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BAB II  

LANDASAN TEORI 

  

 Penelitian Terdahulu 

Berikut merupakan penelitian terdahulu yang dapat mendukung dilakukannya 

penelitian ini: 

Tabel 2. 1 Penelitian Terdahulu 

No Judul dan peneliti 

Artikel 

Nama 

Jurnal 

Metode Hasil Penelitian 

1 Judul Artikel: 

Real-time Avatar-

Based Speech-to-

Speech 

Conversational AI 

Tutor on AI PC 

 

Nama Peneliti: Mee 

Sim Lai et al. 

IEEE 15th 

Symposiu

m on 

Computer 

Applicatio

ns & 

Industrial 

Electronic

s (ISCAIE 

2025) 

Arsitektur 

multimodal 

cascaded yang 

mencakup 

Noise Reduction 

→ ASR 

(Whisper) → 

RAG → LLM 

(Llama3 8B) → 

TTS (Piper) → 

Avatar 

(Wav2Lip). 

Sistem 

menggunakan 

pipeline 

modular dengan 

frontend–

backend 

terpisah, model 

via HTTP API, 

dan proses 

avatar sinkron 

menggunakan 

multithreading. 

Arsitektur Speech-

to-Speech cascaded 

dapat berjalan real-

time di perangkat 

edge (AI PC). 

Integrasi semua 

komponen 

menghasilkan voice 

tutor interaktif 

berbasis avatar yang 

responsif, dengan 

usability score tinggi 

(CUS = 2.72). 

Sistem berhasil 

menggabungkan 

pengenalan suara, 

reasoning berbasis 

LLM, dan TTS 

dengan lip-sync 

avatar secara real-

time. 

2 Judul Artikel: 

VoiceTalk: A No-

Code Approach for 

Creating Voice-

Controlled Smart 

Home Applications 

 

IEEE 

Open 

Journal of 

the 

Computer 

Society 

ASR (Whisper, 

Web Speech 

API) → open-

source SLM 

(Llama 3.2 3B) 

→ TTS; 

integrasi no-

Whisper Medium + 

Llama 3.2 3B 

menghasilkan error 

voice-to-text hampir 

nol; arsitektur 

mudah 
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No Judul dan peneliti 

Artikel 

Nama 

Jurnal 

Metode Hasil Penelitian 

Nama Peneliti: 

Yun-Wei Lin et al. 

code smart 

home 

diintegrasikan untuk 

aplikasi smart home 

3 Judul Artikel: 

EmoSDS: Unified 

Emotionally 

Adaptive Spoken 

Dialogue System 

Using Self-

Supervised Speech 

Representations 

 

Nama Peneliti: 

Jaehwan Lee et al. 

Future 

Internet 

ASR → LLM 

open source 

(SpeechGPT, 

Align-SLM, 

Gemma/Mistral

/Zephyr) → 

TTS 

(VITS/HiFi-

GAN); integrasi 

SSL & 

emotional 

adaptation 

Pipeline cascaded 

meningkatkan 

ekspresivitas dan 

naturalness dialog; 

arsitektur modular, 

mudah diadaptasi 

untuk berbagai 

domain 

4 Judul Artikel: 

DQ-Whisper: Joint 

Distillation and 

Quantization for 

Efficient 

Multilingual Speech 

Recognition 

 

Nama Peneliti: 

Hang Shao et al. 

 IEEE 

SLT 2024 

Quantization 

dan distillation 

Model Whisper 

dikompresi hingga 

5,18x dengan 

penurunan performa 

minimal; inference 

lebih efisien tanpa 

mengorbankan 

akurasi multibahasa 

5 Judul Artikel: 

Benchmarking 

Emerging Deep 

learning 

Quantization 

Methods for Energy 

Efficiency 

 

Nama Peneliti: 

Saurabhsingh 

Rajput & Tushar 

Sharma 

IEEE 

ICSA-C 

2024 

GGUF (GPT-

Generated 

Unified Format) 

GGUF terbukti 

sebagai salah satu 

metode quantization 

paling efisien secara 

energi untuk 

inference model 

besar 

6 Judul Artikel: 

Conversational 

Payments on UPI 

Apps: A Pipeline 

Approach 

Leveraging ASR 

and NLP 

Techniques 

 

ACM 

CODS-

COMAD 

2024 

CTranslate2 

untuk 

percepatan 

inference 

Penggunaan 

CTranslate2 

mempercepat 

inference model 

ASR (Whisper) dan 

NMT, menurunkan 

latency hingga ~600 

ms pada aplikasi 

nyata 



 

 

12 
Inference-Level Optimization…, Kenny Budiarso Lawson, Universitas Multimedia Nusantara 

 

No Judul dan peneliti 

Artikel 

Nama 

Jurnal 

Metode Hasil Penelitian 

Nama Peneliti: Sai 

Kasyap Kamaraju 

et al. 

7 Judul Artikel: 

Toward Real-time 

and Efficient 

Perception 

Workflows in 

Software-Defined 

Vehicles 

 

Nama Peneliti: 

Reza Sumaiya et al. 

IEEE 

Internet of 

Things 

Journal 

Pruning, 

multiprecision 

quantization 

(FP32, FP16, 

INT8), ONNX 

Runtime, 

TensorRT 

Meningkatkan 

kecepatan inference 

hingga 18x dan 

throughput 16,5x, 

mengurangi 

penggunaan 

GPU/memori hingga 

30% dengan dampak 

minimal pada 

akurasi 

8 Judul Artikel: I-

ViT: Integer-only 

Quantization for 

Efficient Vision 

Transformer 

Inference 

 

Nama Peneliti: 

Zhikai Li & Qingyi 

Gu 

IEEE/CV

F ICCV 

2022 

Integer-only 

INT8 

quantization 

dengan dyadic 

arithmetic, 

approximasi 

operasi non-

linear 

(Shiftmax, 

ShiftGELU) 

Kecepatan inference 

3,7–4,1x lebih cepat 

dibanding FP, 

akurasi setara atau 

lebih baik dari 

model full precision 

9 Judul Artikel: 

ESPnet-ONNX: 

Bridging a Gap 

Between Research 

and Production 

 

Nama Peneliti: 

Masao Someki et 

al. 

APSIPA 

ASC 2022 

Konversi model 

PyTorch ke 

ONNX, node 

fusion, 

quantization 

parameter 

Percepatan inference 

1,3–2x pada tugas 

ASR, TTS, dan lain-

lain tanpa pelatihan 

ulang dan tanpa 

penurunan performa 

10 Judul Artikel: 

Using Quantized 

Neural Network for 

Speaker 

Recognition on 

Edge Computing 

Devices 

 

Nama Peneliti: 

Tongwei Dai 

Journal of 

Physics 

Conferenc

e Series 

Post-training 

quantization 

dengan 

FBGEMM (per-

channel) dan 

QNNPACK 

(per-tensor). 

Konversi FP32 

ke INT8 dengan 

linear mapping. 

Arsitektur 

VGGNet pada 

Pengurangan ukuran 

model 3x lebih kecil, 

inference speed 1.5x 

lebih cepat 

dibandingkan 

floating-point model. 

Analisis power 

consumption 

menunjukkan edge 

devices (ASIC) 

mencapai <1W 

dengan throughput 

10-100 GOPS. 



 

 

13 
Inference-Level Optimization…, Kenny Budiarso Lawson, Universitas Multimedia Nusantara 

 

No Judul dan peneliti 

Artikel 

Nama 

Jurnal 

Metode Hasil Penelitian 

dataset 

VoxCeleb. 

11 Judul Artikel: 

Empowering Large 

Language Models 

to Edge 

Intelligence: A 

Survey of Edge 

Efficient LLMs and 

Techniques 

 

Nama Peneliti: Rui 

Wang, et al. 

ScienceDi

rect 

Survey 

komprehensif 

teknik model 

compression 

(quantization, 

pruning, 

distillation, 

low-rank 

decomposition), 

inference 

optimization, 

on-device 

inference 

engines, dan 

cloud-edge 

collaborative 

frameworks. 

