

10
Inference-Level Optimization…, Kenny Budiarso Lawson, Universitas Multimedia Nusantara

BAB II

LANDASAN TEORI

 Penelitian Terdahulu

Berikut merupakan penelitian terdahulu yang dapat mendukung dilakukannya

penelitian ini:

Tabel 2. 1 Penelitian Terdahulu

No Judul dan peneliti

Artikel

Nama

Jurnal

Metode Hasil Penelitian

1 Judul Artikel:

Real-time Avatar-

Based Speech-to-

Speech

Conversational AI

Tutor on AI PC

Nama Peneliti: Mee

Sim Lai et al.

IEEE 15th

Symposiu

m on

Computer

Applicatio

ns &

Industrial

Electronic

s (ISCAIE

2025)

Arsitektur

multimodal

cascaded yang

mencakup

Noise Reduction

→ ASR

(Whisper) →

RAG → LLM

(Llama3 8B) →

TTS (Piper) →

Avatar

(Wav2Lip).

Sistem

menggunakan

pipeline

modular dengan

frontend–

backend

terpisah, model

via HTTP API,

dan proses

avatar sinkron

menggunakan

multithreading.

Arsitektur Speech-

to-Speech cascaded

dapat berjalan real-

time di perangkat

edge (AI PC).

Integrasi semua

komponen

menghasilkan voice

tutor interaktif

berbasis avatar yang

responsif, dengan

usability score tinggi

(CUS = 2.72).

Sistem berhasil

menggabungkan

pengenalan suara,

reasoning berbasis

LLM, dan TTS

dengan lip-sync

avatar secara real-

time.

2 Judul Artikel:

VoiceTalk: A No-

Code Approach for

Creating Voice-

Controlled Smart

Home Applications

IEEE

Open

Journal of

the

Computer

Society

ASR (Whisper,

Web Speech

API) → open-

source SLM

(Llama 3.2 3B)

→ TTS;

integrasi no-

Whisper Medium +

Llama 3.2 3B

menghasilkan error

voice-to-text hampir

nol; arsitektur

mudah

11
Inference-Level Optimization…, Kenny Budiarso Lawson, Universitas Multimedia Nusantara

No Judul dan peneliti

Artikel

Nama

Jurnal

Metode Hasil Penelitian

Nama Peneliti:

Yun-Wei Lin et al.

code smart

home

diintegrasikan untuk

aplikasi smart home

3 Judul Artikel:

EmoSDS: Unified

Emotionally

Adaptive Spoken

Dialogue System

Using Self-

Supervised Speech

Representations

Nama Peneliti:

Jaehwan Lee et al.

Future

Internet

ASR → LLM

open source

(SpeechGPT,

Align-SLM,

Gemma/Mistral

/Zephyr) →

TTS

(VITS/HiFi-

GAN); integrasi

SSL &

emotional

adaptation

Pipeline cascaded

meningkatkan

ekspresivitas dan

naturalness dialog;

arsitektur modular,

mudah diadaptasi

untuk berbagai

domain

4 Judul Artikel:

DQ-Whisper: Joint

Distillation and

Quantization for

Efficient

Multilingual Speech

Recognition

Nama Peneliti:

Hang Shao et al.

 IEEE

SLT 2024

Quantization

dan distillation

Model Whisper

dikompresi hingga

5,18x dengan

penurunan performa

minimal; inference

lebih efisien tanpa

mengorbankan

akurasi multibahasa

5 Judul Artikel:

Benchmarking

Emerging Deep

learning

Quantization

Methods for Energy

Efficiency

Nama Peneliti:

Saurabhsingh

Rajput & Tushar

Sharma

IEEE

ICSA-C

2024

GGUF (GPT-

Generated

Unified Format)

GGUF terbukti

sebagai salah satu

metode quantization

paling efisien secara

energi untuk

inference model

besar

6 Judul Artikel:

Conversational

Payments on UPI

Apps: A Pipeline

Approach

Leveraging ASR

and NLP

Techniques

ACM

CODS-

COMAD

2024

CTranslate2

untuk

percepatan

inference

Penggunaan

CTranslate2

mempercepat

inference model

ASR (Whisper) dan

NMT, menurunkan

latency hingga ~600

ms pada aplikasi

nyata

12
Inference-Level Optimization…, Kenny Budiarso Lawson, Universitas Multimedia Nusantara

No Judul dan peneliti

Artikel

Nama

Jurnal

Metode Hasil Penelitian

Nama Peneliti: Sai

Kasyap Kamaraju

et al.

7 Judul Artikel:

Toward Real-time

and Efficient

Perception

Workflows in

Software-Defined

Vehicles

Nama Peneliti:

Reza Sumaiya et al.

IEEE

Internet of

Things

Journal

Pruning,

multiprecision

quantization

(FP32, FP16,

INT8), ONNX

Runtime,

TensorRT

Meningkatkan

kecepatan inference

hingga 18x dan

throughput 16,5x,

mengurangi

penggunaan

GPU/memori hingga

30% dengan dampak

minimal pada

akurasi

8 Judul Artikel: I-

ViT: Integer-only

Quantization for

Efficient Vision

Transformer

Inference

Nama Peneliti:

Zhikai Li & Qingyi

Gu

IEEE/CV

F ICCV

2022

Integer-only

INT8

quantization

dengan dyadic

arithmetic,

approximasi

operasi non-

linear

(Shiftmax,

ShiftGELU)

Kecepatan inference

3,7–4,1x lebih cepat

dibanding FP,

akurasi setara atau

lebih baik dari

model full precision

9 Judul Artikel:

ESPnet-ONNX:

Bridging a Gap

Between Research

and Production

Nama Peneliti:

Masao Someki et

al.

APSIPA

ASC 2022

Konversi model

PyTorch ke

ONNX, node

fusion,

quantization

parameter

Percepatan inference

1,3–2x pada tugas

ASR, TTS, dan lain-

lain tanpa pelatihan

ulang dan tanpa

penurunan performa

10 Judul Artikel:

Using Quantized

Neural Network for

Speaker

Recognition on

Edge Computing

Devices

Nama Peneliti:

Tongwei Dai

Journal of

Physics

Conferenc

e Series

Post-training

quantization

dengan

FBGEMM (per-

channel) dan

QNNPACK

(per-tensor).

Konversi FP32

ke INT8 dengan

linear mapping.

Arsitektur

VGGNet pada

Pengurangan ukuran

model 3x lebih kecil,

inference speed 1.5x

lebih cepat

dibandingkan

floating-point model.

Analisis power

consumption

menunjukkan edge

devices (ASIC)

mencapai <1W

dengan throughput

10-100 GOPS.

13
Inference-Level Optimization…, Kenny Budiarso Lawson, Universitas Multimedia Nusantara

No Judul dan peneliti

Artikel

Nama

Jurnal

Metode Hasil Penelitian

dataset

VoxCeleb.

11 Judul Artikel:

Empowering Large

Language Models

to Edge

Intelligence: A

Survey of Edge

Efficient LLMs and

Techniques

Nama Peneliti: Rui

Wang, et al.

ScienceDi

rect

Survey

komprehensif

teknik model

compression

(quantization,

pruning,

distillation,

low-rank

decomposition),

inference

optimization,

on-device

inference

engines, dan

cloud-edge

collaborative

frameworks.

Identifikasi 4

tantangan utama

edge deployment

(computational

resources, memory

footprint, thermal

constraints,

connectivity).

Keunggulan edge:

latency reduction,

privacy

enhancement,

bandwidth

efficiency, offline

capability.

12 Judul Artikel: A

Survey on

Optimization

Techniques for

Edge Artificial

Intelligence (AI)

Nama Peneliti: Rui

Wang, et al.

Sensors

(MDPI)

Kategorisasi

komprehensif

optimasi:

hardware

optimization

(CPU/GPU/FP

GA/ASIC/TPU)

, federated

learning, model

optimization

(pruning,

quantization,

weight sharing,

matrix

decomposition),

hyperparameter

tuning, dan

energy

efficiency

methods.

