BAB I1

LANDASAN TEORI

2.1 Penelitian Terdahulu

Berikut merupakan penelitian terdahulu yang dapat mendukung dilakukannya

penelitian ini:
Tabel 2. 1 Penelitian Terdahulu
No | Judul dan peneliti Nama Metode Hasil Penelitian
Artikel Jurnal
Judul Artikel: IEEE 15th Arsitektur Arsitektur Speech-
Real-time Avatar- | Symposiu multimodal to-Speech cascaded
Based Speech-to- m on cascaded yang | dapat berjalan real-
Speech Computer mencakup time di perangkat
Conversational Al | Applicatio | Noise Reduction edge (Al PC).
Tutor on Al PC ns & — ASR Integrasi semua
Industrial (Whisper) — komponen
Nama Peneliti: Mee | Electronic | RAG — LLM | menghasilkan voice
Sim Lai et al. s (ISCAIE | (Llama3 8B) — tutor interaktif
2025) TTS (Piper) — | berbasis avatar yang
Avatar responsif, dengan
(Wav2Lip). usability score tinggi
Sistem (CUS =2.72).
menggunakan Sistem berhasil
pipeline menggabungkan
modular dengan | pengenalan suara,
frontend— reasoning berbasis
backend LLM, dan TTS
terpisah, model dengan lip-sync
viaHTTP API, | avatar secara real-
dan proses time.
avatar sinkron
menggunakan
multithreading.
Judul Artikel: IEEE ASR (Whisper, | Whisper Medium +
VoiceTalk: A No- Open Web Speech Llama 3.2 3B
Code Approach for | Journal of | API) — open- | menghasilkan error
Creating Voice- the source SLM voice-to-text hampir
Controlled Smart | Computer | (Llama 3.2 3B) nol; arsitektur
Home Applications Society — TTS; mudah
integrasi no-

Inference-Level Optimization

..., Kenny Budiarso Lawson, Universitas Multimedia Nusantara

Judul dan peneliti Nama Metode Hasil Penelitian
Artikel Jurnal
Nama Peneliti: code smart diintegrasikan untuk
Yun-Wei Lin et al. home aplikasi smart home
Judul Artikel: Future ASR — LLM Pipeline cascaded
EmoSDS: Unified Internet open source meningkatkan
Emotionally (SpeechGPT, ekspresivitas dan
Adaptive Spoken Align-SLM, naturalness dialog;
Dialogue System Gemma/Mistral | arsitektur modular,
Using Self- /Zephyr) — mudah diadaptasi
Supervised Speech TTS untuk berbagai
Representations (VITS/HiFi- domain
GAN); integrasi
Nama Peneliti: SSL &
Jaehwan Lee et al. emotional
adaptation
Judul Artikel: IEEE Quantization Model Whisper
DQ-Whisper: Joint | SLT 2024 | dan distillation | dikompresi hingga
Distillation and 5,18x dengan
Quantization for penurunan performa
Efficient minimal; inference
Multilingual Speech lebih efisien tanpa
Recognition mengorbankan
akurasi multibahasa
Nama Peneliti:
Hang Shao et al.
Judul Artikel: IEEE GGUF (GPT- GGUF terbukti
Benchmarking ICSA-C Generated sebagai salah satu
Emerging Deep 2024 Unified Format) | metode quantization
learning paling efisien secara
Quantization energi untuk
Methods for Energy inference model
Efficiency besar
Nama Peneliti:
Saurabhsingh
Rajput & Tushar
Sharma
Judul Artikel: ACM CTranslate2 Penggunaan
Conversational CODS- untuk CTranslate2
Payments on UPI COMAD percepatan mempercepat
Apps: A Pipeline 2024 inference inference model
Approach ASR (Whisper) dan
Leveraging ASR NMT, menurunkan
and NLP latency hingga ~600
Techniques ms pada aplikasi
nyata

11

Inference-Level Optimization..., Kenny Budiarso Lawson, Universitas Multimedia Nusantara

No | Judul dan peneliti Nama Metode Hasil Penelitian
Artikel Jurnal
Nama Peneliti: Sai
Kasyap Kamaraju
etal.
7 Judul Artikel: IEEE Pruning, Meningkatkan
Toward Real-time | Internet of | multiprecision | kecepatan inference
and Efficient Things quantization hingga 18x dan
Perception Journal (FP32, FP16, throughput 16,5,
Workflows in INT8), ONNX mengurangi
Software-Defined Runtime, penggunaan
Vehicles TensorRT GPU/memori hingga
30% dengan dampak
Nama Peneliti: minimal pada
Reza Sumaiya et al. akurasi
8 | Judul Artikel: I- | IEEE/CV Integer-only Kecepatan inference
VIiT: Integer-only FICCV INTS8 3,7-4,1x lebih cepat
Quantization for 2022 quantization dibanding FP,
Efficient Vision dengan dyadic akurasi setara atau
Transformer arithmetic, lebih baik dari
Inference approximasi model full precision
operasi non-
Nama Peneliti: linear
Zhikai Li & Qingyi (Shiftmax,
Gu ShiftGELU)

9 Judul Artikel: APSIPA | Konversi model | Percepatan inference
ESPnet-ONNX: ASC 2022 PyTorch ke 1,3-2x pada tugas
Bridging a Gap ONNX, node | ASR, TTS, dan lain-

Between Research fusion, lain tanpa pelatihan
and Production quantization ulang dan tanpa
parameter penurunan performa
Nama Peneliti:
Masao Someki et
al.
10 Judul Artikel: Journal of | Post-training | Pengurangan ukuran
Using Quantized Physics quantization | model 3x lebih kecil,
Neural Network for | Conferenc dengan inference speed 1.5x
Speaker e Series | FBGEMM (per- lebih cepat
Recognition on channel) dan dibandingkan
Edge Computing QNNPACK | floating-point model.
Devices (per-tensor). Analisis power
Konversi FP32 consumption
Nama Peneliti: ke INT8 dengan | menunjukkan edge
Tongwei Dai linear mapping. devices (ASIC)
Avrsitektur mencapai <1W
VGGNet pada | dengan throughput
10-100 GOPS.

Inference-Level Optimization

12

..., Kenny Budiarso Lawson, Universitas Multimedia Nusantara

quantization,
weight sharing,
matrix
decomposition),
hyperparameter
tuning, dan
energy
efficiency

methods.

No | Judul dan peneliti Nama Metode Hasil Penelitian
Artikel Jurnal
dataset
VVoxCeleb.
11 Judul Artikel: ScienceDi Survey Identifikasi 4
Empowering Large rect komprehensif tantangan utama
Language Models teknik model edge deployment
to Edge compression (computational
Intelligence: A (quantization, resources, memory
Survey of Edge pruning, footprint, thermal
Efficient LLMs and distillation, constraints,
Techniques low-rank connectivity).
decomposition), | Keunggulan edge:
Nama Peneliti: Rui inference latency reduction,
Wang, et al. optimization, privacy
on-device enhancement,
inference bandwidth
engines, dan efficiency, offline
cloud-edge capability.
collaborative
frameworks.
12 | Judul Artikel: A Sensors Kategorisasi INT8/INT4/mixed-
Survey on (MDPI) komprehensif precision
Optimization optimasi: quantization trade-
Techniques for hardware offs terdokumentasi.
Edge Artificial optimization CPU inference
Intelligence (Al) (CPU/GPU/FP dengan INT8
GA/ASIC/TPU) memberikan best
Nama Peneliti: Rui , federated performance-per-
Wang, et al. learning, model watt untuk edge
optimization devices.
(pruning,

Arsitektur voice conversational

Al

berbasis pipeline cascaded (ASR,

LLM/SLM, dan TTS) merupakan pendekatan yang efektif dan fleksibel dalam
berbagai skenario aplikasi. Sistem speech-to-speech tutor berbasis avatar real-time
13

Inference-Level Optimization..., Kenny Budiarso Lawson, Universitas Multimedia Nusantara

telah membuktikan bahwa kombinasi modul Noise Reduction, Whisper, RAG—
LLM, serta TTS dapat menghasilkan interaksi suara yang natural, responsif, dan
dapat dijalankan pada perangkat edge secara efisien [32]. Pada aplikasi smart home,
integrasi Whisper dengan SLM open-source dalam pipeline ASR-SLM-TTS
menghasilkan performa transkripsi yang sangat akurat serta kemudahan integrasi
dengan sistem kendali perangkat rumah pintar [33]. Sementara itu, pengembangan
emotionally adaptive dialogue systems berbasis pipeline ASR, LLM, dan TTS
menunjukkan bahwa penambahan representasi suara berbasis self-supervised
learning mampu meningkatkan naturalness dan ekspresivitas interaksi suara [34].
Secara keseluruhan, temuan-temuan tersebut menegaskan bahwa arsitektur
cascaded ASR, LLM/SLM, dan TTS adalah fondasi yang kuat, modular, serta dapat
disesuaikan untuk berbagai kebutuhan pengembangan voice conversational Al

modern.