Identifikasi 4 

tantangan utama 

edge deployment 

(computational 

resources, memory 

footprint, thermal 

constraints, 

connectivity). 

Keunggulan edge: 

latency reduction, 

privacy 

enhancement, 

bandwidth 

efficiency, offline 

capability. 

12 Judul Artikel: A 

Survey on 

Optimization 

Techniques for 

Edge Artificial 

Intelligence (AI) 

 

Nama Peneliti: Rui 

Wang, et al. 

Sensors 

(MDPI) 

Kategorisasi 

komprehensif 

optimasi: 

hardware 

optimization 

(CPU/GPU/FP

GA/ASIC/TPU)

, federated 

learning, model 

optimization 

(pruning, 

quantization, 

weight sharing, 

matrix 

decomposition), 

hyperparameter 

tuning, dan 

energy 

efficiency 

methods. 

INT8/INT4/mixed-

precision 

quantization trade-

offs terdokumentasi. 

CPU inference 

dengan INT8 

memberikan best 

performance-per-

watt untuk edge 

devices. 

 

Arsitektur voice conversational AI berbasis pipeline cascaded (ASR, 

LLM/SLM, dan TTS) merupakan pendekatan yang efektif dan fleksibel dalam 

berbagai skenario aplikasi. Sistem speech-to-speech tutor berbasis avatar real-time 
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telah membuktikan bahwa kombinasi modul Noise Reduction, Whisper, RAG–

LLM, serta TTS dapat menghasilkan interaksi suara yang natural, responsif, dan 

dapat dijalankan pada perangkat edge secara efisien [32]. Pada aplikasi smart home, 

integrasi Whisper dengan SLM open-source dalam pipeline ASR–SLM–TTS 

menghasilkan performa transkripsi yang sangat akurat serta kemudahan integrasi 

dengan sistem kendali perangkat rumah pintar [33]. Sementara itu, pengembangan 

emotionally adaptive dialogue systems berbasis pipeline ASR, LLM, dan TTS 

menunjukkan bahwa penambahan representasi suara berbasis self-supervised 

learning mampu meningkatkan naturalness dan ekspresivitas interaksi suara [34]. 

Secara keseluruhan, temuan-temuan tersebut menegaskan bahwa arsitektur 

cascaded ASR, LLM/SLM, dan TTS adalah fondasi yang kuat, modular, serta dapat 

disesuaikan untuk berbagai kebutuhan pengembangan voice conversational AI 

modern. 

Beberapa penelitian menunjukkan bahwa optimasi inference pada Whisper 

dapat dilakukan melalui berbagai pendekatan yang berfokus pada kompresi model, 

efisiensi energi, dan percepatan eksekusi di perangkat dengan sumber daya terbatas. 

Pendekatan quantization-distillation terbukti mampu mengurangi ukuran model 

secara signifikan tanpa menurunkan akurasi secara berarti, sehingga menghasilkan 

performa inference yang lebih ringan dan sesuai untuk deployment pada lingkungan 

komputasi rendah [35]. Penelitian lain juga menunjukkan bahwa penggunaan 

format model yang dioptimalkan seperti GGUF dapat meningkatkan efisiensi 

memori dan konsumsi energi selama inference, menjadikannya salah satu pilihan 

terbaik untuk menjalankan model berukuran besar pada perangkat edge [36]. Selain 

itu, percepatan inference melalui framework seperti CTranslate2 telah 

menghasilkan latency yang sangat rendah dalam aplikasi real-time, menunjukkan 

bahwa optimasi berbasis runtime dapat memberikan peningkatan performa yang 

substansial pada sistem yang mengandalkan pemrosesan suara secara langsung 

[37]. Temuan-temuan ini menegaskan bahwa optimasi Whisper melalui 

quantization, format model ringkas, dan percepatan runtime merupakan landasan 

penting dalam meningkatkan efisiensi ASR pada sistem voice conversational AI 

modern. 
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Optimasi inference pada small language models (SLM) dapat dicapai melalui 

teknik post-training quantization yang tidak memerlukan pelatihan ulang model. 

GGUF (GPT-Generated Unified Format) terbukti sebagai salah satu metode 

quantization paling efisien secara energi untuk inference model besar, dengan 

kemampuan mengurangi presisi numerik bobot model sambil mempertahankan 

kualitas output yang acceptable [36]. Format GGUF dirancang khusus untuk 

mendukung berbagai tingkat quantization seperti INT8, INT4, dan mixed-

precision, memungkinkan trade-off yang fleksibel antara ukuran model, kecepatan 

inference, dan akurasi prediksi. Implementasi GGUF pada SLM seperti Gemma 3 

1B dapat dilakukan melalui konversi model ke format binary yang teroptimasi, 

disertai dengan metadata quantization yang memfasilitasi loading dan eksekusi 

model secara efisien pada perangkat dengan sumber daya komputasi terbatas. 

Secara keseluruhan, temuan-temuan tersebut menunjukkan bahwa optimasi 

Gemma 3 1B dapat dilakukan tanpa melakukan pelatihan ulang model, melainkan 

melalui penerapan weight-only quantization berbasis GGUF yang mendukung 

deployment efisien pada lingkungan CPU-only. 

Optimasi inference pada model TTS berbasis VITS dapat dicapai melalui teknik 

kompresi dan percepatan runtime yang berfokus pada efisiensi eksekusi di 

perangkat dengan sumber daya terbatas. Pendekatan yang menggabungkan pruning 

dan multiprecision quantization dengan backend seperti ONNX Runtime dan 

TensorRT terbukti mampu meningkatkan kecepatan inference secara signifikan 

tanpa mengorbankan kualitas keluaran audio, sehingga relevan untuk deployment 

VITS dalam aplikasi real-time [31]. Teknik integer-only quantization juga telah 

ditunjukkan mampu mengurangi kompleksitas komputasi secara substansial 

dengan menjalankan seluruh operasi menggunakan aritmatika integer, sambil 

mempertahankan stabilitas akustik model, sehingga dapat diterapkan pada 

komponen VITS yang mengandalkan arsitektur transformer [38]. Selain itu, 

optimasi melalui konversi model PyTorch ke ONNX dilakukan dengan peningkatan 

seperti node fusion, graph optimization, dan quantization yang telah terbukti 

memberikan percepatan inference yang konsisten tanpa menurunkan kualitas suara 

[39], menjadikannya teknik yang sangat praktis untuk pengembangan dan produksi 
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model VITS. Secara keseluruhan, temuan-temuan ini menegaskan bahwa 

kombinasi quantization dan optimasi ONNX Runtime merupakan strategi efektif 

untuk meningkatkan efisiensi dan performa model VITS dalam sistem TTS real-

time maupun lingkungan komputasi berdaya rendah. 

Deployment voice conversational AI pada lingkungan CPU-only memiliki 

landasan ilmiah berdasarkan tiga aspek fundamental, yaitu aksesibilitas 

infrastruktur, kebutuhan privasi dan compliance, serta efisiensi operasional. 

Penelitian menunjukkan bahwa mayoritas edge devices dan local servers di lingkup 

enterprise hanya dilengkapi dengan CPU tanpa akselerasi GPU atau TPU khusus 

[25], [26]. Dalam kebutuhan deployment, khususnya untuk aplikasi telekomunikasi, 

layanan kesehatan, dan layanan finansial, pemrosesan data sensitif secara lokal 

menjadi keharusan untuk memenuhi regulasi seperti HIPAA, GDPR, dan PCI-DSS 

yang melarang transmisi raw audio ke cloud [25]. Edge-based voice AI processing 

pada CPU memungkinkan latency reduction yang signifikan, yaitu dari rata-rata 

200ms cloud latency menjadi <10ms local processing yang krusial untuk 

conversational flow yang natural [25], [40]. Studi terbaru membuktikan bahwa 

dengan teknik quantization yang tepat, khususnya INT8 quantization pada CPU, 

performa inference dapat mencapai 3-4x lebih cepat dibandingkan floating-point 

model dengan penurunan akurasi yang minim (<1%) [26], [41]. 