INT8/INT4/mixed-

precision

quantization trade-

offs terdokumentasi.

CPU inference

dengan INT8

memberikan best

performance-per-

watt untuk edge

devices.

Arsitektur voice conversational AI berbasis pipeline cascaded (ASR,

LLM/SLM, dan TTS) merupakan pendekatan yang efektif dan fleksibel dalam

berbagai skenario aplikasi. Sistem speech-to-speech tutor berbasis avatar real-time

14
Inference-Level Optimization…, Kenny Budiarso Lawson, Universitas Multimedia Nusantara

telah membuktikan bahwa kombinasi modul Noise Reduction, Whisper, RAG–

LLM, serta TTS dapat menghasilkan interaksi suara yang natural, responsif, dan

dapat dijalankan pada perangkat edge secara efisien [32]. Pada aplikasi smart home,

integrasi Whisper dengan SLM open-source dalam pipeline ASR–SLM–TTS

menghasilkan performa transkripsi yang sangat akurat serta kemudahan integrasi

dengan sistem kendali perangkat rumah pintar [33]. Sementara itu, pengembangan

emotionally adaptive dialogue systems berbasis pipeline ASR, LLM, dan TTS

menunjukkan bahwa penambahan representasi suara berbasis self-supervised

learning mampu meningkatkan naturalness dan ekspresivitas interaksi suara [34].

Secara keseluruhan, temuan-temuan tersebut menegaskan bahwa arsitektur

cascaded ASR, LLM/SLM, dan TTS adalah fondasi yang kuat, modular, serta dapat

disesuaikan untuk berbagai kebutuhan pengembangan voice conversational AI

modern.

Beberapa penelitian menunjukkan bahwa optimasi inference pada Whisper

dapat dilakukan melalui berbagai pendekatan yang berfokus pada kompresi model,

efisiensi energi, dan percepatan eksekusi di perangkat dengan sumber daya terbatas.

Pendekatan quantization-distillation terbukti mampu mengurangi ukuran model

secara signifikan tanpa menurunkan akurasi secara berarti, sehingga menghasilkan

performa inference yang lebih ringan dan sesuai untuk deployment pada lingkungan

komputasi rendah [35]. Penelitian lain juga menunjukkan bahwa penggunaan

format model yang dioptimalkan seperti GGUF dapat meningkatkan efisiensi

memori dan konsumsi energi selama inference, menjadikannya salah satu pilihan

terbaik untuk menjalankan model berukuran besar pada perangkat edge [36]. Selain

itu, percepatan inference melalui framework seperti CTranslate2 telah

menghasilkan latency yang sangat rendah dalam aplikasi real-time, menunjukkan

bahwa optimasi berbasis runtime dapat memberikan peningkatan performa yang

substansial pada sistem yang mengandalkan pemrosesan suara secara langsung

[37]. Temuan-temuan ini menegaskan bahwa optimasi Whisper melalui

quantization, format model ringkas, dan percepatan runtime merupakan landasan

penting dalam meningkatkan efisiensi ASR pada sistem voice conversational AI

modern.

15
Inference-Level Optimization…, Kenny Budiarso Lawson, Universitas Multimedia Nusantara

Optimasi inference pada small language models (SLM) dapat dicapai melalui

teknik post-training quantization yang tidak memerlukan pelatihan ulang model.

GGUF (GPT-Generated Unified Format) terbukti sebagai salah satu metode

quantization paling efisien secara energi untuk inference model besar, dengan

kemampuan mengurangi presisi numerik bobot model sambil mempertahankan

kualitas output yang acceptable [36]. Format GGUF dirancang khusus untuk

mendukung berbagai tingkat quantization seperti INT8, INT4, dan mixed-

precision, memungkinkan trade-off yang fleksibel antara ukuran model, kecepatan

inference, dan akurasi prediksi. Implementasi GGUF pada SLM seperti Gemma 3

1B dapat dilakukan melalui konversi model ke format binary yang teroptimasi,

disertai dengan metadata quantization yang memfasilitasi loading dan eksekusi

model secara efisien pada perangkat dengan sumber daya komputasi terbatas.

Secara keseluruhan, temuan-temuan tersebut menunjukkan bahwa optimasi

Gemma 3 1B dapat dilakukan tanpa melakukan pelatihan ulang model, melainkan

melalui penerapan weight-only quantization berbasis GGUF yang mendukung

deployment efisien pada lingkungan CPU-only.

Optimasi inference pada model TTS berbasis VITS dapat dicapai melalui teknik

kompresi dan percepatan runtime yang berfokus pada efisiensi eksekusi di

perangkat dengan sumber daya terbatas. Pendekatan yang menggabungkan pruning

dan multiprecision quantization dengan backend seperti ONNX Runtime dan

TensorRT terbukti mampu meningkatkan kecepatan inference secara signifikan

tanpa mengorbankan kualitas keluaran audio, sehingga relevan untuk deployment

VITS dalam aplikasi real-time [31]. Teknik integer-only quantization juga telah

ditunjukkan mampu mengurangi kompleksitas komputasi secara substansial

dengan menjalankan seluruh operasi menggunakan aritmatika integer, sambil

mempertahankan stabilitas akustik model, sehingga dapat diterapkan pada

komponen VITS yang mengandalkan arsitektur transformer [38]. Selain itu,

optimasi melalui konversi model PyTorch ke ONNX dilakukan dengan peningkatan

seperti node fusion, graph optimization, dan quantization yang telah terbukti

memberikan percepatan inference yang konsisten tanpa menurunkan kualitas suara

[39], menjadikannya teknik yang sangat praktis untuk pengembangan dan produksi

16
Inference-Level Optimization…, Kenny Budiarso Lawson, Universitas Multimedia Nusantara

model VITS. Secara keseluruhan, temuan-temuan ini menegaskan bahwa

kombinasi quantization dan optimasi ONNX Runtime merupakan strategi efektif

untuk meningkatkan efisiensi dan performa model VITS dalam sistem TTS real-

time maupun lingkungan komputasi berdaya rendah.

Deployment voice conversational AI pada lingkungan CPU-only memiliki

landasan ilmiah berdasarkan tiga aspek fundamental, yaitu aksesibilitas

infrastruktur, kebutuhan privasi dan compliance, serta efisiensi operasional.

Penelitian menunjukkan bahwa mayoritas edge devices dan local servers di lingkup

enterprise hanya dilengkapi dengan CPU tanpa akselerasi GPU atau TPU khusus

[25], [26]. Dalam kebutuhan deployment, khususnya untuk aplikasi telekomunikasi,

layanan kesehatan, dan layanan finansial, pemrosesan data sensitif secara lokal

menjadi keharusan untuk memenuhi regulasi seperti HIPAA, GDPR, dan PCI-DSS

yang melarang transmisi raw audio ke cloud [25]. Edge-based voice AI processing

pada CPU memungkinkan latency reduction yang signifikan, yaitu dari rata-rata

200ms cloud latency menjadi <10ms local processing yang krusial untuk

conversational flow yang natural [25], [40]. Studi terbaru membuktikan bahwa

dengan teknik quantization yang tepat, khususnya INT8 quantization pada CPU,

performa inference dapat mencapai 3-4x lebih cepat dibandingkan floating-point

model dengan penurunan akurasi yang minim (<1%) [26], [41].

Kontribusi utama penelitian optimasi end-to-end pipeline pada CPU-only

terletak pada integrasi sistematis multi-component quantization yang belum

dieksplorasi secara komprehensif dalam literatur yang sudah ada. Penelitian

sebelumnya cenderung fokus pada optimasi single-component atau deployment

hybrid cloud-edge [25], [26], sementara optimasi setiap ketiga komponen (ASR,

LLM, TTS) dengan teknik quantization yang berbeda-beda dalam satu pipeline

terpadu masih terbatas [40]. Hasil optimasi setiap komponen menunjukkan

performa yang sangat baik, namun integrasi antar-komponen belum terdokumentasi

baik.

