antar layanan serta memungkinkan setiap microservice memilih

teknologi penyimpanan data yang paling sesuai dengan kebutuhannya.

11

Rancang Bangun Aplikasi..., Michael Immanuel Herijanto, Universitas Multimedia Nusantara

E Komunikasi Antar Layanan

Microservices berkomunikasi satu sama lain melalui mekanisme
komunikasi ringan, baik secara sinkron maupun asinkron. Komunikasi sinkron
biasanya menggunakan protokol HTTP/REST atau gRPC, sedangkan komunikasi

asinkron memanfaatkan message broker atau event-driven architecture.

Pemilihan mekanisme komunikasi yang tepat sangat penting untuk menjaga
performa dan keandalan sistem, terutama pada sistem terdistribusi yang kompleks
(6, 9].

F Skalabilitas Independen

Arsitektur microservices memungkinkan skalabilitas dilakukan secara
selektif pada layanan tertentu yang membutuhkan sumber daya lebih besar. Hal
ini berbeda dengan arsitektur monolith yang umumnya memerlukan scaling pada

keseluruhan aplikasi.

Rodrigues et al. [11] menegaskan bahwa kemampuan scaling secara
independen menjadi salah satu faktor utama adopsi microservices pada sistem

dengan beban kerja yang tidak merata.

G Resiliensi dan Fault Isolation

Karena setiap microservice berjalan sebagai unit terpisah, kegagalan pada
satu layanan tidak secara langsung menyebabkan kegagalan pada seluruh sistem.

Konsep ini dikenal sebagai fault isolation.

Untuk meningkatkan resiliensi, microservices sering dilengkapi dengan
mekanisme seperti circuit breaker, retry, dan fallback. Penerapan pola-pola ini
membantu menjaga ketersediaan sistem meskipun terjadi gangguan pada sebagian

layanan [12].

H Heterogenitas Teknologi

Arsitektur microservices memungkinkan penggunaan berbagai teknologi,

bahasa pemrograman, dan framework yang berbeda untuk setiap layanan.

12

Rancang Bangun Aplikasi..., Michael Immanuel Herijanto, Universitas Multimedia Nusantara

Fleksibilitas ini dikenal sebagai polyglot programming.

Pendekatan ini memberikan kebebasan bagi tim pengembang untuk memilih
teknologi yang paling sesuai dengan kebutuhan layanan tertentu, namun juga

menuntut standar integrasi dan pengelolaan yang baik [14].

I Kompleksitas Operasional

Meskipun memiliki banyak keunggulan, arsitektur microservices juga
membawa kompleksitas operasional yang lebih tinggi dibandingkan monolith.
Kompleksitas ini mencakup pengelolaan infrastruktur, monitoring, logging

terdistribusi, serta keamanan antar layanan.

Su et al. [2] menekankan bahwa tanpa perencanaan dan tata kelola
yang matang, kompleksitas ini dapat mengurangi manfaat yang diharapkan dari

penerapan microservices.

2.3.2 Pola Desain Arsitektur Microservices

Pola desain arsitektur microservices merupakan solusi yang telah teruji
untuk mengatasi permasalahan umum yang muncul dalam pengembangan sistem
terdistribusi. Pola-pola ini membantu meningkatkan skalabilitas, keandalan,

maintainability, serta kemudahan pengelolaan sistem microservices [5].

A API Gateway Pattern

API Gateway merupakan pola desain yang menyediakan satu titik masuk
(single entry point) bagi klien untuk mengakses berbagai microservice. Pola ini

berfungsi sebagai perantara antara klien dan layanan backend.

API Gateway bertanggung jawab terhadap fungsi-fungsi seperti routing
request, authentication, authorization, rate limiting, dan aggregation response.
Dengan adanya API Gateway, klien tidak perlu mengetahui detail lokasi dan jumlah

microservice yang ada [4].

Pola ini sangat bermanfaat untuk sistem dengan banyak klien, seperti

web dan aplikasi mobile, karena menyederhanakan komunikasi dan meningkatkan

13

Rancang Bangun Aplikasi..., Michael Immanuel Herijanto, Universitas Multimedia Nusantara

keamanan sistem.