Kontribusi utama penelitian optimasi end-to-end pipeline pada CPU-only 

terletak pada integrasi sistematis multi-component quantization yang belum 

dieksplorasi secara komprehensif dalam literatur yang sudah ada. Penelitian 

sebelumnya cenderung fokus pada optimasi single-component atau deployment 

hybrid cloud-edge [25], [26], sementara optimasi setiap ketiga komponen (ASR, 

LLM, TTS) dengan teknik quantization yang berbeda-beda dalam satu pipeline 

terpadu masih terbatas [40]. Hasil optimasi setiap komponen menunjukkan 

performa yang sangat baik, namun integrasi antar-komponen belum terdokumentasi 

baik. 

Meskipun penelitian-penelitian sebelumnya telah menunjukkan efektivitas 

optimasi individual pada komponen ASR, LLM/SLM, dan TTS, terdapat beberapa 
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research gap yang belum terpenuhi secara komprehensif. Mayoritas penelitian 

terdahulu berfokus pada optimasi single-component dalam lingkungan hybrid 

cloud-edge atau GPU-accelerated. Meskipun arsitektur cascaded telah terbukti 

efektif, belum terdapat studi sistematis yang mengintegrasikan optimasi inference-

level secara keseluruhan komponen dengan teknik quantization yang beragam 

dalam satu pipeline terpadu. Oleh karena itu, penelitian ini berkontribusi untuk 

untuk research gap tersebut dengan mengimplementasikan dan mengevaluasi 

sistem voice conversational AI berbasis arsitektur cascaded yang dioptimasi secara 

inference-level pada lingkungan CPU-only. Kontribusi penelitian mencakup 

implementasi strategi optimasi multi-komponen dengan beberapa teknik berbeda, 

validasi bahwa optimasi inference-level mampu mencapai pengurangan latency 

dengan tetap mempertahankan kualitas, serta membuktikan kapabilitas deployment 

pada sistem berbasis CPU ataupun local hosting. Sehingga, penelitian mampu 

menjawab kebutuhan industri dengan perhatian terhadap sensitivitas data dan 

spesifikasi sistem yang minim, yang dapat digunakan pada kebutuhan aplikasi 

seperti telekomunikasi, layanan kesehatan, dan layanan finansial. 

 Teori yang Berkaitan 

2.2.1 Artificial Intelligence (AI) 

Artificial Intelligence (AI) adalah bidang multidisiplin yang berfokus pada 

pengembangan sistem komputer yang mampu melakukan tugas-tugas yang 

biasanya memerlukan kecerdasan manusia, seperti memahami bahasa, 

mengenali suara, memecahkan masalah, dan membuat keputusan [42]. AI telah 

membawa manfaat signifikan di berbagai sektor, termasuk peningkatan 

efisiensi, otomatisasi proses, dan personalisasi layanan [43]. Dalam konteks 

teknologi voice conversational AI, seperti sistem Automatic Speech 

Recognition (ASR), Large Language Model (LLM), dan Text-to-Speech (TTS), 

AI berperan sebagai inti yang memungkinkan komputer memahami, 

memproses, dan merespons percakapan manusia secara alami [44]. Sistem ini 

menggabungkan kemampuan pengenalan suara, pemrosesan bahasa alami dan 

penalaran, serta sintesis suara untuk menciptakan interaksi yang lebih 
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manusiawi dan responsif, yang telah diadopsi luas dalam layanan pelanggan, 

asisten virtual, dan aplikasi edukasi [45]. 

Secara teknis, AI bekerja dengan membangun sistem cerdas yang mampu 

belajar dari data dan mengambil keputusan secara otonom. Proses ini 

melibatkan penggunaan algoritma machine learning dan deep learning, di mana 

sistem dilatih menggunakan data besar untuk mengenali pola, membuat 

prediksi, dan meningkatkan kinerjanya seiring waktu tanpa instruksi eksplisit 

[46]. Sistem AI modern memanfaatkan jaringan saraf tiruan atau artificial 

neural networks yang meniru cara kerja otak manusia untuk memproses 

informasi kompleks, seperti pengenalan suara dan pemahaman bahasa alami. 

Kemampuan pengambilan keputusan AI didasarkan pada analisis data, 

penalaran logis, dan pembelajaran berkelanjutan, sehingga AI dapat 

memberikan rekomendasi, memecahkan masalah, dan menyesuaikan respons 

sesuai konteks [47]. Dengan demikian, AI tidak hanya meniru kecerdasan 

manusia, tetapi juga memperluas kapasitas pengambilan keputusan berbasis 

data di berbagai bidang aplikasi. 

2.2.2 Deep learning 

Deep learning adalah cabang dari machine learning yang menggunakan 

arsitektur deep neural networks untuk mempelajari representasi data secara 

otomatis dan hierarkis [48]. Peranannya sangat penting dalam pengembangan 

model-model modern, karena mampu mengekstraksi fitur kompleks dari data 

mentah tanpa memerlukan rekayasa fitur manual. Dalam sistem voice 

conversational AI, khususnya ASR dan TTS, deep learning telah merevolusi 

performa dan akurasi [49]. Model seperti Convolutional Neural Networks 

(CNN), Recurrent Neural Networks (RNN), dan Transformer telah digunakan 

secara luas untuk mengenali pola suara, memahami konteks percakapan, serta 

menghasilkan suara sintetis yang alami, sehingga meningkatkan kualitas 

interaksi manusia-mesin [50]. 

Secara teknis, deep learning bekerja dengan membangun jaringan saraf 

berlapis-lapis, di mana setiap lapisan (layer) bertugas mengekstraksi 
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representasi fitur yang semakin abstrak dari data input [51]. Proses 

pembelajaran dilakukan melalui mekanisme forward propagation, di mana data 

mengalir dari input ke output, dan backward propagation, di mana bobot 

jaringan diperbarui berdasarkan error yang dihitung dari output menggunakan 

algoritma backpropagation [52]. Dengan pendekatan ini, model deep learning 

mampu secara otomatis belajar dari data besar, menyesuaikan parameter 

internalnya untuk meminimalkan kesalahan, dan menemukan pola-pola penting 

tanpa intervensi manusia. Kemampuan ini menjadikan deep learning sangat 

efektif dalam menangani data kompleks seperti suara dan bahasa, serta 

memungkinkan pengambilan keputusan berbasis representasi fitur yang 

dihasilkan secara otomatis [53]. 

2.2.3 Inference-Level Optimization 

Inference-level optimization merupakan serangkaian teknik yang diterapkan 

pada model deep learning untuk meningkatkan efisiensi komputasi selama fase 

inferensi tanpa mengubah arsitektur dasar model atau melakukan pelatihan 

ulang [54]. Optimasi pada tingkat inferensi menjadi sangat krusial karena fase 

inferensi adalah tahap di mana model deep learning digunakan secara aktif 

dalam aplikasi produksi, memproses data dalam jumlah besar dengan 

kebutuhan latency rendah dan throughput tinggi [55]. Berbeda dengan optimasi 

pada fase pelatihan yang berfokus pada konvergensi model, optimasi inferensi 

bertujuan untuk mengurangi computational footprint, memory bandwidth, dan 

inference latency tanpa mengorbankan akurasi prediksi secara signifikan [56]. 

Teknik-teknik optimasi inferensi mencakup graph-level optimization seperti 

operator fusion dan constant folding, serta algorithm-level optimization seperti 

quantization dan pruning yang secara kolektif dapat menghasilkan peningkatan 

performa hingga 3-5x pada berbagai arsitektur neural network [57]. 