Meskipun penelitian-penelitian sebelumnya telah menunjukkan efektivitas

optimasi individual pada komponen ASR, LLM/SLM, dan TTS, terdapat beberapa

17
Inference-Level Optimization…, Kenny Budiarso Lawson, Universitas Multimedia Nusantara

research gap yang belum terpenuhi secara komprehensif. Mayoritas penelitian

terdahulu berfokus pada optimasi single-component dalam lingkungan hybrid

cloud-edge atau GPU-accelerated. Meskipun arsitektur cascaded telah terbukti

efektif, belum terdapat studi sistematis yang mengintegrasikan optimasi inference-

level secara keseluruhan komponen dengan teknik quantization yang beragam

dalam satu pipeline terpadu. Oleh karena itu, penelitian ini berkontribusi untuk

untuk research gap tersebut dengan mengimplementasikan dan mengevaluasi

sistem voice conversational AI berbasis arsitektur cascaded yang dioptimasi secara

inference-level pada lingkungan CPU-only. Kontribusi penelitian mencakup

implementasi strategi optimasi multi-komponen dengan beberapa teknik berbeda,

validasi bahwa optimasi inference-level mampu mencapai pengurangan latency

dengan tetap mempertahankan kualitas, serta membuktikan kapabilitas deployment

pada sistem berbasis CPU ataupun local hosting. Sehingga, penelitian mampu

menjawab kebutuhan industri dengan perhatian terhadap sensitivitas data dan

spesifikasi sistem yang minim, yang dapat digunakan pada kebutuhan aplikasi

seperti telekomunikasi, layanan kesehatan, dan layanan finansial.

 Teori yang Berkaitan

2.2.1 Artificial Intelligence (AI)

Artificial Intelligence (AI) adalah bidang multidisiplin yang berfokus pada

pengembangan sistem komputer yang mampu melakukan tugas-tugas yang

biasanya memerlukan kecerdasan manusia, seperti memahami bahasa,

mengenali suara, memecahkan masalah, dan membuat keputusan [42]. AI telah

membawa manfaat signifikan di berbagai sektor, termasuk peningkatan

efisiensi, otomatisasi proses, dan personalisasi layanan [43]. Dalam konteks

teknologi voice conversational AI, seperti sistem Automatic Speech

Recognition (ASR), Large Language Model (LLM), dan Text-to-Speech (TTS),

AI berperan sebagai inti yang memungkinkan komputer memahami,

memproses, dan merespons percakapan manusia secara alami [44]. Sistem ini

menggabungkan kemampuan pengenalan suara, pemrosesan bahasa alami dan

penalaran, serta sintesis suara untuk menciptakan interaksi yang lebih

18
Inference-Level Optimization…, Kenny Budiarso Lawson, Universitas Multimedia Nusantara

manusiawi dan responsif, yang telah diadopsi luas dalam layanan pelanggan,

asisten virtual, dan aplikasi edukasi [45].

Secara teknis, AI bekerja dengan membangun sistem cerdas yang mampu

belajar dari data dan mengambil keputusan secara otonom. Proses ini

melibatkan penggunaan algoritma machine learning dan deep learning, di mana

sistem dilatih menggunakan data besar untuk mengenali pola, membuat

prediksi, dan meningkatkan kinerjanya seiring waktu tanpa instruksi eksplisit

[46]. Sistem AI modern memanfaatkan jaringan saraf tiruan atau artificial

neural networks yang meniru cara kerja otak manusia untuk memproses

informasi kompleks, seperti pengenalan suara dan pemahaman bahasa alami.

Kemampuan pengambilan keputusan AI didasarkan pada analisis data,

penalaran logis, dan pembelajaran berkelanjutan, sehingga AI dapat

memberikan rekomendasi, memecahkan masalah, dan menyesuaikan respons

sesuai konteks [47]. Dengan demikian, AI tidak hanya meniru kecerdasan

manusia, tetapi juga memperluas kapasitas pengambilan keputusan berbasis

data di berbagai bidang aplikasi.

2.2.2 Deep learning

Deep learning adalah cabang dari machine learning yang menggunakan

arsitektur deep neural networks untuk mempelajari representasi data secara

otomatis dan hierarkis [48]. Peranannya sangat penting dalam pengembangan

model-model modern, karena mampu mengekstraksi fitur kompleks dari data

mentah tanpa memerlukan rekayasa fitur manual. Dalam sistem voice

conversational AI, khususnya ASR dan TTS, deep learning telah merevolusi

performa dan akurasi [49]. Model seperti Convolutional Neural Networks

(CNN), Recurrent Neural Networks (RNN), dan Transformer telah digunakan

secara luas untuk mengenali pola suara, memahami konteks percakapan, serta

menghasilkan suara sintetis yang alami, sehingga meningkatkan kualitas

interaksi manusia-mesin [50].

Secara teknis, deep learning bekerja dengan membangun jaringan saraf

berlapis-lapis, di mana setiap lapisan (layer) bertugas mengekstraksi

19
Inference-Level Optimization…, Kenny Budiarso Lawson, Universitas Multimedia Nusantara

representasi fitur yang semakin abstrak dari data input [51]. Proses

pembelajaran dilakukan melalui mekanisme forward propagation, di mana data

mengalir dari input ke output, dan backward propagation, di mana bobot

jaringan diperbarui berdasarkan error yang dihitung dari output menggunakan

algoritma backpropagation [52]. Dengan pendekatan ini, model deep learning

mampu secara otomatis belajar dari data besar, menyesuaikan parameter

internalnya untuk meminimalkan kesalahan, dan menemukan pola-pola penting

tanpa intervensi manusia. Kemampuan ini menjadikan deep learning sangat

efektif dalam menangani data kompleks seperti suara dan bahasa, serta

memungkinkan pengambilan keputusan berbasis representasi fitur yang

dihasilkan secara otomatis [53].

2.2.3 Inference-Level Optimization

Inference-level optimization merupakan serangkaian teknik yang diterapkan

pada model deep learning untuk meningkatkan efisiensi komputasi selama fase

inferensi tanpa mengubah arsitektur dasar model atau melakukan pelatihan

ulang [54]. Optimasi pada tingkat inferensi menjadi sangat krusial karena fase

inferensi adalah tahap di mana model deep learning digunakan secara aktif

dalam aplikasi produksi, memproses data dalam jumlah besar dengan

kebutuhan latency rendah dan throughput tinggi [55]. Berbeda dengan optimasi

pada fase pelatihan yang berfokus pada konvergensi model, optimasi inferensi

bertujuan untuk mengurangi computational footprint, memory bandwidth, dan

inference latency tanpa mengorbankan akurasi prediksi secara signifikan [56].

Teknik-teknik optimasi inferensi mencakup graph-level optimization seperti

operator fusion dan constant folding, serta algorithm-level optimization seperti

quantization dan pruning yang secara kolektif dapat menghasilkan peningkatan

performa hingga 3-5x pada berbagai arsitektur neural network [57].

Inference-level optimization bekerja melalui transformasi pada

computational graph dan parameter model yang telah terlatih untuk

memaksimalkan efisiensi eksekusi pada target hardware tertentu. Post-training

optimization (PTO) merupakan pendekatan yang paling umum digunakan

karena dapat diterapkan pada model pre-trained tanpa memerlukan siklus

20
Inference-Level Optimization…, Kenny Budiarso Lawson, Universitas Multimedia Nusantara

pelatihan tambahan, dengan teknik utama meliputi graph optimization yang

menggabungkan beberapa operasi menjadi single kernel untuk mengurangi

kebutuhan memory bandwidth, dan post-training quantization yang

mengkonversi representasi numerik dari floating-point 32-bit (FP32) menjadi

integer 8-bit (INT8) atau bahkan presisi lebih rendah [58]. Operator fusion

sebagai salah satu teknik graph optimization dapat mengeliminasi alokasi

intermediate tensor dan mengurangi kernel launch overhead, sementara

quantization mampu mengurangi ukuran model hingga 75% dengan degradasi

akurasi yang minim melalui pengurangan bit-width untuk weights dan

activations [59]. Implementasi inference optimization yang efektif

mempertimbangkan karakteristik target hardware dan profil workload aplikasi,

sehingga menghasilkan trade-off optimal antara latency, throughput, memory

usage, dan akurasi untuk deployment pada resource-constrained environments

seperti edge devices dan mobile platforms [60].