B Service Discovery Pattern

Service Discovery digunakan untuk mengatasi permasalahan penemuan
lokasi layanan dalam lingkungan microservices yang dinamis. Karena microservice
dapat mengalami perubahan alamat akibat scaling atau redeployment, mekanisme

hard-coded endpoint menjadi tidak efektif.

Melalui Service Discovery, setiap layanan mendaftarkan dirinya ke registry
dan layanan lain dapat menemukan layanan tersebut secara otomatis. Pola ini
meningkatkan fleksibilitas dan mendukung otomatisasi dalam sistem microservices
[14].

C Database per Service Pattern

Pola Database per Service mengharuskan setiap microservice memiliki
basis data sendiri dan tidak mengakses basis data milik layanan lain secara
langsung. Pendekatan ini mendukung prinsip loose coupling dan independensi

layanan.

Tapia dan Gaona [8] menyatakan bahwa pemisahan basis data membantu
menghindari konflik skema data dan memungkinkan setiap layanan memilih

teknologi penyimpanan yang paling sesuai dengan kebutuhannya.

Namun, pola ini juga menimbulkan tantangan dalam menjaga konsistensi
data antar layanan, sehingga sering dikombinasikan dengan pendekatan eventual

consistency.

D Circuit Breaker Pattern

Circuit Breaker merupakan pola desain yang digunakan untuk mencegah
kegagalan berantai (cascading failure) dalam sistem microservices. Pola ini
bekerja dengan memantau kegagalan pada pemanggilan layanan dan menghentikan

sementara request jika tingkat kegagalan melebihi ambang batas tertentu.

Dengan mekanisme ini, sistem dapat memberikan respons alternatif

14

Rancang Bangun Aplikasi..., Michael Immanuel Herijanto, Universitas Multimedia Nusantara

(fallback) dan menjaga ketersediaan layanan meskipun terjadi gangguan pada salah

satu microservice [12].

E Saga Pattern

Saga Pattern digunakan untuk mengelola transaksi terdistribusi yang
melibatkan beberapa microservice. Alih-alih menggunakan transaksi ACID
tradisional, saga memecah transaksi menjadi serangkaian langkah lokal yang saling

terkoordinasi.

Jika salah satu langkah gagal, maka akan dijalankan langkah kompensasi
untuk mengembalikan sistem ke kondisi yang konsisten. Pola ini umum
digunakan pada sistem yang membutuhkan konsistensi data lintas layanan tanpa

mengorbankan skalabilitas [6].

F Event-Driven Architecture Pattern

Event-Driven Architecture (EDA) merupakan pola desain di mana
microservice berkomunikasi melalui peristiwa (event) yang dipublikasikan ke
message broker. Layanan lain dapat berlangganan event tersebut tanpa adanya

ketergantungan langsung antar layanan.

Menurut Hernandez [9], pola ini meningkatkan loose coupling dan
memungkinkan sistem bereaksi secara asinkron terhadap perubahan state, sehingga

cocok untuk sistem berskala besar dengan alur bisnis yang kompleks.

G Strangler Pattern

Strangler Pattern digunakan dalam proses migrasi dari arsitektur monolith
ke microservices. Pola ini dilakukan dengan cara menggantikan bagian-bagian

sistem monolith secara bertahap dengan microservice baru.

Pendekatan ini meminimalkan risiko kegagalan migrasi dan memungkinkan

sistem tetap berjalan selama proses transformasi arsitektur berlangsung [3].

15

Rancang Bangun Aplikasi..., Michael Immanuel Herijanto, Universitas Multimedia Nusantara

H Sidecar Pattern

Sidecar Pattern melibatkan penggunaan komponen pendukung yang
berjalan berdampingan dengan microservice utama. Komponen sidecar menangani

aspek non-bisnis seperti logging, monitoring, konfigurasi, dan keamanan.

Dengan memisahkan concern teknis dari logika bisnis, pola ini
meningkatkan konsistensi dan mengurangi kompleksitas kode pada microservice
utama [14].

I Penerapan Pola Desain pada Sistem Informasi HRD

Dalam konteks Sistem Informasi HRD, pola desain microservices dapat
diterapkan untuk memisahkan modul seperti rekrutmen, absensi, penggajian, dan
penilaian kinerja ke dalam layanan terpisah.

Penggunaan API Gateway dan Service Discovery membantu mengelola
komunikasi antar modul, sementara Database per Service dan Saga Pattern

mendukung pengelolaan data HRD yang kompleks dan saling terkait [15].