Inference-level optimization bekerja melalui transformasi pada 

computational graph dan parameter model yang telah terlatih untuk 

memaksimalkan efisiensi eksekusi pada target hardware tertentu. Post-training 

optimization (PTO) merupakan pendekatan yang paling umum digunakan 

karena dapat diterapkan pada model pre-trained tanpa memerlukan siklus 



 

 

20 
Inference-Level Optimization…, Kenny Budiarso Lawson, Universitas Multimedia Nusantara 

 

pelatihan tambahan, dengan teknik utama meliputi graph optimization yang 

menggabungkan beberapa operasi menjadi single kernel untuk mengurangi 

kebutuhan memory bandwidth, dan post-training quantization yang 

mengkonversi representasi numerik dari floating-point 32-bit (FP32) menjadi 

integer 8-bit (INT8) atau bahkan presisi lebih rendah [58]. Operator fusion 

sebagai salah satu teknik graph optimization dapat mengeliminasi alokasi 

intermediate tensor dan mengurangi kernel launch overhead, sementara 

quantization mampu mengurangi ukuran model hingga 75% dengan degradasi 

akurasi yang minim melalui pengurangan bit-width untuk weights dan 

activations [59]. Implementasi inference optimization yang efektif 

mempertimbangkan karakteristik target hardware dan profil workload aplikasi, 

sehingga menghasilkan trade-off optimal antara latency, throughput, memory 

usage, dan akurasi untuk deployment pada resource-constrained environments 

seperti edge devices dan mobile platforms [60]. 

2.2.4 Small Language Model (SLM) / Large Language Model (LLM) 

Small Language Model (SLM) dan Large Language Model (LLM) adalah 

dua kategori model bahasa berbasis neural network yang digunakan untuk 

pemrosesan bahasa alami. SLM umumnya memiliki jumlah parameter yang 

lebih sedikit, sehingga lebih efisien secara komputasi dan cocok untuk aplikasi 

dengan sumber daya terbatas, namun cenderung memiliki kapasitas generalisasi 

dan pemahaman bahasa yang lebih terbatas dibandingkan LLM [61]. 

Sebaliknya, LLM memiliki ratusan juta hingga miliaran parameter, dilatih pada 

data teks dalam skala besar, dan mampu memahami serta menghasilkan teks 

yang sangat kompleks dan kontekstual [62]. Dalam pipeline voice 

conversational AI, baik SLM maupun LLM berperan sebagai komponen 

pemrosesan bahasa alami yang menginterpretasi hasil transkripsi ASR, 

memahami maksud pengguna, dan menghasilkan respons yang kemudian 

diubah kembali menjadi suara oleh TTS. SLM menawarkan keunggulan 

efisiensi dan kemudahan deployment, sedangkan LLM unggul dalam kualitas 

respons dan kemampuan generalisasi lintas domain. 
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Secara teknis, model bahasa modern bekerja melalui beberapa tahapan 

utama. Proses dimulai dengan tokenisasi, yaitu memecah teks menjadi unit-unit 

kecil (token) yang dapat diproses oleh model. Selanjutnya, token-token ini 

diubah menjadi vektor representasi (embedding) dan diproses melalui arsitektur 

transformer, yang terdiri dari lapisan-lapisan self-attention dan feed-forward 

neural network [63]. Mekanisme attention memungkinkan model untuk 

menimbang relevansi antar token dalam satu konteks, sehingga dapat 

memahami hubungan semantik dan sintaksis secara dinamis. Model kemudian 

menghasilkan respons bahasa secara autoregresif, yaitu memprediksi token 

berikutnya berdasarkan urutan token sebelumnya, dengan teknik decoding 

seperti greedy search, top-k, atau top-p sampling untuk mengontrol kreativitas 

dan koherensi respons. Dengan pendekatan ini, baik SLM maupun LLM dapat 

menghasilkan teks yang relevan dan kontekstual, meskipun LLM umumnya 

lebih unggul dalam menangani konteks yang panjang dan kompleks [64]. 

2.2.5 Speech-to-Text (STT) / Automatic Speech Recognition (ASR) 

Automatic Speech Recognition (ASR) atau Speech-to-Text (STT) adalah 

teknologi yang memungkinkan sistem komputer untuk mengkonversi sinyal 

suara manusia menjadi teks secara otomatis [65]. ASR berperan penting sebagai 

komponen awal dalam pipeline voice conversational AI, di mana hasil 

transkripsi dari suara menjadi teks digunakan untuk pemrosesan bahasa alami 

dan interaksi lanjutan dengan pengguna. Manfaat utama ASR meliputi 

peningkatan aksesibilitas bagi penyandang disabilitas, efisiensi dalam layanan 

pelanggan, transkripsi otomatis untuk dokumentasi, serta mendukung berbagai 

aplikasi seperti asisten virtual, sistem dikte, dan layanan terjemahan. Dengan 

kemajuan deep learning, akurasi dan keandalan ASR semakin meningkat, 

meskipun tantangan seperti kebisingan lingkungan, variasi aksen, dan 

kecepatan bicara masih menjadi perhatian utama. 

Secara teknis, proses kerja ASR dimulai dari tahap preprocessing audio, di 

mana sinyal suara diolah melalui segmentasi, filtering, dan normalisasi untuk 

mengurangi noise dan menyiapkan data mentah [66]. Selanjutnya, dilakukan 

ekstraksi fitur menggunakan teknik seperti Mel-Frequency Cepstral 
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Coefficients (MFCC) atau spectrogram, yang mengubah sinyal audio menjadi 

representasi numerik yang lebih mudah dianalisis oleh mesin. Fitur-fitur ini 

kemudian diproses oleh model neural network modern, seperti arsitektur 

encoder–decoder berbasis attention, LSTM, atau Transformer, yang mampu 

mempelajari hubungan temporal dan pola kompleks dalam data suara. Model 

ini secara otomatis memetakan urutan fitur akustik menjadi urutan teks, dengan 

proses pelatihan yang mengoptimalkan parameter jaringan untuk minimalisir 

kesalahan transkripsi. Pendekatan end-to-end ini terbukti meningkatkan akurasi 

dan efisiensi ASR dalam berbagai kondisi dan bahasa [67]. 

2.2.6 Text-to-Speech (TTS) 

Text-to-Speech (TTS) adalah teknologi yang mengubah teks tertulis menjadi 

suara manusia buatan yang terdengar alami. TTS berperan sebagai komponen 

akhir dalam sistem voice conversational AI, memungkinkan sistem untuk 

memberikan respons verbal yang mudah dipahami dan interaktif bagi pengguna 

[68]. Manfaat utama TTS meliputi peningkatan aksesibilitas bagi penyandang 

disabilitas, otomatisasi layanan pelanggan, pembacaan buku digital, serta 

personalisasi asisten virtual. Dengan kemajuan deep learning, kualitas suara 

yang dihasilkan TTS semakin mendekati suara manusia asli, sehingga interaksi 

antara manusia dan mesin menjadi lebih natural dan efektif. 

Secara konseptual, sistem TTS modern terdiri dari beberapa tahapan utama. 

Proses dimulai dengan text analysis, yaitu analisis linguistik untuk 

mengidentifikasi struktur kalimat, pengucapan fonem, intonasi, dan fitur 

prosodi lainnya [69]. Hasil analisis ini kemudian diproses oleh acoustic model, 

biasanya berbasis neural network seperti encoder–decoder atau transformer, 

untuk menghasilkan representasi akustik berupa mel-spectrogram atau fitur 

serupa. Tahap akhir adalah vocoder-based waveform synthesis, di mana 

vocoder, seperti WaveNet, HiFi-GAN, atau WaveGlow mengubah representasi 

akustik menjadi gelombang suara digital yang dapat diperdengarkan. 

Pendekatan end-to-end dan penggunaan arsitektur deep learning telah 

meningkatkan naturalitas, ekspresivitas, dan fleksibilitas sistem TTS secara 

signifikan. 