2.2.4 Small Language Model (SLM) / Large Language Model (LLM)

Small Language Model (SLM) dan Large Language Model (LLM) adalah

dua kategori model bahasa berbasis neural network yang digunakan untuk

pemrosesan bahasa alami. SLM umumnya memiliki jumlah parameter yang

lebih sedikit, sehingga lebih efisien secara komputasi dan cocok untuk aplikasi

dengan sumber daya terbatas, namun cenderung memiliki kapasitas generalisasi

dan pemahaman bahasa yang lebih terbatas dibandingkan LLM [61].

Sebaliknya, LLM memiliki ratusan juta hingga miliaran parameter, dilatih pada

data teks dalam skala besar, dan mampu memahami serta menghasilkan teks

yang sangat kompleks dan kontekstual [62]. Dalam pipeline voice

conversational AI, baik SLM maupun LLM berperan sebagai komponen

pemrosesan bahasa alami yang menginterpretasi hasil transkripsi ASR,

memahami maksud pengguna, dan menghasilkan respons yang kemudian

diubah kembali menjadi suara oleh TTS. SLM menawarkan keunggulan

efisiensi dan kemudahan deployment, sedangkan LLM unggul dalam kualitas

respons dan kemampuan generalisasi lintas domain.

21
Inference-Level Optimization…, Kenny Budiarso Lawson, Universitas Multimedia Nusantara

Secara teknis, model bahasa modern bekerja melalui beberapa tahapan

utama. Proses dimulai dengan tokenisasi, yaitu memecah teks menjadi unit-unit

kecil (token) yang dapat diproses oleh model. Selanjutnya, token-token ini

diubah menjadi vektor representasi (embedding) dan diproses melalui arsitektur

transformer, yang terdiri dari lapisan-lapisan self-attention dan feed-forward

neural network [63]. Mekanisme attention memungkinkan model untuk

menimbang relevansi antar token dalam satu konteks, sehingga dapat

memahami hubungan semantik dan sintaksis secara dinamis. Model kemudian

menghasilkan respons bahasa secara autoregresif, yaitu memprediksi token

berikutnya berdasarkan urutan token sebelumnya, dengan teknik decoding

seperti greedy search, top-k, atau top-p sampling untuk mengontrol kreativitas

dan koherensi respons. Dengan pendekatan ini, baik SLM maupun LLM dapat

menghasilkan teks yang relevan dan kontekstual, meskipun LLM umumnya

lebih unggul dalam menangani konteks yang panjang dan kompleks [64].

2.2.5 Speech-to-Text (STT) / Automatic Speech Recognition (ASR)

Automatic Speech Recognition (ASR) atau Speech-to-Text (STT) adalah

teknologi yang memungkinkan sistem komputer untuk mengkonversi sinyal

suara manusia menjadi teks secara otomatis [65]. ASR berperan penting sebagai

komponen awal dalam pipeline voice conversational AI, di mana hasil

transkripsi dari suara menjadi teks digunakan untuk pemrosesan bahasa alami

dan interaksi lanjutan dengan pengguna. Manfaat utama ASR meliputi

peningkatan aksesibilitas bagi penyandang disabilitas, efisiensi dalam layanan

pelanggan, transkripsi otomatis untuk dokumentasi, serta mendukung berbagai

aplikasi seperti asisten virtual, sistem dikte, dan layanan terjemahan. Dengan

kemajuan deep learning, akurasi dan keandalan ASR semakin meningkat,

meskipun tantangan seperti kebisingan lingkungan, variasi aksen, dan

kecepatan bicara masih menjadi perhatian utama.

Secara teknis, proses kerja ASR dimulai dari tahap preprocessing audio, di

mana sinyal suara diolah melalui segmentasi, filtering, dan normalisasi untuk

mengurangi noise dan menyiapkan data mentah [66]. Selanjutnya, dilakukan

ekstraksi fitur menggunakan teknik seperti Mel-Frequency Cepstral

22
Inference-Level Optimization…, Kenny Budiarso Lawson, Universitas Multimedia Nusantara

Coefficients (MFCC) atau spectrogram, yang mengubah sinyal audio menjadi

representasi numerik yang lebih mudah dianalisis oleh mesin. Fitur-fitur ini

kemudian diproses oleh model neural network modern, seperti arsitektur

encoder–decoder berbasis attention, LSTM, atau Transformer, yang mampu

mempelajari hubungan temporal dan pola kompleks dalam data suara. Model

ini secara otomatis memetakan urutan fitur akustik menjadi urutan teks, dengan

proses pelatihan yang mengoptimalkan parameter jaringan untuk minimalisir

kesalahan transkripsi. Pendekatan end-to-end ini terbukti meningkatkan akurasi

dan efisiensi ASR dalam berbagai kondisi dan bahasa [67].

2.2.6 Text-to-Speech (TTS)

Text-to-Speech (TTS) adalah teknologi yang mengubah teks tertulis menjadi

suara manusia buatan yang terdengar alami. TTS berperan sebagai komponen

akhir dalam sistem voice conversational AI, memungkinkan sistem untuk

memberikan respons verbal yang mudah dipahami dan interaktif bagi pengguna

[68]. Manfaat utama TTS meliputi peningkatan aksesibilitas bagi penyandang

disabilitas, otomatisasi layanan pelanggan, pembacaan buku digital, serta

personalisasi asisten virtual. Dengan kemajuan deep learning, kualitas suara

yang dihasilkan TTS semakin mendekati suara manusia asli, sehingga interaksi

antara manusia dan mesin menjadi lebih natural dan efektif.

Secara konseptual, sistem TTS modern terdiri dari beberapa tahapan utama.

Proses dimulai dengan text analysis, yaitu analisis linguistik untuk

mengidentifikasi struktur kalimat, pengucapan fonem, intonasi, dan fitur

prosodi lainnya [69]. Hasil analisis ini kemudian diproses oleh acoustic model,

biasanya berbasis neural network seperti encoder–decoder atau transformer,

untuk menghasilkan representasi akustik berupa mel-spectrogram atau fitur

serupa. Tahap akhir adalah vocoder-based waveform synthesis, di mana

vocoder, seperti WaveNet, HiFi-GAN, atau WaveGlow mengubah representasi

akustik menjadi gelombang suara digital yang dapat diperdengarkan.

Pendekatan end-to-end dan penggunaan arsitektur deep learning telah

meningkatkan naturalitas, ekspresivitas, dan fleksibilitas sistem TTS secara

signifikan.

23
Inference-Level Optimization…, Kenny Budiarso Lawson, Universitas Multimedia Nusantara

 Framework/Algoritma yang digunakan

2.3.1 Whisper

Whisper merupakan automatic speech recognition (ASR) yang

dikembangkan oleh OpenAI dengan pendekatan large-scale weak supervision

training menggunakan 680,000 jam data audio multilingual dan multitask yang

dikumpulkan dari internet [70]. Model ini dirancang untuk mengatasi

keterbatasan ASR tradisional yang memerlukan dataset-specific fine-tuning

dengan kemampuan generalisasi melalui zero-shot transfer learning ke

berbagai benchmark datasets tanpa memerlukan pelatihan tambahan. Whisper

dilatih secara multitask untuk menangani beragam speech processing tasks

dalam single unified model, termasuk multilingual speech recognition yang

mendukung lebih dari 90 bahasa, speech translation ke bahasa Inggris, spoken

language identification, dan voice activity detection, di mana seluruh tugas

tersebut direpresentasikan sebagai sequence of tokens yang diprediksi oleh

komponen decoder. Karakteristik dari Whisper adalah robustness yang tinggi

terhadap variasi aksen, background noise, dan technical language, yang

membuatnya mampu berperforma mendekati human-level accuracy pada

berbagai kondisi akustik yang menantang [70]. Model ini tersedia dalam

berbagai ukuran mulai dari Tiny (39M parameters) hingga Large (1550M

parameters).