Beberapa penelitian menunjukkan bahwa optimasi inference pada Whisper
dapat dilakukan melalui berbagai pendekatan yang berfokus pada kompresi model,
efisiensi energi, dan percepatan eksekusi di perangkat dengan sumber daya terbatas.
Pendekatan quantization-distillation terbukti mampu mengurangi ukuran model
secara signifikan tanpa menurunkan akurasi secara berarti, sehingga menghasilkan
performa inference yang lebih ringan dan sesuai untuk deployment pada lingkungan
komputasi rendah [35]. Penelitian lain juga menunjukkan bahwa penggunaan
format model yang dioptimalkan seperti GGUF dapat meningkatkan efisiensi
memori dan konsumsi energi selama inference, menjadikannya salah satu pilihan
terbaik untuk menjalankan model berukuran besar pada perangkat edge [36]. Selain
itu, percepatan inference melalui framework seperti CTranslate2 telah
menghasilkan latency yang sangat rendah dalam aplikasi real-time, menunjukkan
bahwa optimasi berbasis runtime dapat memberikan peningkatan performa yang
substansial pada sistem yang mengandalkan pemrosesan suara secara langsung
[37]. Temuan-temuan ini menegaskan bahwa optimasi Whisper melalui
quantization, format model ringkas, dan percepatan runtime merupakan landasan
penting dalam meningkatkan efisiensi ASR pada sistem voice conversational Al
modern.

14

Inference-Level Optimization..., Kenny Budiarso Lawson, Universitas Multimedia Nusantara

Optimasi inference pada small language models (SLM) dapat dicapai melalui
teknik post-training quantization yang tidak memerlukan pelatihan ulang model.
GGUF (GPT-Generated Unified Format) terbukti sebagai salah satu metode
quantization paling efisien secara energi untuk inference model besar, dengan
kemampuan mengurangi presisi numerik bobot model sambil mempertahankan
kualitas output yang acceptable [36]. Format GGUF dirancang khusus untuk
mendukung berbagai tingkat quantization seperti INT8, INT4, dan mixed-
precision, memungkinkan trade-off yang fleksibel antara ukuran model, kecepatan
inference, dan akurasi prediksi. Implementasi GGUF pada SLM seperti Gemma 3
1B dapat dilakukan melalui konversi model ke format binary yang teroptimasi,
disertai dengan metadata quantization yang memfasilitasi loading dan eksekusi
model secara efisien pada perangkat dengan sumber daya komputasi terbatas.
Secara keseluruhan, temuan-temuan tersebut menunjukkan bahwa optimasi
Gemma 3 1B dapat dilakukan tanpa melakukan pelatihan ulang model, melainkan
melalui penerapan weight-only quantization berbasis GGUF yang mendukung

deployment efisien pada lingkungan CPU-only.

Optimasi inference pada model TTS berbasis VITS dapat dicapai melalui teknik
kompresi dan percepatan runtime yang berfokus pada efisiensi eksekusi di
perangkat dengan sumber daya terbatas. Pendekatan yang menggabungkan pruning
dan multiprecision quantization dengan backend seperti ONNX Runtime dan
TensorRT terbukti mampu meningkatkan kecepatan inference secara signifikan
tanpa mengorbankan kualitas keluaran audio, sehingga relevan untuk deployment
VITS dalam aplikasi real-time [31]. Teknik integer-only quantization juga telah
ditunjukkan mampu mengurangi kompleksitas komputasi secara substansial
dengan menjalankan seluruh operasi menggunakan aritmatika integer, sambil
mempertahankan stabilitas akustik model, sehingga dapat diterapkan pada
komponen VITS yang mengandalkan arsitektur transformer [38]. Selain itu,
optimasi melalui konversi model PyTorch ke ONNX dilakukan dengan peningkatan
seperti node fusion, graph optimization, dan quantization yang telah terbukti
memberikan percepatan inference yang konsisten tanpa menurunkan kualitas suara
[39], menjadikannya teknik yang sangat praktis untuk pengembangan dan produksi

15

Inference-Level Optimization..., Kenny Budiarso Lawson, Universitas Multimedia Nusantara

model VITS. Secara keseluruhan, temuan-temuan ini menegaskan bahwa
kombinasi quantization dan optimasi ONNX Runtime merupakan strategi efektif
untuk meningkatkan efisiensi dan performa model VITS dalam sistem TTS real-

time maupun lingkungan komputasi berdaya rendah.

Deployment voice conversational Al pada lingkungan CPU-only memiliki
landasan ilmiah berdasarkan tiga aspek fundamental, yaitu aksesibilitas
infrastruktur, kebutuhan privasi dan compliance, serta efisiensi operasional.
Penelitian menunjukkan bahwa mayoritas edge devices dan local servers di lingkup
enterprise hanya dilengkapi dengan CPU tanpa akselerasi GPU atau TPU khusus
[25], [26]. Dalam kebutuhan deployment, khususnya untuk aplikasi telekomunikasi,
layanan kesehatan, dan layanan finansial, pemrosesan data sensitif secara lokal
menjadi keharusan untuk memenuhi regulasi seperti HIPAA, GDPR, dan PCI-DSS
yang melarang transmisi raw audio ke cloud [25]. Edge-based voice Al processing
pada CPU memungkinkan latency reduction yang signifikan, yaitu dari rata-rata
200ms cloud latency menjadi <10ms local processing yang krusial untuk
conversational flow yang natural [25], [40]. Studi terbaru membuktikan bahwa
dengan teknik quantization yang tepat, khususnya INT8 quantization pada CPU,
performa inference dapat mencapai 3-4x lebih cepat dibandingkan floating-point

model dengan penurunan akurasi yang minim (<1%) [26], [41].

Kontribusi utama penelitian optimasi end-to-end pipeline pada CPU-only
terletak pada integrasi sistematis multi-component quantization yang belum
dieksplorasi secara komprehensif dalam literatur yang sudah ada. Penelitian
sebelumnya cenderung fokus pada optimasi single-component atau deployment
hybrid cloud-edge [25], [26], sementara optimasi setiap ketiga komponen (ASR,
LLM, TTS) dengan teknik quantization yang berbeda-beda dalam satu pipeline
terpadu masih terbatas [40]. Hasil optimasi setiap komponen menunjukkan
performa yang sangat baik, namun integrasi antar-komponen belum terdokumentasi
baik.