 

 

23 
Inference-Level Optimization…, Kenny Budiarso Lawson, Universitas Multimedia Nusantara 

 

 Framework/Algoritma yang digunakan 

2.3.1 Whisper 

Whisper merupakan automatic speech recognition (ASR) yang 

dikembangkan oleh OpenAI dengan pendekatan large-scale weak supervision 

training menggunakan 680,000 jam data audio multilingual dan multitask yang 

dikumpulkan dari internet [70]. Model ini dirancang untuk mengatasi 

keterbatasan ASR tradisional yang memerlukan dataset-specific fine-tuning 

dengan kemampuan generalisasi melalui zero-shot transfer learning ke 

berbagai benchmark datasets tanpa memerlukan pelatihan tambahan. Whisper 

dilatih secara multitask untuk menangani beragam speech processing tasks 

dalam single unified model, termasuk multilingual speech recognition yang 

mendukung lebih dari 90 bahasa, speech translation ke bahasa Inggris, spoken 

language identification, dan voice activity detection, di mana seluruh tugas 

tersebut direpresentasikan sebagai sequence of tokens yang diprediksi oleh 

komponen decoder. Karakteristik dari Whisper adalah robustness yang tinggi 

terhadap variasi aksen, background noise, dan technical language, yang 

membuatnya mampu berperforma mendekati human-level accuracy pada 

berbagai kondisi akustik yang menantang [70]. Model ini tersedia dalam 

berbagai ukuran mulai dari Tiny (39M parameters) hingga Large (1550M 

parameters). 

 

Gambar 2. 1 Arsitektur Model Whisper [70] 
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Sesuai dengan Gambar 2.1, arsitektur Whisper mengimplementasikan 

encoder-decoder Transformer architecture dengan desain yang sederhana 

namun efektif untuk speech-to-text conversion. Audio processing pipeline 

dimulai dengan segmentasi input audio menjadi chunks berdurasi 30 detik, yang 

kemudian dikonversi menjadi log-Mel spectrogram representation melalui 

Short-Time Fourier Transform (STFT) yang dilakukan pada windowed 

segments dari audio waveform [70]. Komponen Encoder terdiri dari multiple 

layers Transformer blocks yang menerima log-Mel spectrogram sebagai input 

dan menghasilkan high-dimensional audio feature embeddings yang meng-

capture acoustic dan phonetic information dari spoken content. Komponen 

Decoder menggunakan autoregressive generation mechanism untuk 

memprediksi transkripsi teks secara sequential token-by-token, di mana setiap 

generated token di-condition pada generated tokens sebelumnya dan audio 

features dari encoder melalui cross-attention mechanism. Whisper 

memanfaatkan special tokens system untuk mengontrol multitask behavior, 

termasuk language identification tokens, task specification tokens untuk 

membedakan antara transcription dan translation tasks, timestamp prediction 

tokens untuk phrase-level temporal alignment, dan end-of-text token untuk 

menandakan selesainya dari generation process. Training objective 

menggunakan standard cross-entropy loss untuk next-token prediction dengan 

teacher forcing strategy, di mana model belajar untuk memaksimalkan 

kesamaan dari transkripsi audio input dan generated tokens sebelumnya. 

Arsitektur ini memungkinkan Whisper untuk berfungsi sebagai single unified 

model yang menggantikan banyak komponen spesifik dalam speech processing 

pipeline tradisional, sekaligus menjaga fleksibilitas untuk mengatasi perbedaan 

bahasa dan kondisi akustik tanpa membutuhkan modifikasi arsitektur atau task-

specific adaptations. 

2.3.2 Gemma 3 1B 

Gemma 3 1B merupakan lightweight small language model yang 

dikembangkan oleh Google DeepMind sebagai bagian dari Gemma 3 model 

family yang dirilis pada tahun 2025, dengan ukuran parameter 1 miliar yang 
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dirancang untuk deployment pada resource-constrained environments seperti 

edge devices dan consumer-grade hardware [71]. Model ini dilatih 

menggunakan 2 triliun tokens dari beragam korpus teks yang mencakup web 

documents dalam lebih dari 140 bahasa, code repositories, dan mathematical 

content dengan knowledge cutoff date pada Agustus 2024, sehingga memiliki 

beragam linguistic coverage dan kemampuan multilingual yang superior 

dibandingkan models pendahulunya. Gemma 3 1B mengimplementasikan 

improvisasi arsitektur termasuk interleaved local-global attention mechanism 

yang didesain untuk mengurangi konsumsi KV-cache memory pada long-

context inference, serta mendukung context window hingga 32,000 tokens yang 

memungkinkan processing dari sejarah obrolan lebih panjang atau dokumen 

[71]. Training process melibatkan teknik seperti knowledge distillation dari 

model yang lebih besar, serta fase reinforcement learning yang menggunakan 

multiple reward functions untuk peningkatan performa dan reasoning. 

Arsitektur Gemma 3 1B mengadopsi decoder-only Transformer 

architecture dengan total 1,152 hidden dimensions dan 8 attention heads yang 

mengimplementasikan Grouped-Query Attention (GQA) untuk meningkatkan 

efisiensi inference dengan mengurangi kebutuhan memory bandwidth selama 

autoregressive generation [71]. Model menggunakan Gemini 2.0 

SentencePiece tokenizer dengan vocabulary size 262,000 tokens yang 

dioptimasi untuk menangani multilingual text, digit numerikal, dan whitespace 

characters, sehingga meningkatkan efisiensi tokenization. Layer normalization 

menggunakan RMSNorm yang diaplikasikan pada pre-norm dan post-norm 

positions untuk menstabilkan training dynamics, dengan perubahan arsitektural 

dari Gemma 2 yaitu penggantian dari soft-capping activation dengan QK-

normalization mechanism yang menormalisasi query dan key matrices sebelum 

attention computation untuk mencegah ketidakstabilan numerical pada large-

scale training. Input processing melibatkan tokenization dari text input menjadi 

barisan token IDs, diikuti dengan embedding lookup tokens ke high-dimensional 

vector representations, kemudian melewati tumpukan Transformer decoder 

layers yang terdiri dari self-attention mechanism untuk modeling contextual 
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relationships dan feed-forward network untuk feature transformation. Proses 

generasi menggunakan autoregressive decoding di mana model memprediksi 

token berikutnya berdasarkan pada tokens yang di-generate sebelumnya. 

2.3.3 VITS MMS 

VITS (Variational Inference with adversarial learning for end-to-end Text-

to-Speech) MMS Indonesian merupakan text-to-speech synthesis model yang 

dikembangkan sebagai bagian dari project Massively Multilingual Speech 

(MMS) Facebook yang bertujuan untuk menyediakan teknologi speech dalam 

lebih dari 1,000 bahasa termasuk bahasa Indonesia [72]. Model ini 

mengimplementasikan end-to-end speech synthesis architecture yang 

mengatasi keterbatasan two-stage TTS systems yang tradisional dengan 

menggabungkan acoustic modeling dan vocoding dalam single unified 

framework, sehingga menghilangkan intermediate representation seperti mel-

spectrogram dan mengaktifkan direct waveform generation dari teks input. 

VITS memanfaatkan conditional variational autoencoder framework yang 

augmented dengan normalisasi flows dan adversarial training untuk 

meningkatkan kekuaran ekspresif dari generative modeling, memungkinkan 

sintesis dari speech waveforms yang natural dan ekspresif [73]. Model ini dilatih 

secara monolingual untuk setiap bahasa dengan beberapa checkpoint, di mana 

VITS MMS Indonesian di-trained menggunakan data speech berbahasa 

Indonesia yang dikumpulkan melalui MMS-lab yang memanfaatkan 

pembacaan teks sebagai sumber data utama. Karakteristik dari VITS adalah 

kemampuannya untuk membahas one-to-many nature dari masalah TTS di 

mana teks input yang sama dapat diucapkan dengan beberapa cara dengan nada 

dan ritme yang berbeda, melalui implementasi dari stochastic duration 

predictor yang generate pola ucapan yang berbeda dari teks input serupa. 
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Gambar 2. 2 Arsitektur Model VITS [73] 

Sesuai dengan Gambar 2.2, arsitektur VITS mengadopsi struktur 

conditional variational autoencoder yang terdiri dari tiga komponen utama: 

posterior encoder yang mengkodekan bentuk gelombang ucapan referensi 

menjadi representasi laten, conditional prior yang memodelkan distribusi 

variabel laten yang dikondisikan pada teks input, dan decoder yang 

menghasilkan bentuk gelombang ucapan dari variabel laten [73]. Pipeline 

pemrosesan teks dimulai dengan tokenisasi menggunakan VitsTokenizer yang 

disesuaikan untuk bahasa Indonesia, mengonversi teks menjadi representasi 

fonem yang di-embed menjadi vektor fitur berdimensi tinggi. Komponen 

conditional prior menggunakan text encoder berbasis Transformer untuk 

mengekstraksi informasi kontekstual, diikuti modul normalisasi flow dengan 

multiple affine coupling layers untuk meningkatkan fleksibilitas distribusi prior, 

dan projection layer untuk memetakan representasi ke dimensi ruang laten. 