Gambar 2. 1 Arsitektur Model Whisper [70]

24
Inference-Level Optimization…, Kenny Budiarso Lawson, Universitas Multimedia Nusantara

Sesuai dengan Gambar 2.1, arsitektur Whisper mengimplementasikan

encoder-decoder Transformer architecture dengan desain yang sederhana

namun efektif untuk speech-to-text conversion. Audio processing pipeline

dimulai dengan segmentasi input audio menjadi chunks berdurasi 30 detik, yang

kemudian dikonversi menjadi log-Mel spectrogram representation melalui

Short-Time Fourier Transform (STFT) yang dilakukan pada windowed

segments dari audio waveform [70]. Komponen Encoder terdiri dari multiple

layers Transformer blocks yang menerima log-Mel spectrogram sebagai input

dan menghasilkan high-dimensional audio feature embeddings yang meng-

capture acoustic dan phonetic information dari spoken content. Komponen

Decoder menggunakan autoregressive generation mechanism untuk

memprediksi transkripsi teks secara sequential token-by-token, di mana setiap

generated token di-condition pada generated tokens sebelumnya dan audio

features dari encoder melalui cross-attention mechanism. Whisper

memanfaatkan special tokens system untuk mengontrol multitask behavior,

termasuk language identification tokens, task specification tokens untuk

membedakan antara transcription dan translation tasks, timestamp prediction

tokens untuk phrase-level temporal alignment, dan end-of-text token untuk

menandakan selesainya dari generation process. Training objective

menggunakan standard cross-entropy loss untuk next-token prediction dengan

teacher forcing strategy, di mana model belajar untuk memaksimalkan

kesamaan dari transkripsi audio input dan generated tokens sebelumnya.

Arsitektur ini memungkinkan Whisper untuk berfungsi sebagai single unified

model yang menggantikan banyak komponen spesifik dalam speech processing

pipeline tradisional, sekaligus menjaga fleksibilitas untuk mengatasi perbedaan

bahasa dan kondisi akustik tanpa membutuhkan modifikasi arsitektur atau task-

specific adaptations.

2.3.2 Gemma 3 1B

Gemma 3 1B merupakan lightweight small language model yang

dikembangkan oleh Google DeepMind sebagai bagian dari Gemma 3 model

family yang dirilis pada tahun 2025, dengan ukuran parameter 1 miliar yang

25
Inference-Level Optimization…, Kenny Budiarso Lawson, Universitas Multimedia Nusantara

dirancang untuk deployment pada resource-constrained environments seperti

edge devices dan consumer-grade hardware [71]. Model ini dilatih

menggunakan 2 triliun tokens dari beragam korpus teks yang mencakup web

documents dalam lebih dari 140 bahasa, code repositories, dan mathematical

content dengan knowledge cutoff date pada Agustus 2024, sehingga memiliki

beragam linguistic coverage dan kemampuan multilingual yang superior

dibandingkan models pendahulunya. Gemma 3 1B mengimplementasikan

improvisasi arsitektur termasuk interleaved local-global attention mechanism

yang didesain untuk mengurangi konsumsi KV-cache memory pada long-

context inference, serta mendukung context window hingga 32,000 tokens yang

memungkinkan processing dari sejarah obrolan lebih panjang atau dokumen

[71]. Training process melibatkan teknik seperti knowledge distillation dari

model yang lebih besar, serta fase reinforcement learning yang menggunakan

multiple reward functions untuk peningkatan performa dan reasoning.

Arsitektur Gemma 3 1B mengadopsi decoder-only Transformer

architecture dengan total 1,152 hidden dimensions dan 8 attention heads yang

mengimplementasikan Grouped-Query Attention (GQA) untuk meningkatkan

efisiensi inference dengan mengurangi kebutuhan memory bandwidth selama

autoregressive generation [71]. Model menggunakan Gemini 2.0

SentencePiece tokenizer dengan vocabulary size 262,000 tokens yang

dioptimasi untuk menangani multilingual text, digit numerikal, dan whitespace

characters, sehingga meningkatkan efisiensi tokenization. Layer normalization

menggunakan RMSNorm yang diaplikasikan pada pre-norm dan post-norm

positions untuk menstabilkan training dynamics, dengan perubahan arsitektural

dari Gemma 2 yaitu penggantian dari soft-capping activation dengan QK-

normalization mechanism yang menormalisasi query dan key matrices sebelum

attention computation untuk mencegah ketidakstabilan numerical pada large-

scale training. Input processing melibatkan tokenization dari text input menjadi

barisan token IDs, diikuti dengan embedding lookup tokens ke high-dimensional

vector representations, kemudian melewati tumpukan Transformer decoder

layers yang terdiri dari self-attention mechanism untuk modeling contextual

26
Inference-Level Optimization…, Kenny Budiarso Lawson, Universitas Multimedia Nusantara

relationships dan feed-forward network untuk feature transformation. Proses

generasi menggunakan autoregressive decoding di mana model memprediksi

token berikutnya berdasarkan pada tokens yang di-generate sebelumnya.

2.3.3 VITS MMS

VITS (Variational Inference with adversarial learning for end-to-end Text-

to-Speech) MMS Indonesian merupakan text-to-speech synthesis model yang

dikembangkan sebagai bagian dari project Massively Multilingual Speech

(MMS) Facebook yang bertujuan untuk menyediakan teknologi speech dalam

lebih dari 1,000 bahasa termasuk bahasa Indonesia [72]. Model ini

mengimplementasikan end-to-end speech synthesis architecture yang

mengatasi keterbatasan two-stage TTS systems yang tradisional dengan

menggabungkan acoustic modeling dan vocoding dalam single unified

framework, sehingga menghilangkan intermediate representation seperti mel-

spectrogram dan mengaktifkan direct waveform generation dari teks input.

VITS memanfaatkan conditional variational autoencoder framework yang

augmented dengan normalisasi flows dan adversarial training untuk

meningkatkan kekuaran ekspresif dari generative modeling, memungkinkan

sintesis dari speech waveforms yang natural dan ekspresif [73]. Model ini dilatih

secara monolingual untuk setiap bahasa dengan beberapa checkpoint, di mana

VITS MMS Indonesian di-trained menggunakan data speech berbahasa

Indonesia yang dikumpulkan melalui MMS-lab yang memanfaatkan

pembacaan teks sebagai sumber data utama. Karakteristik dari VITS adalah

kemampuannya untuk membahas one-to-many nature dari masalah TTS di

mana teks input yang sama dapat diucapkan dengan beberapa cara dengan nada

dan ritme yang berbeda, melalui implementasi dari stochastic duration

predictor yang generate pola ucapan yang berbeda dari teks input serupa.

27
Inference-Level Optimization…, Kenny Budiarso Lawson, Universitas Multimedia Nusantara

Gambar 2. 2 Arsitektur Model VITS [73]

Sesuai dengan Gambar 2.2, arsitektur VITS mengadopsi struktur

conditional variational autoencoder yang terdiri dari tiga komponen utama:

posterior encoder yang mengkodekan bentuk gelombang ucapan referensi

menjadi representasi laten, conditional prior yang memodelkan distribusi

variabel laten yang dikondisikan pada teks input, dan decoder yang

menghasilkan bentuk gelombang ucapan dari variabel laten [73]. Pipeline

pemrosesan teks dimulai dengan tokenisasi menggunakan VitsTokenizer yang

disesuaikan untuk bahasa Indonesia, mengonversi teks menjadi representasi

fonem yang di-embed menjadi vektor fitur berdimensi tinggi. Komponen

conditional prior menggunakan text encoder berbasis Transformer untuk

mengekstraksi informasi kontekstual, diikuti modul normalisasi flow dengan

multiple affine coupling layers untuk meningkatkan fleksibilitas distribusi prior,

dan projection layer untuk memetakan representasi ke dimensi ruang laten.