Meskipun penelitian-penelitian sebelumnya telah menunjukkan efektivitas
optimasi individual pada komponen ASR, LLM/SLM, dan TTS, terdapat beberapa

16

Inference-Level Optimization..., Kenny Budiarso Lawson, Universitas Multimedia Nusantara

research gap yang belum terpenuhi secara komprehensif. Mayoritas penelitian
terdahulu berfokus pada optimasi single-component dalam lingkungan hybrid
cloud-edge atau GPU-accelerated. Meskipun arsitektur cascaded telah terbukti
efektif, belum terdapat studi sistematis yang mengintegrasikan optimasi inference-
level secara keseluruhan komponen dengan teknik quantization yang beragam
dalam satu pipeline terpadu. Oleh karena itu, penelitian ini berkontribusi untuk
untuk research gap tersebut dengan mengimplementasikan dan mengevaluasi
sistem voice conversational Al berbasis arsitektur cascaded yang dioptimasi secara
inference-level pada lingkungan CPU-only. Kontribusi penelitian mencakup
implementasi strategi optimasi multi-komponen dengan beberapa teknik berbeda,
validasi bahwa optimasi inference-level mampu mencapai pengurangan latency
dengan tetap mempertahankan kualitas, serta membuktikan kapabilitas deployment
pada sistem berbasis CPU ataupun local hosting. Sehingga, penelitian mampu
menjawab kebutuhan industri dengan perhatian terhadap sensitivitas data dan
spesifikasi sistem yang minim, yang dapat digunakan pada kebutuhan aplikasi

seperti telekomunikasi, layanan kesehatan, dan layanan finansial.

2.2 Teori yang Berkaitan
2.2.1 Artificial Intelligence (Al)

Artificial Intelligence (Al) adalah bidang multidisiplin yang berfokus pada
pengembangan sistem komputer yang mampu melakukan tugas-tugas yang
biasanya memerlukan kecerdasan manusia, seperti memahami bahasa,
mengenali suara, memecahkan masalah, dan membuat keputusan [42]. Al telah
membawa manfaat signifikan di berbagai sektor, termasuk peningkatan
efisiensi, otomatisasi proses, dan personalisasi layanan [43]. Dalam konteks
teknologi voice conversational Al, seperti sistem Automatic Speech
Recognition (ASR), Large Language Model (LLM), dan Text-to-Speech (TTS),
Al berperan sebagai inti yang memungkinkan komputer memahami,
memproses, dan merespons percakapan manusia secara alami [44]. Sistem ini
menggabungkan kemampuan pengenalan suara, pemrosesan bahasa alami dan

penalaran, serta sintesis suara untuk menciptakan interaksi yang lebih

17

Inference-Level Optimization..., Kenny Budiarso Lawson, Universitas Multimedia Nusantara

manusiawi dan responsif, yang telah diadopsi luas dalam layanan pelanggan,

asisten virtual, dan aplikasi edukasi [45].

Secara teknis, Al bekerja dengan membangun sistem cerdas yang mampu
belajar dari data dan mengambil keputusan secara otonom. Proses ini
melibatkan penggunaan algoritma machine learning dan deep learning, di mana
sistem dilatih menggunakan data besar untuk mengenali pola, membuat
prediksi, dan meningkatkan kinerjanya seiring waktu tanpa instruksi eksplisit
[46]. Sistem Al modern memanfaatkan jaringan saraf tiruan atau artificial
neural networks yang meniru cara kerja otak manusia untuk memproses
informasi kompleks, seperti pengenalan suara dan pemahaman bahasa alami.
Kemampuan pengambilan keputusan Al didasarkan pada analisis data,
penalaran logis, dan pembelajaran berkelanjutan, sehingga Al dapat
memberikan rekomendasi, memecahkan masalah, dan menyesuaikan respons
sesuai konteks [47]. Dengan demikian, Al tidak hanya meniru kecerdasan
manusia, tetapi juga memperluas kapasitas pengambilan keputusan berbasis
data di berbagai bidang aplikasi.

2.2.2 Deep learning

Deep learning adalah cabang dari machine learning yang menggunakan
arsitektur deep neural networks untuk mempelajari representasi data secara
otomatis dan hierarkis [48]. Peranannya sangat penting dalam pengembangan
model-model modern, karena mampu mengekstraksi fitur kompleks dari data
mentah tanpa memerlukan rekayasa fitur manual. Dalam sistem voice
conversational Al, khususnya ASR dan TTS, deep learning telah merevolusi
performa dan akurasi [49]. Model seperti Convolutional Neural Networks
(CNN), Recurrent Neural Networks (RNN), dan Transformer telah digunakan
secara luas untuk mengenali pola suara, memahami konteks percakapan, serta
menghasilkan suara sintetis yang alami, sehingga meningkatkan kualitas

interaksi manusia-mesin [50].

Secara teknis, deep learning bekerja dengan membangun jaringan saraf

berlapis-lapis, di mana setiap lapisan (layer) bertugas mengekstraksi

18

Inference-Level Optimization..., Kenny Budiarso Lawson, Universitas Multimedia Nusantara

representasi fitur yang semakin abstrak dari data input [51]. Proses
pembelajaran dilakukan melalui mekanisme forward propagation, di mana data
mengalir dari input ke output, dan backward propagation, di mana bobot
jaringan diperbarui berdasarkan error yang dihitung dari output menggunakan
algoritma backpropagation [52]. Dengan pendekatan ini, model deep learning
mampu secara otomatis belajar dari data besar, menyesuaikan parameter
internalnya untuk meminimalkan kesalahan, dan menemukan pola-pola penting
tanpa intervensi manusia. Kemampuan ini menjadikan deep learning sangat
efektif dalam menangani data kompleks seperti suara dan bahasa, serta
memungkinkan pengambilan keputusan berbasis representasi fitur yang

dihasilkan secara otomatis [53].

2.2.3 Inference-Level Optimization

Inference-level optimization merupakan serangkaian teknik yang diterapkan
pada model deep learning untuk meningkatkan efisiensi komputasi selama fase
inferensi tanpa mengubah arsitektur dasar model atau melakukan pelatihan
ulang [54]. Optimasi pada tingkat inferensi menjadi sangat krusial karena fase
inferensi adalah tahap di mana model deep learning digunakan secara aktif
dalam aplikasi produksi, memproses data dalam jumlah besar dengan
kebutuhan latency rendah dan throughput tinggi [55]. Berbeda dengan optimasi
pada fase pelatihan yang berfokus pada konvergensi model, optimasi inferensi
bertujuan untuk mengurangi computational footprint, memory bandwidth, dan
inference latency tanpa mengorbankan akurasi prediksi secara signifikan [56].
Teknik-teknik optimasi inferensi mencakup graph-level optimization seperti
operator fusion dan constant folding, serta algorithm-level optimization seperti
quantization dan pruning yang secara kolektif dapat menghasilkan peningkatan

performa hingga 3-5x pada berbagai arsitektur neural network [57].

Inference-level optimization bekerja melalui transformasi pada
computational graph dan parameter model yang telah terlatih untuk
memaksimalkan efisiensi eksekusi pada target hardware tertentu. Post-training
optimization (PTO) merupakan pendekatan yang paling umum digunakan
karena dapat diterapkan pada model pre-trained tanpa memerlukan siklus

19

Inference-Level Optimization..., Kenny Budiarso Lawson, Universitas Multimedia Nusantara

pelatihan tambahan, dengan teknik utama meliputi graph optimization yang
menggabungkan beberapa operasi menjadi single kernel untuk mengurangi
kebutuhan memory bandwidth, dan post-training quantization yang
mengkonversi representasi numerik dari floating-point 32-bit (FP32) menjadi
integer 8-bit (INT8) atau bahkan presisi lebih rendah [58]. Operator fusion
sebagai salah satu teknik graph optimization dapat mengeliminasi alokasi
intermediate tensor dan mengurangi kernel launch overhead, sementara
guantization mampu mengurangi ukuran model hingga 75% dengan degradasi
akurasi yang minim melalui pengurangan bit-width untuk weights dan
activations [59]. Implementasi inference optimization yang efektif
mempertimbangkan karakteristik target hardware dan profil workload aplikasi,
sehingga menghasilkan trade-off optimal antara latency, throughput, memory
usage, dan akurasi untuk deployment pada resource-constrained environments

seperti edge devices dan mobile platforms [60].