Stochastic duration predictor mengimplementasikan model generatif berbasis 

flow yang memprediksi durasi fonem dengan menggabungkan variabilitas 

melalui dua variabel acak, memungkinkan model menghasilkan ucapan dengan 

variasi ritme natural. Posterior encoder memproses mel-spectrogram referensi 

yang dihitung dari bentuk gelombang ground truth menggunakan Short-Time 

Fourier Transform dengan tumpukan WaveNet residual blocks, di mana 

penyelarasan teks-audio dicapai melalui algoritma Monotonic Alignment 
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Search (MAS) yang secara otomatis menemukan korespondensi optimal tanpa 

memerlukan anotasi forced alignment eksternal. Decoder menggunakan 

arsitektur identik dengan generator HiFi-GAN, terdiri dari tumpukan 

transposed convolutional layers dengan multi-receptive field fusion untuk 

mengonversi representasi laten menjadi bentuk gelombang audio mentah pada 

sampling rate 16kHz. 

2.3.4 Quantization 

Quantization merupakan salah satu teknik kompresi model yang digunakan 

dalam deep learning untuk meningkatkan efisiensi komputasi dengan 

menurunkan presisi representasi numerik pada bobot maupun aktivasi jaringan 

saraf. Teknik ini mengubah representasi floating-point seperti FP32 atau FP16 

menjadi representasi integer berdimensi rendah, misalnya INT8 atau INT4, 

sehingga ukuran model berkurang secara signifikan dan proses inference 

menjadi lebih cepat dengan konsumsi memori serta daya yang lebih rendah 

[74]. Quantization banyak digunakan dalam deployment model pada perangkat 

berdaya rendah seperti CPU, edge device, maupun perangkat mobile karena 

mampu menghasilkan percepatan komputasi tanpa penurunan akurasi yang 

berarti. Selain itu, quantization memungkinkan model deep learning tetap dapat 

dijalankan secara real-time, bahkan ketika lingkungan komputasi terbatas, 

sehingga menjadi salah satu pendekatan optimasi paling penting dalam 

implementasi model modern, termasuk model berbasis transformer, 

convolutional network, maupun model generatif. 

Salah satu pendekatan quantization yang paling umum digunakan adalah 

Post-training Quantization (PTQ), yaitu metode yang diterapkan setelah model 

selesai dilatih tanpa memerlukan proses pelatihan ulang [75]. PTQ bekerja 

dengan memetakan bobot dan aktivasi model ke skala integer melalui proses 

scaling dan rounding, sehingga model dapat dijalankan menggunakan operasi 

aritmatika integer yang jauh lebih efisien dibanding representasi floating-point. 

Teknik ini mencakup beberapa varian seperti dynamic quantization, static 

quantization, dan weight-only quantization, yang masing-masing menawarkan 

kompromi berbeda antara akurasi dan efisiensi. Karena PTQ tidak memerlukan 
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akses ke data pelatihan dan dapat diaplikasikan secara langsung pada model 

terlatih, pendekatan ini menjadi pilihan utama untuk mengoptimalkan model 

yang kompleks atau berukuran besar, serta secara luas digunakan dalam sistem 

yang menuntut inference cepat pada perangkat dengan sumber daya terbatas. 

Berikut merupakan beberapa teknik turunan yang termasuk sebagai bagian 

dari post-training quantization: 

1. Dynamic Quantization 

Dynamic quantization merupakan teknik yang menerapkan penurunan 

presisi numerik terutama pada bobot (weights) model, sementara aktivasi 

dikonversi secara dinamis selama proses inference. Teknik ini tidak 

memerlukan data kalibrasi dan dapat diterapkan langsung pada model 

terlatih tanpa proses tambahan, sehingga menjadi metode yang paling 

mudah digunakan dalam konteks post-training quantization [76]. Pada 

dynamic quantization, bobot model biasanya diturunkan ke representasi 

INT8, sedangkan aktivasi tetap dihitung dalam representasi floating-point 

sehingga menjaga stabilitas numerik sambil tetap memperoleh peningkatan 

efisiensi komputasi. Pendekatan ini memberikan peningkatan kecepatan 

inference pada CPU dan pengurangan ukuran model yang signifikan, 

meskipun hasilnya tidak setinggi static quantization dalam hal kompresi 

menyeluruh. Dynamic quantization banyak digunakan pada model berbasis 

transformer dan recurrent neural networks yang sensitif terhadap 

penurunan presisi aktivasi, sehingga memberikan keseimbangan antara 

efisiensi dan akurasi. 

2. Static  Quantization (Full Integer Quantization) 

Static quantization, atau full integer quantization, merupakan teknik 

yang mengonversi bobot dan aktivasi sekaligus ke representasi integer 

melalui proses kalibrasi menggunakan sampel data. Berbeda dengan 

dynamic quantization, teknik ini memerlukan data representatif untuk 

menentukan rentang nilai (range calibration) sehingga proses quantization 

lebih akurat dan stabil [75]. Karena aktivasi dan bobot keduanya dikonversi 
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ke INT8, perangkat inference dapat melakukan operasi komputasi integer 

penuh, sehingga memberikan peningkatan performa yang lebih besar 

dibanding dynamic quantization, terutama pada CPU dan edge device. 

Static quantization juga memungkinkan optimasi seperti per-tensor dan 

per-channel quantization, yang menghasilkan distribusi nilai integer yang 

lebih presisi. Meskipun teknik ini memberikan kompresi dan percepatan 

terbaik dalam post-training, akurasi model dapat menurun jika data 

kalibrasi tidak representatif atau jika model sangat sensitif terhadap 

perubahan presisi numerik. 

3. Quantization-Aware Training 

Quantization-Aware Training (QAT) merupakan teknik advanced 

quantization yang mensimulasikan efek quantization selama proses 

pelatihan, sehingga model dapat menyesuaikan bobotnya terhadap noise 

yang diperkenalkan oleh representasi integer[74]. Pada QAT, operasi 

quantization seperti rounding dan clipping disimulasikan dalam forward 

pass, tetapi parameter model tetap diperbarui menggunakan gradien 

floating-point, sehingga memungkinkan model mempertahankan akurasi 

yang jauh lebih tinggi dibandingkan post-training quantization 

konvensional. Teknik ini secara umum menghasilkan performa mendekati 

model full-precision, bahkan ketika bobot dan aktivasi dikompresi ke INT8 

atau lebih rendah. QAT cocok untuk model dengan struktur kompleks 

seperti transformer, convolutional networks, atau vocoder TTS, tetapi 

memerlukan proses pelatihan ulang sehingga lebih mahal secara komputasi. 

Karena implementasinya lebih rumit, QAT biasanya diterapkan pada 

skenario industri atau model produksi yang sangat sensitif terhadap 

penurunan akurasi. 