Stochastic duration predictor mengimplementasikan model generatif berbasis

flow yang memprediksi durasi fonem dengan menggabungkan variabilitas

melalui dua variabel acak, memungkinkan model menghasilkan ucapan dengan

variasi ritme natural. Posterior encoder memproses mel-spectrogram referensi

yang dihitung dari bentuk gelombang ground truth menggunakan Short-Time

Fourier Transform dengan tumpukan WaveNet residual blocks, di mana

penyelarasan teks-audio dicapai melalui algoritma Monotonic Alignment

28
Inference-Level Optimization…, Kenny Budiarso Lawson, Universitas Multimedia Nusantara

Search (MAS) yang secara otomatis menemukan korespondensi optimal tanpa

memerlukan anotasi forced alignment eksternal. Decoder menggunakan

arsitektur identik dengan generator HiFi-GAN, terdiri dari tumpukan

transposed convolutional layers dengan multi-receptive field fusion untuk

mengonversi representasi laten menjadi bentuk gelombang audio mentah pada

sampling rate 16kHz.

2.3.4 Quantization

Quantization merupakan salah satu teknik kompresi model yang digunakan

dalam deep learning untuk meningkatkan efisiensi komputasi dengan

menurunkan presisi representasi numerik pada bobot maupun aktivasi jaringan

saraf. Teknik ini mengubah representasi floating-point seperti FP32 atau FP16

menjadi representasi integer berdimensi rendah, misalnya INT8 atau INT4,

sehingga ukuran model berkurang secara signifikan dan proses inference

menjadi lebih cepat dengan konsumsi memori serta daya yang lebih rendah

[74]. Quantization banyak digunakan dalam deployment model pada perangkat

berdaya rendah seperti CPU, edge device, maupun perangkat mobile karena

mampu menghasilkan percepatan komputasi tanpa penurunan akurasi yang

berarti. Selain itu, quantization memungkinkan model deep learning tetap dapat

dijalankan secara real-time, bahkan ketika lingkungan komputasi terbatas,

sehingga menjadi salah satu pendekatan optimasi paling penting dalam

implementasi model modern, termasuk model berbasis transformer,

convolutional network, maupun model generatif.

Salah satu pendekatan quantization yang paling umum digunakan adalah

Post-training Quantization (PTQ), yaitu metode yang diterapkan setelah model

selesai dilatih tanpa memerlukan proses pelatihan ulang [75]. PTQ bekerja

dengan memetakan bobot dan aktivasi model ke skala integer melalui proses

scaling dan rounding, sehingga model dapat dijalankan menggunakan operasi

aritmatika integer yang jauh lebih efisien dibanding representasi floating-point.

Teknik ini mencakup beberapa varian seperti dynamic quantization, static

quantization, dan weight-only quantization, yang masing-masing menawarkan

kompromi berbeda antara akurasi dan efisiensi. Karena PTQ tidak memerlukan

29
Inference-Level Optimization…, Kenny Budiarso Lawson, Universitas Multimedia Nusantara

akses ke data pelatihan dan dapat diaplikasikan secara langsung pada model

terlatih, pendekatan ini menjadi pilihan utama untuk mengoptimalkan model

yang kompleks atau berukuran besar, serta secara luas digunakan dalam sistem

yang menuntut inference cepat pada perangkat dengan sumber daya terbatas.

Berikut merupakan beberapa teknik turunan yang termasuk sebagai bagian

dari post-training quantization:

1. Dynamic Quantization

Dynamic quantization merupakan teknik yang menerapkan penurunan

presisi numerik terutama pada bobot (weights) model, sementara aktivasi

dikonversi secara dinamis selama proses inference. Teknik ini tidak

memerlukan data kalibrasi dan dapat diterapkan langsung pada model

terlatih tanpa proses tambahan, sehingga menjadi metode yang paling

mudah digunakan dalam konteks post-training quantization [76]. Pada

dynamic quantization, bobot model biasanya diturunkan ke representasi

INT8, sedangkan aktivasi tetap dihitung dalam representasi floating-point

sehingga menjaga stabilitas numerik sambil tetap memperoleh peningkatan

efisiensi komputasi. Pendekatan ini memberikan peningkatan kecepatan

inference pada CPU dan pengurangan ukuran model yang signifikan,

meskipun hasilnya tidak setinggi static quantization dalam hal kompresi

menyeluruh. Dynamic quantization banyak digunakan pada model berbasis

transformer dan recurrent neural networks yang sensitif terhadap

penurunan presisi aktivasi, sehingga memberikan keseimbangan antara

efisiensi dan akurasi.

2. Static Quantization (Full Integer Quantization)

Static quantization, atau full integer quantization, merupakan teknik

yang mengonversi bobot dan aktivasi sekaligus ke representasi integer

melalui proses kalibrasi menggunakan sampel data. Berbeda dengan

dynamic quantization, teknik ini memerlukan data representatif untuk

menentukan rentang nilai (range calibration) sehingga proses quantization

lebih akurat dan stabil [75]. Karena aktivasi dan bobot keduanya dikonversi

30
Inference-Level Optimization…, Kenny Budiarso Lawson, Universitas Multimedia Nusantara

ke INT8, perangkat inference dapat melakukan operasi komputasi integer

penuh, sehingga memberikan peningkatan performa yang lebih besar

dibanding dynamic quantization, terutama pada CPU dan edge device.

Static quantization juga memungkinkan optimasi seperti per-tensor dan

per-channel quantization, yang menghasilkan distribusi nilai integer yang

lebih presisi. Meskipun teknik ini memberikan kompresi dan percepatan

terbaik dalam post-training, akurasi model dapat menurun jika data

kalibrasi tidak representatif atau jika model sangat sensitif terhadap

perubahan presisi numerik.

3. Quantization-Aware Training

Quantization-Aware Training (QAT) merupakan teknik advanced

quantization yang mensimulasikan efek quantization selama proses

pelatihan, sehingga model dapat menyesuaikan bobotnya terhadap noise

yang diperkenalkan oleh representasi integer[74]. Pada QAT, operasi

quantization seperti rounding dan clipping disimulasikan dalam forward

pass, tetapi parameter model tetap diperbarui menggunakan gradien

floating-point, sehingga memungkinkan model mempertahankan akurasi

yang jauh lebih tinggi dibandingkan post-training quantization

konvensional. Teknik ini secara umum menghasilkan performa mendekati

model full-precision, bahkan ketika bobot dan aktivasi dikompresi ke INT8

atau lebih rendah. QAT cocok untuk model dengan struktur kompleks

seperti transformer, convolutional networks, atau vocoder TTS, tetapi

memerlukan proses pelatihan ulang sehingga lebih mahal secara komputasi.

Karena implementasinya lebih rumit, QAT biasanya diterapkan pada

skenario industri atau model produksi yang sangat sensitif terhadap

penurunan akurasi.

4. Weight-Only Quantization

Weight-only quantization merupakan teknik yang hanya menurunkan

presisi bobot model, sementara aktivasi tetap menggunakan presisi floating-

point. Teknik ini banyak digunakan pada model bahasa dan model encoder-

decoder besar karena memberikan efisiensi memori yang substansial tanpa

31
Inference-Level Optimization…, Kenny Budiarso Lawson, Universitas Multimedia Nusantara

memengaruhi stabilitas aktivasi selama inference. Representasi bobot yang

umum digunakan meliputi INT8, INT4, bahkan format ultra-low precision

seperti GPTQ dan AWQ yang menggunakan skema quantization adaptif

[77]. Weight-only quantization menghasilkan kompresi model yang sangat

besar dengan penurunan akurasi minimal, dan sangat efektif ketika

dikombinasikan dengan runtime yang mendukung kernel integer

teroptimasi. Teknik ini telah menjadi praktik umum dalam deployment LLM

di perangkat CPU maupun GPU low-end karena tidak memerlukan data

kalibrasi dan dapat diaplikasikan secara langsung pada model terlatih.