2.2.4 Small Language Model (SLM) / Large Language Model (LLM)
Small Language Model (SLM) dan Large Language Model (LLM) adalah
dua kategori model bahasa berbasis neural network yang digunakan untuk
pemrosesan bahasa alami. SLM umumnya memiliki jumlah parameter yang
lebih sedikit, sehingga lebih efisien secara komputasi dan cocok untuk aplikasi
dengan sumber daya terbatas, namun cenderung memiliki kapasitas generalisasi
dan pemahaman bahasa yang lebih terbatas dibandingkan LLM [61].
Sebaliknya, LLM memiliki ratusan juta hingga miliaran parameter, dilatih pada
data teks dalam skala besar, dan mampu memahami serta menghasilkan teks
yang sangat kompleks dan kontekstual [62]. Dalam pipeline voice
conversational Al, baik SLM maupun LLM berperan sebagai komponen
pemrosesan bahasa alami yang menginterpretasi hasil transkripsi ASR,
memahami maksud pengguna, dan menghasilkan respons yang kemudian
diubah kembali menjadi suara olen TTS. SLM menawarkan keunggulan
efisiensi dan kemudahan deployment, sedangkan LLM unggul dalam kualitas

respons dan kemampuan generalisasi lintas domain.

20

Inference-Level Optimization..., Kenny Budiarso Lawson, Universitas Multimedia Nusantara

Secara teknis, model bahasa modern bekerja melalui beberapa tahapan
utama. Proses dimulai dengan tokenisasi, yaitu memecah teks menjadi unit-unit
kecil (token) yang dapat diproses oleh model. Selanjutnya, token-token ini
diubah menjadi vektor representasi (embedding) dan diproses melalui arsitektur
transformer, yang terdiri dari lapisan-lapisan self-attention dan feed-forward
neural network [63]. Mekanisme attention memungkinkan model untuk
menimbang relevansi antar token dalam satu konteks, sehingga dapat
memahami hubungan semantik dan sintaksis secara dinamis. Model kemudian
menghasilkan respons bahasa secara autoregresif, yaitu memprediksi token
berikutnya berdasarkan urutan token sebelumnya, dengan teknik decoding
seperti greedy search, top-k, atau top-p sampling untuk mengontrol kreativitas
dan koherensi respons. Dengan pendekatan ini, baik SLM maupun LLM dapat
menghasilkan teks yang relevan dan kontekstual, meskipun LLM umumnya
lebih unggul dalam menangani konteks yang panjang dan kompleks [64].

2.2.5 Speech-to-Text (STT) / Automatic Speech Recognition (ASR)
Automatic Speech Recognition (ASR) atau Speech-to-Text (STT) adalah
teknologi yang memungkinkan sistem komputer untuk mengkonversi sinyal
suara manusia menjadi teks secara otomatis [65]. ASR berperan penting sebagai
komponen awal dalam pipeline voice conversational Al, di mana hasil
transkripsi dari suara menjadi teks digunakan untuk pemrosesan bahasa alami
dan interaksi lanjutan dengan pengguna. Manfaat utama ASR meliputi
peningkatan aksesibilitas bagi penyandang disabilitas, efisiensi dalam layanan
pelanggan, transkripsi otomatis untuk dokumentasi, serta mendukung berbagai
aplikasi seperti asisten virtual, sistem dikte, dan layanan terjemahan. Dengan
kemajuan deep learning, akurasi dan keandalan ASR semakin meningkat,
meskipun tantangan seperti kebisingan lingkungan, variasi aksen, dan

kecepatan bicara masih menjadi perhatian utama.

Secara teknis, proses kerja ASR dimulai dari tahap preprocessing audio, di
mana sinyal suara diolah melalui segmentasi, filtering, dan normalisasi untuk
mengurangi noise dan menyiapkan data mentah [66]. Selanjutnya, dilakukan
ekstraksi fitur menggunakan teknik seperti Mel-Frequency Cepstral

21

Inference-Level Optimization..., Kenny Budiarso Lawson, Universitas Multimedia Nusantara

Coefficients (MFCC) atau spectrogram, yang mengubah sinyal audio menjadi
representasi numerik yang lebih mudah dianalisis oleh mesin. Fitur-fitur ini
kemudian diproses oleh model neural network modern, seperti arsitektur
encoder—decoder berbasis attention, LSTM, atau Transformer, yang mampu
mempelajari hubungan temporal dan pola kompleks dalam data suara. Model
ini secara otomatis memetakan urutan fitur akustik menjadi urutan teks, dengan
proses pelatihan yang mengoptimalkan parameter jaringan untuk minimalisir
kesalahan transkripsi. Pendekatan end-to-end ini terbukti meningkatkan akurasi

dan efisiensi ASR dalam berbagai kondisi dan bahasa [67].

2.2.6 Text-to-Speech (TTS)

Text-to-Speech (TTS) adalah teknologi yang mengubah teks tertulis menjadi
suara manusia buatan yang terdengar alami. TTS berperan sebagai komponen
akhir dalam sistem voice conversational Al, memungkinkan sistem untuk
memberikan respons verbal yang mudah dipahami dan interaktif bagi pengguna
[68]. Manfaat utama TTS meliputi peningkatan aksesibilitas bagi penyandang
disabilitas, otomatisasi layanan pelanggan, pembacaan buku digital, serta
personalisasi asisten virtual. Dengan kemajuan deep learning, kualitas suara
yang dihasilkan TTS semakin mendekati suara manusia asli, sehingga interaksi

antara manusia dan mesin menjadi lebih natural dan efektif.

Secara konseptual, sistem TTS modern terdiri dari beberapa tahapan utama.
Proses dimulai dengan text analysis, yaitu analisis linguistik untuk
mengidentifikasi struktur kalimat, pengucapan fonem, intonasi, dan fitur
prosodi lainnya [69]. Hasil analisis ini kemudian diproses oleh acoustic model,
biasanya berbasis neural network seperti encoder—decoder atau transformer,
untuk menghasilkan representasi akustik berupa mel-spectrogram atau fitur
serupa. Tahap akhir adalah vocoder-based waveform synthesis, di mana
vocoder, seperti WaveNet, HiFi-GAN, atau WaveGlow mengubah representasi
akustik menjadi gelombang suara digital yang dapat diperdengarkan.
Pendekatan end-to-end dan penggunaan arsitektur deep learning telah
meningkatkan naturalitas, ekspresivitas, dan fleksibilitas sistem TTS secara
signifikan.

22

Inference-Level Optimization..., Kenny Budiarso Lawson, Universitas Multimedia Nusantara

2.3 Framework/Algoritma yang digunakan

2.3.1 Whisper

Whisper merupakan automatic speech recognition (ASR) yang
dikembangkan oleh OpenAl dengan pendekatan large-scale weak supervision
training menggunakan 680,000 jam data audio multilingual dan multitask yang
dikumpulkan dari internet [70]. Model ini dirancang untuk mengatasi
keterbatasan ASR tradisional yang memerlukan dataset-specific fine-tuning
dengan kemampuan generalisasi melalui zero-shot transfer learning ke
berbagai benchmark datasets tanpa memerlukan pelatihan tambahan. Whisper
dilatih secara multitask untuk menangani beragam speech processing tasks
dalam single unified model, termasuk multilingual speech recognition yang
mendukung lebih dari 90 bahasa, speech translation ke bahasa Inggris, spoken
language identification, dan voice activity detection, di mana seluruh tugas
tersebut direpresentasikan sebagai sequence of tokens yang diprediksi oleh
komponen decoder. Karakteristik dari Whisper adalah robustness yang tinggi
terhadap variasi aksen, background noise, dan technical language, yang
membuatnya mampu berperforma mendekati human-level accuracy pada
berbagai kondisi akustik yang menantang [70]. Model ini tersedia dalam
berbagai ukuran mulai dari Tiny (39M parameters) hingga Large (1550M

parameters).