4. Weight-Only Quantization 

Weight-only quantization merupakan teknik yang hanya menurunkan 

presisi bobot model, sementara aktivasi tetap menggunakan presisi floating-

point. Teknik ini banyak digunakan pada model bahasa dan model encoder-

decoder besar karena memberikan efisiensi memori yang substansial tanpa 
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memengaruhi stabilitas aktivasi selama inference. Representasi bobot yang 

umum digunakan meliputi INT8, INT4, bahkan format ultra-low precision 

seperti GPTQ dan AWQ yang menggunakan skema quantization adaptif 

[77]. Weight-only quantization menghasilkan kompresi model yang sangat 

besar dengan penurunan akurasi minimal, dan sangat efektif ketika 

dikombinasikan dengan runtime yang mendukung kernel integer 

teroptimasi. Teknik ini telah menjadi praktik umum dalam deployment LLM 

di perangkat CPU maupun GPU low-end karena tidak memerlukan data 

kalibrasi dan dapat diaplikasikan secara langsung pada model terlatih. 

2.3.5 ONNX Runtime Optimization 

ONNX Runtime merupakan high-performance inference engine yang 

dirancang untuk mengeksekusi model deep learning secara efisien di 

berbagai platform komputasi. Framework ini mendukung model dengan 

format ONNX (Open Neural Network Exchange), sebuah standar terbuka 

yang memungkinkan interoperabilitas lintas framework seperti PyTorch, 

TensorFlow, dan JAX[55]. Keunggulan utama ONNX Runtime adalah 

kemampuannya mengoptimalkan eksekusi model melalui serangkaian 

teknik percepatan seperti graph optimization, operator fusion, dan 

pemilihan execution provider yang sesuai dengan perangkat keras yang 

digunakan. Dengan optimasi ini, model dapat berjalan lebih cepat, konsumsi 

memori berkurang, dan latency inference menjadi lebih rendah, sehingga 

ONNX Runtime banyak digunakan pada aplikasi real-time dan perangkat 

dengan sumber daya terbatas. Selain itu, ONNX Runtime mendukung 

akselerasi CPU maupun GPU serta memiliki ekstensi khusus seperti ONNX 

Runtime Mobile, yang semakin meningkatkan fleksibilitas penggunaan pada 

skenario edge computing dan embedded systems. 

Secara teknis, ONNX Runtime melakukan optimasi model melalui 

beberapa tahapan yang mencakup graph simplification, constant folding, 

node elimination, serta operator fusion, yaitu penggabungan beberapa 

operasi menjadi satu kernel komputasi untuk mengurangi overhead 

eksekusi. Optimasi ini dijalankan pada intermediate representation dari 
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model ONNX, sehingga menghasilkan optimized computation graph yang 

lebih ringkas dan efisien. Selain itu, ONNX Runtime mendukung execution 

provider seperti CPUExecutionProvider, CUDAExecutionProvider, atau 

TensorRTExecutionProvider yang memilih backend eksekusi paling 

optimal sesuai perangkat keras. Runtime juga menyediakan dukungan untuk 

quantization, termasuk dynamic quantization dan static quantization, yang 

semakin menurunkan latency dan kebutuhan memori pada saat inference. 

Kombinasi teknik optimasi graph, pemilihan kernel yang efisien, dan 

integrasi quantization memungkinkan ONNX Runtime memberikan 

peningkatan performa signifikan pada model deep learning, terutama pada 

aplikasi TTS atau model sejenis dengan struktur komputasi kompleks. 

2.3.6 CTranslate2 Optimization 

CTranslate2 merupakan sebuah high-performance inference engine 

yang dirancang khusus untuk mengeksekusi model sequence-to-sequence 

pada tahap deployment, seperti ASR dan neural machine translation. 

Berbeda dengan deep learning framework umum seperti PyTorch yang 

dirancang untuk mendukung proses pelatihan dan inferensi secara fleksibel, 

CTranslate2 dikembangkan sebagai standalone inference runtime berbasis 

C++ yang berfokus pada efisiensi eksekusi model [78]. Pendekatan ini 

memungkinkan penghilangan berbagai overhead yang umum terdapat pada 

training-oriented frameworks, seperti autograd engine, dynamic 

computation graph, dan abstraksi tensor tingkat tinggi, sehingga proses 

inferensi dapat dijalankan secara lebih ringan, deterministik, dan efisien. 

CTranslate2 mendukung berbagai arsitektur dan format model populer, 

termasuk Whisper dan model OpenNMT, serta menyediakan kompatibilitas 

dengan backend CPU dan GPU, menjadikannya sesuai untuk deployment 

pada lingkungan dengan keterbatasan sumber daya maupun aplikasi yang 

menuntut latency rendah dan throughput tinggi. 

Keunggulan performa CTranslate2 dicapai melalui kombinasi 

implementasi runtime C++ yang teroptimasi dan pemanfaatan pustaka 

komputasi tingkat rendah yang disesuaikan dengan arsitektur perangkat 
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keras target. Pada eksekusi berbasis CPU, CTranslate2 memanfaatkan 

pustaka numerik seperti Intel MKL untuk mengakselerasi operasi linear 

melalui rutin BLAS dan vektorisasi SIMD, serta menerapkan memory 

alignment dan efficient memory layout untuk meminimalkan cache miss dan 

meningkatkan data locality. Selain itu, CTranslate2 mengintegrasikan 

berbagai teknik optimasi inference seperti weight-only quantization pasca-

pelatihan, operator fusion, decoder state caching, dan dynamic batching, 

yang secara kolektif berkontribusi pada pengurangan latency, penurunan 

konsumsi memori, dan peningkatan throughput tanpa memerlukan proses 

pelatihan ulang atau fine-tuning model [78]. 

2.3.7 GGUF Quantization Format 

GGUF (General Graph Unified Format) merupakan format representasi 

model yang digunakan untuk mendukung inference Large Language 

Models secara efisien, khususnya pada skenario deployment berbasis CPU 

dan sistem dengan keterbatasan sumber daya. Format ini digunakan sebagai 

representasi model hasil optimasi post-training, yang memungkinkan 

penyimpanan bobot terkuantisasi beserta metadata arsitektur dan informasi 

tensor dalam satu berkas terstruktur, sehingga memfasilitasi proses model 

loading dan eksekusi model yang lebih deterministik dan efisien [79], [80]. 

Penggunaan format GGUF telah dilaporkan dalam studi optimasi LLM yang 

mengevaluasi dampak quantization terhadap performa model pada skenario 

penggunaan nyata, terutama untuk deployment model berskala besar pada 

perangkat konsumen [80]. 

Secara teknis, GGUF merepresentasikan bobot model yang telah 

melalui proses weight-only quantization, seperti INT8 atau INT4, sementara 

aktivasi tetap diproses dalam presisi floating-point pada saat inference. 

Pendekatan ini memungkinkan pengurangan memory footprint model 

secara signifikan tanpa memerlukan proses quantization-aware training. 

Struktur file GGUF menyimpan parameter quantization dan metadata 

tensor secara eksplisit, sehingga karakteristik quantization dan implikasinya 

terhadap perilaku model dapat dianalisis secara sistematis pada runtime 
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inference [79]. Dengan demikian, GGUF diposisikan sebagai format model 

yang merepresentasikan hasil post-training quantization dan mendukung 

eksekusi LLM yang efisien pada lingkungan inference berbasis CPU [79], 

[80]. 

 Rumus Metrik Evaluasi 

Dalam evaluasi performa sistem voice conversational AI, berbagai metrik 

digunakan untuk menilai kualitas dan efisiensi komponen utama sistem, yaitu ASR, 

SLM, dan TTS. Metrik evaluasi ini mencakup pengukuran akurasi transkripsi, 

kecepatan pemrosesan, kualitas respons bahasa alami, serta kualitas keluaran audio. 

Berikut adalah metrik evaluasi yang digunakan dalam penelitian ini. 

1. Word Error Rate (WER) 

WER merupakan metrik utama yang digunakan untuk mengevaluasi akurasi 

model ASR dalam mentranskripsikan ujaran menjadi teks. WER mengukur 

jumlah kesalahan prediksi berdasarkan tiga jenis kesalahan: substitusi, 

penghapusan, dan penyisipan kata [81]. Nilai WER yang lebih rendah 

menunjukkan performa ASR yang lebih baik. 