2.3.5 ONNX Runtime Optimization

ONNX Runtime merupakan high-performance inference engine yang

dirancang untuk mengeksekusi model deep learning secara efisien di

berbagai platform komputasi. Framework ini mendukung model dengan

format ONNX (Open Neural Network Exchange), sebuah standar terbuka

yang memungkinkan interoperabilitas lintas framework seperti PyTorch,

TensorFlow, dan JAX[55]. Keunggulan utama ONNX Runtime adalah

kemampuannya mengoptimalkan eksekusi model melalui serangkaian

teknik percepatan seperti graph optimization, operator fusion, dan

pemilihan execution provider yang sesuai dengan perangkat keras yang

digunakan. Dengan optimasi ini, model dapat berjalan lebih cepat, konsumsi

memori berkurang, dan latency inference menjadi lebih rendah, sehingga

ONNX Runtime banyak digunakan pada aplikasi real-time dan perangkat

dengan sumber daya terbatas. Selain itu, ONNX Runtime mendukung

akselerasi CPU maupun GPU serta memiliki ekstensi khusus seperti ONNX

Runtime Mobile, yang semakin meningkatkan fleksibilitas penggunaan pada

skenario edge computing dan embedded systems.

Secara teknis, ONNX Runtime melakukan optimasi model melalui

beberapa tahapan yang mencakup graph simplification, constant folding,

node elimination, serta operator fusion, yaitu penggabungan beberapa

operasi menjadi satu kernel komputasi untuk mengurangi overhead

eksekusi. Optimasi ini dijalankan pada intermediate representation dari

32
Inference-Level Optimization…, Kenny Budiarso Lawson, Universitas Multimedia Nusantara

model ONNX, sehingga menghasilkan optimized computation graph yang

lebih ringkas dan efisien. Selain itu, ONNX Runtime mendukung execution

provider seperti CPUExecutionProvider, CUDAExecutionProvider, atau

TensorRTExecutionProvider yang memilih backend eksekusi paling

optimal sesuai perangkat keras. Runtime juga menyediakan dukungan untuk

quantization, termasuk dynamic quantization dan static quantization, yang

semakin menurunkan latency dan kebutuhan memori pada saat inference.

Kombinasi teknik optimasi graph, pemilihan kernel yang efisien, dan

integrasi quantization memungkinkan ONNX Runtime memberikan

peningkatan performa signifikan pada model deep learning, terutama pada

aplikasi TTS atau model sejenis dengan struktur komputasi kompleks.

2.3.6 CTranslate2 Optimization

CTranslate2 merupakan sebuah high-performance inference engine

yang dirancang khusus untuk mengeksekusi model sequence-to-sequence

pada tahap deployment, seperti ASR dan neural machine translation.

Berbeda dengan deep learning framework umum seperti PyTorch yang

dirancang untuk mendukung proses pelatihan dan inferensi secara fleksibel,

CTranslate2 dikembangkan sebagai standalone inference runtime berbasis

C++ yang berfokus pada efisiensi eksekusi model [78]. Pendekatan ini

memungkinkan penghilangan berbagai overhead yang umum terdapat pada

training-oriented frameworks, seperti autograd engine, dynamic

computation graph, dan abstraksi tensor tingkat tinggi, sehingga proses

inferensi dapat dijalankan secara lebih ringan, deterministik, dan efisien.

CTranslate2 mendukung berbagai arsitektur dan format model populer,

termasuk Whisper dan model OpenNMT, serta menyediakan kompatibilitas

dengan backend CPU dan GPU, menjadikannya sesuai untuk deployment

pada lingkungan dengan keterbatasan sumber daya maupun aplikasi yang

menuntut latency rendah dan throughput tinggi.

Keunggulan performa CTranslate2 dicapai melalui kombinasi

implementasi runtime C++ yang teroptimasi dan pemanfaatan pustaka

komputasi tingkat rendah yang disesuaikan dengan arsitektur perangkat

33
Inference-Level Optimization…, Kenny Budiarso Lawson, Universitas Multimedia Nusantara

keras target. Pada eksekusi berbasis CPU, CTranslate2 memanfaatkan

pustaka numerik seperti Intel MKL untuk mengakselerasi operasi linear

melalui rutin BLAS dan vektorisasi SIMD, serta menerapkan memory

alignment dan efficient memory layout untuk meminimalkan cache miss dan

meningkatkan data locality. Selain itu, CTranslate2 mengintegrasikan

berbagai teknik optimasi inference seperti weight-only quantization pasca-

pelatihan, operator fusion, decoder state caching, dan dynamic batching,

yang secara kolektif berkontribusi pada pengurangan latency, penurunan

konsumsi memori, dan peningkatan throughput tanpa memerlukan proses

pelatihan ulang atau fine-tuning model [78].

2.3.7 GGUF Quantization Format

GGUF (General Graph Unified Format) merupakan format representasi

model yang digunakan untuk mendukung inference Large Language

Models secara efisien, khususnya pada skenario deployment berbasis CPU

dan sistem dengan keterbatasan sumber daya. Format ini digunakan sebagai

representasi model hasil optimasi post-training, yang memungkinkan

penyimpanan bobot terkuantisasi beserta metadata arsitektur dan informasi

tensor dalam satu berkas terstruktur, sehingga memfasilitasi proses model

loading dan eksekusi model yang lebih deterministik dan efisien [79], [80].

Penggunaan format GGUF telah dilaporkan dalam studi optimasi LLM yang

mengevaluasi dampak quantization terhadap performa model pada skenario

penggunaan nyata, terutama untuk deployment model berskala besar pada

perangkat konsumen [80].

Secara teknis, GGUF merepresentasikan bobot model yang telah

melalui proses weight-only quantization, seperti INT8 atau INT4, sementara

aktivasi tetap diproses dalam presisi floating-point pada saat inference.

Pendekatan ini memungkinkan pengurangan memory footprint model

secara signifikan tanpa memerlukan proses quantization-aware training.

Struktur file GGUF menyimpan parameter quantization dan metadata

tensor secara eksplisit, sehingga karakteristik quantization dan implikasinya

terhadap perilaku model dapat dianalisis secara sistematis pada runtime

34
Inference-Level Optimization…, Kenny Budiarso Lawson, Universitas Multimedia Nusantara

inference [79]. Dengan demikian, GGUF diposisikan sebagai format model

yang merepresentasikan hasil post-training quantization dan mendukung

eksekusi LLM yang efisien pada lingkungan inference berbasis CPU [79],

[80].

 Rumus Metrik Evaluasi

Dalam evaluasi performa sistem voice conversational AI, berbagai metrik

digunakan untuk menilai kualitas dan efisiensi komponen utama sistem, yaitu ASR,

SLM, dan TTS. Metrik evaluasi ini mencakup pengukuran akurasi transkripsi,

kecepatan pemrosesan, kualitas respons bahasa alami, serta kualitas keluaran audio.

Berikut adalah metrik evaluasi yang digunakan dalam penelitian ini.

1. Word Error Rate (WER)

WER merupakan metrik utama yang digunakan untuk mengevaluasi akurasi

model ASR dalam mentranskripsikan ujaran menjadi teks. WER mengukur

jumlah kesalahan prediksi berdasarkan tiga jenis kesalahan: substitusi,

penghapusan, dan penyisipan kata [81]. Nilai WER yang lebih rendah

menunjukkan performa ASR yang lebih baik.