Multitask training data (680k hours) Sequence-to-sequence learning

English transcription

& “Ask not what your country can do for -”

2 x ComviD + GELU

N

) (background music playing) N

[EF Ask not what your country can do for -
Any-to-English speech translation B
‘ “El répido zorro marrén salta sobre " Transformer —t 2
Encoder Blocks @«
[} The quick brown fox jumps over g
§
Non-English transcription
& -oici 201 221 Weiched UL YD Ye - =)
Sinusoidal
D AG 210f 22 Lh2iChe® {2 HD He .. Positional ==
Encoding
No speech oy =
usi N
D 0 > SOT | EN [Taie| 00 | The |quick| +.x
2 —
,//

Log-Mel Spectrogram Tokens in Multtask Training Format

p \
Multitask training format T X=X -
9 idenifican Transeription [
v |
LANGUAGE |y, rRaNSCRIBE [291N Ly toxtiokens [» &M |, B8O Lyl ioyiickens (o 29
—— Ly TG time time time time |,
o previous START OF Eor
text tokens TRANSCRPT /oy, — = o\
X
speecH | | TRANSLATE 1 e stames [fexfokens [
Custom vocabutary / ¥
prompiing i
Voice activity | X — Engish Taxt-only franscription
eeeeeee ol

special text timestamp o] (allows dataset-specific fine-tuning)
MAD)
tokens tokens tokens

Gambar 2. 1 Arsitektur Model Whisper [70]
23

Inference-Level Optimization..., Kenny Budiarso Lawson, Universitas Multimedia Nusantara

Sesuai dengan Gambar 2.1, arsitektur Whisper mengimplementasikan
encoder-decoder Transformer architecture dengan desain yang sederhana
namun efektif untuk speech-to-text conversion. Audio processing pipeline
dimulai dengan segmentasi input audio menjadi chunks berdurasi 30 detik, yang
kemudian dikonversi menjadi log-Mel spectrogram representation melalui
Short-Time Fourier Transform (STFT) yang dilakukan pada windowed
segments dari audio waveform [70]. Komponen Encoder terdiri dari multiple
layers Transformer blocks yang menerima log-Mel spectrogram sebagai input
dan menghasilkan high-dimensional audio feature embeddings yang meng-
capture acoustic dan phonetic information dari spoken content. Komponen
Decoder menggunakan autoregressive generation mechanism untuk
memprediksi transkripsi teks secara sequential token-by-token, di mana setiap
generated token di-condition pada generated tokens sebelumnya dan audio
features dari encoder melalui cross-attention mechanism. Whisper
memanfaatkan special tokens system untuk mengontrol multitask behavior,
termasuk language identification tokens, task specification tokens untuk
membedakan antara transcription dan translation tasks, timestamp prediction
tokens untuk phrase-level temporal alignment, dan end-of-text token untuk
menandakan selesainya dari generation process. Training objective
menggunakan standard cross-entropy loss untuk next-token prediction dengan
teacher forcing strategy, di mana model belajar untuk memaksimalkan
kesamaan dari transkripsi audio input dan generated tokens sebelumnya.
Aursitektur ini memungkinkan Whisper untuk berfungsi sebagai single unified
model yang menggantikan banyak komponen spesifik dalam speech processing
pipeline tradisional, sekaligus menjaga fleksibilitas untuk mengatasi perbedaan
bahasa dan kondisi akustik tanpa membutuhkan modifikasi arsitektur atau task-

specific adaptations.

2.3.2 Gemma 3 1B

Gemma 3 1B merupakan lightweight small language model yang
dikembangkan oleh Google DeepMind sebagai bagian dari Gemma 3 model
family yang dirilis pada tahun 2025, dengan ukuran parameter 1 miliar yang

24

Inference-Level Optimization..., Kenny Budiarso Lawson, Universitas Multimedia Nusantara

dirancang untuk deployment pada resource-constrained environments seperti
edge devices dan consumer-grade hardware [71]. Model ini dilatih
menggunakan 2 triliun tokens dari beragam korpus teks yang mencakup web
documents dalam lebih dari 140 bahasa, code repositories, dan mathematical
content dengan knowledge cutoff date pada Agustus 2024, sehingga memiliki
beragam linguistic coverage dan kemampuan multilingual yang superior
dibandingkan models pendahulunya. Gemma 3 1B mengimplementasikan
improvisasi arsitektur termasuk interleaved local-global attention mechanism
yang didesain untuk mengurangi konsumsi KV-cache memory pada long-
context inference, serta mendukung context window hingga 32,000 tokens yang
memungkinkan processing dari sejarah obrolan lebih panjang atau dokumen
[71]. Training process melibatkan teknik seperti knowledge distillation dari
model yang lebih besar, serta fase reinforcement learning yang menggunakan

multiple reward functions untuk peningkatan performa dan reasoning.

Arsitektur Gemma 3 1B mengadopsi decoder-only Transformer
architecture dengan total 1,152 hidden dimensions dan 8 attention heads yang
mengimplementasikan Grouped-Query Attention (GQA) untuk meningkatkan
efisiensi inference dengan mengurangi kebutuhan memory bandwidth selama
autoregressive generation [71]. Model menggunakan Gemini 2.0
SentencePiece tokenizer dengan vocabulary size 262,000 tokens yang
dioptimasi untuk menangani multilingual text, digit numerikal, dan whitespace
characters, sehingga meningkatkan efisiensi tokenization. Layer normalization
menggunakan RMSNorm yang diaplikasikan pada pre-norm dan post-norm
positions untuk menstabilkan training dynamics, dengan perubahan arsitektural
dari Gemma 2 yaitu penggantian dari soft-capping activation dengan QK-
normalization mechanism yang menormalisasi query dan key matrices sebelum
attention computation untuk mencegah ketidakstabilan numerical pada large-
scale training. Input processing melibatkan tokenization dari text input menjadi
barisan token IDs, diikuti dengan embedding lookup tokens ke high-dimensional
vector representations, kemudian melewati tumpukan Transformer decoder
layers yang terdiri dari self-attention mechanism untuk modeling contextual

25

Inference-Level Optimization..., Kenny Budiarso Lawson, Universitas Multimedia Nusantara

relationships dan feed-forward network untuk feature transformation. Proses
generasi menggunakan autoregressive decoding di mana model memprediksi

token berikutnya berdasarkan pada tokens yang di-generate sebelumnya.

2.3.3 VITS MMS

VITS (Variational Inference with adversarial learning for end-to-end Text-
to-Speech) MMS Indonesian merupakan text-to-speech synthesis model yang
dikembangkan sebagai bagian dari project Massively Multilingual Speech
(MMS) Facebook yang bertujuan untuk menyediakan teknologi speech dalam
lebih dari 1,000 bahasa termasuk bahasa Indonesia [72]. Model ini
mengimplementasikan end-to-end speech synthesis architecture yang
mengatasi keterbatasan two-stage TTS systems yang tradisional dengan
menggabungkan acoustic modeling dan vocoding dalam single unified
framework, sehingga menghilangkan intermediate representation seperti mel-
spectrogram dan mengaktifkan direct waveform generation dari teks input.
VITS memanfaatkan conditional variational autoencoder framework yang
augmented dengan normalisasi flows dan adversarial training untuk
meningkatkan kekuaran ekspresif dari generative modeling, memungkinkan
sintesis dari speech waveforms yang natural dan ekspresif [73]. Model ini dilatih
secara monolingual untuk setiap bahasa dengan beberapa checkpoint, di mana
VITS MMS Indonesian di-trained menggunakan data speech berbahasa
Indonesia yang dikumpulkan melalui MMS-lab yang memanfaatkan
pembacaan teks sebagai sumber data utama. Karakteristik dari VITS adalah
kemampuannya untuk membahas one-to-many nature dari masalah TTS di
mana teks input yang sama dapat diucapkan dengan beberapa cara dengan nada
dan ritme yang berbeda, melalui implementasi dari stochastic duration

predictor yang generate pola ucapan yang berbeda dari teks input serupa.