𝑊𝐸𝑅 =
𝑆 + 𝐷 + 𝐼

𝑁
 × 100 

Rumus 2. 1 Evaluasi Word Error Rate  

Legend dari 2.1 Evaluasi Word Error Rate adalah sebagai berikut: 

a. Substitution (S): Jumlah kata salah ganti 

b. Deletions (D): Jumlah kata hilang 

c. Insertions (I): Jumlah kata tambahan 

d. N: Total kata dalam transkripsi referensi 

 

2. Character Error Rate (CER) 

Character Error Rate (CER) digunakan untuk mengevaluasi tingkat 

kesalahan transkripsi pada level karakter dengan membandingkan hasil 

transkripsi model terhadap transkrip ground truth [81]. Metrik ini menghitung 
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proporsi kesalahan karakter yang terjadi selama proses pengenalan ujaran. Nilai 

CER yang lebih rendah menunjukkan kualitas transkripsi yang lebih baik. 

𝐶𝐸𝑅 =
𝑁𝑠𝑢𝑏 + 𝑁𝑑𝑒𝑙 + 𝑁𝑖𝑛𝑠

𝑁𝑐ℎ𝑎𝑟
 × 100 

Rumus 2. 2 Evaluasi Character Error Rate 

Legend dari 2.2 Evaluasi Character Error Rate adalah sebagai berikut: 

e. 𝑵𝒔𝒖𝒃: Jumlah kesalahan substitution pada level karakter 

f. 𝑵𝒅𝒆𝒍: Jumlah kesalahan deletion pada level karakter 

g. 𝑵𝒊𝒏𝒔: Jumlah kesalahan insertion pada level karakter 

h. 𝑵𝒄𝒉𝒂𝒓: Jumlah total karakter pada transkrip ground truth 

 

3. Real-time Factor (RTF) 

RTF digunakan untuk mengukur kecepatan proses inference, terutama pada 

ASR dan TTS. RTF menunjukkan perbandingan antara waktu pemrosesan 

model terhadap durasi audio asli. Model dapat dikatakan berjalan secara real-

time apabila nilai RTF sama dengan atau lebih kecil dari 1 [82]. 

𝑅𝑇𝐹 =
𝑇𝑝𝑟𝑜𝑐𝑒𝑠𝑠

𝑇𝑎𝑢𝑑𝑖𝑜
 

Rumus 2. 3 Evaluasi Real-time Factor 

Legend dari rumus 2.3 Evaluasi Real-time Factor adalah sebagai berikut: 

a. Tprocess: Waktu proses inference (detik) 

b. Taudio: Durasi audio asli (detik) 

 

4. Latency / Inference Time (Untuk SLM & TTS) 

Latency mengukur waktu yang diperlukan sistem untuk menghasilkan 

keluaran setelah menerima input. Pada SLM, latency dihitung sejak teks 

masukan diterima hingga respons selesai dihasilkan, sementara pada TTS 

dihitung sejak teks diterima hingga audio selesai diproduksi [83]. Latency 
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menjadi indikator penting untuk aplikasi real-time seperti voice conversational 

AI. 

𝐿𝑎𝑡𝑒𝑛𝑐𝑦 =  𝑇𝑜𝑢𝑡𝑝𝑢𝑡 −  𝑇𝑖𝑛𝑝𝑢𝑡 

Rumus 2. 4 Evaluasi Latency 

Legend dari rumus 2.4 Evaluasi Latency adalah sebagai berikut: 

a. Tinput: Waktu input diterima 

b. Toutput: Waktu output selesai diproduksi 

 

5. Token Generation Rate (Tokens per Second) 

Token Generation Rate digunakan untuk mengevaluasi efisiensi model 

bahasa dalam menghasilkan teks. Metrik ini mengukur jumlah token bahasa 

yang dihasilkan model per detik [84]. Nilai yang lebih tinggi menunjukkan 

performa inference yang lebih cepat dan efisien. 

𝑇𝑜𝑘𝑒𝑛𝑅𝑎𝑡𝑒 =  
𝑁𝑡𝑜𝑘𝑒𝑛𝑠

𝑇𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛
 

Rumus 2. 5 Evaluasi Token Generation Rate 

Legend dari rumus 2.5 Evaluasi Token Generation Rate adalah sebagai 

berikut: 

a. Ntokens: Jumlah token yang dihasilkan 

b. Tgeneration: Waktu generasi respons (detik) 

 

6. Model Size 

Model size digunakan untuk mengevaluasi kebutuhan penyimpanan model 

pada tahap deployment. Metrik ini diukur sebagai ukuran file model setelah 

konversi dan/atau quantization. Nilai model size yang lebih kecil menunjukkan 

efisiensi memori yang lebih baik [58]. 

𝑀𝑜𝑑𝑒𝑙𝑆𝑖𝑧𝑒 =  𝑆𝑖𝑧𝑒𝑓𝑖𝑙𝑒 

Rumus 2. 6 Evaluasi Model Size 
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Legend dari rumus 2.6 Evaluasi Model Size adalah sebagai berikut: 

a. 𝑺𝒊𝒛𝒆𝒇𝒊𝒍𝒆: Ukuran file model dalam satuan megabytes (MB) atau 

gigabytes (GB) 

 

 Tools/software yang digunakan 

2.5.1 Python 

Python merupakan bahasa pemrograman berorientasi objek yang banyak 

digunakan dalam pengembangan aplikasi modern karena sintaksnya yang 

sederhana, fleksibel, serta mudah dipahami oleh pemula maupun pengembang 

berpengalaman. Python memiliki ekosistem library yang sangat luas dan 

mendukung berbagai kebutuhan komputasi, termasuk data processing, 

scientific computing, machine learning, hingga pemrosesan suara, sehingga 

menjadikannya salah satu bahasa pemrograman paling populer dalam penelitian 

dan industry [85]. Kemampuan Python untuk berjalan lintas platform, didukung 

oleh komunitas global yang besar, serta keterhubungannya dengan berbagai 

framework dan runtime engine menjadikannya pilihan utama dalam 

pengembangan sistem berbasis AI dan pemodelan algoritmik. Selain itu, Python 

mengintegrasikan manajemen memori otomatis dan struktur data tingkat tinggi, 

memungkinkan pengembang membangun prototipe maupun aplikasi produksi 

secara cepat, efisien, dan hemat biaya, sesuai dengan tuntutan implementasi 

teknologi berbasis komputasi modern. 

2.5.2 Visual Studio Code 

Visual Studio Code (VS Code) merupakan source-code editor lintas 

platform yang dikembangkan oleh Microsoft dan telah menjadi salah satu 

lingkungan pengembangan paling populer karena ringan, fleksibel, serta 

memiliki dukungan extension yang luas. VS Code menyediakan fitur-fitur 

modern seperti syntax highlighting, intellisense, debugger terintegrasi, dan 

version control berbasis Git, sehingga memudahkan pengembang dalam 

membangun, menguji, dan memelihara aplikasi secara efisien. Editor ini juga 

mendukung berbagai bahasa pemrograman termasuk Python, JavaScript, dan 
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C++, serta memungkinkan integrasi langsung dengan runtime environment dan 

tooling lain melalui marketplace open-source. Selain itu, penelitian 

menunjukkan bahwa VS Code memberikan produktivitas tinggi bagi 

pengembang karena arsitekturnya yang modular, kustomisasi antarmuka yang 

fleksibel, dan performa yang optimal untuk proyek berskala kecil hingga 

menengah [86]. Dengan kombinasi fitur intuitif dan ekosistem pendukung yang 

kuat, VS Code menjadi pilihan utama dalam pengembangan perangkat lunak 

modern, termasuk dalam konteks penelitian dan implementasi sistem berbasis 

AI. 

2.5.3 Hardware yang Digunakan 

Penelitian ini dilakukan dengan ditenagai oleh beberapa komponen 

hardware, yaitu sebagai berikut: 

1. CPU : Intel® Core™ i5-1235U 

2. Memory : 16 GB RAM 

3. OS  : Windows 11 

4. Storage : 512 GB SSD 

 

  