2.4 Komunikasi dan Integrasi Microservices

Komunikasi antar microservice merupakan aspek krusial dalam sistem
terdistribusi. Hernandez [9] menyatakan bahwa kompleksitas komunikasi

meningkat seiring bertambahnya jumlah layanan.

Schwarz et al. [6] mengklasifikasikan teknik integrasi microservices
menjadi komunikasi sinkron (REST, gRPC) dan asinkron (message queue, event-

driven architecture), yang masing-masing memiliki kelebihan dan kekurangan.

2.5 Skalabilitas dan Performa Microservices

Skalabilitas merupakan salah satu alasan utama adopsi microservices.
Rodrigues et al. [11] menunjukkan bahwa microservices memungkinkan scaling

secara horizontal pada layanan tertentu tanpa mempengaruhi keseluruhan sistem.

Namun, studi lain menegaskan bahwa microservices juga menimbulkan

16

Rancang Bangun Aplikasi..., Michael Immanuel Herijanto, Universitas Multimedia Nusantara

overhead jaringan dan kompleksitas operasional yang harus dikelola dengan baik
[16].

2.5.1 Konsistensi Data dan Sinkronisasi Antar Microservices

Konsistensi data merupakan salah satu tantangan utama dalam penerapan
arsitektur microservices. Berbeda dengan arsitektur monolith yang umumnya
menggunakan satu basis data terpusat, microservices menganut prinsip
desentralisasi data, di mana setiap layanan memiliki dan mengelola data secara

mandiri [8].

Desentralisasi ini meningkatkan loose coupling dan independensi layanan,
namun juga menimbulkan kompleksitas dalam menjaga konsistensi data antar

layanan yang saling bergantung.

A Konsep Konsistensi Data

Konsistensi data mengacu pada kesesuaian dan keakuratan data yang
disimpan pada berbagai layanan dalam sistem terdistribusi. Dalam konteks
microservices, konsistensi tidak selalu bersifat kuat (strong consistency), melainkan
sering bersifat eventual consistency, yaitu kondisi di mana sistem akan mencapai

konsistensi dalam jangka waktu tertentu [6].

Pendekatan eventual consistency dipilih untuk menjaga skalabilitas dan

ketersediaan sistem, terutama pada sistem berskala besar dan terdistribusi.

B CAP Theorem dalam Microservices

CAP Theorem menyatakan bahwa sistem terdistribusi tidak dapat secara
bersamaan menjamin Consistency, Availability, dan Partition Tolerance. Dalam
lingkungan microservices yang bersifat terdistribusi, Partition Tolerance menjadi
kebutuhan utama, sehingga sistem harus memilih antara consistency atau
availability [11].

Sebagian besar implementasi microservices memilih availability dengan
mengorbankan strong consistency, dan mengandalkan mekanisme sinkronisasi data

untuk mencapai konsistensi akhir.

17

Rancang Bangun Aplikasi..., Michael Immanuel Herijanto, Universitas Multimedia Nusantara

C Sinkronisasi Data Antar Service

Sinkronisasi data antar microservice dilakukan melalui mekanisme
komunikasi yang terkontrol, baik secara sinkron maupun asinkron. Pendekatan
sinkron biasanya menggunakan REST atau gRPC, di mana satu layanan secara

langsung meminta data ke layanan lain.

Sebaliknya, pendekatan asinkron memanfaatkan event-driven architecture,
di mana perubahan data pada satu layanan dipublikasikan sebagai event dan

dikonsumsi oleh layanan lain tanpa ketergantungan langsung [9].

D Eventual Consistency dan Event-Driven Architecture

Event-driven architecture merupakan pendekatan yang umum digunakan
untuk mencapai eventual consistency. Setiap perubahan sfate pada suatu

microservice akan menghasilkan event yang dipublikasikan ke message broker.

Layanan lain yang berlangganan event tersebut akan memperbarui data
lokalnya sesuai kebutuhan. Pendekatan ini meningkatkan loose coupling dan
mendukung skalabilitas sistem, namun memerlukan perancangan yang cermat

untuk menghindari duplikasi atau kehilangan event [6].

E Saga Pattern untuk Konsistensi Transaksional

Saga Pattern merupakan solusi umum untuk menangani transaksi
terdistribusi dalam arsitektur microservices. Setiap transaksi besar dipecah menjadi

serangkaian transaksi lokal pada masing-masing layanan.