26

Inference-Level Optimization..., Kenny Budiarso Lawson, Universitas Multimedia Nusantara

Raw Waveform
Raw 5
Waveform y Monotonic I I I . D fo(2)
Alignment ¥ z
e Search:— ___________ :
\ Decoder | ! 000! (2] d
1 1
A
T " 183038 |1
pEEED - -~ + 2.2
q = 1
990 .- 990 -
Encoder A ceil
stop (78121051
Linear . X .
Xiin Gradient Stochastic -
Spectrogram . . I:I Poxe BN slng-::i:f

Predictor

-
Noise

Phonemes Crext

Predictor

Text Encoder

Phonemes Crext Noise

(a) Training procedure (b) Inference procedure

Gambar 2. 2 Arsitektur Model VITS [73]

Sesuai dengan Gambar 2.2, arsitektur VITS mengadopsi struktur
conditional variational autoencoder yang terdiri dari tiga komponen utama:
posterior encoder yang mengkodekan bentuk gelombang ucapan referensi
menjadi representasi laten, conditional prior yang memodelkan distribusi
variabel laten yang dikondisikan pada teks input, dan decoder yang
menghasilkan bentuk gelombang ucapan dari variabel laten [73]. Pipeline
pemrosesan teks dimulai dengan tokenisasi menggunakan VitsTokenizer yang
disesuaikan untuk bahasa Indonesia, mengonversi teks menjadi representasi
fonem yang di-embed menjadi vektor fitur berdimensi tinggi. Komponen
conditional prior menggunakan text encoder berbasis Transformer untuk
mengekstraksi informasi kontekstual, diikuti modul normalisasi flow dengan
multiple affine coupling layers untuk meningkatkan fleksibilitas distribusi prior,
dan projection layer untuk memetakan representasi ke dimensi ruang laten.
Stochastic duration predictor mengimplementasikan model generatif berbasis
flow yang memprediksi durasi fonem dengan menggabungkan variabilitas
melalui dua variabel acak, memungkinkan model menghasilkan ucapan dengan
variasi ritme natural. Posterior encoder memproses mel-spectrogram referensi
yang dihitung dari bentuk gelombang ground truth menggunakan Short-Time
Fourier Transform dengan tumpukan WaveNet residual blocks, di mana

penyelarasan teks-audio dicapai melalui algoritma Monotonic Alignment

27

Inference-Level Optimization..., Kenny Budiarso Lawson, Universitas Multimedia Nusantara

Search (MAS) yang secara otomatis menemukan korespondensi optimal tanpa
memerlukan anotasi forced alignment eksternal. Decoder menggunakan
arsitektur identik dengan generator HiFi-GAN, terdiri dari tumpukan
transposed convolutional layers dengan multi-receptive field fusion untuk
mengonversi representasi laten menjadi bentuk gelombang audio mentah pada
sampling rate 16kHz.

2.3.4 Quantization

Quantization merupakan salah satu teknik kompresi model yang digunakan
dalam deep learning untuk meningkatkan efisiensi komputasi dengan
menurunkan presisi representasi numerik pada bobot maupun aktivasi jaringan
saraf. Teknik ini mengubah representasi floating-point seperti FP32 atau FP16
menjadi representasi integer berdimensi rendah, misalnya INT8 atau INT4,
sehingga ukuran model berkurang secara signifikan dan proses inference
menjadi lebih cepat dengan konsumsi memori serta daya yang lebih rendah
[74]. Quantization banyak digunakan dalam deployment model pada perangkat
berdaya rendah seperti CPU, edge device, maupun perangkat mobile karena
mampu menghasilkan percepatan komputasi tanpa penurunan akurasi yang
berarti. Selain itu, quantization memungkinkan model deep learning tetap dapat
dijalankan secara real-time, bahkan ketika lingkungan komputasi terbatas,
sehingga menjadi salah satu pendekatan optimasi paling penting dalam
implementasi model modern, termasuk model berbasis transformer,

convolutional network, maupun model generatif.

Salah satu pendekatan quantization yang paling umum digunakan adalah
Post-training Quantization (PTQ), yaitu metode yang diterapkan setelah model
selesai dilatih tanpa memerlukan proses pelatihan ulang [75]. PTQ bekerja
dengan memetakan bobot dan aktivasi model ke skala integer melalui proses
scaling dan rounding, sehingga model dapat dijalankan menggunakan operasi
aritmatika integer yang jauh lebih efisien dibanding representasi floating-point.
Teknik ini mencakup beberapa varian seperti dynamic quantization, static
quantization, dan weight-only quantization, yang masing-masing menawarkan
kompromi berbeda antara akurasi dan efisiensi. Karena PTQ tidak memerlukan

28

Inference-Level Optimization..., Kenny Budiarso Lawson, Universitas Multimedia Nusantara

akses ke data pelatihan dan dapat diaplikasikan secara langsung pada model
terlatih, pendekatan ini menjadi pilihan utama untuk mengoptimalkan model
yang kompleks atau berukuran besar, serta secara luas digunakan dalam sistem

yang menuntut inference cepat pada perangkat dengan sumber daya terbatas.

Berikut merupakan beberapa teknik turunan yang termasuk sebagai bagian

dari post-training quantization:

1. Dynamic Quantization

Dynamic quantization merupakan teknik yang menerapkan penurunan
presisi numerik terutama pada bobot (weights) model, sementara aktivasi
dikonversi secara dinamis selama proses inference. Teknik ini tidak
memerlukan data Kkalibrasi dan dapat diterapkan langsung pada model
terlatih tanpa proses tambahan, sehingga menjadi metode yang paling
mudah digunakan dalam konteks post-training quantization [76]. Pada
dynamic quantization, bobot model biasanya diturunkan ke representasi
INT8, sedangkan aktivasi tetap dihitung dalam representasi floating-point
sehingga menjaga stabilitas numerik sambil tetap memperoleh peningkatan
efisiensi komputasi. Pendekatan ini memberikan peningkatan kecepatan
inference pada CPU dan pengurangan ukuran model yang signifikan,
meskipun hasilnya tidak setinggi static quantization dalam hal kompresi
menyeluruh. Dynamic quantization banyak digunakan pada model berbasis
transformer dan recurrent neural networks yang sensitif terhadap
penurunan presisi aktivasi, sehingga memberikan keseimbangan antara

efisiensi dan akurasi.

2. Static Quantization (Full Integer Quantization)

Static quantization, atau full integer quantization, merupakan teknik
yang mengonversi bobot dan aktivasi sekaligus ke representasi integer
melalui proses kalibrasi menggunakan sampel data. Berbeda dengan
dynamic quantization, teknik ini memerlukan data representatif untuk
menentukan rentang nilai (range calibration) sehingga proses quantization

lebih akurat dan stabil [75]. Karena aktivasi dan bobot keduanya dikonversi

29

Inference-Level Optimization..., Kenny Budiarso Lawson, Universitas Multimedia Nusantara

ke INT8, perangkat inference dapat melakukan operasi komputasi integer
penuh, sehingga memberikan peningkatan performa yang lebih besar
dibanding dynamic quantization, terutama pada CPU dan edge device.
Static quantization juga memungkinkan optimasi seperti per-tensor dan
per-channel quantization, yang menghasilkan distribusi nilai integer yang
lebih presisi. Meskipun teknik ini memberikan kompresi dan percepatan
terbaik dalam post-training, akurasi model dapat menurun jika data
kalibrasi tidak representatif atau jika model sangat sensitif terhadap

perubahan presisi numerik.

3. Quantization-Aware Training

Quantization-Aware Training (QAT) merupakan teknik advanced
guantization yang mensimulasikan efek quantization selama proses
pelatihan, sehingga model dapat menyesuaikan bobotnya terhadap noise
yang diperkenalkan oleh representasi integer[74]. Pada QAT, operasi
quantization seperti rounding dan clipping disimulasikan dalam forward
pass, tetapi parameter model tetap diperbarui menggunakan gradien
floating-point, sehingga memungkinkan model mempertahankan akurasi
yang jauh lebih tinggi dibandingkan post-training quantization
konvensional. Teknik ini secara umum menghasilkan performa mendekati
model full-precision, bahkan ketika bobot dan aktivasi dikompresi ke INT8
atau lebih rendah. QAT cocok untuk model dengan struktur kompleks
seperti transformer, convolutional networks, atau vocoder TTS, tetapi
memerlukan proses pelatihan ulang sehingga lebih mahal secara komputasi.
Karena implementasinya lebih rumit, QAT biasanya diterapkan pada
skenario industri atau model produksi yang sangat sensitif terhadap

penurunan akurasi.