𝑊𝐸𝑅 =
𝑆 + 𝐷 + 𝐼

𝑁
 × 100

Rumus 2. 1 Evaluasi Word Error Rate

Legend dari 2.1 Evaluasi Word Error Rate adalah sebagai berikut:

a. Substitution (S): Jumlah kata salah ganti

b. Deletions (D): Jumlah kata hilang

c. Insertions (I): Jumlah kata tambahan

d. N: Total kata dalam transkripsi referensi

2. Character Error Rate (CER)

Character Error Rate (CER) digunakan untuk mengevaluasi tingkat

kesalahan transkripsi pada level karakter dengan membandingkan hasil

transkripsi model terhadap transkrip ground truth [81]. Metrik ini menghitung

35
Inference-Level Optimization…, Kenny Budiarso Lawson, Universitas Multimedia Nusantara

proporsi kesalahan karakter yang terjadi selama proses pengenalan ujaran. Nilai

CER yang lebih rendah menunjukkan kualitas transkripsi yang lebih baik.

𝐶𝐸𝑅 =
𝑁𝑠𝑢𝑏 + 𝑁𝑑𝑒𝑙 + 𝑁𝑖𝑛𝑠

𝑁𝑐ℎ𝑎𝑟
 × 100

Rumus 2. 2 Evaluasi Character Error Rate

Legend dari 2.2 Evaluasi Character Error Rate adalah sebagai berikut:

e. 𝑵𝒔𝒖𝒃: Jumlah kesalahan substitution pada level karakter

f. 𝑵𝒅𝒆𝒍: Jumlah kesalahan deletion pada level karakter

g. 𝑵𝒊𝒏𝒔: Jumlah kesalahan insertion pada level karakter

h. 𝑵𝒄𝒉𝒂𝒓: Jumlah total karakter pada transkrip ground truth

3. Real-time Factor (RTF)

RTF digunakan untuk mengukur kecepatan proses inference, terutama pada

ASR dan TTS. RTF menunjukkan perbandingan antara waktu pemrosesan

model terhadap durasi audio asli. Model dapat dikatakan berjalan secara real-

time apabila nilai RTF sama dengan atau lebih kecil dari 1 [82].

𝑅𝑇𝐹 =
𝑇𝑝𝑟𝑜𝑐𝑒𝑠𝑠

𝑇𝑎𝑢𝑑𝑖𝑜

Rumus 2. 3 Evaluasi Real-time Factor

Legend dari rumus 2.3 Evaluasi Real-time Factor adalah sebagai berikut:

a. Tprocess: Waktu proses inference (detik)

b. Taudio: Durasi audio asli (detik)

4. Latency / Inference Time (Untuk SLM & TTS)

Latency mengukur waktu yang diperlukan sistem untuk menghasilkan

keluaran setelah menerima input. Pada SLM, latency dihitung sejak teks

masukan diterima hingga respons selesai dihasilkan, sementara pada TTS

dihitung sejak teks diterima hingga audio selesai diproduksi [83]. Latency

36
Inference-Level Optimization…, Kenny Budiarso Lawson, Universitas Multimedia Nusantara

menjadi indikator penting untuk aplikasi real-time seperti voice conversational

AI.

𝐿𝑎𝑡𝑒𝑛𝑐𝑦 = 𝑇𝑜𝑢𝑡𝑝𝑢𝑡 − 𝑇𝑖𝑛𝑝𝑢𝑡

Rumus 2. 4 Evaluasi Latency

Legend dari rumus 2.4 Evaluasi Latency adalah sebagai berikut:

a. Tinput: Waktu input diterima

b. Toutput: Waktu output selesai diproduksi

5. Token Generation Rate (Tokens per Second)

Token Generation Rate digunakan untuk mengevaluasi efisiensi model

bahasa dalam menghasilkan teks. Metrik ini mengukur jumlah token bahasa

yang dihasilkan model per detik [84]. Nilai yang lebih tinggi menunjukkan

performa inference yang lebih cepat dan efisien.

𝑇𝑜𝑘𝑒𝑛𝑅𝑎𝑡𝑒 =
𝑁𝑡𝑜𝑘𝑒𝑛𝑠

𝑇𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛

Rumus 2. 5 Evaluasi Token Generation Rate

Legend dari rumus 2.5 Evaluasi Token Generation Rate adalah sebagai

berikut:

a. Ntokens: Jumlah token yang dihasilkan

b. Tgeneration: Waktu generasi respons (detik)

6. Model Size

Model size digunakan untuk mengevaluasi kebutuhan penyimpanan model

pada tahap deployment. Metrik ini diukur sebagai ukuran file model setelah

konversi dan/atau quantization. Nilai model size yang lebih kecil menunjukkan

efisiensi memori yang lebih baik [58].

𝑀𝑜𝑑𝑒𝑙𝑆𝑖𝑧𝑒 = 𝑆𝑖𝑧𝑒𝑓𝑖𝑙𝑒

Rumus 2. 6 Evaluasi Model Size

37
Inference-Level Optimization…, Kenny Budiarso Lawson, Universitas Multimedia Nusantara

Legend dari rumus 2.6 Evaluasi Model Size adalah sebagai berikut:

a. 𝑺𝒊𝒛𝒆𝒇𝒊𝒍𝒆: Ukuran file model dalam satuan megabytes (MB) atau

gigabytes (GB)

 Tools/software yang digunakan

2.5.1 Python

Python merupakan bahasa pemrograman berorientasi objek yang banyak

digunakan dalam pengembangan aplikasi modern karena sintaksnya yang

sederhana, fleksibel, serta mudah dipahami oleh pemula maupun pengembang

berpengalaman. Python memiliki ekosistem library yang sangat luas dan

mendukung berbagai kebutuhan komputasi, termasuk data processing,

scientific computing, machine learning, hingga pemrosesan suara, sehingga

menjadikannya salah satu bahasa pemrograman paling populer dalam penelitian

dan industry [85]. Kemampuan Python untuk berjalan lintas platform, didukung

oleh komunitas global yang besar, serta keterhubungannya dengan berbagai

framework dan runtime engine menjadikannya pilihan utama dalam

pengembangan sistem berbasis AI dan pemodelan algoritmik. Selain itu, Python

mengintegrasikan manajemen memori otomatis dan struktur data tingkat tinggi,

memungkinkan pengembang membangun prototipe maupun aplikasi produksi

secara cepat, efisien, dan hemat biaya, sesuai dengan tuntutan implementasi

teknologi berbasis komputasi modern.

2.5.2 Visual Studio Code

Visual Studio Code (VS Code) merupakan source-code editor lintas

platform yang dikembangkan oleh Microsoft dan telah menjadi salah satu

lingkungan pengembangan paling populer karena ringan, fleksibel, serta

memiliki dukungan extension yang luas. VS Code menyediakan fitur-fitur

modern seperti syntax highlighting, intellisense, debugger terintegrasi, dan

version control berbasis Git, sehingga memudahkan pengembang dalam

membangun, menguji, dan memelihara aplikasi secara efisien. Editor ini juga

mendukung berbagai bahasa pemrograman termasuk Python, JavaScript, dan

38
Inference-Level Optimization…, Kenny Budiarso Lawson, Universitas Multimedia Nusantara

C++, serta memungkinkan integrasi langsung dengan runtime environment dan

tooling lain melalui marketplace open-source. Selain itu, penelitian

menunjukkan bahwa VS Code memberikan produktivitas tinggi bagi

pengembang karena arsitekturnya yang modular, kustomisasi antarmuka yang

fleksibel, dan performa yang optimal untuk proyek berskala kecil hingga

menengah [86]. Dengan kombinasi fitur intuitif dan ekosistem pendukung yang

kuat, VS Code menjadi pilihan utama dalam pengembangan perangkat lunak

modern, termasuk dalam konteks penelitian dan implementasi sistem berbasis

AI.

2.5.3 Hardware yang Digunakan

Penelitian ini dilakukan dengan ditenagai oleh beberapa komponen

hardware, yaitu sebagai berikut:

1. CPU : Intel® Core™ i5-1235U

2. Memory : 16 GB RAM

3. OS : Windows 11

4. Storage : 512 GB SSD