Jika salah satu transaksi gagal, maka akan dijalankan transaksi kompensasi
untuk membatalkan perubahan sebelumnya, sehingga sistem tetap berada dalam

kondisi yang konsisten [12].

Saga dapat diimplementasikan menggunakan pendekatan orkestrasi atau

koreografi, tergantung pada kompleksitas dan kebutuhan sistem.

18

Rancang Bangun Aplikasi..., Michael Immanuel Herijanto, Universitas Multimedia Nusantara

F Masalah Umum dalam Sinkronisasi Data

Beberapa permasalahan yang sering muncul dalam sinkronisasi data antar

microservice antara lain:

* Data duplication antar layanan
 Latensi dalam propagasi perubahan data
 Inconsistency sementara (femporary inconsistency)

» Kompleksitas penanganan kegagalan komunikasi

Menurut Su et al. [2], permasalahan ini sering menjadi alasan kegagalan

adopsi microservices jika tidak diantisipasi sejak tahap perancangan arsitektur.

G Relevansi Konsistensi Data pada Sistem Informasi HRD

Sistem Informasi HRD memiliki kebutuhan konsistensi data yang tinggi,
khususnya pada data karyawan, penggajian, dan absensi. Ketidaksinkronan
data antar layanan dapat berdampak langsung pada akurasi perhitungan gaji dan

pelaporan manajemen.

Oleh karena itu, penerapan mekanisme sinkronisasi data yang tepat,
seperti event-driven architecture dan Saga Pattern, menjadi faktor krusial dalam

keberhasilan implementasi microservices pada sistem informasi HRD [15].

2.6 Resiliensi dan Keandalan Sistem Microservices

Resiliensi sistem microservices menjadi tantangan tersendiri karena sifatnya
yang terdistribusi. Muzeeb [12] mengidentifikasi berbagai pola pemulihan seperti
retry mechanism, fallback, dan circuit breaker sebagai solusi umum untuk

meningkatkan keandalan sistem.

Penerapan pola-pola ini penting untuk menjaga kontinuitas layanan pada

sistem informasi kritikal seperti HRD.

19

Rancang Bangun Aplikasi..., Michael Immanuel Herijanto, Universitas Multimedia Nusantara

2.7 Pengujian Perangkat Lunak

Pengujian perangkat lunak merupakan proses sistematis yang bertujuan
untuk memastikan bahwa perangkat lunak berfungsi sesuai dengan kebutuhan yang
telah ditentukan serta bebas dari kesalahan yang dapat mempengaruhi kualitas
sistem. Dalam arsitektur microservices, pengujian memiliki peran yang sangat

penting karena sistem terdiri dari banyak layanan yang saling berinteraksi [4].

Pendekatan pengujian yang tepat membantu meningkatkan keandalan,

keamanan, dan maintainability sistem, khususnya pada sistem terdistribusi.

2.7.1 Unit Testing

Unit Testing adalah metode pengujian yang dilakukan pada unit terkecil dari
perangkat lunak, seperti fungsi, metode, atau kelas, secara terisolasi. Tujuan utama
unit testing adalah untuk memastikan bahwa setiap unit logika program bekerja

sesuai dengan spesifikasi yang diharapkan.

Dalam konteks microservices, unit testing difokuskan pada pengujian logika
bisnis internal dari masing-masing layanan tanpa melibatkan dependensi eksternal
seperti basis data atau layanan lain. Dependensi tersebut biasanya disimulasikan

menggunakan teknik mocking atau stubbing.

Menurut Waseem et al. [4], unit testing membantu mendeteksi kesalahan
sejak tahap awal pengembangan, sehingga mengurangi biaya perbaikan dan

meningkatkan kualitas kode secara keseluruhan.

2.7.2 Integration Testing

Integration Testing bertujuan untuk menguji interaksi antar komponen atau
layanan dalam suatu sistem. Pada arsitektur microservices, integration testing
dilakukan untuk memastikan bahwa komunikasi antar microservice berjalan dengan

benar dan sesuai dengan kontrak yang telah ditentukan.

Pengujian ini mencakup verifikasi alur data, format pesan, serta penanganan
kesalahan dalam komunikasi antar layanan. Integration testing menjadi krusial
karena kegagalan sering terjadi bukan pada logika internal layanan, melainkan pada

integrasi antar layanan [1].