4. Weight-Only Quantization

Weight-only quantization merupakan teknik yang hanya menurunkan
presisi bobot model, sementara aktivasi tetap menggunakan presisi floating-
point. Teknik ini banyak digunakan pada model bahasa dan model encoder-
decoder besar karena memberikan efisiensi memori yang substansial tanpa

30

Inference-Level Optimization..., Kenny Budiarso Lawson, Universitas Multimedia Nusantara

memengaruhi stabilitas aktivasi selama inference. Representasi bobot yang
umum digunakan meliputi INT8, INT4, bahkan format ultra-low precision
seperti GPTQ dan AWQ yang menggunakan skema quantization adaptif
[77]. Weight-only quantization menghasilkan kompresi model yang sangat
besar dengan penurunan akurasi minimal, dan sangat efektif ketika
dikombinasikan dengan runtime yang mendukung kernel integer
teroptimasi. Teknik ini telah menjadi praktik umum dalam deployment LLM
di perangkat CPU maupun GPU low-end karena tidak memerlukan data

kalibrasi dan dapat diaplikasikan secara langsung pada model terlatih.

2.3.5 ONNX Runtime Optimization

ONNX Runtime merupakan high-performance inference engine yang
dirancang untuk mengeksekusi model deep learning secara efisien di
berbagai platform komputasi. Framework ini mendukung model dengan
format ONNX (Open Neural Network Exchange), sebuah standar terbuka
yang memungkinkan interoperabilitas lintas framework seperti PyTorch,
TensorFlow, dan JAX[55]. Keunggulan utama ONNX Runtime adalah
kemampuannya mengoptimalkan eksekusi model melalui serangkaian
teknik percepatan seperti graph optimization, operator fusion, dan
pemilihan execution provider yang sesuai dengan perangkat keras yang
digunakan. Dengan optimasi ini, model dapat berjalan lebih cepat, konsumsi
memori berkurang, dan latency inference menjadi lebih rendah, sehingga
ONNX Runtime banyak digunakan pada aplikasi real-time dan perangkat
dengan sumber daya terbatas. Selain itu, ONNX Runtime mendukung
akselerasi CPU maupun GPU serta memiliki ekstensi khusus seperti ONNX
Runtime Mobile, yang semakin meningkatkan fleksibilitas penggunaan pada

skenario edge computing dan embedded systems.

Secara teknis, ONNX Runtime melakukan optimasi model melalui
beberapa tahapan yang mencakup graph simplification, constant folding,
node elimination, serta operator fusion, yaitu penggabungan beberapa
operasi menjadi satu kernel komputasi untuk mengurangi overhead
eksekusi. Optimasi ini dijalankan pada intermediate representation dari

31

Inference-Level Optimization..., Kenny Budiarso Lawson, Universitas Multimedia Nusantara

model ONNX, sehingga menghasilkan optimized computation graph yang
lebih ringkas dan efisien. Selain itu, ONNX Runtime mendukung execution
provider seperti CPUExecutionProvider, CUDAEXxecutionProvider, atau
TensorRTExecutionProvider yang memilih backend eksekusi paling
optimal sesuai perangkat keras. Runtime juga menyediakan dukungan untuk
quantization, termasuk dynamic gquantization dan static quantization, yang
semakin menurunkan latency dan kebutuhan memori pada saat inference.
Kombinasi teknik optimasi graph, pemilihan kernel yang efisien, dan
integrasi quantization memungkinkan ONNX Runtime memberikan
peningkatan performa signifikan pada model deep learning, terutama pada

aplikasi TTS atau model sejenis dengan struktur komputasi kompleks.

2.3.6 CTranslate2 Optimization

CTranslate2 merupakan sebuah high-performance inference engine
yang dirancang khusus untuk mengeksekusi model sequence-to-sequence
pada tahap deployment, seperti ASR dan neural machine translation.
Berbeda dengan deep learning framework umum seperti PyTorch yang
dirancang untuk mendukung proses pelatihan dan inferensi secara fleksibel,
CTranslate2 dikembangkan sebagai standalone inference runtime berbasis
C++ yang berfokus pada efisiensi eksekusi model [78]. Pendekatan ini
memungkinkan penghilangan berbagai overhead yang umum terdapat pada
training-oriented frameworks, seperti autograd engine, dynamic
computation graph, dan abstraksi tensor tingkat tinggi, sehingga proses
inferensi dapat dijalankan secara lebih ringan, deterministik, dan efisien.
CTranslate2 mendukung berbagai arsitektur dan format model populer,
termasuk Whisper dan model OpenNMT, serta menyediakan kompatibilitas
dengan backend CPU dan GPU, menjadikannya sesuai untuk deployment
pada lingkungan dengan keterbatasan sumber daya maupun aplikasi yang
menuntut latency rendah dan throughput tinggi.

Keunggulan performa CTranslate2 dicapai melalui kombinasi
implementasi runtime C++ yang teroptimasi dan pemanfaatan pustaka
komputasi tingkat rendah yang disesuaikan dengan arsitektur perangkat

32

Inference-Level Optimization..., Kenny Budiarso Lawson, Universitas Multimedia Nusantara

keras target. Pada eksekusi berbasis CPU, CTranslate2 memanfaatkan
pustaka numerik seperti Intel MKL untuk mengakselerasi operasi linear
melalui rutin BLAS dan vektorisasi SIMD, serta menerapkan memory
alignment dan efficient memory layout untuk meminimalkan cache miss dan
meningkatkan data locality. Selain itu, CTranslate2 mengintegrasikan
berbagai teknik optimasi inference seperti weight-only quantization pasca-
pelatihan, operator fusion, decoder state caching, dan dynamic batching,
yang secara kolektif berkontribusi pada pengurangan latency, penurunan
konsumsi memori, dan peningkatan throughput tanpa memerlukan proses

pelatihan ulang atau fine-tuning model [78].

2.3.7 GGUF Quantization Format

GGUF (General Graph Unified Format) merupakan format representasi
model yang digunakan untuk mendukung inference Large Language
Models secara efisien, khususnya pada skenario deployment berbasis CPU
dan sistem dengan keterbatasan sumber daya. Format ini digunakan sebagai
representasi model hasil optimasi post-training, yang memungkinkan
penyimpanan bobot terkuantisasi beserta metadata arsitektur dan informasi
tensor dalam satu berkas terstruktur, sehingga memfasilitasi proses model
loading dan eksekusi model yang lebih deterministik dan efisien [79], [80].
Penggunaan format GGUF telah dilaporkan dalam studi optimasi LLM yang
mengevaluasi dampak quantization terhadap performa model pada skenario
penggunaan nyata, terutama untuk deployment model berskala besar pada
perangkat konsumen [80].

Secara teknis, GGUF merepresentasikan bobot model yang telah
melalui proses weight-only quantization, seperti INT8 atau INT4, sementara
aktivasi tetap diproses dalam presisi floating-point pada saat inference.
Pendekatan ini memungkinkan pengurangan memory footprint model
secara signifikan tanpa memerlukan proses quantization-aware training.
Struktur file GGUF menyimpan parameter quantization dan metadata
tensor secara eksplisit, sehingga karakteristik quantization dan implikasinya
terhadap perilaku model dapat dianalisis secara sistematis pada runtime

33

Inference-Level Optimization..., Kenny Budiarso Lawson, Universitas Multimedia Nusantara

inference [79]. Dengan demikian, GGUF diposisikan sebagai format model
yang merepresentasikan hasil post-training quantization dan mendukung

eksekusi LLM yang efisien pada lingkungan inference berbasis CPU [79],
[80].

2.4 Rumus Metrik Evaluasi

Dalam evaluasi performa sistem voice conversational Al, berbagai metrik
digunakan untuk menilai kualitas dan efisiensi komponen utama sistem, yaitu ASR,
SLM, dan TTS. Metrik evaluasi ini mencakup pengukuran akurasi transkripsi,
kecepatan pemrosesan, kualitas respons bahasa alami, serta kualitas keluaran audio.

Berikut adalah metrik evaluasi yang digunakan dalam penelitian ini.

1. Word Error Rate (WER)

WER merupakan metrik utama yang digunakan untuk mengevaluasi akurasi
model ASR dalam mentranskripsikan ujaran menjadi teks. WER mengukur
jumlah kesalahan prediksi berdasarkan tiga jenis kesalahan: substitusi,
penghapusan, dan penyisipan kata [81]. Nilai WER yang lebih rendah
menunjukkan performa ASR yang lebih baik.

S+D+1
WERzT x 100

Rumus 2. 1 Evaluasi Word Error Rate
Legend dari 2.1 Evaluasi Word Error Rate adalah sebagai berikut:
Substitution (S): Jumlah kata salah ganti

a
b. Deletions (D): Jumlah kata hilang

c. Insertions (I): Jumlah kata tambahan

o

N: Total kata dalam transkripsi referensi

2. Character Error Rate (CER)

Character Error Rate (CER) digunakan untuk mengevaluasi tingkat
kesalahan transkripsi pada level karakter dengan membandingkan hasil
transkripsi model terhadap transkrip ground truth [81]. Metrik ini menghitung

34

Inference-Level Optimization..., Kenny Budiarso Lawson, Universitas Multimedia Nusantara

proporsi kesalahan karakter yang terjadi selama proses pengenalan ujaran. Nilai
CER yang lebih rendah menunjukkan kualitas transkripsi yang lebih baik.

Neyp + Ny + N;
CER = sub del ins x 100

N char

Rumus 2. 2 Evaluasi Character Error Rate

Legend dari 2.2 Evaluasi Character Error Rate adalah sebagai berikut:

@

Ng,»: Jumlah kesalahan substitution pada level karakter

—h

N 4.;: Jumlah kesalahan deletion pada level karakter

N;,s: Jumlah kesalahan insertion pada level karakter

5 oK@

N char- Jumlah total karakter pada transkrip ground truth

3. Real-time Factor (RTF)

RTF digunakan untuk mengukur kecepatan proses inference, terutama pada
ASR dan TTS. RTF menunjukkan perbandingan antara waktu pemrosesan
model terhadap durasi audio asli. Model dapat dikatakan berjalan secara real-

time apabila nilai RTF sama dengan atau lebih kecil dari 1 [82].

Tprocess

RTF =
Taudio

Rumus 2. 3 Evaluasi Real-time Factor

Legend dari rumus 2.3 Evaluasi Real-time Factor adalah sebagai berikut:

a. Tprocess: Waktu proses inference (detik)

b. Taudio: Durasi audio asli (detik)

4. Latency/ Inference Time (Untuk SLM & TTS)

Latency mengukur waktu yang diperlukan sistem untuk menghasilkan
keluaran setelah menerima input. Pada SLM, latency dihitung sejak teks
masukan diterima hingga respons selesai dihasilkan, sementara pada TTS
dihitung sejak teks diterima hingga audio selesai diproduksi [83]. Latency

35

Inference-Level Optimization..., Kenny Budiarso Lawson, Universitas Multimedia Nusantara

menjadi indikator penting untuk aplikasi real-time seperti voice conversational
Al.

Latency = Toutput — Tinput

Rumus 2. 4 Evaluasi Latency

Legend dari rumus 2.4 Evaluasi Latency adalah sebagai berikut:

a. Tinput: Waktu input diterima

b. Touput: Waktu output selesai diproduksi

5. Token Generation Rate (Tokens per Second)

Token Generation Rate digunakan untuk mengevaluasi efisiensi model
bahasa dalam menghasilkan teks. Metrik ini mengukur jumlah token bahasa
yang dihasilkan model per detik [84]. Nilai yang lebih tinggi menunjukkan

performa inference yang lebih cepat dan efisien.

N tokens

TokenRate =

Tgeneration
Rumus 2. 5 Evaluasi Token Generation Rate

Legend dari rumus 2.5 Evaluasi Token Generation Rate adalah sebagai
berikut:

a. Niokens: Jumlah token yang dihasilkan

b. Tgeneration: Waktu generasi respons (detik)

6. Model Size

Model size digunakan untuk mengevaluasi kebutuhan penyimpanan model
pada tahap deployment. Metrik ini diukur sebagai ukuran file model setelah
konversi dan/atau quantization. Nilai model size yang lebih kecil menunjukkan

efisiensi memori yang lebih baik [58].
ModelSize = Sizeg;,
Rumus 2. 6 Evaluasi Model Size

36

Inference-Level Optimization..., Kenny Budiarso Lawson, Universitas Multimedia Nusantara

Legend dari rumus 2.6 Evaluasi Model Size adalah sebagai berikut:

a. Sizes;,: Ukuran file model dalam satuan megabytes (MB) atau

gigabytes (GB)

2.5 Tools/software yang digunakan

2.5.1 Python

Python merupakan bahasa pemrograman berorientasi objek yang banyak
digunakan dalam pengembangan aplikasi modern karena sintaksnya yang
sederhana, fleksibel, serta mudah dipahami oleh pemula maupun pengembang
berpengalaman. Python memiliki ekosistem library yang sangat luas dan
mendukung berbagai kebutuhan komputasi, termasuk data processing,
scientific computing, machine learning, hingga pemrosesan suara, sehingga
menjadikannya salah satu bahasa pemrograman paling populer dalam penelitian
dan industry [85]. Kemampuan Python untuk berjalan lintas platform, didukung
oleh komunitas global yang besar, serta keterhubungannya dengan berbagai
framework dan runtime engine menjadikannya pilihan utama dalam
pengembangan sistem berbasis Al dan pemodelan algoritmik. Selain itu, Python
mengintegrasikan manajemen memori otomatis dan struktur data tingkat tinggi,
memungkinkan pengembang membangun prototipe maupun aplikasi produksi
secara cepat, efisien, dan hemat biaya, sesuai dengan tuntutan implementasi
teknologi berbasis komputasi modern.

2.5.2 Visual Studio Code

Visual Studio Code (VS Code) merupakan source-code editor lintas
platform yang dikembangkan oleh Microsoft dan telah menjadi salah satu
lingkungan pengembangan paling populer karena ringan, fleksibel, serta
memiliki dukungan extension yang luas. VS Code menyediakan fitur-fitur
modern seperti syntax highlighting, intellisense, debugger terintegrasi, dan
version control berbasis Git, sehingga memudahkan pengembang dalam
membangun, menguji, dan memelihara aplikasi secara efisien. Editor ini juga

mendukung berbagai bahasa pemrograman termasuk Python, JavaScript, dan

37

Inference-Level Optimization..., Kenny Budiarso Lawson, Universitas Multimedia Nusantara

C++, serta memungkinkan integrasi langsung dengan runtime environment dan
tooling lain melalui marketplace open-source. Selain itu, penelitian
menunjukkan bahwa VS Code memberikan produktivitas tinggi bagi
pengembang karena arsitekturnya yang modular, kustomisasi antarmuka yang
fleksibel, dan performa yang optimal untuk proyek berskala kecil hingga
menengah [86]. Dengan kombinasi fitur intuitif dan ekosistem pendukung yang
kuat, VS Code menjadi pilihan utama dalam pengembangan perangkat lunak
modern, termasuk dalam konteks penelitian dan implementasi sistem berbasis
Al.

2.5.3 Hardware yang Digunakan
Penelitian ini dilakukan dengan ditenagai oleh beberapa komponen
hardware, yaitu sebagai berikut:

1. CPU : Intel® Core™ i5-1235U
2. Memory :16 GB RAM
3. OS : Windows 11
4, Storage :512 GB SSD

38

Inference-Level Optimization..., Kenny Budiarso Lawson, Universitas Multimedia Nusantara