20

Rancang Bangun Aplikasi..., Michael Immanuel Herijanto, Universitas Multimedia Nusantara

Pendekatan yang umum digunakan dalam integration testing microservices
meliputi contract testing dan penggunaan lingkungan staging yang menyerupai

kondisi produksi.

2.7.3 API Testing

API Testing merupakan jenis pengujian yang berfokus pada antarmuka
layanan atau Application Programming Interface (API). Pengujian ini bertujuan
untuk memastikan bahwa API dapat menerima request, memproses data, dan

mengembalikan response sesuai dengan spesifikasi yang telah ditentukan.

Dalam arsitektur microservices, APl menjadi sarana utama komunikasi
antar layanan, sehingga kualitas API sangat mempengaruhi stabilitas sistem secara
keseluruhan. API testing mencakup pengujian validasi input, status kode HTTP,

struktur response, performa, dan keamanan API [5].

API testing biasanya dilakukan secara otomatis dan diintegrasikan dalam
pipeline CI/CD untuk memastikan bahwa setiap perubahan kode tidak merusak

fungsionalitas layanan yang telah ada.

2.7.4 Peran Pengujian dalam Arsitektur Microservices

Pengujian perangkat lunak pada arsitektur microservices tidak dapat
bergantung pada satu jenis pengujian saja. Kombinasi unit testing, integration
testing, dan API testing diperlukan untuk memastikan kualitas sistem secara

menyeluruh.

Pendekatan pengujian berlapis ini membantu mendeteksi kesalahan pada
berbagai tingkat sistem, mulai dari logika internal layanan hingga interaksi
antar layanan, sehingga mendukung penerapan microservices yang andal dan

berkelanjutan [4].

2.8 Microservices pada Sistem Informasi HRD

Sistem Informasi HRD memiliki karakteristik kompleksitas data, proses
bisnis yang saling terintegrasi, serta kebutuhan akan keandalan tinggi. Gumilar

et al. [15] menunjukkan bahwa penerapan microservices pada sistem HRD berbasis

21

Rancang Bangun Aplikasi..., Michael Immanuel Herijanto, Universitas Multimedia Nusantara

web dapat meningkatkan fleksibilitas pengembangan dan kemudahan pemeliharaan

sistem.

Pendekatan microservices memungkinkan pemisahan modul HRD seperti
rekrutmen, absensi, penggajian, dan penilaian kinerja ke dalam layanan terpisah,

sehingga sistem lebih mudah dikembangkan seiring pertumbuhan organisasi.

2.9 Ringkasan Tinjauan Pustaka

Berdasarkan studi pustaka yang telah dibahas, dapat disimpulkan
bahwa arsitektur microservices menawarkan keunggulan dalam hal skalabilitas,
fleksibilitas, dan maintainability dibandingkan arsitektur monolith. =~ Namun,
implementasinya memerlukan perencanaan matang, terutama terkait komunikasi,

integrasi, dan resiliensi sistem.

Tinjauan pustaka ini menjadi dasar teoritis dalam perancangan dan
implementasi arsitektur microservices pada Sistem Informasi HRD yang dibahas

pada bab selanjutnya.

22

Rancang Bangun Aplikasi..., Michael Immanuel Herijanto, Universitas Multimedia Nusantara

	BAB 2 Landasan Teori
	2.1 Arsitektur Perangkat Lunak
	2.2 Arsitektur Monolith dan Keterbatasannya
	2.3 Arsitektur Microservices
	2.3.1 Karakteristik Arsitektur Microservices
	2.3.2 Pola Desain Arsitektur Microservices

	2.4 Komunikasi dan Integrasi Microservices
	2.5 Skalabilitas dan Performa Microservices
	2.5.1 Konsistensi Data dan Sinkronisasi Antar Microservices

	2.6 Resiliensi dan Keandalan Sistem Microservices
	2.7 Pengujian Perangkat Lunak
	2.7.1 Unit Testing
	2.7.2 Integration Testing
	2.7.3 API Testing
	2.7.4 Peran Pengujian dalam Arsitektur Microservices

	2.8 Microservices pada Sistem Informasi HRD
	2.9 Ringkasan Tinjauan Pustaka

